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1 Introduction

One of the virtues of holography [1] is that deciphering properties of the theory on the
gravitational side of the correspondence becomes feasible if the dual field theory is un-
der strong technical control. The present work fits in the framework of the holographic
correspondence between 3d N = 4 superconformal field theories (SCFTs) and IIB string
theory on a warped AdS4 background. Departing from the standard forms of the holo-
graphic dictionary [2–4] (which relates linear or circular quiver gauge theories and the well
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defined corresponding AdS4 backgrounds), we study general Lagrangian 3d N = 4 theories
and their exactly marginal deformations in an effort to extract features about their (yet
unknown) dual string solutions.

Exactly marginal deformations. We explore the moduli space of 3d N = 4 supercon-
formal theories in three dimensions,1 much beyond the class of linear quivers T ρ̌ρ [SU(N)]
introduced in [12], which we had treated in our previous work [13]. Presently, we consider
all 3d N = 4 Lagrangian gauge theories that are “good” in the sense that their infrared
fixed point includes neither free fields nor orbifolds thereof, in other words it is an inter-
acting SCFT or a decoupled product of such SCFTs.2 Such theories are isolated as 3d
N = 4 SCFTs, but they admit N = 2 preserving exactly marginal deformations, which
are known to belong to three distinct multiplets of the 3d N = 4 algebra [14]. These mul-
tiplets, denoted as B1[0](2,0), B1[0](0,2), B1[0](1,1) following [15], feature (as their bottom
components) Higgs, Coulomb and mixed branch operators. Their number is captured by
the superconformal index, or equivalently the partition function of the theory on S2 × S1,
the computation of which is performed via supersymmetric localization. We provide fully
explicit formulas for the number of all such operators, culminating in the dimension (3.34)
of the superconformal manifold.

Our main focus, specifically, is on analyzing the mixed marginal moduli, which lie in
B1[0](1,1) multiplets.

In the class of linear quiver gauge theories [13] we had found that linear quivers have
no single-trace mixed marginal moduli : indeed, all mixed marginal moduli are expressed
as a factorized product of electric and magnetic currents. This was obtained first by
an index calculation which shows that B1[0](1,1) multiplets transform in the adj(Gelec) ⊗
adj(Gmag) representation of the Gelec×Gmag global symmetry group (consisting of manifest
electric flavour symmetries Gelec and topological magnetic symmetries Gmag), modulo some
relations between products of electric and magnetic current multiplets. Secondly, the same
result was obtained by expliciting how all B1[0](1,1) multiplets constructed from fields in
the Lagrangian (and magnetic monopoles) factorize.

Main results on single-trace mixed moduli. By following a procedure analogous to
the one for the case of linear quiver theories, we determine the low-lying BPS spectrum
of general good Lagrangian 3d N = 4 theories via an index computation. Our keystone
result, whose precise assumptions are given in Proposition 4.1, is:

Ns.t. ≥ g , (1.1)

which provides a lower bound for the number Ns.t. of single-trace mixed moduli3 in terms
of a notion of genus g. For quiver gauge theories with unitary gauge groups, g simply

1There has been an extensive study of deformations of 4d SCFTs that preserve superconformality [5–9]
and conformal manifolds of these SCFTs [10, 11] have been explored as well.

2This notion of goodness is slightly stronger than the standard requirement that monopole operators
have dimensions ∆ ≥ 1. The difference is exemplified by the abelian theories in subsection 5.3 whose
infrared limit involves an orbifold of free monopoles.

3We derive a stronger bound: there are at least g such moduli with weight 0 under the Cartan torus of
Gelec ×Gmag.
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denotes the genus of the quiver obtained by deleting U(1) gauge group factors, namely it is
the number of loops of nonabelian gauge-nodes in the quiver. On the other hand, abelian
theories have g = 0, and we prove that they do not possess single-trace mixed moduli, so
that Ns.t. = g = 0 saturates the bound.

Apart from the abelian case, and example theories discussed in section 5, our analysis
only provides a lower bound for the number Ns.t. of such moduli, as the counting of their
exact number turns out to be rather elaborate due to F-term relations. As we determine in
section 4, the moduli of interest involve either a vector multiplet or a monopole operator,
dressed by a pair of hypermultiplet components to obtain a gauge-invariant combination.

In quiver gauge theories of unitary gauge groups U(ni), we identify explicitly the
single-trace mixed moduli to be of the form

Be = Tri(q̃eφjqe) (1.2)

for each oriented edge e of the quiver joining nodes i and j, where qe, q̃e stand for chiral
and anti-chiral components of a hypermultiplet in the bifundamental representation of
U(ni)×U(nj), and φj is the U(nj) vector multiplet scalar. As described near (5.5), F-term
relations imply that Be = −Breversed(e) and that the sum of all Be starting from a given
node i vanishes. For instance in a circular quiver all Be are identified to each other up to
signs, leading to one single-trace operator, only. More generally, the number of linearly
independent Be is the genus of the quiver.4 Whenever a node is abelian, namely nj = 1,
the manifest factorization Be = φj Tri(q̃eqe) into the product of (gauge-invariant) vector
multiplet and hypermultiplet components implies that Be is no longer single-trace: this
explains why U(1) factors must be removed when defining the genus g.

The bound (1.1) is not always an equality: if the quiver has multiple edges e, e′ joining
the same nodes, operators of the form Tri(q̃eφjqe′) with chiral components of different
hypermultiplets provide additional mixed moduli that are not accounted for by the genus.
In subsection 5.1, we analyze the case of (good) quivers with U(ni) gauge groups with
fundamental and bifundamental matter, and find that such moduli are necessarily charged
under flavour symmetries: to be precise, the number of single-trace mixed moduli that
are neutral under the Cartan torus of Gelec × Gmag is exactly g. We conjecture that this
remains valid in the presence of adjoint matter.5 We also investigate in subsection 5.4 some
circular quivers, for which we determine precisely the representations of Gelec × Gmag in
which the single-trace B1[0](1,1) multiplets transform.

Holographic interpretation. As mentioned above, an important trait of the linear
and circular quiver theories is that they admit a dual holographic description. The AdS4
is fibered over a 6d base manifold comprised of a product of two-spheres wrapped over a
Riemann surface: M6 = (S2 × Ŝ2) n Σ. The local form of the solutions was found in [16]

4For hypermultiplets in other representations there may be several ways to contract indices, leading to
multiple single-trace operators counted by the genus. For instance, each adjoint hypermultiplet of SU(n)
increases the genus by one for n ≥ 3 and zero for n = 2. The difference can be tracked down to the identity
Tr(abc) = −Tr(acb) in su(2).

5While the adjoint representation of U(n) contains a singlet, we omit the resulting free hypermultiplet
from the definition of the quiver theory.
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while the global solutions and the exact holographic dictionary were developed in [2, 3]
for duals of linear quivers, and in [4] for the duals of circular quivers, see also [17, 18].
The solution is labelled by a set of discrete parameters corresponding to the positions and
the charges of D3, D5 and NS5 branes supported in the solution. The electric (B(2,0)

1 )
and magnetic (B(0,2)

1 ) moduli correspond then to open strings on the D5 and NS5 branes,
respectively, while the mixed ones (B(1,1)

1 ) are either closed string states (massive gravitini
superpartners, of which there is at most one) corresponding to the above Be operators, or
double-string states factorizing into electric and magnetic building blocks.

Our previous analysis of linear quiver gauge theories shows that the corresponding
four dimensional gauged N = 4 supergravity [19] captures the Higgs and Coulomb branch
moduli automatically, and captures the factorized mixed moduli through appropriate mod-
ification of the AdS boundary conditions [20, 21], and not directly because the spectrum
does not include massive spin- 3

2 multiplets [14]. For the general classes of theories studied
in the present work there is a minimal number of single-trace B1[0](1,1) multiplets given by
the lower bound we determine, therefore a putative supergravity dual would not be able
in principle to accommodate the full moduli space of gauge theories whenever g > 1, even
after taking into account the quantization moduli of the AdS boundary conditions.

Since the genus is defined while omitting U(1) factors, our statements hold equally
for unitary and special unitary gauge groups. This is consistent with the fact that the
holographic dual of linear quivers with special unitary gauge groups is known [22] in a
way that naturally extends to circular quivers, but not to higher genus g > 1. Two very
interesting classes of quivers with loops were introduced in the study of Argyres-Douglas
theories [23], and of magnetic quivers for SU(n) gauge theories, such as those displayed
in figure 4 of [24]. One expects that their string theory origin should lead to an AdS4
holographic dual description, which requires these theories to have no single-trace B1[0](1,1)

multiplet. This expectation is borne out: indeed, loops in these quivers always include at
least one U(1) gauge node, so that the genus is g = 0.

In contrast, star-shaped quivers, namely mirrors of the circle reduction of 4d N = 2
class S theories associated to genus g punctured Riemann surfaces [25], have g single-
trace mixed moduli.6 Indeed, these quivers consist of unitary gauge groups connected
by bifundamental hypermultiplets, together with a central SU(N) node with g adjoint
hypermultiplets, and these adjoints lead to mixed moduli of the form (1.2). For g > 1 this
is in tension with our results since these theories definitely have a string theory construction.
The tension is likely resolved by noting that the known M-theory holographic dual of the
class S theory cannot be T-dualized into a IIB holographic dual of the 3d theory without
becoming singular. It would be worthwhile to determine whether a IIB dual exists for
g ≤ 1, as this is not ruled out by our work.

Organization of the paper. This work is structured as follows. We start in section 2
with a review of the superconformal index of a good 3d N = 4 theory. We present
its definition and the steps comprising its computation via supersymmetric localization.
In section 3 we perform the computation of the index of a general 3d N = 4 theory

6We thank the JHEP referee for suggesting a discussion of this class of theories.
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with a careful treatment of the contribution of each monopole sector. Finally, section 4
is devoted to extracting lower bounds on the number of single-trace B(1,1)

1 multiplets in
general theories, and for special classes of theories: purely abelian, and quivers of unitary
gauge groups. We also present examples in section 5. To support some of the calculations,
we complete the note with appendix A in which we outline some representation-theoretic
results that are extensively used throughout the main text. While the present analysis is
purely field theoretic, it suggests directions that can be explored in the holographically
dual solutions.7

2 Superconformal index

In this section we review the definition and calculation of the superconformal index of 3d
N = 4 theories. We present the explicit localization formula (which could be equivalently
obtained by letter counting) and describe how to expand it.

2.1 The 3d index and its parameters

Definition of the index. The 3d N = 2 superconformal index, defined in terms of the
cohomology of the superchargeQ = Q++

− , has been extensively studied (see for instance [26–
31] and the review [32]). It counts all quantum states of the SCFT on the two-sphere (or
equivalently local operators) with suitable powers of fugacities q, t, e−β , xF associated to
components of the Cartan subalgebra of the global symmetry algebra:

I3d = TrHS2

[
(−1)F e−β(∆−J3−JH3 −J

C
3 )q

1
2 (∆+J3)tJ

H
3 −J

C
3
∏
F

xK
F

F

]
, (2.1)

where F is the state’s fermion number, J3 the third component of its spin, ∆ its energy,
and KF are flavour charges, while the SU(2)H and SU(2)C R-symmetry spins appear as
a U(1) R-charge JH3 + JC3 and a U(1) flavour charge JH3 − JC3 from the 3d N = 2 point
of view. The index can be further refined by turning on background fluxes on S2 for the
flavour groups [30] but we will not include this possibility.

The index is independent of the fugacity β by the standard argument: states with
∆ 6= J3 + JH3 + JC3 are paired by Q++

− and their contribution cancels due to (−1)F . This
enables us to replace J3 by ∆− JH3 − JC3 in the exponent of q and write the index as

I3d = TrHS2

[
(−1)Fx2(∆−JC3 )

+ x
2(∆−JH3 )
−

∏
F

xK
F

F

]
, x± = q

1
4 t±

1
2 . (2.2)

The index is thus a series in non-negative integer powers of fugacities x±, with co-
efficients that are Laurent polynomials in the remaining fugacities. These, in turn, are
associated to a maximal commuting set of flavour symmetries that are manifest in the
Lagrangian description (thus excluding symmetries that are only present in the infrared).

• Electric fugacities µ, in the Cartan torus of the flavour group Gelec.

• Magnetic fugacities w for topological symmetries, one per abelian factor U(1)i of G.
7C. Bachas, A. Bourget, I. Lavdas and B. Le Floch, work in progress.
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Topological symmetries often belong to a larger non-abelian group Gmag of magnetic flavour
symmetries of the infrared theory [33–35]. For certain theories (such as orthosymplectic
quivers), the rank of the emergent symmetry Gmag is larger than the number of U(1)
topological symmetries, and it is not known how to include in the index some fugacities
for the additional Cartan generators.

An interesting property of the index is that it reduces [36] to the Coulomb branch
Hilbert series [37–42] (which counts monopole operators parametrizing the Coulomb branch)
upon setting x+ = 0 and to the Higgs branch Hilbert series (which counts gauge-invariant
combinations of hypermultiplets parametrizing the Higgs branch) upon setting x− = 0.
The two branches are exchanged in the case of a pair of theories related by 3d mirror
symmetry and this is also reflected on the index [43]. Finally, the index additionally counts
mixed operators [44].

R-symmetry mixing. The index is invariant under continuous deformations such as the
RG flow (barring wall-crossing phenomena due to non-compact moduli spaces [45, 46]). At
first sight this means the index of the IR SCFT is the same as that of the UV SCFT.
However, the definition (2.1) involves the R-symmetry that belongs to the superconformal
symmetry algebra. In general 3d N = 2 theories, the appropriate U(1) R-symmetry in the
IR differs from the UV one by a mixing with other (abelian) flavour symmetries, in a way
characterized by F -extremization [47].

The nonabelian R-symmetry of 3d N ≥ 3 theories makes such a mixing much rarer.
It still occurs in bad theories [48, 49] where the R-symmetry mixes with low-energy non-
abelian flavour symmetries of hypermultiplets that are free in the infrared, in such a way
that unitarity bounds are restored. Such mixing is expected to be absent in good theories.
As a result, for good 3d N = 4 theories the index I3d can be computed in the UV limit of
the theory, which is a free gauge theory.

2.2 Formulas for the 3d index

In the following we describe the formulas obtained by realizing the superconformal in-
dex (2.1) as a partition function of the theory on S2×S1, with suitable background gauge
fields, which is evaluated by supersymmetric localization, see the review [32].

Localization formula. We consider here a 3d N = 4 gauge theory with gauge group G
of rank r = rankG, and half-hypermultiplet matter in representation Vhyp of G. The
twisted partition function on S2×S1 can be computed using supersymmetric localization.
This yields a multiple sum and integral over supersymmetric vacua characterized by the
S1 holonomy z of the gauge field and its 2-sphere flux m (monopole charges of the cor-
responding local operator in R3) that commute hence can be gauge transformed to the
same Cartan torus T ⊂ G. In this way, z and m are identified with its diagonal compo-
nents zi ∈ U(1) and mi ∈ Z, where i = 1, . . . , r labels the Cartan generators of the gauge
group G. The partition function (or index) is then an integral over z ∈ T ' U(1)r and
a sum over m ∈ Λmon ' Zr of a product of vector multiplet and hypermultiplet one-loop
determinants.
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With notation explained below, the index then reads

I3d = 1
|W (G)|

∑
m∈Λmon

x
2∆(m)
− wm

∫
z∈T

dr
( log z

2πi

)
ZVand PE

(
Ivec

3d + Ihyp
3d
)
, (2.3)

expressed in terms of

ZVand =
∏

α∈roots(G)

(
1− (x−x+)|α·m|zα

)
,

Ivec
3d = x2

− − x2
+

1− x2
−x

2
+
Xvec , Xvec =

∑
ω�adj(G)

(x−x+)|ω·m|zω ,

Ihyp
3d = x+(1− x2

−)
1− x2

−x
2
+
Xhyp , Xhyp =

∑
(ω,ωe)�Vhyp

(x−x+)|ω·m|zωµωe .

(2.4)

The vector multiplet one-loop determinant (together with some integration factors) consists
of an analogue ZVand of Vandermonde determinant and PE(Ivec

3d ), while the matter multiplet
one-loop determinant is PE(Ihyp

3d ), with PE defined next. The sums in Xvec and Xhyp range
over weights of the adjoint representation of G and of the matter representation of G×Gelec,
respectively. The exponential notation zω denotes

zω = eω·log z ∈ U(1) ⊂ C , (2.5)

where log z is any element of the Cartan algebra that maps to z under the exponential
map. Such an element is defined modulo 2πi times our favorite lattice Λmon, and since ω
takes integer values on this lattice the exponential is well-defined.

This product is integrated with respect to the invariant integration measure on the
Cartan torus T with volume normalized to 1, and further quotiented by the cardinal |W (G)|
of the Weyl group of G, due to discrete gauge transformations that leave the Cartan torus
invariant. Finally, the integral is summed over monopole charges m, taking into account
the monopole dimension8

∆(m) = 1
4

∑
ω�Vhyp

|ω ·m| − 1
2

∑
α∈roots(G)

|α ·m| , (2.6)

and the magnetic fugacities wi, raised to powers given by projecting m onto each abelian
factor U(1)i of G:

wm =
∏
i∈I

w
Tri(m)
i . (2.7)

Plethystic exponential. The one-loop determinants are conveniently expressed in terms
of the plethystic exponential (PE) operation [50], defined for a power series f(v1, v2, . . . )
with no constant term (namely such that f(0, 0, . . . ) = 0) by

PE(f) = exp
( ∞∑
n=1

1
n
f(vn1 , vn2 , · · · )

)
. (2.8)

8The formula is usually written for full hypermultiplets Vhyp = R ⊕ R, with a sum over weights of R
only, hence a factor of 1/2 instead of 1/4. For half-hypermultiplets the dimension remains half-integral
because weights of (pseudo)real representations are invariant under w 7→ −w.
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Equivalently, it is uniquely determined by imposing that PE(−∏i v
ki
i ) = (1−∏i v

ki
i ) for any

monomial∏i v
ki
i (where the integers ki are not all zero), and that PE(f+g) = PE(f) PE(g)

for any power series f, g without constant terms. The idea of the plethystic exponential is
that it translates single-particle indices Ivec

3d and Ihyp
3d to multi-particle indices: for instance,

if the one-particle Hilbert space consists of one bosonic state with charges ki under the i-th
symmetry, then the one-particle index is ∏i v

ki
i while the multi-particle index is

PE
(∏
i

vkii

)
= 1

1−∏i v
ki
i

=
∑
n≥0

(∏
i

vkii

)n
. (2.9)

The plethystic exponential gives a very compact way to encode infinite products, for in-
stance

PE
( −a

1− q
)

=
∏
n≥0

(1− aqn) = (a, q)∞, (2.10)

and the factors PE(Ivec
3d ) and PE(Ihyp

3d ) in (2.3) are finite products of such q-Pochhammer
symbols (a, q)∞. An alternative expression is

PE(f) =
∑
n≥0

Snf (2.11)

in terms of the (supersymmetric) symmetrized tensor power Sn, which obeys for instance
S0R = 1, or S2(R1 − R2) = S2R1 + Λ2R2 − R1R2 in terms of the usual symmetric and
antisymmetric powers.

