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1 Introduction

The Ising model has been a fruitful area of research since its discovery in 1920’s [1]. The
3d Ising universality class is realized in a number of physical systems such as 3d uni-axial
magnets [2] and liquid-vapor critical points [3]. On the theoretical side, a lot of work has
been devoted over the years to the physics of the 3d Ising model and to calculations of
its observables, such as critical exponents. A celebrated example of a successful approach
is provided by the ε-expansion [4]. Over the last decade, an impressive progress has been
achieved by the numerical conformal bootstrap [5–7], which fixes critical exponents and
OPE coefficients of the 3d Ising model to the greatest precision. Monte-Carlo simulations
also give very precise results for the critical exponents of the 3d Ising model (see, e.g., [8]).

Still this leaves one wondering whether a better analytical control is possible over the
3d Ising model, especially given that the 2d Ising model is exactly solvable. A particularly
intriguing set of ideas [9, 10] is related to the possibility of rewriting the 3d Ising model as a
theory of (super)strings. In this description the string worldsheet corresponds to a boundary
between clusters of positive and negative spins. In the 2d Ising model the corresponding
boundaries describe worldlines of free Majorana particles, which gives rise to an expectation
for fermionic excitations to be present on the string worldsheet in the 3d case. This idea has
been realized explicitly in the lattice phase of the Ising model [11], however, the continuum
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description of the Ising strings is still missing. The corresponding string theory is expected
to be strongly coupled, however see [12] for an interesting recent proposal towards a weakly
coupled description.

Given this state of affairs it is natural to explore the structure of the Ising strings
experimentally, where by experiments we mean lattice Monte-Carlo simulations. For this
purpose it is convenient to use the 3d version of the Kramers-Wannier duality, which maps
the low energy ferromagnetic phase of the 3d Ising model into a confining phase of the Z2
lattice gauge theory [13]. Under this duality, Ising domain walls are mapped into worldsheets
of Z2 confining strings.1 To gain insight into the worldsheet dynamics it is natural to focus
on the so-called long strings (or torelons). These are strings wrapped around one of the
compact spatial dimensions. The ground state energy and the first few lowest-lying states
of Ising strings in the long string sector have been previously studied in [16–18].

In this work, we aim to extend these results with a more precise spectrum calculation
and to determine energies of a larger number of excited states. Excitations of closed flux
tubes wrapped around one of the spatial dimensions are characterized by their longitudinal
momentum q along the flux tube. In addition, one may also define two parity transformations.
The longitudinal parity Pl corresponds to a reflection along the string and maps q to −q.
The transverse parity Pt corresponds to a reflection in the transverse direction. The main
goal of our study is to check whether Ising strings carry massive resonant states on their
worldsheet. Our initial results seem to indicate the presence of a massive resonance in the
parity (++) sector (at q = 0). The same state is also present at the lowest non-vanishing
q.2 However, a careful analysis shows that this state is a bulk glueball rather than a new
worldsheet state.

Similar string spectrum computations were previously performed in the 3d U(1) gauge
theory [19] and in the 3d and 4d SU(N) Yang-Mills theories [20–23]. In these studies,
massive resonances are observed in some cases, such as for the fundamental 4d SU(N)
confining string and confining strings in higher representations. Quite surprisingly though,
fundamental confining strings in 3d SU(N) gluodynamics don’t show any sign of additional
massive resonant modes on the string worldsheet.

We see that Ising strings are in some sense in between these two options. On one side,
we observe a well-pronounced resonant state in the spectrum of torelon excitations. On the
other hand, this is not a new state, but rather a bulk glueball. This strong mixing between
torelon excitations and glueballs is possible due to the absence of large N suppression in
the Ising case. In this case, the effective string theory makes sense below the threshold
corresponding to the emission of glueballs.

The rest of the paper is organized as follows. In section 2, we review properties of the 3d
Ising model and its duality to the Z2 lattice gauge theory. In section 3 we review the basics
of the effective string theory, which provides a good approximation for the lowest-lying

1Actually this map is more subtle. When we approach criticality, there will be proliferation of domain
walls with high genera [14, 15]. The worldsheet described by effective string theory is better considered as a
macroscopic effective description of the condensate of these genuine domain walls. We thank Michele Caselle
for pointing this out.

2Recall that the values of q are quantized as a result of a compactification on a circle.
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spectrum. In section 4 we summarize the basics of the lattice gauge theory and of the
Monte-Carlo simulations. We describe the algorithm for computing the closed flux tube
spectrum, and discuss how we reduce the systematic and statistical errors and improve the
projection onto low-lying states. In section 5 we present our results for some of the basic
parameters such as the