Projection onto gauge singlets. In the simplest case m = 0, the integrand PE(Ivec
3d +

Ihyp
3d ) is a character of G (and of global symmetries), which can be decomposed into charac-
ters of irreducible representations. Integrating over the Cartan torus with the Vandermonde
determinant ZVand and dividing by |W (G)| has the effect of projecting the operator down
to gauge singlets (the trivial character of G).

For m 6= 0, the gauge symmetry is broken down to a smaller group Gm ⊂ G consisting
of elements that commute with the magnetic flux m (in particular Gm ⊃ T ), so that gauge-
invariant operators need only be Gm-invariant rather than G-invariant. This is reflected
in ZVand, which splits into two factors according to which roots α have α ·m = 0 or 6= 0.
First, we have the Vandermonde determinant of Gm, and the integral over T with this
smaller Vandermonde determinant projects down to Gm singlets, as expected physically.
Second, we have remaining α ·m 6= 0 factors. It is convenient to write them as a plethystic
exponential, so as to include it next to PE(Ivec

3d + Ihyp
3d ):

∏
α∈roots(G)
α·m 6=0

(
1− (x−x+)|α·m|zα

)
= PE

(
−

∑
α∈roots(G)
α·m 6=0

(x−x+)|α·m|zα
)
. (2.12)

Single-particle index and recombination. The Hilbert space decomposes into repre-
sentations of the superconformal algebra osp(4|4) [51]. The contribution of each supermul-
tiplet to the index was for example spelled out in section 3 of [13].9

9We follow the Cordova-Dumitrescu-Intriligator notations [15] except that all su(2) labels are half-
integers in our notations rather than being scaled by a factor of 2 to be integers as in their notation.
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• Long multiplets L[j](jH,jC) have dimension ∆ > j+ jH + jC +1 and do not contribute
to the index. This should not come as a surprise since any non-zero contribution
would depend on ∆, which is not fixed for these multiplets, while we know on general
grounds that the index is insensitive to continuous deformations of parameters.

• Short multiplets A1[j](jH,jC) with j > 0 and dimension ∆ = j + jH + jC + 1 have the
following index, in terms of (2.15) below:

I3d
(
A1[j](jH,jC)) = (−1)2j+1I3d

(
B1[0](1+j+jH,1+j+jC)) . (2.13)

• Short multiplets A2[0](jH,jC) have dimension ∆ = jH + jC + 1 and index

I3d
(
A2[0](jH,jC)) = −I3d

(
B1[0](1+jH,1+jC)) . (2.14)

• Short multiplets B1[0](jH,jC) have dimension ∆ = jH + jC and index

I3d
(
B1[0](jH,jC)) = x2jH

+ x2jC

−
(1− δjC>0 x

2
+)(1− δjH>0 x

2
−)

1− δjH+jC>0 x
2
+x

2
−

. (2.15)

Recombination rules describe how long multiplets of various spins split into pairs of short
multiplets when ∆ reaches the unitarity bound. Schematically:

L[0]→ A2[0]⊕B1[0], L[1
2 ]→ A1[1

2 ]⊕A2[0] and L[j]→ A1[j]⊕A1[j − 1
2 ] for j ≥ 1

Since the long multiplet’s index vanishes, the two short multiplets must have opposite
indices. The index expressions above are compatible with, and fully capture, all these
recombination rules. For instance, the B1[0](jH,0) and B1[0](0,jC) multiplets are absolutely
protected in the sense that they cannot recombine with any other multiplet, and corre-
spondingly none of the A-type multiplets shares the same index (up to a sign) with these
two multiplets.

The index calculated using the general formula (2.3) is a sum of indices of these short
multiplets, hence can be decomposed into a linear combination of I3d

(
B1[0](jH,jC)) for

integer 2jH, 2jC ≥ 0. This decomposition is unique because for any monomial in x± there
is exactly one I3d

(
B1[0](jH,jC)) whose leading term is that monomial.

As an illustration, consider the index of T
[
SU(2)

]
, up to order x4

+ and x4
−, with all

electric and magnetic flavour fugacities set to 1:

I3d(T
[
SU(2)

]
)

= 1+3x2
++5x4

++O(x5
+)+3x2

−−7x2
+x

2
−−4x4

+x
2
−+5x4

−−4x2
+x

4
−+7x4

+x
4
−+O(x5

−)
=B1[0](0,0)+3B1[0](1,0)+5B1[0](2,0)+O(x5

+)+
+3B1[0](0,1)−B1[0](1,1)−3B1[0](2,1)+5B1[0](0,2)−3B1[0](1,2)+9B1[0](2,2)+O(x5

−) ,
(2.16)

where we have denoted the index of a supermultiplet in the same way as the multiplet
itself to save space. (To avoid confusion on the notation, let us point out that T

[
SU(2)

]
does not feature any half-integer spins nor R charges.) While the B1[0](jH,0) and B1[0](0,jC)
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terms guarantee the presence of the corresponding multiplets in the spectrum, the terms
B1[0](jH,jC) with both jH, jC ≥ 1 may arise either from B1[0](jH,jC) itself, or from A-type
multiplets. In fact, whenever the coefficient is negative there must be an A-type multiplet.

From (2.16) we thus learn that the spectrum must contain exactly 1 identity oper-
ator, 3 electric currents, 5 electric marginal deformations, etc. (at higher orders in x+),
3 magnetic currents, 5 magnetic marginal deformations, etc. (at higher orders in x−), and
that it must contain at least 1 stress-tensor A2[0](0,0), 3 multiplets A2[0](1,0), 3 multiplets
A2[0](0,1), and finally 9 multiplets that are either B1[0](2,2) or A1[1

2 ]( 1
2 ,

1
2 ). For the last col-

lection of multiplets, the most natural guess would be B1[0](2,2) since all other spins in the
theory are integer. However, supersymmetry does not prevent a long multiplet L[1

2 ]( 1
2 ,

1
2 )

from going down to the unitarity threshold, splitting into A1[1
2 ]( 1

2 ,
1
2 ) and A2[0](1,1), and

the resulting A2 multiplet to recombine with B1[0](2,2) into a long multiplet L[0](1,1). We
see that the index provides some information, but not all of it, on the 1/2-BPS multiplet
content of the theory.

2.3 Reduction to order q

Procedure to expand and decompose the index. To determine the protected spec-
trum up to certain values of R-charges jH and jC, we must perform the following steps:

• list low-lying monopole sectors of the 3d theory, with 2∆(m) ≤ highest power of x−
of interest;

• for each sector m, expand Ivec
3d and Ihyp

3d to the appropriate order in x− and x+ and
split them as a sum of characters of the unbroken gauge group Gm ⊂ G;

• perform the plethystic exponential operation up to the appropriate x± order, using
suitable (anti)symmetrizations, and include the α ·m 6= 0 (non-Vandermonde) factors
of ZVand;

• project down to Gm gauge singlets and account for the difference between dividing
by |W (Gm)| and by |W (G)|;

• after summing over monopole sectors, reorganize the x± expansion into characters of
protected superconformal multiplets.

Index at order q. In the next section we apply the above procedure to order q1, namely
xa−x

4−a
+ for each 0 ≤ a ≤ 4. An important stepping stone is to expand Ivec

3d and Ihyp
3d to this

order:

Ivec
3d = (x2

− − x2
+)

∑
ω�adj(G)
ω·m=0

zω + (x2
− − x2

+)x−x+
∑

ω�adj(G)
|ω·m|=1

zω + o(x4
±) ,

Ihyp
3d = x+(1− x2

−)Xhyp ∑
(ω,ωe)�Vhyp
ω·m=0

zωµωe + x−x
2
+X

hyp ∑
(ω,ωe)�Vhyp
|ω·m|=1

zωµωe + o(x4
±) .

(2.17)

The various sums actually assemble into characters of representations of Gm × Gelec, dis-
tinguished by their charge under the U(1)m ⊂ Gm gauge group generated by m.
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3 Counting marginal operators in Lagrangian 3d theories

3.1 Notation for index building blocks

Our goal in this section is to derive general formulas for the low-lying BPS spectrum
(jH + jC ≤ 2) of 3d N = 4 Lagrangian gauge theories that are good. The theories
are characterized by a gauge group G and a quaternionic representation Vhyp of G in
which the hypermultiplet scalars transform. We obtain general group-theoretic formulas
in the zero-monopole sector first (subsection 3.2), and then in any given monopole sector
(subsection 3.3). In each sector we discuss some aspects of single-trace B1[0](1,1) multiplets.
Assembling these results into the complete index requires a classification of monopole
sectors with low dimension, which is not available in general. We thus specialize the
discussion (in section 4) to various classes of 3d N = 4 quiver gauge theories and determine
which ones have single-trace B1[0](1,1) multiplets.

To shorten the expressions, we will restrict our attention to theories that are good in
the sense that their infrared fixed point has no free fields. In particular they have no free
hypermultiplet, and no free monopole operator.10 In terms of gauge theory data,
we require Vhyp to feature no gauge singlet, and we require ∆(m) ≥ 1 whenever m 6= 0.
This will mean that the spectrum has neither B1[0](1/2,0) nor B1[0](0,1/2) multiplets.

Notation for the index of short multiplets. To condense our expressions and make
it easier to extract the spectrum, we use a short-hand notation for the index of B1[0]
multiplets given in (2.15), whose expression we recall:

B(jH,jC) = I3d
(
B1[0]jH,jC) =



1 jH = 0 , jC = 0 ,
x2jH

+ (1− x2
−)/(1− x2

+x
2
−) jH > 0 , jC = 0 ,

x2jC

− (1− x2
+)/(1− x2

+x
2
−) jH = 0 , jC > 0 ,

x2jH

+ x2jC

− (1− x2
+)(1− x2

−)/(1− x2
+x

2
−) jH > 0 , jC > 0 .

(3.1)
Since the leading term in B(jH,jC) is always x2jH

+ x2jC

− , one can iteratively decompose the
whole index, and more generally any series in nonnegative powers of x±, into the form

I3d =
∑

jH,jC∈ 1
2Z≥0

cjH,jCB(jH,jC) (3.2)

where the coefficients cjH,jC are characters of the (electric and magnetic) flavour symmetry
groups. We aim to determine these coefficients for jH + jC ≤ 2.

10The index of theories with free hypermultiplets is easily derived from this one by multiplying by the
index of these free hypermultiplets. In contrast the condition that there are no free monopoles is more
restrictive, as one cannot in general explicitly decouple such monopoles in the gauge theory description
without introducing twisted hypermultiplets.
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It is worth pointing out that at the order x4
± that we consider, the denominator 1−x2

+x
2
−

can be entirely ignored and one has

B(0,0) = 1 , B(1/2,0) = x+(1− x2
−) +O(x5

±) , B(0,1/2) = x−(1− x2
+) +O(x5

±) ,
B(1,0) = x2

+(1− x2
−) +O(x5

±) , B(1/2,1/2) = x+x−(1− x2
+ − x2

−) +O(x5
±) ,

B(0,1) = x2
−(1− x2

+) +O(x5
±) , B(jH,jC) = x2jH

+ x2jC

− +O(x5
±) for jH + jC ≥ 3/2 .

(3.3)

Notation for an order on representation. While at intermediate steps the index is
expressed as a sum of monomials in the topological fugacities, these eventually recombine
into characters of Gmag, multiplied by characters of Gelec and by the single-particle in-
dices (3.1). In this way, the coefficients cjH,jC are characters of the full flavour symmetry
Gelec×Gmag, which indicate in which representations of Gelec×Gmag the various protected
operators transform. Throughout the paper, we do not distinguish representations and
their characters. In particular, we denote by R1 + R2 and R1R2 the direct sum and the
tensor product of two representations.

To be precise, because A-type multiplets contribute negatively to the index, cjH,jC

(jH, jC ≥ 1) can be characters of virtual representations R − R′, namely the character of
some representation R minus that of another representation R′. We introduce the notation

R1 < R2 (3.4)

to denote that the right-hand side is a sub-representation of the left-hand side, namely
that R1−R2 is a non-virtual representation of the symmetry group of interest. This latter
condition generalizes readily to virtual representations: R1 − R′1 < R2 − R′2 if R1 + R′2 −
R′1 −R2 is a representation, namely if R′1 +R2 is a sub-representation of R1 +R′2.

Because B1[0](jH,jC) are absolutely protected for jH < 1 or jC < 1, and recombine
monogamously with A2[0](jH−1,jC−1) when either jH = 1 or jC = 1, we obtain lower
bounds on their numbers. For a similar reason, since multiplets that recombine with
A2[0](jH−1,jC−1) for min(jH, jC) ≤ 3

2 , namely B1[0](jH,jC) and A1[1
2 ](jH− 3

2 ,j
C− 3

2 ), cannot
recombine with any other multiplet, we have

(representation of B1[0](jH,jC)) = cjH,jC < 0, if jH < 1 or jC < 1 ,

(representation of B1[0](jH,jC)) < cjH,jC , if min(jH, jC) = 1 ,

(representation of A2[0](jH−1,jC−1)) < −cjH,jC , if min(jH, jC) = 1 or 3
2 .

(3.5)

In particular, a coefficient dim c1,1 ≤ −2 indicates the presence of more than one stress
tensor multiplet, hence of decoupled subsectors: such an approach was used successfully
for 4d N = 2 theories in [52].11

11Note that if cjH,jC with min(jH, jC) = 1 is a virtual representation with both a positive and a negative
terms, it could in principle lead to lower bounds on both B1[0] and A2[0] multiplets. We have not sought
an example of theory where this occurs.
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Notation for gauge group and matter content. We decompose the gauge group as

G = U(1)nabel ×
nna∏
i=1

Gi , (3.6)

where nabel is the number of abelian factors and Gi are simple non-abelian factors.
We decompose the hypermultiplet representation Vhyp into irreducible representa-

tions RI . For such an irreducible representation, the tensor square R2
I has at most one

singlet because such a singlet defines an isomorphism RI ' RI , which is necessarily unique
up to scaling by Schur’s lemma. This motivates us to distinguish in our notation between

• complex representations RC
I , such that neither S2RC

I nor Λ2RC
I has any singlet (for

instance any representation charged under a U(1) factor),

• real representation RR
I , such that S2RR

I has a singlet,

• quaternionic representation RH
I (also called pseudoreal), such that Λ2RH

I has a singlet.

We use the following notation for the decomposition into irreducible representations, and
specific names for different types of irreducible representations of G:

Vhyp =
n∑
I=1

(
NIRI

)
=

nC∑
I=1

((
NC
I R

C
I

)
+
(
NC
I R

C
I

))
+

nR∑
I=1

(
NH
I R

R
I

)
+

nH∑
I=1

(
NR
I R

H
I

)
. (3.7)

Here, RI , RC
I , R

C
I , R

R
I , R

H
I are irreducible representations12 of the gauge group G while the

multiplicities NI , N
C
I , N

C
I , N

H
I , N

R
I are (possibly reducible) representations of the electric

flavour symmetry group Gelec. Because Vhyp is a quaternionic representation, the flavour
representations NH

I and NR
I are direct sums of quaternionic and real representations of

the electric flavour symmetry group, respectively (in the opposite order as for the gauge
representations).

The theory of interest is assumed to have no free hypermultiplet, so that Vhyp does not
include any copy of the trivial representation of G. It is useful to introduce a notation Nadj

i

for the multiplicity of each adjoint representation adj(Gi) of a simple non-abelian gauge
group factor, so

Vhyp = · · ·+
nna∑
i=1

(
Nadj
i adj(Gi)

)
. (3.8)

The representation adj(Gi) is real hence Nadj
i is one of the quaternionic representations NH

I .
Note that since we are decomposing the half-hypermultiplet representation Vhyp, the di-
mension of Nadj

i is 2 for a single adjoint hypermultiplet consisting of a pair of adjoint chiral
multiplets.

12In each conjugate pair of complex representations we select arbitrarily which one to call RC
I as opposed

to RC
I .
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3.2 Zero-monopole sector of the index

Some simplifications. We consider first the m = 0 sector, for which the prefactor
x

2∆(m)
− disappears and the effect of integrating with the integration factor, Weyl group

factor, and Vandermonde determinant in (2.3) is simply to project onto gauge-invariant
operators, an operation we denote singletG. The exponents of x− are all even (in this
zero-monopole sector), and in the notation of (3.2), we therefore have

Im=0
3d =

∑
jH,jC≥0

cm=0
jH,jCB

(jH,jC), with cm=0
jH,jC = 0 for 2jC odd. (3.9)

The explicit expressions of coefficients are given in (3.13)–(3.21) below.
In the zero-monopole sector, the vector multiplet and hypermultiplet contributions are

simply characters of representations of G or G × Gelec, which we denote as a short-hand
notation by the name of the representation itself:

Xvec =
∑

ω�adj(G)
zω = adj(G), Xhyp =

∑
(ω,ωe)�Vhyp

zωµωe = Vhyp . (3.10)

(We use + for the addition of characters, which amounts to direct sum ⊕ of representations.)
We are only interested in powers up to xk+x4−k

− , so we expand to this order:

Im=0
3d = singletG

(
PE
(
(x2
− − x2

+) adj(G) + x+(1− x2
−)Vhyp +O(x5

±)
))

. (3.11)

To evaluate this we remember that the plethystic exponential is the sum of (super-)symme-
trized tensor powers Sn, n ≥ 0. For each n ∈ {0, 1, 2, 3, 4} we rewrite these powers in terms
of B(jH,jC).

Symmetric powers. The n = 0 contribution is simply the identity operator B(0,0). The
n = 1 term is the one-particle contribution

(x2
− − x2

+) adj(G) + x+(1− x2
−)Vhyp

= B(1/2,0)Vhyp + (B(0,1) −B(1,0)) adj(G) +O(x5
±) ,

(3.12a)

where there is a cancellation between x2
+x

2
− terms appearing in B(0,1) and B(1,0). Next,

the symmetrized square is computed using S2(R1 −R2) = S2R1 + Λ2R2 −R1R2:

S2((x2
− − x2

+) adj(G) + x+(1− x2
−)Vhyp

)
= x4

+Λ2(adj(G))− x2
+x

2
− adj(G)2 + x4

−S
2(adj(G))

+ x+(x2
− − x2

+) adj(G)Vhyp + x2
+S

2Vhyp − x+x
2
−V

2
hyp +O(x5

±)

= B(1,0)S2Vhyp + (B(1/2,1) −B(3/2,0))Vhyp adj(G)
+B(2,0)Λ2(adj(G))−B(1,1)(adj(G)2 + Λ2Vhyp

)
+B(0,2)S2(adj(G)) +O(x5

±) ,
(3.12b)
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The symmetrized cube and fourth power are simpler because most terms are absorbed in
O(x5

±) and one can directly replace powers of x± by suitable B(jH,jC) at this order:

S3((x2
− − x2

+) adj(G) + x+(1− x2
−)Vhyp

)
= B(3/2,0)S3Vhyp + (B(1,1) −B(2,0)) adj(G)S2Vhyp +O(x5

±) ,

S4((x2
− − x2

+) adj(G) + x+(1− x2
−)Vhyp

)
= B(2,0)S4Vhyp +O(x5

±) .

(3.12c)

Summing the above symmetric products and projecting to gauge singlets gives a formula
for the zero-monopole sector contribution to the index of a theory, and we now begin
extracting coefficients cm=0 of the various indices B(jH,jC), as defined in (3.9).

Magnetic part: cm=0
0,0 , cm=0

0,1 , cm=0
0,2 . We begin with the purely magnetic contributions,

with jH = 0. The adjoint representation of each U(1) gauge group factor is a singlet, while
each adj(Gi) is an irreducible representation hence has no gauge singlet. We thus obtain
our first characters, and their interpretation:

cm=0
0,0 = 1 , (a single identity operator),
cm=0

0,1 = singletG(adj(G)) = nabel (a topological symmetry for each U(1)).
(3.13)

We emphasize that many more B(0,1) multiplets can arise in monopole sectors.
The remaining magnetic term that we can access counts B(0,2) multiplets, whose co-

efficient in (3.12) is (later we are also interested in Λ2 adj(G) obtained by replacing all S2

by Λ2)

S2 adj(G)

= S2 adj
(
U(1)nabel

)
+

nna∑
i=1

(
adj
(
U(1)nabel

)
adj(Gi) + S2 adj(Gi)

)
+

nna∑
i<j

adj(Gi) adj(Gj) .

(3.14)

To project this to gauge singlets, we use the fact that adj(Gi) is a real representation:
indeed, (the inverse of) the Killing form of Gi is a G-invariant element of (adj(Gi))2 that
is symmetric. Thus, S2 adj(Gi) has a singlet while Λ2 adj(Gi) does not, and of course
adj(Gi) adj(Gj) is irreducible and not a singlet. Altogether,

singletG
(
Λ2 adj(G)

)
= 1

2nabel(nabel − 1) ,
cm=0

0,2 = singletG
(
S2 adj(G)

)
= 1

2nabel(nabel + 1) + nna .
(3.15)

Recall now that this character counts some exactly marginal operators. We recognize here
the number 1

2nabel(nabel + 1) of products of magnetic topological currents, while the nna
remaining B(2,0) multiplets are not factorizable in this way.

Hypermultiplet decomposition: cm=0
1/2,0. Our assumption that the theory has no free

hypermultiplet means Vhyp has no singlet, and we immediately find that there are no
B(1/2,0) (free hypermultiplets),

cm=0
1/2,0 = singletG(Vhyp) = 0 . (3.16)
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At higher orders we will need to determine singlets in S2Vhyp and Λ2Vhyp. To work
them out, note that for two irreducible representations R1, R2, the representation R1R2
contains exactly one singlet if R1 and R2 are conjugate from each other. Thus, the gauge
singlets in the (anti)symmetric square of the decomposition (3.7) only come from terms
where a representation RR

I or RH
I is tensored with itself, or RC

I is tensored with RC
I :

singletG
(
S2Vhyp

)
=

nC∑
I=1

(
NC
I N

C
I

)
+

nR∑
I=1

(
S2NH

I

)
+

nH∑
I=1

(
Λ2NR

I

)
, (3.17a)

singletG
(
Λ2Vhyp

)
=

nC∑
I=1

(
NC
I N

C
I

)
+

nR∑
I=1

(
Λ2NH

I

)
+

nH∑
I=1

(
S2NR

I

)
. (3.17b)

Here, we used the facts that S2(NIRI) = (S2NI)(S2RI) + (Λ2NI)(Λ2RI) and that
S2(NIRI) = (S2NI)(Λ2RI) + (Λ2NI)(S2RI), and our knowledge that gauge singlets are in
S2RR

I and Λ2RH
I .

Electric currents: cm=0
1,0 . At order x2

+, the index features electric current multiplets
B(1,0) that are gauge-invariant products of two hypermultiplets, namely are gauge singlets
in S2Vhyp. As counted by the −B(1,0) singletG(adj(G)) term in (3.12a), one must subtract
one F-term relation per abelian factor of G: all gauge group factors of G leads to one
F-term relation, but the relations coming from nonabelian groups are not gauge-invariant
hence only have an effect once multiplied by further factors. We deduce the representation
in which electric conserved currents transform:

cm=0
1,0 = singletG

(
S2Vhyp

)
− nabel

=
nC∑
I=1

(
NC
I N

C
I

)
+

nR∑
I=1

(
S2NH

I

)
+

nH∑
I=1

(
Λ2NR

I

)
− nabel .

(3.18)

As an aside, let us verify that (as expected) this character cm=0
1,0 < 0 does not have a

negative part. By assumption the theory is not bad, so ∆(m) > 0 for any non-zero m,
and in particular there cannot be a monopole charge vector orthogonal to all weights of R.
Restricting to the abelian part, this means that there must be hypermultiplets with at least
nabel different (linearly independent) charge vectors under U(1)nabel . Any representation
charged under the abelian group factors must be complex since conjugation flips the sign
of U(1) charges. We thus have nC ≥ nabel, so that the Gelec-singlets in each NC

I N
C
I are

enough to compensate for the −nabel term in (3.18).
At higher orders in the index, we encounter the gauge singlets of S3Vhyp and S4Vhyp,

and no simple formula is available for these. However, it should also be possible to prove
the overall positivity of coefficients in similar ways.

Third order: cm=0
3/2,0, c

m=0
1/2,1. We turn to operators with jH + jC = 3/2. Recall that jC

must be an integer in the zero-monopole sector, so there are two terms, (jH, jC) = (1/2, 1)
and (3/2, 0). The first one is easily found by splitting adj(G) into abelian and non-abelian
parts and using the notation in (3.8):

cm=0
1/2,1 = singletG

(
adj(G)Vhyp

)
=

n∑
i=1

Nadj
i . (3.19)
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The other one is more elaborate because it involves cubic combinations S3Vhyp of hyper-
multiplets, and gauge singlets therein,

cm=0
3/2,0 = singletG

(
S3Vhyp − adj(G)Vhyp

)
= singletG

(
S3Vhyp

)
−

n∑
i=1

Nadj
i .

(3.20)

Fourth order: cm=0
2,0 , cm=0

1,1 . We are left with studying the (jH, jC) = (2, 0) and (1, 1)
multiplets:

cm=0
2,0 = singletG

(
Λ2(adj(G)) + S4Vhyp − adj(G)S2Vhyp

)
= singletG

(
S4Vhyp

)
+ 1

2nabel(nabel − 1)− cvhh ,

cm=0
1,1 = singletG

(
adj(G)S2Vhyp − adj(G)2 − Λ2Vhyp

)
= cvhh − n2

abel − nna − singletG
(
Λ2Vhyp

)
,

(3.21)

where we have introduced the notation

cvhh = singletG
(
adj(G)S2Vhyp

)
, (3.22)

in which “vhh” refers to the fact that it counts gauge-invariant products of one vector mul-
tiplet scalar and two hypermultiplet scalars. This concludes our calculation of coefficients
in (3.9) for the zero-monopole index. We return later to expliciting the character cvhh of
vector-hypermultiplet combinations, and bounding it from below.

3.3 Monopole sectors of the index

We now consider a fixed nonzero monopole sector m ∈ Λmon \ {0}. In a good theory, one
has ∆(m) ≥ 1 for m 6= 0, as otherwise the monopole operator would give a free multiplet in
the infrared. The corresponding term in the full index (2.3) is x2∆(m)

− times a series in x±,
so that at the x4

± order we care about, we can focus on sectors with ∆(m) ∈ {1, 3/2, 2}. It
is not feasible to classify very explicitly the low-dimension sectors m for general Lagrangian
3dN = 4 theories. We return to this classification question in concrete theories in section 4.

For now, fixing a sector m, we expand the index Im
3d in this sector, up to order x4

±.
Given the prefactor x2∆(m)

− , numerous terms in the index (2.3) simplify.

Commutant. To best express the index, we consider the commutant of m in G and in
the Lie algebra g:

Gm = {g ∈ G, Adg(m) = 0} ⊆ G,
adj(Gm) = gm = {x ∈ g, [m, x] = 0} ⊆ g.

(3.23)

The group Gm shares a Cartan torus with G (and likewise the Lie algebras share their
Cartan subalgebra), hence weights of a representation R of G or of its induced repre-
sentation of Gm coincide. It is useful to decompose R into eigenspaces R(p)

m of m with
eigenvalue p: since the action of Gm on R commutes with that of m, these eigenspaces13

13To obtain (3.24) we identified the weights of R(p)
m by working in a basis of R in which the Cartant

algebra h of g acts diagonally (with eigenvalues giving the weights), and noting that m ∈ h.
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are automatically representations of Gm,

R
(p)
m =

{
x ∈ R, m · x = px

}
⊆ R ,

ω � R(p)
m ⇐⇒

(
ω � R and ω ·m = p

)
.

(3.24)

The zero eigenspace Rm = R
(0)
m is particularly interesting to us. Applying this operation

to the representation R = adj(G) = g reproduces gm, whose roots are thus roots of g

orthogonal to m.

Low-order index. At low orders, the ingredients in (2.3) are conveniently written as

ZVand =
(

1− x−x+
∑

ω�g, ω·m=1
zω
) ∏
α∈roots(Gm)

(
1− zα

)
+ o(x2

±) ,

Ivec
3d = (x2

− − x2
+) adj(Gm) + o(x2

±) , Ihyp
3d = x+V

m
hyp + o(x2

±) ,

(3.25)

in which adj(Gm) and V m
hyp denote characters of the commutant gauge group Gm times

the electric flavour symmetry group Gelec. The m contribution to the index involves an
integral over the Cartan torus, weighted by a product over roots of Gm (Vandermonde
determinant), thus it projects to singlets of Gm up to a factor of |W (Gm)|. For ∆(m) ≥ 1,

|W (G)|
|W (Gm)|I

m
3d = x

2∆(m)
− wm singletGm

(
1 + x+V

m
hyp + x2

+S
2(V m

hyp)

+ (x2
− − x2

+) adj(Gm)− x−x+
∑

ω�g,ω·m=1
zω
)

+ o(x4
±).

(3.26)
The weights ω � g such that ω ·m = 1 are weights of the representation

g
(1)
m =

{
x ∈ g, m · x = x

}
. (3.27)

In particular, m acts non-trivially on every vector in this representation (except x = 0),
so that g(1)

m has no Gm singlet. The explicit sum of zω in the above expression thus drops
out.

Another observation explains the |W (G)|/|W (Gm)| factor. Every monopole sector m′

conjugate to m ∈ h under the Weyl group (gauge transformations) contributes equally to
the index. Since W (Gm) is the centralizer of m, the orbit of m under the Weyl group has
|W (G)|/|W (Gm)| elements.

Index of monopole sectors up to order 4. Altogether, for ∆(m) ≥ 1 we find∑
m′∼m

Im′
3d

=
∏
i∈I

w
Tri(m)
i



B(0,1) +B(1/2,1) singletGm(V m
hyp) +B(0,2)nm

abel
+B(1,1)(singletGm(S2V m

hyp)− nm
abel + 1

)
+ o(x4

±) , ∆(m) = 1 ,
B(0,3/2) +B(1/2,3/2) singletGm(V m

hyp) + o(x4
±) , ∆(m) = 3/2 ,

B(0,2) + o(x4
±) , ∆(m) = 2 ,

o(x4
±) , ∆(m) > 2 ,

(3.28)
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where nm
abel is the number of u(1) factors in gm and we have recast powers of x± as

characters B(jH,jC), for instance x2
− = B(0,1) +B(1,1) + o(x4

±).

3.4 Low-lying BPS spectrum from the 3d index

We are ready to combine the zero-monopole results of subsection 3.2 and the monopole
sectors in subsection 3.3. The full index is

I3d = Im=0
3d +

∑
m∈Λmon/W,1≤∆(m)≤2

( ∑
m′∼m

Im′
3d

)
+ o(x4

±) , (3.29)

where the sum over monopoles has one term for each conjugacy class of m ∈ Λmon, and
is restricted to dimensions ∆(m) ∈ {1, 3/2, 2} due to our goodness assumption and our
truncation to o(x4

±). To shorten later expressions we introduce a notation ∑∆(m)=s for the
sum over monopoles with a given dimension, counting each conjugacy class only once, so
that

I3d = Im=0
3d +

∑
s=1,3/2,2

∑
∆(m)=s

(3.28) + o(x4
±) . (3.30)

Explicit expressions for the low-lying spectrum. We deduce the total number of
various low-lying B(jH,jC) multiplets for jH + jC ≤ 2. First the identity operator and
electric and magnetic currents,

c0,0 = 1 , c1/2,0 = 0 , c0,1/2 = 0 ,
c1,0 = singletG

(
S2Vhyp

)
− nabel ,

c0,1 = nabel +
∑

∆(m)=1
wm . (3.31)

Next the operators with jH + jC = 3/2, where the sums over i run over nonabelian gauge
group factors Gi and we recall that Nadj

i counts the number of adjoint representations
adj(Gi) in Vhyp,

c3/2,0 = singletG
(
S3Vhyp

)
−

∑
1≤i≤n

Nadj
i ,

c1,1/2 = 0 ,
c1/2,1 =

∑
1≤i≤n

Nadj
i +

∑
∆(m)=1

wm singletGm(V m
hyp) ,

c0,3/2 =
∑

∆(m)=3/2
wm .

(3.32)

Interestingly, since c1,1/2 vanishes while c1/2,1 does not, the class of good Lagrangian gauge
theories is not stable under mirror symmetry. An important caveat is that these calculations
do not prevent a good gauge theory from having as its mirror the interacting sector of an
ugly theory.
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Finally the operators with jH + jC = 2, where we refer to (3.22) for the expression
of cvhh:

c2,0 = singletG
(
S4Vhyp

)
+ 1

2nabel(nabel − 1)− cvhh ,

c3/2,1/2 = 0 ,
c1,1 = cvhh − n2

abel − nna − singletG
(
Λ2Vhyp

)
+

∑
∆(m)=1

(
singletGm(S2V m

hyp)− nm
abel + 1

)
wm ,

c1/2,3/2 =
∑

∆(m)=3/2
wm singletGm(V m

hyp) ,

c0,2 = 1
2nabel(nabel + 1) + nna +

∑
∆(m)=1

wmnm
abel +

∑
∆(m)=2

wm .

(3.33)

This completes our derivation of the low-lying protected BPS spectrum, up to the order
that includes exactly marginal deformations.

For jH ≤ 1/2 or jC ≤ 1/2 (or both) the coefficient cjH,jC counts the absolutely pro-
tected multiplets B1[0](jH,jC), which ensures that the count is unambiguous. On the other
hand, one should interpret c1,1 (and higher coefficients) with care, because B1[0](1,1) par-
ticipates in a recombination rule with the stress-tensor. Denoting by nT the number of
stress-tensors (nT = 1 unless the theory has decoupled subsectors), the number of B1[0](1,1)

multiplets is c1,1 + nT .

Conformal manifold. The dimension of the conformal manifold is in fact simpler than
the coefficients cjH,jC may suggest, thanks to some cancellations:

dimCMSC = nT − c1,0 − c0,1 − 1 +
∑

jH+jC=2
cjH,jC

= (nT − 1) + singletG
(
S4Vhyp − Λ2Vhyp − S2Vhyp

)
+

∑
∆(m)=1

singletGm(S2V m
hyp)

+
∑

∆(m)=3/2
singletGm(V m

hyp) +
∑

∆(m)=2
1 ,

(3.34)
in which we implicitly set all flavour fugacities to 1, for instance singletG(S4Vhyp) is not a
representation (or character) of Gelec but rather just its dimension in this formula.

4 Single-trace mixed moduli

4.1 Main results

Results on non-factorized B1[0](1,1) multiplets. We have now reached the main
focus of our work, mixed moduli of 3d N = 4 SCFTs, which sit in B1[0](1,1) multiplets. We
consider the corresponding chiral ring elements, namely the SU(2)H×SU(2)C lowest-weight
state in the bottom component of the multiplet, and whether it is the product of chiral
ring elements corresponding to electric and magnetic current multiplets. We introduce the
notation

Ns.t. = single-trace B1[0](1,1) multiplets < 0 (4.1)
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for the representation of the electric and magnetic flavour symmetries under which the
single-trace mixed moduli multiplets transform. Note that Ns.t. < 0 because it is counting
some actual operators in the theory. As usual we also denote by Ns.t. the character, which
reduces to the dimension upon setting all fugacities to one.14

The index calculations allow us to place a lower bound on Ns.t.. Then, in several classes
of concrete theories, we use F-term relations to show explicitly how almost all B1[0](1,1)

multiplets factorize: the number of remaining multiplets is by definition Ns.t., which in
many examples matches with the lower bound, so that the inequality is tight.

A bipartite graph. The lower bound we derive is the genus g of a bipartite graph Γ that
encapsulates some aspects of the quiver.15 The graph, depicted in figure 1 in an example,
has

• one vertex for each nonabelian simple gauge group Gi;

• one vertex for each full hypermultiplet, namely for each summand RI in the decom-
position of Vhyp into irreducible representations of ∏iGi (equivalently of the whole
gauge group G), where non-trivial flavour symmetries lead to multiple vertices;

• pIi edges joining each full hypermultiplet in representation RI to each Gi, where the
complexity pIi is the number of copies of adj(Gi) in RI ⊗ RI , which is at least 1
whenever RI is charged under Gi, as discussed further in subsection 4.3.

As explained in subsection A.1, denoting by µ the highest weight of RI (as a representation
of G, or simply of Gi) the number of edges joining that hypermultiplet to Gi is the number
of simple roots αj of Gi such that 〈µ, αj〉 > 0. In particular, hypermultiplets are connected
precisely to the groups Gi that they are charged under. Hypermultiplets that are only
charged under abelian gauge groups thus become isolated vertices in Γ, and Γ may well be
disconnected even in a fully interacting theory.

For instance, if Gi = SU(N), the number of edges joining a hypermultiplet to Gi is the
number of distinct lengths of rows of the Young diagram: a single edge for fundamental
or (anti)symmetric representations, a pair of edges for an adjoint representation (provided
N ≥ 3), etc., as listed in table 1 on page 30. Consider the special case of a quiver gauge
theory with unitary or special unitary gauge groups and hypermultiplets in fundamental,
(bi/tri/. . . )fundamental, and adjoint representations, such as depicted in figure 1. Each
adjoint hypermultiplet of some SU(N), drawn as a loop in the usual quiver description,
gives rise to a pair of edges16 joining SU(N) to some hypermultiplet node, which contributes
in the same way to the genus. The edges depicting (bi/tri/. . . )fundamental hypermultiplets
in the original quiver are simply subdivided with the addition of a vertex in Γ representing

14In many theories, the mixed moduli are flavour singlets, so that the character is equal to the dimension
dimNs.t..

15By genus, we mean the number of loops in the graph, namely the dimension of its first homology when
seen as a topological space. To accomodate half-hypermultiplets the definition must be altered as described
below (4.61).

16For N = 2 an adjoint of SU(2) only gives a single edge rather than a pair, hence does not increase the
genus.
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4

U(1) U(2) U(3) U(1) U(3)

U(3)

U(3)

3

Figure 1. Left: quiver depiction of an example U(1) × U(3)5 gauge theory where edges are
hypermultiplets: fundamental, bifundamental, adjoint, and trifundamental (denoted by multi-edge).
Right: bipartite graph Γ (here, disconnected and of genus g = 2) depicting which bifundamentals
are charged under which simple gauge group factors; this drops any U(1) factor. The graph Γred
omits the four isolated black nodes.

the hypermultiplet, again leaving the genus unchanged. Finally, collections of fundamental
hypermultiplets do not introduce further loops in Γ. We conclude that the genus of Γ
typically agrees with the genus of the standard quiver depiction of the theory, decreased
by the following effects:

• U(1) gauge groups are omitted in the graph Γ, which may reduce the genus;

• adjoint matter of a U(2) or SU(2) gauge group does not contribute to the genus of Γ.

Main statement. We are now ready to state our lower bound on Ns.t., and related
results. The assumption (in bold face) on monopole sectors is explained further below,
near (4.6).

Proposition 4.1 (Counting single-trace mixed moduli) Consider a 3d N = 4 La-
grangian gauge theory that is good, has no accidental decoupled subsectors, and does not
have free U(1) vector multiplets in any of its ∆(m) = 1 monopole sectors.17

Let g be the genus of the bipartite graph Γ whose vertices are the nonabelian simple gauge
groups Gi, and the hypermultiplets (one per irreducible summand RI ⊂ Vhyp, with repeti-
tion), with one edge connecting RI to Gi for each copy of adj(Gi) in RI ⊗RI .

1. The multiplicity of the weight zero (of Gelec×Gmag) in Ns.t. is at least g. In particular
there are dimNs.t. ≥ g single-trace mixed moduli.

2. In an abelian theory, all mixed moduli are factorizable, namely Ns.t. = 0.

3. In a quiver gauge theory with fundamental, bifundamental or adjoint matter18 of
nonabelian unitary gauge groups U(ni ≥ 2), such that none of the U(2) factors have
adjoint matter, the genus g is equal to the genus of the quiver.

An aspect to be stressed again at this point is that the genus g is insensitive to abelian
nodes. If some hypermultiplets are only charged under abelian factors, they lead to dis-
connected nodes in the graph Γ. It is sometimes convenient to introduce the graph Γred

17We prove in subsection 5.2 (resp. subsection 5.3) that this technical assumption is satisfied by quivers
with unitary gauge group factors (resp. good abelian theories).

18By adjoint matter we mean a hypermultiplet in the adj(U(n))− 1 representation of U(n), omitting the
free hypermultiplet that naturally appears for the complete adjoint representation of U(n).
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in which only the hypermultiplets charged under at least one Gi are kept. Its genus is the
same as Γ. An example of graph associated to a gauge theory is given in figure 1.

For quivers with U(ni) gauge groups and (bi)fundamental hypermultiplets without
adjoint matter,19 we determine in subsection 5.1 that the multiplicity of the weight zero
(under electric and magnetic flavour symmetries) in Ns.t. is exactly the genus g. This
generalizes the case of linear quivers that we have analyzed in [13], where we found that
every B1[0](1,1) multiplet is factorizable, namely Ns.t. = 0 (Proposition 4.1 has g = 0 in
that case). Another standard case is that of circular quivers, which have

• enhanced SU(2)elec symmetry acting on the pair of bifundamental hypermultiplets
when there are exactly two nodes, and

• enhanced SU(2)mag symmetry due to ∆(m = (1, 1, . . . , 1)) = 1 when the total number
of fundamental hypermultiplets is two (when it is lower, the theory is ugly or bad).

Our calculations for two-node circular quivers in subsection 5.4 (we also outline their gen-
eralization to any circular quiver) show that Ns.t. reflects these enhanced symmetries,

Ns.t. =

0 if any ni = 1 ,
relec ⊗ rmag if all ni ≥ 2 ,

(4.2)

where rX is adj(SU(2)X) if that symmetry exists and is otherwise 1. The weight-zero term
is exactly equal to the genus (0 or 1 depending on min(ni)), consistent with our general
analysis.

Counting products of currents. The proof of Proposition 4.1 begins by rewriting Ns.t.
in terms of known quantities. A good theory has no B1[0](jH,1/2) multiplets, as they would
have to be dressings of a monopole of dimension ∆(m) = 1/2, which does not exist in
such a theory. Thus, the mixed moduli multiplets B1[0](1,1) can only factor as products
of B1[0](jH,0) and B1[0](1−jH,1) multiplets. The absence of free hypermultiplets B1[0](1/2,0)

forbids jH = 1/2, and the case jH = 0 is trivial, so that the only possible factorization is
into an electric current multiplet B1[0](1,0) and a magnetic current multiplet B1[0](0,1).

The number (or rather, the character) of B1[0](1,1) multiplets that are such products
of electric and magnetic currents is

(factorized B1[0](1,1)) = c1,0c0,1 − crel , (4.3)

where the relations crel < 0 arise in the gauge theory as F-term relations. The character
Ns.t. is then

Ns.t. = nT + c1,1 − c1,0c0,1 + crel . (4.4)

Here the nT contribution comes from the recombination with the nT ≥ 1 stress-tensor
multiplet(s), where nT = 1 unless the theory splits into decoupled sectors. Note that it
can only increase Ns.t., so for the purpose of establishing lower bounds we do not need to
determine nT beyond the fact that nT ≥ 1.

19We conjecture that the equality remains valid with adjoint matter.
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Technical assumption on flavours and monopole sectors. We have evaluated c1,1
in section 3 and found that its contribution from a monopole sector m with ∆(m) = 1 is

cm
1,1 =

(
singletGm(S2V m

hyp)− nm
abel + 1

)
wm . (4.5)

This is very similar to the formula c1,0 = singletG(S2Vhyp) − nabel for the electric flavour
symmetries. On the face of it, cm

1,1 counts flavour symmetries of an auxiliary theory with
gauge group Gm/U(1)m and hypermultiplets V m

hyp, where the quotient (by the gauge group
generated by m) is allowed because m acts trivially on V m

hyp, by construction.
Throughout this section we make the following technical assumption: in all ∆(m) = 1

sectors, the auxiliary theory has no decoupled U(1) vector multiplet. In other words, we
assume that the only U(1) factor of Gm that acts trivially on all of V m

hyp (and on Gm) is the
group U(1)m. Our assumption is thus that the weights of V m

hyp and roots of Gm generate
the whole space orthogonal to m.

Technical assumption: for ∆(m) = 1,

Span
(
m⊥ ∩

(
{w � Vhyp} ∪ {α ∈ roots(G)}

))
= m⊥ ⊂ h∗ .

(4.6)

A violation of this assumption is equivalent to the existence of x ∈ h orthogonal to every
weight or root in m⊥, namely such that w ·m = 0 implies w ·x = 0 for all w � Vhyp+adj(G).
Based on the requirement that ∆(km+lx) ≥ 1 for any (k, l) 6= (0, 0) due to goodness of the
theory, we prove the technical assumption in subsection 5.2 and subsection 5.3 for quivers
with unitary gauge group factors and for abelian theories, respectively.

It would be very interesting to find a counterexample to this assumption, namely a good
theory with a decoupled U(1) vector multiplet in some ∆(m) = 1 monopole sector. This
could lead to a negative contribution cm

1,1 to the index, which would be either an indication
for an accidental A2[0](0,0) stress-tensor multiplet (hence a decoupled subsector), or for a
cancellation with some other monopole sector with the same wm fugacities. Without the
condition on the monopole dimension, a simple counterexample would be the m = (1, 2)
sector of U(2) SQCD with 4 flavours: in that sector V m

hyp = 0 so all of Gm = U(1)2 acts
trivially, and the combination singletGm(S2V m

hyp)−nm
abel +1 in (4.5) would then be negative.

4.2 Abelian gauge theories

Set-up. As a practice run, we consider the interesting case of G = U(1)nabel gauge theo-
ries. We show first by a quick argument that every B1[0](1,1) multiplet factorizes thanks to
F-term relations, then we more slowly verify that the index calculation confirms this. As
always, we require the theory to be good.

All representations of G are complex, except the trivial representation which we have
excluded (we have assumed the theory has no free hypermultiplet). Thus the quaternionic
representation Vhyp has to be a sum (as usual we denote by + and ∑ the direct sum of
representations)

Vhyp = R+R , R =
nC∑
I=1

(
NC
I R

C
I

)
, (4.7)
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where the splitting into R and R is arbitrary and we arrange for the gauge representa-
tions RC

I and RC
J to be pairwise distinct. We could easily recast this into a matrix of

charges of hypermultiplets under G, but we will rather keep the same notation as the rest
of the paper. Incidentally, one finds

singletG(S2Vhyp) = singletG(Λ2Vhyp) =
nC∑
I=1

NC
I N

C
I . (4.8)

Quick argument for factorization. Before imposing relations, bottom components
of B1[0](1,1) multiplets can arise in two ways (see for instance the positive terms in c1,1
in (3.33)):

• In the zero-monopole sector: G-invariant contractions of a vector multiplet scalar and
two hypermultiplet scalars. In any such contraction, the vector multiplet scalars φ
can be factorized out because they are singlets under all symmetry groups (G is
abelian). Chiral ring operators arising in this way are thus products of a component
of φ (part of a U(1)T current multiplet) and a contraction of two hypermultiplet
scalars (based on R-charges these must be part of an electric current).

• In a monopole sector with ∆(m) = 1: Gm-invariant dressings of this monopole by
a pair of hypermultiplet scalars in V m

hyp, namely that are not lifted by the monopole
background. Since G is abelian, m commutes with all of it, so Gm = G. Thus, the
Gm-invariant pairs of hypermultiplets in V m

hyp ⊆ Vhyp form a subset of those in Vhyp.
The dressed monopole is thus a product of the bare monopole (part of a magnetic
current) and a pair of hypermultiplets (part of an electric current).

This shows that abelian 3d N = 4 Lagrangian gauge theories have no single-trace mixed
moduli, establishing point 2 in Proposition 4.1. We now give a different derivation starting
from the superconformal index, which generalizes more robustly to the nonabelian setting.

Index calculation. Let us insert explicit expressions of cjH,jC from (3.31)–(3.33) into
the expression (4.4) of Ns.t.. This involves the character cvhh = singletG(adj(G)S2Vhyp)
counting certain combinations of vector and hypermultiplets. For an abelian gauge group,
we simply have

cvhh = nabel singletG(S2Vhyp) . (4.9)

Collecting terms according to the monopole sector, and using that Gm = G and nm
abel =

nabel for an abelian theory, one finds

Ns.t. = nT + c1,1 − c1,0c0,1 + crel

= nT + crel − singletG
(
Λ2Vhyp

)
+

∑
∆(m)=1

(
singletG(S2V m

hyp − S2Vhyp) + 1
)
wm .

(4.10)
If the term crel was absent, this would typically give a negative result, since Λ2Vhyp contains
singlets and S2V m

hyp ⊆ S2Vhyp. To get a sensible value for Ns.t. < 0, we must account for
relations.
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F-term relations and currents. Denote by (qI , q̃I) the scalars in the chiral multiplets
composing the I-th hypermultiplet, with qI ∈ NC

I R
C
I and q̃I ∈ NC

I R
C
I . An element x ∈ g

of the gauge Lie algebra acts on qI by multiplication by a scalar ωI · x, where ωI is the
(unique) weight of G on RC

I . When seen as a 3d N = 2 theory, our 3d N = 4 gauge theory
has the superpotential

W =
nC∑
I=1

Tr
(
q̃I(φ · qI)

)
=

nC∑
I=1

(ωI · φ) Tr(q̃IqI) , (4.11)

where φ is the vector multiplet scalar in the gauge Lie algebra, which acts on qI , and Tr is
the pairing of dual representations. In the second expression, ωI · φ and q̃IqI are scalars so
that every term is factorized.

In the chiral ring, every derivative of W vanishes. This yields:

0 =
nC∑
I=1

(ωI · x) Tr(q̃IqI) , x ∈ g ,

0 = (ωI · φ)qI , 0 = (ωI · φ)q̃I , 1 ≤ I ≤ nC .

(4.12)

These relations allow us to retrieve the counting of electric currents in (3.31), namely

c1,0 = singletG(S2Vhyp)− nabel =
nC∑
I=1

NC
I N

C
I − nabel . (4.13)

Indeed, each NC
I N

C
I consists of q̃IqI defined by contracting gauge indices (but not flavour

indices), and these operators are subject to the constraints (4.12), namely nabel linear con-
straints on the traces Tr(q̃IqI). These F-term relations are linearly independent, otherwise
one U(1) gauge group factor would act trivially on all hypermultiplets and the theory would
not be good.

F-term relations for zero-monopole terms. The character crel counts chiral ring
relations among products of electric and magnetic currents. Such products are of the form
q̃IqI (modulo the nabel aforementioned F-term relations) times components of φ, or times
a monopole operator of dimension ∆(m) = 1. For now, we consider cm=0

rel which counts
relations involving φ. The second F-term constraints in (4.12) imply that

(ωI · φ)q̃IqI = 0 , 1 ≤ I ≤ nC , (4.14)

which amounts to NC
I N

C
I relations for each I, namely to singletG(Λ2Vhyp) relations in total.

Because the q̃IqI are themselves subject to the (first) F-term relation in (4.12), the overall
trace

nC∑
I=1

(ωI · φ) Tr(q̃IqI) = φ ·
nC∑
I=1

Tr(q̃IqI)ωI = 0 (4.15)

involves an “electric current” ∑nC
I=1 Tr(q̃IqI)ωI that was already removed by F-term con-

ditions in (4.13). It does not correspond to a relation on products of actual magnetic
and electric current multiplets. If the theory consists of several explicitly non-interacting
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subsectors, namely G = H1 × · · · ×Hnsectors with each hypermultiplet being charged only
under one Hi, then one relation is redundant in each sector. Altogether we obtain

cm=0
rel = singletG

(
Λ2Vhyp

)
− nsectors . (4.16)

Note that this combines neatly with the zero-monopole contributions in (4.10):

Ns.t. = nT + cm=0
rel − singletG

(
Λ2Vhyp

)
+ monopoles = nT − nsectors + monopoles , (4.17)

in which nT ≥ nsectors because each sector has (at least) one stress-tensor. In Proposi-
tion 4.1 we assume that there are no accidental decoupled subsectors, so that nT = nsectors.

F-term relations in monopole backgrounds. In a monopole background m, any
hypermultiplet (qI , q̃I) charged under m ∈ g (namely such that ωI ·m 6= 0) is lifted, so
that the product of the bare monopole operator with the electric current q̃IqI vanishes.

Consider specifically the case ∆(m) = 1. Given the expression of ∆ (note that the
sum ranges over R and not Vhyp = R+R),

1 = ∆(m) = 1
2
∑
ω�R
|ω ·m| , (4.18)

all ω ·m vanish, except for a single hypermultiplet with |ω ·m| = 2, a hypermultiplet with
|ω ·m| = 1 and multiplicity 2, or two distinct hypermultiplets with |ω ·m| = 1.

Case 1: one has |ωJ ·m| = 2 with dimNC
J = 1, and all other ωI ·m = 0. The F-term

condition (4.12), evaluated with x = m, reduces to a single term,

± Tr(q̃JqJ) =
nC∑
I=1

(ωI ·m) Tr(q̃IqI) = 0 . (4.19)

Thus, q̃JqJ actually vanishes and the fact that its product with the monopole operator
vanishes does not yield any relation.

Case 2: R includes that weight with multiplicity exactly two: dimNC
J = 2 and |ωJ ·m| = 1

for some J , while all other ωI ·m = 0. This occurs for instance in the T [SU(2)] theory.
The F-term condition (4.12), evaluated with x = m, reduces to a single term,

± Tr(q̃JqJ) =
nC∑
I=1

(ωI ·m) Tr(q̃IqI) = 0 , (4.20)

hence q̃JqJ is an SU(2) electric current rather than U(2). Its product with the
monopole operator vanishes, which gives three relations.

Case 3: two distinct hypermultiplets have |ω ·m| = 1, namely dimNC
J = dimNC

K = 1 and
|ωJ ·m| = |ωK ·m| = 1 for some J 6= K, while all other ωI ·m = 0. The F-term
condition (4.12), evaluated with x = m, reduces to two terms hence

q̃JqJ = ±q̃KqK , (4.21)
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where we have omitted the traces because NC
J , N

C
K are one-dimensional. Thus the

two currents q̃JqJ ∈ NC
J N

C
J = 1 and q̃KqK ∈ NC

KN
C
K = 1 coincide (up to sign), and

we obtain a single relation when writing that its product with the magnetic monopole
vanishes.

We obtain zero, one or three relations for each monopole sector:

c
∆(m)=1
rel =

∑
∆(m)=1

wm


0 if dimNC

J = 1 , |ωJ ·m| = 2 ,
NC
J N

C
J − 1 if dimNC

J = 2 , |ωJ ·m| = 1 ,
1 otherwise.

(4.22)

Collecting all the terms. The expression (4.10) of Ns.t. involves singletG(S2V m
hyp −

S2Vhyp), which can be computed in the same three cases considered above. We recall
from (4.8) that singletG(S2Vhyp) = ∑

I N
C
I N

C
I . Likewise singletG(S2V m

hyp) is obtained by
omitting the hypermultiplets that are charged under m. In the first case, that’s a single
hypermultiplet and the difference is 1. In the second case (with multiplicity) the difference
is NC

J N
C
J , and in the last case it is (NC

J N
C
J ) + (NC

KN
C
K) ' 1 + 1. In all cases this is

c
∆(m)=1
rel + 1 (the shift by 1 appears in (4.10)). All terms cancel and we are left with

Ns.t. = nT − nsectors , (4.23)

which vanishes under our assumption in Proposition 4.1 that no subsector accidentally
decouples.

4.3 Zero-monopole sector

We attack the nonabelian setting in several steps. Based on the explicit expression (4.4)
of Ns.t., our tasks are: to evaluate crel, to expand cjH,jC in terms of gauge theory data
using (3.31)–(3.33), and to further expand a combination cvhh appearing in these formulas.
We do these steps separately depending on the monopole sector m, namely we split

Ns.t. = Nm=0
s.t. +N

∆(m)=1
s.t. ,

Nm=0
s.t. = nT + cm=0

rel + cm=0
1,1 − c1,0c

m=0
0,1 ,

N
∆(m)=1
s.t. = c

∆(m)=1
rel + c

∆(m)=1
1,1 − c1,0c

∆(m)=1
0,1 .

(4.24)

Importantly, the signs of Nm=0
s.t. and N

∆(m)=1
s.t. are not known at this stage. We evaluate

first Nm=0
s.t. , postponing the other contribution to subsection 4.4.

Combinations of vector and hypermultiplets cvhh. The term cm=0
1,1 involves the

character cvhh = singletG(adj(G)S2Vhyp), which we now bound below. We decompose
G = U(1)nabel ×

∏nna
i=1Gi according to (3.6) into abelian and non-abelian factors, and split

the adjoint representation correspondingly into irreducible components. From the abelian
part, one has nabel singlets in adj(G), which contribute to cvhh as

cvhh = nabel singletG
(
S2Vhyp

)
+

nna∑
i=1

singletG
(
adj(Gi)S2Vhyp

)
. (4.25)
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The number of singlets in S2Vhyp was expressed in (3.17a), whose detailed expression is
not needed here because this term will cancel with part of the current-current contribution
c1,0c

m=0
0,1 .
We turn to a given non-abelian factor adj(Gi). We decompose Vhyp into irreducible

components (3.7), and expand out S2Vhyp using that S2(R + R′) = S2R + (RR′) + S2R′

and S2(NR) = (S2N)(S2R) + (Λ2N)(Λ2R). Dropping terms that involve distinct repre-
sentations leads to the lower bound

S2Vhyp<
nC∑
I=1

NC
I N

C
I R

C
I R

C
I+

nR∑
I=1

(
S2NH

I S
2RR

I +Λ2NH
I Λ2RR

I

)
+
nH∑
I=1

(
S2NR

I S
2RH

I +Λ2NR
I Λ2RH

I

)
.

(4.26)
We then tensor with adj(Gi) and seek gauge singlets in adj(Gi)RC

I R
C
I , and adj(Gi)S2RR

I ,
and so on.

Complexity of a representation. We analyse the number pIi of gauge singlets in
adj(Gi)RIRI for arbitrary irreducible representations in subsection A.1. The highest
weight µI of RI under the gauge group G necessarily lies in the Weyl chamber defined
by 〈µI , α〉 ≥ 0 for all simple roots α of G, and we show that pIi counts how many bound-
aries µI does not belong to: we dub it the complexity of RI under Gi,

pIi = singletG
(
adj(Gi)RIRI

)
= #

{
α simple root of Gi

∣∣ 〈α, µI〉 > 0
}
. (4.27)

It is positive unless RI is neutral under Gi, in which case pIi = 0. We also introduce the
total complexity pI ∈ Z≥0,

pI =
nna∑
i=1

pIi ≥ (number of Gi acting on RI) , (4.28)

which is positive except for hypermultiplets that only transform under abelian gauge
groups. Since the theory has no free hypermultiplets, any hypermultiplet with pI = 0 must
transform under some U(1) factors, hence the representation must be complex. Denoting
by superscripts C, R, and H the quantities pertaining to complex, real, and quaternionic
representations as before, we have learned that

pRI ≥ 1 , pHI ≥ 1 (4.29)

(with equality if and only if µI is a multiple of a fundamental weight of G), while pCI may
vanish. For reference we summarize in table 1 the complexity of various representations.
For commonly used representations they are often 1, with the notable exception of SU(n ≥
3) adjoints.

When RI is real or quaternionic, one has RIRI = R2
I = S2RI +Λ2RI , so that pIi splits

into the (anti)symmetric complexities

pIi = pSIi + pΛ
Ii , pSIi = singletG

(
adj(Gi)S2RI

)
, pΛ

Ii = singletG
(
adj(Gi)Λ2RI

)
.

(4.30)
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Group representation complexity

SU(2) R 6= 1 1

SU(n), n ≥ 3 n or Skn 1
Λkn, 1 ≤ k ≤ n− 1 1
adj 2

SO(n), n ≥ 5 n or (Skn− Sk−2n) 1
Λkn, 1 ≤ k ≤ n/2, k 6= n/2− 1, including adj for n 6= 6 1
Λkn, k = n/2− 1, including adj for n = 6 2
Chiral (Λn/2n)± (for even n) 1
Spinor 1

USp(2n), n ≥ 2 2n or (Λk(2n)− Λk−2(2n)) 1
Sk(2n) including adj 1

Table 1. Complexity p(R) of the most commonly used representations of classical Lie groups.
Most of these representations have complexity 1, with the notable exceptions of the adjoint rep-
resentation of SU(n) for n ≥ 3 (the other case listed in the table is the adjoint representation of
SO(6) = SU(4)/Z2). The complexity is additive under tensoring representations of different groups,
insensitive to abelian factors, invariant under conjugation, and vanishes for the trivial representa-
tion.

The explicit values of pSIi and pΛ
Ii are determined in [53], as we outline in subsection A.2.

For our purposes later on, the key outcome is that for a real representation RI = RR
I or

quaternionic representation RI = RH
I ,

pR,ΛIi ≥ max(1, pR,SIi ) , pH,SIi ≥ 1 + pH,ΛIi for representations charged under Gi .
(4.31)

In particular, the complexities pH,SI and pR,ΛI (obtained by summing over gauge factors) are
bounded below by the number of non-abelian gauge factors under which the given self-dual
representation is charged.

Altogether we deduce the lower bound
nna∑
i=1

singletG
(
adj(Gi)S2Vhyp

)
<

nC∑
I=1

pCIN
C
I N

C
I +

nR∑
I=1

(
pR,SI S2NH

I + pR,ΛI Λ2NH
I

)
+

nH∑
I=1

(
pH,SI S2NR

I + pH,ΛI Λ2NR
I

)
.

(4.32)
The flavour symmetry representations NC

I N
C
I , Λ2NH

I , and S2NR
I are each multiplied by

at least the number of gauge groups under which the corresponding representations RC
I ,

RR
I , RH

I are charged. Interestingly, these flavour representations are the same as those that
appear in singletG(Λ2Vhyp), see (3.17a).

Evaluating the lower bound. Having worked out one of the ingredients in cm=0
1,1 , we are

ready to calculate the number of single-trace mixed moduli one would have if there were no
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relations between products of currents. Specifically, we evaluate the term cm=0
1,1 − c1,0c

m=0
0,1

appearing in (4.4) in terms of gauge theory data. Taking into account (3.31)–(3.33), and
collecting the monopole terms together yields some simplifications,

cm=0
1,1 − c1,0c

m=0
0,1 = cvhh − n2

abel − nna − singletG
(
Λ2Vhyp

)
−
(
singletG

(
S2Vhyp

)
− nabel

)
nabel

= −nna − singletG
(
Λ2Vhyp

)
+

nna∑
i=1

singletG
(
adj(Gi)S2Vhyp

)
.

(4.33)
We then use the lower bound (4.32) on singlets of adj(Gi)S2Vhyp, and the counting (3.17a)
of singlets in Λ2Vhyp to obtain

cm=0
1,1 − c1,0c

m=0
0,1 < −nna +

nC∑
I=1

(pCI − 1)NC
I N

C
I +

nR∑
I=1

(
pR,SI S2NH

I + (pR,ΛI − 1)Λ2NH
I

)
+

nH∑
I=1

(
(pH,SI − 1)S2NR

I + pH,ΛI Λ2NR
I

)
.

(4.34)
On its own, this coarse lower bound of Ns.t. is often useless because it is often negative (for
instance for abelian theories). That said, the contributions of real and quaternionic repre-
sentations is always non-negative: pR,Λ and pH,S could only vanish if the representations
were neutral under all non-abelian gauge groups hence under G itself (since pseudoreality
forbids abelian charges), which would correspond to free hypermultiplets.

F-term relations. The superpotential and F-term relations are pretty similar to the
abelian case. Again, one has two types of relations depending on whether one differenti-
ates the superpotential with respect to a vector multiplet or hypermultiplet scalars. We
recall the decomposition (3.7) Vhyp = ∑n

I=1(NIRI) and we denote by qI ∈ NIRI the corre-
sponding hypermultiplet scalars. We also denote by q̃I ∈ NIRI the conjugate scalar, which
lies in the same hypermultiplet.

The superpotential reads

W =
n∑
I=1

Tr(q̃IφqI) , (4.35)

where φqI involves the action of g on Vhyp, and the trace denotes the pairing20 of conjugate
representations NIRI and NIRI . The first F-term relation is

n∑
I=1

Tr(q̃IxqI) = 0 , x ∈ g . (4.36)

More abstractly, the first F-term relation states that suitably contracting indices of q2 ∈
S2Vhyp yields 0 ∈ g. The second relation states that any hypermultiplet scalar qI ∈ NIRI ⊆

20Since the sum over I covers all of Vhyp, the sum is redundant for full hypermultiplets, as each term
appears twice. The action of φ on conjugate representations involves opposite signs, which would suggest
that terms cancel. However, the trace notation is hiding an additional sign: the same antisymmetric
pairing Λ2Vhyp → 1 as in the kinetic term (in which the antisymmetry is compensated by the R-symmetry
representations involved, so that the kinetic term remains symmetric).
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Vhyp is annihilated by the action of φ ∈ g on that representation:

0 = φqI , 1 ≤ I ≤ n . (4.37)

Electric currents. We first specialize (4.36) to x ∈ u(1)nabel in the abelian part of g.
In terms of the charge vector wabel

I (abelian part of the weight) of RI under U(1)nabel , we
have xqI = (wabel

I ·x)qI and the factor (wabel
I ·x) can be pulled out of the trace. This yields

a vector relation
nC∑
I=1

Tr(q̃CI qCI )wabel
I = 0 ∈ u(1)nabel . (4.38)

Only complex representations contribute because only these can be charged under U(1)
factors. We thus have nabel linear relations between the electric currents q̃CI qCI , which
correctly reproduces the counting c1,0 = singletG(S2Vhyp)− nabel of these currents.

F-term relations for cubic gauge-invariants. We are interested in relations on prod-
ucts of electric and magnetic currents, so we are only interested in gauge-invariant combi-
nations of the hypermultiplets. The F-term relations are thus only relevant through their
gauge-invariant contractions with further vector or hypermultiplets:

0 =
n∑
I=1

(wabel
I · φ(i)

abel) Tr(q̃IqI) , 1 ≤ i ≤ nabel , (4.39a)

0 =
n∑
I=1

Tr(q̃Iφ(i)
naqI) , 1 ≤ i ≤ nna , (4.39b)

0 = q̃IφqI =
nabel∑
i=1

(wabel
I · φ(i)

abel)q̃IqI +
nna∑
i=1

q̃Iφ
(i)
naqI , 1 ≤ I ≤ n , (4.39c)

in which we decomposed φ ∈ g into φ(i)
abel ∈ u(1)i for 1 ≤ i ≤ nabel and φ(i)

na ∈ adj(Gi) for each
simple gauge factor. (In the last relation, we have simply explicited this decomposition.)
An important word of warning: the first of these equations is actually stating the absence of
certain electric currents, while the others are stating relations between cubic combinations
of φ, q̃, q, from which we will extract relations between currents.

Type 1. Abelian relations. The current-current relations are all the linear combina-
tions of (4.39) in which all φ(i)

na terms cancel out. One obvious class consists of the rela-
tion (4.39c) q̃IφqI = 0 for each hypermultiplet that only transforms under abelian gauge
factors, namely such that pI = 0. Such a hypermultiplet must have nontrivial U(1)nabel

charges hence lie in a complex representation, and thus the relation is
nabel∑
i=1

(wabel
I · φabel)q̃IqI = 0 ∈ NC

I N
C
I , pCI = 0 , 1 ≤ I ≤ nC . (4.40)

In view of (4.39a), the sum over I of traces of these relations is in fact not a relation
between products of currents, because the involved “electric currents” in fact vanish. More
precisely, we have one such redundancy for each manifestly decoupled sector in the theory.
Overall, this gives the following number of relations:∑

1≤I≤nC

δpCI=0(NC
I N

C
I )− nsectors . (4.41)
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Type 2. Connected components of the reduced graph. The second option is
to cancel φ(i)

na terms between (4.39b) and (4.39c). This will be well described in terms
of the graph Γred whose vertices are simple gauge nodes Gi and hypermultiplets charged
under at least one Gi, and with some number of edges (specifically pIi) connecting each
hypermultiplet to the Gi it is charged under.

Starting from the F-term relation (4.39b) for a given Gi, we must subtract the trace
of (4.39c) for every hypermultiplet charged under Gi. This, in turn, introduces φ(j)

na for any
Gj under which these hypermultiplets are charged. Compensating the φ(j)

na with (4.39b) and
continuing back and forth, we find out that we need to include (4.39b) for all simple gauge
nodes Gj that are in a given connected component of the graph Γred, as well as (4.39c) for
all hypermultiplets in the connected component.

We thus consider the connected components of Γred. Recall that hypermultiplets with
pI = 0 are omitted in this graph. For each representation RI with pI ≥ 1, the dimNI

vertices corresponding to hypermultiplets in that representation must belong to the same
component since they are connected to the same gauge nodes. We can thus characterize a
connected component by a non-empty subset S ⊂ {1, . . . , nna} and a subset T ⊂ {1, . . . , n},
such that (1) every hypermultiplet qI , I ∈ T , is charged only under gauge groups Gi, i ∈ S;
(2) every hypermultiplet qI , I 6∈ T is neutral under all gauge groups Gi, i ∈ S; and (3) there
is no proper subset of vertices with that property.

For any such connected component, consider the sum of traces of (4.39c) for all I ∈ T ,
minus the sum of (4.39b) for all i ∈ S:

0 =
∑
I∈T

nabel∑
i=1

(wabel
I · φ(i)

abel) Tr(q̃IqI) +
∑
I∈T

nna∑
i=1

Tr(q̃Iφ(i)
naqI)−

∑
i∈S

n∑
I=1

Tr(q̃Iφ(i)
naqI)

=
∑
I∈T

nabel∑
i=1

(wabel
I · φ(i)

abel) Tr(q̃IqI) ,
(4.42)

where we have used that the two Tr(q̃Iφ(i)
naqI) terms cancel out because they both reduce

to a sum over i ∈ S and I ∈ T since hypermultiplets qI , I ∈ T , are only charged under
Gi, i ∈ S, and conversely the only hypermultiplets charged under any Gi, i ∈ S, are the
qI , I ∈ T . The calculation (4.42) results in a relation between products of U(1)T magnetic
currents and electric currents, for each connected component of Γred.

Total number of relations. If we had been working with the full graph Γ instead
of Γred, there would be some obvious overlap between the two sets of relations: the trace
of (4.40) is equal to the expression (4.42) for S = ∅ and T = {I}. It is more convenient
to neatly separate these by considering the reduced graph Γred. In conclusion, taking into
account both types of relations, we find that

cm=0
rel = H0(Γred)− nsectors +

nC∑
I=1

δpCI=0(NC
I N

C
I ) , (4.43)

where H0(Γred) denotes the number of connected components of the graph Γred. Inciden-
tally, let us show that this number of relations is always non-negative. Among the nsectors
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manifestly non-interacting parts of the theory, distinguish those that involve at least one
non-abelian gauge factor, from the purely abelian ones. The former consist of one or more
connected components of Γred, together with some additional abelian factors and hyper-
multiplets, so there are at most H0(Γred) of these parts. A decoupled sector of the latter
type consists of abelian gauge groups and hypermultiplets charged only under these (which
are thus complex and have pI = 0), and there must be at least one hypermultiplet, so
that the last term in (4.43) is enough to compensate for the −1 contribution of each such
abelian sector.

Lower bound on zero-monopole single-trace mixed moduli. We now combine (4.43)
with (4.34) to obtain a lower bound on Nm=0

s.t. . It is worth noting how the NC
I N

C
I terms

combine: if pCI = 0 then the positive contribution from (4.43) cancel the negative one
from (4.34), so that only terms with pCI ≥ 2 remain in this sum. (We also recall that
pR,ΛI ≥ 1 and pH,SI ≥ 1.) Altogether,

Nm=0
s.t. = nT + cm=0

rel + cm=0
1,1 − c1,0c

m=0
0,1

< nT − nsectors +H0(Γred)

− nna +
∑

1≤I≤nC
pCI≥2

(pCI − 1)NC
I N

C
I +

∑
1≤I≤nR

(
pR,SI S2NH

I + (pR,ΛI − 1)Λ2NH
I

)
+

∑
1≤I≤nH

(
(pH,SI − 1)S2NR

I + pH,ΛI Λ2NR
I

)
.

(4.44)

Each decoupled sector has (at least) one stress-tensor so nT − nsectors ≥ 0. We will show
in subsection 4.5 that the zero-weight coefficient of the last two lines is bounded below by
minus the Euler characteristic of Γred. Combining with H0(Γred) yields the genus H1(Γred)
of the reduced graph, hence of the full graph Γ.

4.4 Monopole contributions

Evaluating the lower bound. We have evaluated and bounded below the zero-monopole
part of Ns.t.. It is now time to evaluate N∆(m)=1

s.t. given in (4.24), which we repeat here:

N
∆(m)=1
s.t. = c

∆(m)=1
rel + c

∆(m)=1
1,1 − c1,0c

∆(m)=1
0,1 . (4.45)

We evaluate the term c
∆(m)=1
1,1 − c1,0c

∆(m)=1
0,1 , taking into account (3.31)–(3.33),

c
∆(m)=1
1,1 − c1,0c

∆(m)=1
0,1

=
∑

∆(m)=1

(
singletGm

(
S2V m

hyp
)
− singletG

(
S2Vhyp

)
− nm

abel + nabel + 1
)
wm .

(4.46)

In general this has no sign, but adding the number of relations will make the monopole
sector m contribute non-negatively to Ns.t..

F-term relations in monopole backgrounds. In a given monopole background, one
must keep only the hypermultiplets V m

hyp ⊆ Vhyp that are not lifted by m, namely on
which m ∈ h acts trivially. Contrarily to the abelian case where hypermultiplets got lifted
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wholesale, the irreducible representations NIRI ⊆ Vhyp typically split into representations
of Gm as

RI =
∑
`∈Z

R
m,(`)
I , R

m,(`)
I =

{
v ∈ RI

∣∣ m · v = `v
}
. (4.47)

Each R
m,(`)
I can itself be further reducible as a representation of Gm. Only the Rm,(0)

I

piece remains in V m
hyp. We denote by qm

I ∈ R
m,(0)
I the component of qI that is not lifted.

Consider next the electric current q̃IqI ∈ NINI (for real/quaternionic RI , symmetries
restrict the current to Λ2NI or S2NI). When multiplied by the monopole operator Om,
the current q̃IqI reduces to

(q̃IqI)Om = q̃m
I q

m
I Om in the chiral ring. (4.48)

If qI is entirely lifted (as happened in the abelian case), then qm
I = 0 and the equation

states that q̃IqI multiplied by the monopole Om gives zero.

Case 1. Abelian monopole charge. We consider first the case where m is entirely
contained in the abelian part of g, so that the monopole background does not break G,
namely Gm = G. In that case, the representations RI are not decomposed: for each
one, either the m charge vanishes and the representation is kept in V m

hyp, or it does not
vanish and the hypermultiplet is lifted. The lifted hypermultiplets must then be in complex
representations (because they have a non-trivial charge under the abelian m), and they
give the following relations: for 1 ≤ I ≤ nC,

(q̃CI qCI )Om = 0 ∈ NC
I N

C
I , if wabel

I ·m 6= 0 . (4.49)

We check below which of these relations are actually redundant with the nabel F-term
constraints (4.38) that restrict the set of electric currents.

Before this, observe that ∆(m) = 1 is very constraining. Because m ∈ u(1)nabel ⊂ g,
one has α ·m = 0 for all roots α of G so the monopole dimension formula reduces to a sum
over hypermultiplet weights. In addition, only complex representations can be charged
under m, so the sum restricts further to

∆(m) = 1
2

nC∑
I=1

∣∣wabel
I ·m

∣∣(dimNC
I ) . (4.50)

This can only be 1 if all wabel
I ·m = 0 except one or two hypermultiplets. There are three

subcases, mimicking those for abelian gauge theories:

Subcase 1: one hypermultiplet with |wabel
J ·m| = 2 and without multiplicity.

Subcase 2: a doublet with |wabel
J ·m| = 1 and dimNC

J = 2.

Subcase 3: two hypermultiplets with |wabel
J ·m| = |wabel

K ·m| = 1 and
dimNC

J = dimNC
K = 1.
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In the three subcases there are 1, NC
J N

C
J , and 1 + 1 relations (4.49), respectively. In

all subcases a linear combination of these relations is

0 =
nC∑
I=1

(wabel
I ·m) Tr(q̃CI qCI )Om , (4.51)

which is redundant with an F-term relation (4.38) on the products q̃q. In subcase 1 we are
left without any relation. In subcase 2 the relations transform in adj(SU(2)) and cannot
be redundant with (4.38) since those involve traces. In subcase 3, the situation is subtler.
A syzygy between (4.49) and (4.38) boils down to finding x ∈ u(1)nabel such that

nC∑
I=1

Tr(q̃CI qCI )wabel
I · x ∈ Span{q̃CJ qCJ , q̃CKqCK} , (4.52)

where J,K label the hypermultiplets charged under m. In particular, wabel
I ·x must vanish

for all other hypermultiplets, so that x and m both lie into the same subspace transverse
to all wabel

I , I 6= J,K. Suitable linear combinations of the other u(1)nabel generators with
m and x ensure that they don’t act on qJ , qK . Thus, the sector consisting of the two
hypermultiplets qJ , qK and the U(1)2 gauge group spanned by m, x decouples. One easily
checks that such a sector cannot be good.

Long story short, from the class of purely abelian monopole charges m, one gets the
following number of relations,

c
∆(m)=1,abel
rel =

∑
∆(m)=1,m∈u(1)nabel

wm


0 in subcase 1,
NC
J N

C
J − 1 in subcase 2,

1 in subcase 3.
(4.53)

These relations cancel nicely with (4.46). Using nm
abel = nabel and the explicit differ-

ences between V m
hyp and Vhyp, one finds

c
∆(m)=1,abel
rel +

∑
∆(m)=1

m∈u(1)nabel

wm(singletGm

(
S2V m

hyp
)
−singletG

(
S2Vhyp

)
−nm

abel +nabel +1
)

= 0 .

(4.54)
Altogether, all of the B1[0](1,1) operators in this class of monopole backgrounds factorize
into an electric current times the monopole operator. This should not come as a surprise of
course: the monopole background does not break gauge symmetry, so any gauge-invariant
combination of hypermultiplets in this background already exists without the monopole.

Case 2. Nonabelian monopole charge. Next, we consider the case where m includes
a nonabelian part, hence breaks the gauge group down to a strict subgroup Gm ( G.
Returning to (4.46), our aim is to show the positivity property(

singletGm

(
S2V m

hyp
)
− nm

abel + 1
)
−
(
singletG

(
S2Vhyp

)
− nabel

)
+ relations ≥ 0 (4.55)

by describing the full set of relations between products of Om with an electric current. The
available relations are chiral ring relations (4.48), and F -term relations associated to U(1)
gauge factors in Gm.
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We first discuss the latter. Consider the gauge theory with gauge group Gm/U(1)m
and hypermultiplets transforming in the V m

hyp representation. We recall our technical
assumption (4.6) that this theory has no free U(1) vector multiplet. In other words every
U(1) factor in Gm/U(1)m acts on some hypermultiplets of V m

hyp, so that the nm
abel−1 F-term

relations

0 =
n∑
I=1

Tr(q̃m
I xq

m
I )Om , x ∈ gm/u(1)m , (4.56)

are linearly independent. While we have written them with a parameter x acting on qm
I , we

could have split further into irreducible representations of Gm/U(1)m (or even its abelian
factor) and pulled out x as a scalar factor. Thus, (4.56) are relations between dressed
monopoles µ̃µOm for µ in some irreducible Gm representations of V m

hyp.
On the other hand, (4.48) states how a product (q̃q)Om reduces to operators of the

form µ̃µOm. In fact, (4.48) is slightly redundant, and it should rather be understood as
c1,0 relations that evaluate the product of an electric current J by Om. Our task is to count
the number of linear combinations of (4.48) and (4.56) that only involve JOm products.

Because (4.56) are linearly independent, and are linearly independent of the rela-
tions (4.48) for independent electric currents J , we have nm

abel − 1 + c1,0 linearly indepen-
dent relations on dressed monopoles µ̃µOm and J-times-Om products. Consider now a
linear combination of these relations, and impose that the coefficient in front of all µ̃µOm
vanishes. This puts singletGm(S2V m

hyp) constraints on the coefficients, so that there are at
least (

nm
abel − 1 + c1,0

)
− singletGm(S2V m

hyp) (4.57)

relations between products of electric currents with Om. This is precisely the state-
ment (4.55).

It would be interesting to furnish a more explicit description of the relations: for
instance, in a quiver gauge theory (with unitary gauge groups), there is a single-trace
mixed moduli whenever the set of nodes with non-zero monopole charge forms a loop.

4.5 On genus and quivers

Combining monopole sectors. We have seen that nonzero monopole sectors contribute
non-negative terms to Ns.t., see (4.54) and (4.55). One must interpret this carefully because
the calculation is done one monopole sector at a time: we do not obtain that N∆(m)=1

s.t.
would be < 0 in the sense of characters (or representations). Instead, we have found
that the restriction of N∆(m)=1

s.t. to any particular power of the magnetic fugacities w is
non-negative.

We focus on the most interesting power w0, namely on the subspace of Ns.t. of weight
zero under Gmag. It is a representation of Gelec. Monopole sectors can contribute (if all
of their U(1)T charges vanish), but as shown in (4.54) and (4.55) their contribution is
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nonnegative. The lower bound (4.44) on single-trace mixed moduli then yields

Ns.t.|coef w0 <
elec

nT − nsectors +H0(Γred)− nna +
∑

1≤I≤nC, pCI≥2

(pCI − 1)NC
I N

C
I

+
∑

1≤I≤nR

(
pR,SI S2NH

I + (pR,ΛI − 1)Λ2NH
I

)
+

∑
1≤I≤nH

(
(pH,SI − 1)S2NR

I + pH,ΛI Λ2NR
I

)
.

(4.58)
where <

elec
denotes here the ordering for representations of Gelec.

Lower-bound on the weight-zero subspace. The statement of Proposition 4.1 in-
volves the coefficient of µ0w0 in the character Ns.t., where (µ,w) are (electric, magnetic)
flavour fugacities. In other words, it is (the dimension of) the subspace of the represen-
tation Ns.t. that has zero-weight under a Cartan torus of Gelec and under the manifest
U(1)nabel

T symmetry21 included in Gmag. It is bounded below by the µ0 term in (4.58).
In subsection A.3 we establish lower bounds on the dimension of zero-weight subspaces:

dim
(
(NC

I N
C
I )µ0

)
≥ dimNC

I ,

dim
(
(S2NH

I )µ0
)
≥ 1

2 dimNH
I , dim

(
(Λ2NH

I )µ0
)
≥ 1

2 dimNH
I ,

dim
(
(S2NR

I )µ0
)
≥ 1

2 dimNR
I , dim

(
((NR

I )2)µ0
)
≥ dimNR

I .

(4.59)

Thanks to the inequality pH,SI ≥ 1 + pH,ΛI on total complexities of quaternionic represen-
tations (an immediate consequence of the same inequality (4.31) for complexities under
each Gi) the µ0 term in the last sum in (4.58) is bounded below as(

(pH,SI − 1)S2NR
I + pH,ΛI Λ2NR

I

)
µ0 ≥ (pH,SI − 1− pH,ΛI )(S2NR

I )µ0 + pH,ΛI ((NR
I )2)µ0

≥ 1
2(pH,SI − 1− pH,ΛI + 2pH,ΛI ) dimNR

I .
(4.60)

Inserting this in (4.58) yields

Ns.t.|coef µ0w0

≥ nT − nsectors +H0(Γred)

− nna+
∑

1≤I≤nC
pCI≥2

(pCI − 1) dimNC
I + 1

2
∑

1≤I≤nR
pRI≥2

(pRI − 1) dimNH
I + 1

2
∑

1≤I≤nH
pHI≥2

(pHI − 1) dimNR
I .

(4.61)

We now check that this is the genus g of the graph Γ defined in Proposition 4.1, generalized
to allow for half-hypermultiplets.

Genus interpretation. Consider first the case where there are only complex repre-
sentations (for instance a quiver of unitary groups with fundamental and bifundamental
matter). Then the graph has nna vertices for the simple gauge groups and ∑I dimNC

I

21The manifest topological symmetries do not necessarily form a Cartan subalgebra. A simple example is
the case of orthosymplectic quivers, which generally have no U(1)T symmetries but can have large magnetic
symmetries nevertheless.
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vertices for the hypermultiplets (only those that are charged under simple gauge groups),
and ∑I p

C
I dimNC

I edges, so that the last line in (4.61) is the number of edges minus the
number of vertices, which is the Euler characteristic. Combining with H0(Γred) yields the
genus H1(Γred). As a result, (4.61) can be written as

Ns.t.|coef µ0w0 ≥ nT − nsectors +H1(Γred) ≥ H1(Γred) = g . (4.62)

Full hypermultiplets in real or quaternionic irreducible representations of G are pairs of
half-hypermultiplets, which cancels the factors of 1/2 in (4.61) and leads to the same genus
interpretation for these representations. To accomodate half-hypermultiplets we can simply
define the genus in terms of the right-hand side of (4.61); it can then be half-integral.

Returning to more conventional quivers. The graph Γred (or equivalently Γ) whose
genus appears in (4.62) has a large number of vertices and edges. Only the hypermultiplets
with pI ≥ 2 (transforming under at least two gauge factors Gi, or in a sufficiently elaborate
representation of a single factor) can contribute to the genus. In addition, hypermulti-
plets with pI = 2 can be replaced by an edge joining the gauge nodes directly, without
changing the genus. This provides a more standard description of the gauge theory as a
quiver in which bifundamental hypermultiplets are depicted by edges. More precisely, to
retrieve an actual gauge theory one must decorate Γred with the data of representations,
and U(1) charges, that were removed when defining Γred.

5 Classes of examples

In subsection 5.1 we specialize our results to a commonly studied class of theories:∏
i

U(ni) quiver gauge theories without adjoint matter, (5.1)

namely with only fundamental and bifundamental hypermultiplets. For these theories we
prove in subsection 5.2 that our technical assumption (4.6) holds. We prove in subsec-
tion 5.3 that it also holds in arbitrary U(1)nabel gauge theories. To finish our journey, we
work out in detail the example of circular quivers with two gauge nodes in subsection 5.4.
This last subsection quotes some earlier results but can be read independently.

5.1 Quiver gauge theories with unitary gauge group factors

We denote by Q = (V,E, n,M) the quiver, where V is the set of gauge groups of the
quiver, so that i ∈ V in (5.1), the edges E describe bifundamental hypermultiplets joining
pairs of these gauge groups, the gauge groups are U(ni) with ni ≥ 1, i ∈ V , and they each
have Mi fundamental hypermultiplets. We also denote by Q′ = (V ′, E′, n,M ′) the quiver
obtained by removing all gauge groups U(ni) with ni = 1, removing all (bi)fundamental
hypermultiplets charged only under such groups, and converting bifundamental hyper-
multiplets of such U(1) groups and of U(nj) with nj ≥ 2 into additional fundamental
hypermultiplets.

The graph Γ defined in Proposition 4.1 is then obtained from Q′ by adding edges con-
necting each vertex i ∈ V ′ to M ′i new nodes representing the fundamental hypermultiplets,
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and subdividing each edge in E′ by inserting inside it an additional vertex. An immediate
consequence is that the genus g of Γ is the same as the genus of the quiver Q′, which is
visually easier to read off. Our general considerations above imply that the weight-zero
coefficient in Ns.t. is at least g. For this class of theories we can be more precise and derive
that this is the exact count,

Ns.t.|coef µ0w0 = g = (genus of quiver without U(1)) . (5.2)

The idea is to explicitly show that all products of φ, q, q̃ factorize except g of them, and
that monopoles cannot contribute to the weight-zero subspace. We have not analyzed the
effect of adjoint matter, but we conjecture that the equality remains valid in that case.

Monopoles cannot contribute. Monopole charges m of this gauge theory have com-
ponents mia for 1 ≤ i ≤ nabel = nna and 1 ≤ a ≤ ni. The monopole sectors that can
contribute B1[0](1,1) multiplets are those with ∆(m) = 1. Let m+ denote the positive part
of m, defined by its components m+

ia = max(0,mia). Every term in ∆(m) is an absolute
value |mia| or |mia −mjb|, and one easily checks∣∣mia

∣∣ =
∣∣m+

ia

∣∣+ ∣∣mia −m+
ia

∣∣ ,∣∣mia −mjb

∣∣ =
∣∣m+

ia −m+
jb

∣∣+ ∣∣mia −m+
ia −mjb + m+

jb

∣∣ . (5.3)

As a result,
∆(m) = ∆(m+) + ∆(m−m+) . (5.4)

In a good theory, this can only be equal to 1 if one of the summands vanishes, namely
if m+ = 0 or m = m+. Thus, either all components of m are non-negative, or all are
non-positive.

The U(ni) traces Tri(m) for 1 ≤ i ≤ nna then have the same sign, all non-negative
or all non-positive. In addition, the only case where they all vanish is if m = 0, which
does not have dimension 1. Therefore, every ∆(m) = 1 monopole sector has a non-trivial
power of at least one magnetic flavour fugacity.22 We deduce that monopole sectors cannot
contribute to the weight zero subspace of Ns.t..

Almost all vector-hyper combinations factorize. The B1[0](1,1) multiplets in the
zero-monopole sector arise as gauge-invariant products of the vector multiplet scalar φi of
a gauge group U(ni) and of two hypermultiplet scalars. We denote by (qi, q̃i) the scalar
components of fundamental hypermultiplets, with qi and q̃i transforming in the fundamen-
tal and antifundamental representations of U(ni). We also denote by (qe, q̃e) the scalar
components of the bifundamental hypermultiplet corresponding to the edge e. More pre-
cisely, to specify which scalar is denoted by qe and q̃e one should fix an orientation of the
edge, from a source s(e) to a target t(e), and fix that qe lies in the fundamental represen-
tation of U(nt(e)) and the antifundamental of U(ns(e)). Besides the products of Tr(φi) and

22Incidentally, this proves that the Cartan subalgebra of Gmag cannot go beyond the manifest U(1)T
symmetries, so that we can equivocate between selecting the w0 term and selecting the zero-weight space
under Gmag.
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of an electric current, the remaining gauge-invariant combinations are

Bi = q̃iφiqi , Bee′ = Trs(e)(q̃e′φt(e)qe) , (5.5)

for any node i, and for any pair of directed edges e, e′ ∈ E of the quiver Q with the same
source s(e) = s(e′) and target t(e) = t(e′). For brevity we denote Be = Bee: the more
general Bee′ is only relevant when the quiver has multiple edges between the same pair of
nodes, and we present an example thereof in subsection 5.4.

The product Bi transforms in the adjoint representation of the electric flavour sym-
metry U(Mi) that rotates the Mi fundamental scalars qi, which seems like it could give
rise to numerous B1[0](1,1) multiplets. However, the F-term relation for q̃i states that
φiqi = 0 hence Bi = 0. The products Bee′ for all edges e, e′ joining a given pair of nodes
i, j transform likewise in the adjoint representation of the U(Mij) symmetry that rotates
the Mij edges joining i and j. For the purpose of deriving (5.2), we are only interested in
the zero-weight sector under U(Mij), namely the diagonal products Be = Bee for all Mij

edges e joining i and j. Altogether we can focus solely on Be for all edges e of the quiver.
A special case is that the operator Be is factorizable if nt(e) = 1, because in that case

φt(e) is a scalar and can be pulled out of the trace. We can write this as

Be ≡ 0 (mod double-trace) . (5.6)

The F-term relation for the bifundamental q̃e states that φt(e)qe = −qeφs(e), hence

Be = Trt(e)(φt(e)qeq̃e) = −Trt(e)(qeφs(e)q̃e) = −Breversed e . (5.7)

The F-term relation for a gauge node states that ∑e|t(e)=i qeq̃e = −qiq̃i, and the F-term
relation for q̃i states that φiqi = 0 hence∑

e|t(e)=i
Be = Tri(φiqiq̃i) = 0 . (5.8)

Amusingly, these equations (5.7) and (5.8) are identical to the conservation of a current
flowing in the quiver seen as a circuit, which we cut at each abelian node when working
modulo products of currents as in (5.6). Taking (5.6) into account renders the relation (5.8)
trivial for ni = 1. The remaining redundancies (syzygies) between F-term relations are as
follows: a given linear combination ∑i ci

(∑
e|t(e)=iBe

)
of these relations, for some coeffi-

cients ci, is trivial if and only if each Bij appears with a vanishing coefficient namely ci = cj
whenever there is an edge ij. The number of syzygies is thus the number h′0 of connected
components of the quiver Q′. Overall, we find that the number of (linearly independent)
single-trace mixed moduli is the genus of the quiver Q′, or equivalently Γ,

|E′| − |V ′|+ h′0 = genus of Q′ = g . (5.9)

5.2 Proof of the technical assumption in quivers of unitary gauge groups

Setup. We continue with the set up of subsection 5.1, namely ∏i U(ni) gauge theories
with fundamental and bifundamental hypermultiplets, and prove now the technical as-
sumption (4.6). Fix a monopole sector m with ∆(m) = 1, and a vector x ∈ h such that
w · x = 0 for any weight w � Vhyp + adj(G) with w ·m = 0. We seek to prove that x is a
multiple of m.
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Analysis of monopoles. In (5.3) we have decomposed monopole charges into positive
and negative parts and found that the monopole dimension is additive for this decomposi-
tion. More generally, one can split m into a part mclamped whose charges are clamped to
some interval [a, b] with a ≤ 0 ≤ b, and the rest. The dimension is again additive for the
quiver theories studied now:

∆(m) = ∆(mclamped) + ∆(m−mclamped) . (5.10)

In a good theory this means that either ∆(m) ≥ 2 or the decomposition is trivial (as
happens for instance for −a and b large enough, or for a = b = 0). For a ∆(m) = 1
monopole, the decomposition must be trivial for arbitrary a, b, which requires the monopole
to be “tiny” in the sense that all of its entries are 0 or +1, or all of its entries are 0 or −1.
Without loss of generality we can focus on the first case.

A (positive) tiny monopole charge m is characterized by the traces

0 ≤ τi := Tri(m) ≤ ni , (5.11)

and its dimension can be recast as

∆(m) =
∑
i∈V

(τ2
i + βiτi)−

∑
e∈E

τs(e)τt(e) . (5.12)

Here, the balance is defined as βi = −ni + 1
2Mi + 1

2
∑

(i↔j)∈E nj ∈ 1
2Z where edges starting

or ending at i contribute regardless of their orientation.

Unlifted hypermultiplets. The monopole background breaks each U(ni) gauge group
down to U(ni − τi)×U(τi). The unlifted vector multiplets and hypermultiplets are

adj(Gm) =
nna∑
i=1

(
adj
(
U(ni − τi)

)
+ adj

(
U(τi)

))
,

V m
hyp =

nna∑
i=1

Mi(ni − τi) +
∑
e∈E

(
(ns(e) − τs(e))(nt(e) − τt(e)) + τs(e)τt(e)

)
,

(5.13)

where Mi are flavour representations, and (ni − τi) and τi denote the fundamental repre-
sentations of U(ni− τi) and U(τi). If any of τs(e), τt(e), ns(e)− τs(e), or nt(e)− τt(e) vanishes,
then the terms involving it in (5.13) drop out.

Consider the projection xi of x in the Cartan algebra hi of U(ni). The vector x ∈ h

must be orthogonal to all weights of adj(Gm), hence

xi =
(
x0
i , . . . , x

0
i , x

1
i , . . . , x

1
i

)
∈ hi , (5.14)

where x0
i is repeated ni − τi times and x1

i is repeated τi times. (The superscripts 0 and 1
are motivated by the corresponding components of m being 0 or 1.) Notice that x0

i is
undefined if τi = ni and x1

i is undefined if τi = 0. Next, we know that x acts trivially on
the hypermultiplets in (5.13): for each vertex i, or for each edge e,

• If τs(e), τt(e) > 0 then the hypermultiplet τs(e)τt(e) exists, so we have x1
s(e) = x1

t(e).

• If τs(e) < ns(e) and τt(e) < nt(e) then likewise we have x0
s(e) = x0

t(e).

• If τi < ni and Mi > 0 then we have x0
i = 0.
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Connectedness considerations. We know that the gauge nodes with τi > 0 are con-
nected by edges of the quiver: if they were disconnected then clearly the dimension ∆(m)
would be the sum of dimensions of simpler monopoles corresponding to the connected com-
ponents, which would violate goodness. Thus, we have that all x1

i are equal to the same
value λ (for all nodes with τi > 0). There only remains to show that all x0

i = 0: then we
can deduce x = λm since m has precisely those components equal to 1.

Consider next the set V 0 ⊂ V of gauge nodes such that τi < ni, and focus on one
connected component C ⊂ V 0. Because C is connected, the orthogonality of x with
weights of (ns(e) − τs(e))(nt(e) − τt(e)) forces x0

i to be equal to the same value x0
C for all

i ∈ C. We now prove that some node i ∈ C has fundamental matter Mi 6= 0, which forces
x0
C = 0. Assume by contradiction that Mi = 0 for all i ∈ C. Then we exhibit a nonzero

monopole charge m̃ 6= m such that

∆(m) = ∆(m̃) + ∆(m− m̃) , (5.15)

thus violating goodness. Specifically, we consider the positive tiny monopole characterized
by its traces

τ̃i =

ni if i ∈ C ,
τi otherwise .

(5.16)

We establish (5.15) by checking that either w · m̃ or w · (m− m̃) vanishes for every weight
w � Vhyp + adj(G). We consider each type of weight in turn.

• For weights (and roots) that do not involve any U(ni) with i ∈ C, one has w · (m−
m̃) = 0 since the two monopole charges coincide away from C.

• For roots α of U(ni) with i ∈ C one has w · m̃ = 0 since τ̃i = ni means that
m̃i = (1, 1, . . . , 1).

• For bifundamentals of U(ni) and U(nj) with i, j ∈ C, we have m̃i = (1, . . . , 1) and
m̃j = (1, . . . , 1) hence w · m̃ = 0.

• For bifundamentals of U(ni) and U(nj) with i ∈ C and j 6∈ C, we observe that
τj = nj , as otherwise the node j would belong to the connected component C. Thus
m̃i = (1, . . . , 1) and m̃j = (1, . . . , 1) and again w · m̃ = 0.

This concludes the verification of (5.15), hence the proof by contradiction that every con-
nected component has fundamental matter. As a result, all x0

i vanish, so that x = λm for
some λ, which concludes our proof of the technical assumption for quivers of unitary gauge
groups without adjoint matter.

5.3 Proof of the technical assumption in abelian theories

Aim. We seek to prove the technical assumption (4.6) in the case where G = U(1)nabel is
abelian. In particular, gauge representations are complex so that we can split Vhyp = R+R.
The monopole dimension is thus

∆(m) = 1
2
∑
w�R
|w ·m| . (5.17)
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We wish to prove that in any sector with ∆(m) = 1, one has

Span
{
w � R,w ·m = 0

}
= m⊥ . (5.18)

First case. One possibility is that one term is |w(1) ·m| = 2 and all others vanish, in
other words all of the weights w � R except w = w(1) are orthogonal to m. Since weights
of R span all of h∗ (otherwise the gauge theory would have a free vector multiplet), the
weights w 6= w(1) span at least a hyperplane, which lies in m⊥ hence coincides with it.

Second case. The other possibility is that two terms are |w(1) · m| = |w(2) · m| = 1
while all other weights w � R are orthogonal to m. We assume by contradiction that
they span a strict subspace L ( m⊥ ( h∗. Since weights of R span all of h∗ we know that
Span(w(1), w(2), L) = h∗ namely that L has codimension at most 2, hence exactly 2 because
of the aforementioned strict inclusions.

The orthogonal L⊥ ⊂ h is a two-dimensional subspace that contains m. Since the
theory is good and ∆(m) = 1, the vector m is necessarily a primitive vector in the lat-
tice Λmon (that is, not an integer multiple of some other vector). Thus, one can choose a
second primitive vector p such that m and p together form a basis of L⊥∩Λmon = Zm+Zp.
The dimension of any vector km + lp in this two-dimensional lattice is then computed as

∆(km + lp) = 1
2
∑
w�R

∣∣w · (km + lp)
∣∣ = 1

2
∣∣k + lw(1) · p

∣∣+ 1
2
∣∣k + lw(2) · p

∣∣ . (5.19)

To move forward we introduce δ = |(w(1) − w(2)) · p|. It cannot vanish as otherwise
w(1)−w(2) would be orthogonal to all of L⊥ hence would belong to L, which would contradict
Span(w(1), w(2), L) = h∗. If δ = 1, then taking k = −w(i) · p and l = 1 for i = 1 or i = 2
yields a monopole of dimension ∆(km + lp) = 1/2, so that the abelian theory of interest
has a pair of free monopoles in the infrared and is not good. For δ ≥ 2 all monopoles (5.19)
have dimension ∆ ≥ 1 (except for k = l = 0 of course), yet we now prove that the theory
is nevertheless not good.

Orbifolded free monopoles. The gauge group contains a subgroup Zδ generated by

e2πix ∈ G , x =
(w(1) · p)m− p

δ
∈ h (5.20)

that acts trivially on all hypermultiplets since

w(1) · x = 0 , w(2) · x =
(w(1) − w(2)) · p

δ
= ±1 ∈ Z , (5.21)

and other weights w � R are orthogonal to m and p hence to x. Gauging the corresponding
Zδ one-form symmetry (which acts on Wilson lines of Zδ ⊂ G) transforms our gauge theory
to a G/Zδ gauge theory with the same hypermultiplet content. The lattice of monopole
sectors becomes larger, and in particular L⊥ ∩ Λmon grows from Zm + Zp to the larger
lattice {

km + lp
∣∣ w(i) · (km + lp) ∈ Z for i = 1, 2

}
. (5.22)
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n1 n2

M1 M2(q12, q̃12)

(q21, q̃21)φ1 φ2

(q1, q̃1) (q2, q̃2)

Figure 2. Two-node circular quiver with unitary gauge nodes and flavors.

Two sectors are particularly interesting: (k, l) = (w(i) · p,−1)/δ for i = 1 and for i = 2,
whose dimensions (5.19) are both ∆ = 1/2. As a result the G/Zδ gauge theory is ugly, due
to having a pair of free monopoles in the infrared. The original G gauge theory is obtained
by gauging the Zδ topological (zero-form) symmetry, which orbifolds the pair of monopoles
into a C2/Zδ Coulomb branch. Our notion of good theory forbids orbifolds of free fields
in the infrared, hence this case δ ≥ 2 is ruled out, which concludes our proof of (5.18) by
contradiction.

Concrete example theory. The simplest example of such a phenomenon is a G =
U(1) × U(1) theory with two hypermultiplets of charges (1, 1) and (1,−1), namely four
chiral multiplets of charges (±1,±1). Then

∆(m = (m1,m2)) = 1
2 |m1 +m2|+

1
2 |m1 −m2| = max(|m1|, |m2|), (5.23)

so that all (non-trivial) monopoles have dimension ∆ ≥ 1. The dimension 1 monopoles
are m = (±1, 0) and m = (0,±1) and m = (±1,±1). By the gauging procedure men-
tioned above, however, the theory is equivalent to a Z2 orbifold of a pair of free magnetic
monopoles. From this point of view, the dimension 1 monopoles appear as quadratic com-
binations of the more “elementary” dimension 1/2 monopoles with m = (±1/2,±1/2) in
the G/Z2 gauge theory.

5.4 Two-node circular quivers with unitary gauge group factors

We now return to non-abelian quivers, and evaluate Ns.t. exactly for an example family of
quivers: U(n1)×U(n2) gauge theories (with n1, n2 ≥ 1) with bifundamental hypermultiplets
in the n1n2 and n1n2 representations, and Mi fundamental hypermultiplets of U(ni) for
i = 1, 2. As depicted in figure 2, we denote by (q12, q̃12), (q21, q̃21), (q1, q̃1), and (q2, q̃2) the
bottom components of these hypermultiplets, with for instance q12 and q̃21 transforming
in the n1n2 representation.

Electric symmetries. The electric symmetry consists of a U(Mi) symmetry rotating
fundamental hypermultiplets of the U(ni) gauge group, for i = 1, 2, as well as a U(2)
symmetry rotating the bifundamental hypermultiplets,23 modulo U(1) ⊂ U(n1) and U(1) ⊂

23For circular quivers this symmetry is specific to a two-node quiver, for which q12 and q̃21 transform in
the same representation of the gauge groups.
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Electric currents F-term relations

Bottom component q̃1q1 q̃2q2

(
Tr(q̃12q12) Tr(q̃12q̃21)
Tr(q21q12) Tr(q21q̃21)

)
Tr(q̃12q12) + Tr(q21q̃21)

= Tr(q̃1q1) = Tr(q̃2q2)
Representation M1M1 M2M2 2 2 1 + 1

Table 2. Electric symmetries of the two-node circular quiver, modulo relations.

U(n2) gauge transformations which identify the U(1) subgroups of U(M1), U(M2), and
U(2):

Gelec =
(
U(M1)×U(M2)×U(2)

)
/U(1)2 . (5.24)

The corresponding electric current multiplets are (or rather, have as bottom components)
gauge-invariant products of the hypermultiplet scalars, modulo F-term relations, as listed
in table 2. Observe that forM1,M2 ≥ 1 the electric symmetry includes a U(1) factor, while
this factor is absent if exactly one of M1 and M2 vanishes. If both M1 and M2 vanish,
the diagonal U(1) ⊂ U(n1) × U(n2) gauge symmetry does not act on any field, hence the
theory has a free vector multiplet and is bad. We return to the well-understood issue of
goodness momentarily.

Zero-monopole single-trace mixed moduli. Our aim is to evaluate Ns.t.. We start
here with the zero-monopole sector. For general quivers we have seen near (5.5) that
the mixed moduli to be counted take the form Bee′ for all pairs of edges with the same
source and target. Since our present quiver has a pair of bifundamental hypermultiplets of
U(n1) × U(n2), we get four products involving φ1, and four involving φ2. They are equal
up to a sign by (5.7),(

Tr(q̃12φ1q12) Tr(q̃12φ1q̃21)
Tr(q21φ1q12) Tr(q21φ1q̃21)

)
= −

(
Tr(φ2q̃12q12) Tr(φ2q̃12q̃21)
Tr(φ2q21q12) Tr(φ2q21q̃21)

)
. (5.25)

This quadruplet transforms in the adjoint representation of the U(2) ⊂ Gelec symmetry
acting on the bifundamentals. In addition, the trace vanishes thanks to the F-term condi-
tion (5.8) of φ1 or φ2. This leaves a triplet of mixed moduli in the adjoint of SU(2) ⊂ Gelec.
If n1 = 1 (resp. n2 = 1), then the scalar φ1 (resp. φ2) can be pulled out of the trace, so
that these mixed moduli all factorize. This means that the single-trace mixed moduli with
zero weight under the magnetic symmetry transform as

Ns.t.|coef µ0 =

0 if min(n1, n2) = 1 ,
adj SU(2)elec if n1, n2 ≥ 2 .

(5.26)

The result can also be obtained by noting that the single-trace mixed modulus B(12) −
B(21) = Tr(q̃12φ1q12) − Tr(q21φ1q̃21) that was counted in the zero-weight sector in subsec-
tion 5.1 is not invariant under SU(2) ⊂ Gelec.

For a general quiver gauge theory with unitary gauge groups and only fundamental
and bifundamental hypermultiplets, as considered in subsection 5.1, we expect

Ns.t.|coef µ0 = g′ +
∑
i<j

adj SU(Mij) (5.27)
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where g′ ≤ g is the genus of the quiver without U(1) factors and in which multiple edges are
replaced by a single one, and SU(Mij) is the flavour symmetry rotating all bifundamental
hypermultiplets of U(ni) and U(nj). The zero-weight subspace of the Gelec representa-
tion (5.27) correctly reproduces the genus appearing in (5.2) since g′+∑i<j(Mij − 1) = g.

Goodness condition. Our aim is to get the complete Ns.t., so we consider the low-
lying monopole sectors. As a first step we rederive known conditions for the theory to be
good [4, 12]. Thanks to our additivity properties (5.4) and (5.10) of monopole dimensions,
the dimension of any monopole can be written as a sum of dimensions of tiny monopoles,
namely sectors m = (mia)1≤i≤2,1≤a≤ni such that all mia ∈ {0,+1} or all mia ∈ {0,−1}.
We concentrate on the {0,+1} sign. Up to gauge-equivalence, tiny sectors are characterized
by the traces

τi =
∑
a

mia ∈ [0, ni] . (5.28)

For our quiver, the dimension (5.12) of tiny monopoles simplifies to

∆(m) = (τ1 − τ2)2 + β1τ1 + β2τ2 (5.29)

in terms of the balances

β1 = n2 − n1 +M1/2 and β2 = n1 − n2 +M2/2 . (5.30)

Of course this dimension vanishes for τ1 = τ2 = 0. The theory is good if and only
if ∆ ≥ 1 for any other values of τi ∈ [0, ni]. The necessary conditions corresponding to
(τ1, τ2) among (1, 0), (0, 1), (1, 1) are

β1 ≥ 0, β2 ≥ 0, β1 + β2 ≥ 1 . (5.31)

These conditions are also sufficient: either τ1 6= τ2 and the first term in (5.29) is at least 1
while the rest is non-negative, or τ1 = τ2 6= 0 and we have ∆ = (β1 + β2)τ1 ≥ τ1 ≥ 1.
Note that β1 + β2 = (M1 + M2)/2 so the last condition states that there are at least
two fundamental flavours in total. We henceforth assume that the theory is good, namely
that (5.31) holds.

Magnetic symmetries. For generic values of N1, N2,M1,M2 the magnetic symmetry
group is simply U(1)2

T . There are additional magnetic symmetries whenever a monopole
has ∆(m) = 1. Since monopole dimensions are sums of tiny monopole dimensions, which
themselves are at least 1, the only monopoles we have to consider are the tiny ones. We
find that (5.29) can only be equal to 1 if

• |τ1 − τ2| = 1 and β1τ1 + β2τ2 = 0, which requires either (τ1, τ2) = (1, 0) and β1 = 0,
or (τ1, τ2) = (0, 1) and β2 = 0,

• or τ1 = τ2 and (β1 + β2)τ1 = 1, which requires β1 + β2 = 1 (namely M1 + M2 = 2)
and (τ1, τ2) = (1, 1).
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The first case corresponds to the standard SU(2) flavour symmetry enhancement of the
U(1)T topological symmetry of a balanced node, as in a linear quiver. The second case leads
to an SU(2) flavour symmetry enhancement of the diagonal U(1)T topological symmetry of
the two nodes, and is specific to circular quivers. Both effects can coexist if (β1, β2) = (1, 0)
or (0, 1). To summarize, we have the following magnetic symmetry (the cases β1 > β2 can
be obtained by symmetry)

Gmag =



U(1)× SU(2) if β1 = β2 = 1/2 ,
SU(2)× SU(2) if (β1, β2) = (0, 1) ,
SU(2)×U(1) if β1 = 0 , β2 ≥ 3/2 ,
U(1)×U(1) if 1/2 ≤ β1 ≤ β2 and (β1, β2) 6= (1/2, 1/2) .

(5.32)

Mixed moduli in monopole sectors, first type. The B1[0](1,1) multiplets can only
come from the zero-monopole sector, which we have analyzed already, or sectors with
∆(m) = 1. The number cm

1,1 of mixed moduli coming from each sector is given in (4.5)
as the number of flavour symmetries of an auxiliary theory with gauge group Gm/U(1)m
and hypermultiplets V m

hyp. As described in (4.48), some of these moduli factorize as the
product of the bare monopole and an electric current of the original theory.

The first class of monopole sectors occurs for β1 = 0, β2 ≥ 1. Consider the tiny
monopole sector with (τ1, τ2) = (1, 0), namely mia = δi1δa1 for i = 1, 2 and 1 ≤ a ≤ ni.
This is the sector responsible for an SU(2) enhancement of the U(1) topological symmetry
of U(n1). One has Gm = U(1)×U(n1− 1)×U(n2) and the auxiliary theory coincides with
the original quiver theory with n1 replaced by n1 − 1. If n1 ≥ 2 the flavour symmetries
are identical in the two theories, so that every mixed modulus in this sector factorizes. If
n1 = 1, the balance condition β1 = 0 imposes n2 = 1 and M1 = 0, so that there is no
U(M1) symmetry to contend with. In that case a change of basis in the U(1)×U(1) gauge
groups shows that the theory is the tensor product of two SQED theories (with 2 and M2
flavours), for which we already know that Ns.t. = 0.

Mixed moduli in monopole sectors, second type. The second class of monopole
sectors occurs for β1 + β2 = 1, that is, M1 + M2 = 2. Consider the sector with (τ1, τ2) =
(1, 1), namely mia = δa1 for i = 1, 2 and 1 ≤ a ≤ ni. The gauge group is broken to
Gm = U(1) × U(n1 − 1) × U(1) × U(n2 − 1). We split correspondingly the fundamental
hypermultiplets as q1 = (q]1, q

\
1) with q]1 being charged under U(1) and neutral under

U(n1 − 1) and q\1 vice-versa, and likewise for q2. The monopole background lifts the two
scalars q]1 and q]2. We introduce a similar notation q]12 and q\12 for the unlifted parts of
the bifundamental q12, which consists of the entry charged under both U(1) factors of Gm
and the (n1 − 1)× (n2 − 1) representation, respectively. With this notation, the auxiliary
theory consists of two decoupled sets of fields: the original quiver with (n1, n2) replaced
by (n1 − 1, n2 − 1) and all hypermultiplets decorated with a \ superscript, and a T [SU(2)]
theory consisting of the anti-diagonal U(1) vector multiplet and of q]12 and q]21.
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For n1, n2 ≥ 2, the auxiliary theory has an additional SU(2) symmetry compared to
the original theory, with the electric currents being explicitly

q̃\1q
\
1 ∈ adj(U(n1 − 1)) , q̃\2q

\
2 ∈ adj(U(n2 − 1)) ,(

Tr(q̃\12q
\
12) Tr(q̃\12q̃

\
21)

Tr(q\21q
\
12) Tr(q\21q̃

\
21)

)
∈ adj(U(2)) ,

(
q̃]12q

]
12 q̃

]
12q̃

]
21

q]21q
]
12 q

]
21q̃

]
21

)
∈ adj(U(2)) ,

(5.33)

subject to F-term relations (4.56), which read

Tr(q̃\1q
\
1) = Tr(q̃\2q

\
2) = Tr(q̃\12q

\
12) + Tr(q\21q̃

\
21) , Tr(q̃]12q

]
12) + Tr(q]21q̃

]
21) = 0 . (5.34)

As described in (4.48), the product of the bare monopole with a current is a the monopole
dressed by the image of the current under the projection from Vhyp to V m

hyp. This projection
has qm

i = q\i and qm
e = q\e + q]e. Thus, the dressed monopoles Omq̃

\
iq
\
i are factorized, while

only the sum of the two adj(SU(2)) dressed monopoles factorizes. There remains a non-
factorizable B1[0](1,1) multiplet in the adj(SU(2)) representation of Gelec.

For n1 = 1 and n2 ≥ 2, the hypermultiplets q\1, q
\
12 and q\21 disappear, so that the

auxiliary theory only has adj(SU(n2 − 1)) + adj(SU(2)) flavour symmetry (here we took
into account F-term relations). The dressed monopoles all factorize in that case. Likewise,
for n2 = 1 the auxiliary theory has a reduced flavour symmetry, so that all B1[0](1,1)

multiplets (coming from this monopole sector) factorize.

Single-trace mixed moduli in the two-node circular quiver. We are ready to
summarize our conclusion. For our quiver, Ns.t. receives a monopole contribution precisely
when n1, n2 ≥ 2. Combining with (5.26) we find

Ns.t. =


0 if min(n1, n2) = 1 ,
adj SU(2)elec if n1, n2 ≥ 2 and M1 +M2 ≥ 3 ,
adj SU(2)elec × adj SU(2)mag if n1, n2 ≥ 2 and M1 +M2 = 2 ,

(5.35)

where SU(2)elec is the electric symmetry acting on the bifundamental hypermultiplets, and
SU(2)mag is the magnetic symmetry that contains the U(1)T topological symmetry of the
diagonal subgroup U(1) ⊂ U(n1)×U(n2).

For a circular quiver with k ≥ 3 nodes, the quiver no longer has edges with multiplicity,
hence the adj SU(2)elec symmetry disappears and Ns.t. does not receive an enhancement
from the zero-monopole sector. As for the two-node case, there are two classes of monopole
sectors with ∆(m) = 1.

• The first arises from one or more consecutive balanced nodes, and leads to an auxiliary
theory (Gm/U(1)m, V

m
hyp) with the same (or lower) flavour symmetry as the original

quiver, so that the resulting B1[0](1,1) multiplets are factorized.

• The second arises from the tiny monopole with τ1 = τ2 = · · · = 1, which has
∆(m) = (M1 + M2 + . . . )/2 = 1 provided the quiver has exactly two fundamen-
tal hypermultiplets in total. The auxiliary theory is given by the original quiver with
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all ni replaced by ni − 1, together with the U(1)k−1 theory that is mirror to SQED
with k flavours. This leads to a single non-factorizable B1[0](1,1) multiplet in this
sector, unless some ni = 1. This last condition arises exactly as in the two-node case.

Taking into account the m and −m sectors and the zero-monopole sector, we obtain an
adj SU(2)mag worth of single-trace mixed moduli. This establishes (4.2).

The formula (4.2) for Ns.t. must be invariant under mirror symmetry, but the condition
min(ni) ≥ 2 seems worrisome at first sight. Thankfully, circular quivers related by mirror
symmetry have the same value of min(ni), which in the Hanany-Witten brane construction
is the number of D3 branes that fully wrap the circle direction, denoted by L in [4, section
2.2].

This completes our discussion of circular quivers. It would be interesting to deter-
mine the precise expression of Ns.t. for a general quiver, including all possible magnetic
enhancements due to ∆ = 1 monopole sectors.
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A Representation theory statements

A.1 Tensor products with the adjoint representation

Set-up and main lesson. In the main text we seek lower bounds on the term
singletG(adj(G) ⊗ S2Vhyp) appearing in the index. Upon decomposing G into factors and
Vhyp into irreducible representation, the question boils down to analyzing, for a (non-
abelian) simple compact Lie group K,

• singletK(adj(K)⊗Vµ⊗Vν) for irreducible representations of highest weights µ and ν;

• singletK(adj(K)⊗ S2Vµ) and singletK(adj(K)⊗Λ2Vµ), especially for real or quater-
nionic Vµ.

The notion of highest weight requires a splitting of roots into positive and negative roots,
and we denote by αj the corresponding simple roots of K. Here and in subsection A.2,
respectively, we outline how these questions are addressed in mathematical work to appear
by the second author and I. Smilga [53], and deduce some concrete results used in the main
text.24

24We acknowledge use of the Mathematica package LieART [54] to improve our intuition and conjecture
the results.
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We recall that the Weyl group is generated by reflections

wα : λ 7→ λ− 〈λ, α∨〉α , α∨ := 2
〈α, α〉

α , (A.1)

associated to roots α ofK, where α∨ is the corresponding coroot. The (closed) fundamental
Weyl chamber, defined as the set of weights λ such that 〈λ, αj〉 ≥ 0 for all j, is a fundamental
domain of the Weyl group, in the sense that each orbit under the Weyl group has exactly
one point in this chamber.

We begin with the singlets in adj(K)⊗Vµ⊗Vν . As we justify shortly, there are exactly
two cases where such gauge singlets occur [53]:

• if µ = ν, there is at least 1 gauge singlet (except for µ = ν = 0), and up to rank(K)
(the typical case): the precise number is the number of simple roots αj such that
〈µ, αj〉 > 0;

• if µ− ν is a root of K, there is 0 or 1 gauge singlet, for instance there is one if both
µ and ν lie strictly inside the fundamental Weyl chamber.

To exactly determine the number of singlets in singletG(adj(G)⊗S2Vhyp), needed to count
single-trace B1[0](1,1) multiplets exactly, one must fully track both types of gauge singlets.
Instead, our lower bound in the main text is obtained by only considering the gauge singlets
with µ = ν, and ignoring those with µ 6= ν. In the case µ = ν, a natural question is whether
these gauge singlets occur in adj(K) ⊗ S2Vµ or adj(K) ⊗ Λ2Vµ. The question is richest
for µ = ν = ν, namely for real and quaternionic representations, and we return to it in
subsection A.2, ignoring the singlets with µ − µ ∈ roots(K), which is why we will only
write lower bounds.

Weyl character formula. By Schur’s lemma, a product W ⊗ V of irreducible repre-
sentations of K has exactly one gauge singlet if W = V̄ , and otherwise has none. More
generally, for any representation W , the singlets in W ⊗ Vν are in one-to-one correspon-
dence with copies of Vν insideW . Thus, the problem of interest boils down to decomposing
adj(K)⊗ Vµ into irreducible representations.

We recall the character of the adjoint representation,

χadj(K)(x) = rank(K) +
∑

α∈roots(K)
eα·x , (A.2)

and the Weyl character formula25

χVµ(x) = χµ :=
∑
σ∈W (−1)σe(σ(ρ+µ))·x

Vandermonde , Vandermonde =
∑
σ∈W

(−1)σe(σ(ρ))·x , (A.3)

in which the Weyl group elements σ act on weights µ by Weyl reflections parallel to roots,
and ρ is the Weyl vector, defined equivalently as the half-sum of all positive roots or as the
sum of fundamental weights, so that

〈ρ, α∨j 〉 = 1, 〈ρ, αj〉 = 〈αj , αj〉/2 for 1 ≤ j ≤ rank(K) . (A.4)
25A word of warning: the Vandermonde determinant here can be recast as a product over half of the

roots only (for instance, positive roots), whereas ZVand is a product over all roots.
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The Weyl character formula naturally extends beyond dominant weights µ (namely highest
weights of some representation), and we use the same notation χµ for it.

Characters with non-dominant µ. To understand χµ for a weight µ that is not dom-
inant, one should map ρ+ µ to the Weyl chamber using one or more Weyl reflections, and
use the following relation for any Weyl group element σ ∈W :

χµ =
∑
σ′∈W (−1)σ′e(σ′(ρ+µ))·x

Vandermonde = (−1)σ
∑
σ′′∈W (−1)σ′′e(σ′′◦σ(ρ+µ))·x

Vandermonde = (−1)σχσ(ρ+µ)−ρ .

(A.5)
Let us distinguish three cases when analysing χµ. We will use at this point that 〈ρ, α∨j 〉 = 1,
and that 〈λ, α∨j 〉 are integers for any weight λ of a finite-dimensional representation.

If ρ+µ is strictly inside the fundamental Weyl chamber, then all 〈ρ+µ, α∨j 〉 are strictly
positive integers, namely are at least 1. In that case, 〈µ, α∨j 〉 ≥ 0, namely µ is the highest
weight of some representation. The character χµ defined by the Weyl character formula is
the character of some genuine highest-weight representation Vµ.

If ρ + µ is on the boundary of the fundamental Weyl chamber, then 〈ρ + µ, α∨j 〉 = 0
for some j. The Weyl reflection σ = wαj (which has (−1)σ = −1) maps it to itself since

σ(ρ+ µ) = ρ+ µ− 〈ρ+ µ, α∨j 〉αj = ρ+ µ . (A.6)

Thus, χµ = −χµ, namely this character vanishes. In fact, we have χµ = 0 more generally
whenever ρ + µ is on any fixed plane of any Weyl reflection, namely if ρ + µ is on the
boundary of any Weyl chamber.

Finally, if ρ + µ is strictly outside the fundamental Weyl chamber, then it must be
mapped to the fundamental Weyl chamber (or its boundary) after some Weyl reflections
using (A.5).

Generic situation versus Racah-Speiser algorithm. In view of (A.2) and (A.3), the
character of adj(K)⊗ Vµ is

χadj(K)⊗Vµ(x) = χadj(K)(x)χµ(x)

=
(

rank(K) +
∑

α∈roots(K)
eα·x

)∑
σ∈W (−1)σe(σ(ρ+µ))·x

Vandermonde

= rank(K)χµ(x) +
∑

α∈roots(K)

∑
σ∈W (−1)σe(σ(ρ+µ+α))·x

Vandermonde ,

(A.7)

where we have used that the set of roots is invariant under the Weyl group to change eα·x
to eσ(α)·x in the sum. This reduces to a sum of dimK characters:

χadj(K)⊗Vµ(x) = rank(K)χµ(x) +
∑

α∈roots(K)
χµ+α(x) . (A.8)

For µ deep enough in the fundamental Weyl chamber, this yields the decomposition into
irreducible representations,

adj(K)⊗ Vµ = (Vµ)rank(K) ⊕
⊕

α∈roots(K)
Vµ+α , for generic µ . (A.9)
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For µ near the boundary of the Weyl chamber, some of the µ + α may be outside
the Weyl chamber. In that case, they fail to be dominant weights. The Racah-Speiser
algorithm consists of listing all summands in (A.9), mapping their (incorrect) “highest
weights” to dominant weights using Weyl reflections, and cancelling characters that appear
with opposite signs, as well as characters whose ρ + ν lies on a Weyl chamber boundary.
A case-by-case analysis of ABCDEFG simple Lie algebras in [53] proves that in all cases,
the number of copies of Vµ that remain after applying the algorithm to (A.9) is precisely
as we stated early in this section, namely equal to the number of simple roots αj such that
〈µ, αj〉 > 0.

A.2 Describing singlets and their symmetries

Expliciting copies of the adjoint representation. The second type of singlets to
analyse are those in adj(K)⊗ S2Vµ and adj(K)⊗Λ2Vµ. As these sit in adj(K)⊗ Vµ ⊗ Vµ,
they are particular examples of the singlets we have found so far, and they can only exist
if µ = µ or µ − µ ∈ roots(K). Our lower bounds in the main text only take into account
the singlets with µ = µ, namely for real or quaternionic Vµ. For this case, the number of
singlets in adj(K) ⊗ Vµ ⊗ Vµ is the number of simple roots αj such that 〈αj , µ〉 > 0, and
we must determine which ones are symmetric or antisymmetric.

Decompose µ = ∑
j µj$j on the basis of fundamental weights $j (which is dual to

the coroot basis α∨j ). In the tensor product Vµ1$1 ⊗ · · · ⊗ Vµk$k , where k = rank(K), the
irreducible summand of highest weight is Vµ. For any j with µj 6= 0, the non-trivial action
of the Lie algebra k on Vµj$j defines a singlet of Hom(adj(K)⊗Vµj$j , Vµj$j ), and tensoring
with the identity defines a singlet

Tj :
{

adj(K)⊗ Vµ1$1 ⊗ · · · ⊗ Vµk$k → Vµ1$1 ⊗ · · · ⊗ Vµk$k
x ⊗ v1 ⊗ · · · ⊗ vk 7→ v1 ⊗ · · · ⊗ (xvj)⊗ · · · ⊗ vk

(A.10)

We also denote by Tj the projection to a singlet in Hom(adj(K) ⊗ Vµ, Vµ). It can be
shown [53] that the Tj (for µj 6= 0) are linearly independent, so that they provide precisely
the expected number of singlets in Hom(adj(K)⊗ Vµ, Vµ) ' adj(K)⊗ Vµ ⊗ Vµ ' adj(K)⊗
Vµ ⊗ Vµ. There only remains to understand the symmetry properties of these singlets.

Inequalities between (anti)symmetric complexities. To determine how swapping
the two Vµ factors acts on Tj one must take into account the isomorphisms adj(K)⊗ Vµ ⊗
Vµ ' adj(K)⊗ Vµ⊗ Vµ. One finds that the swap acts as Tj 7→ ±Tf(j) where the involution
f : {1, . . . , k} → {1, . . . , k} is defined by how conjugation acts on fundamental weights,
namely V$j = V$f(j) , and the sign is more subtle to determine, see [53].

• Whenever f(j) 6= j, the linear combinations Tj±Tf(j) have opposite eigenvalues under
the swap, hence provide one singlet in each of adj(K)⊗ S2Vµ and adj(K)⊗ Λ2Vµ.

• Whenever f(j) = j, the singlet Tj is symmetric or antisymmetric according to
whether Vµ is quaternionic or real, respectively.

Thus, there are more singlets in adj(K)⊗S2Vµ or adj(K)⊗Λ2Vµ for quaternionic or real Vµ.
The equality case can only happen if the only non-zero µj have f(j) 6= j, but in this case the
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tensor product Vµ1$1 ⊗ · · · ⊗ Vµk$k reduces to a tensor product of pairs Vµj$j ⊗ Vµf(j)$f(j)

(with necessarily µf(j) = µj) which are all real representations, so that the tensor product
is a real representation and its subrepresentation Vµ is real as well. Thus, the equality case
is excluded for quaternionic representations:

singletK(adj(K)⊗ Λ2Vµ) ≥ singletK(adj(K)⊗ S2Vµ) for real Vµ ,
singletK(adj(K)⊗ S2Vµ) > singletK(adj(K)⊗ Λ2Vµ) for quaternionic Vµ .

(A.11)

In addition, for real Vµ, either Vµ is trivial and there are no singlets whatsoever, or it is
not, and there is at least one singlet in singletK(adj(K) ⊗ Vµ ⊗ Vµ), hence at least one
in the left-hand side singletK(adj(K) ⊗ Λ2Vµ) of the inequality. We have collected these
conclusions as (4.31) in the main text.

A.3 A bound on zero-weight spaces

Here we switch gears completely and establish lower bounds (4.59) on the dimension of zero-
weight subspaces of NC

I ⊗NC
I and of (anti)symmetric squares of NH

I and NR
I . Specifically,

we prove
dim

(
(N ⊗N)µ0

)
≥ dimN for N among NC

I , N
H
I , N

R
I ,

dim
(
(S2N)µ0

)
≥ 1

2 dimN for N among NH
I , N

R
I ,

dim
(
(Λ2NH

I )µ0
)
≥ 1

2 dimNH
I .

(A.12)

By choosing a basis (eα)1≤α≤dimN of N with definite weights, and the dual basis e∗ of N ,
it is clear that e∗α⊗eα, 1 ≤ α ≤ dimN , are linearly independent vectors in the zero-weight
space of N ⊗N , yielding the first lower bound.

Next, consider N to be real or quaternionic. Given a basis eα of N with definite
weights λα, the elements eα ⊗ eβ + eβ ⊗ eα for α ≤ β form a basis of S2N , and those with
λβ = −λα are in the zero-weight space. Distinguishing the zero-weight subspace of N from
the rest, we find

dim
(
(S2N)weight 0

)
=

∑
α≤β,λα=λβ=0

1 +
∑

α<β,λα=−λβ 6=0
1

=
(

dimNweight 0 + 1
2

)
+ 1

2
∑
λ 6=0

(
dimNweight λ

)2
≥ 1

2
∑
λ

dimNweight λ = 1
2 dimN ,

(A.13)

To get the inequality, we used that 1
2(n+ 1)n ≥ 1

2n for all integers n ≥ 0.
Finally, we turn to a quaternionic representation NH

I (corresponding to real RR
I ). The

dimension of the zero-weight space of NH
I cannot be 1: because the invariant tensor ε ∈

Λ2NH reduces to a non-degenerate antisymmetric pairing on the zero-weight space, that
space must have an even dimension. With the same logic as above one finds

dim
(
(Λ2NH

I )weight 0
)

=
(

dim(NH
I )weight 0 − 1

2

)
+ 1

2
∑
λ 6=0

(
dim(NH

I )weight λ
)2

≥ 1
2
∑
λ

dim(NH
I )weight λ = 1

2 dimNH
I ,

(A.14)

where crucially we used that 1
2(n− 1)n ≥ 1

2n for any integer n ≥ 0 except n = 1.
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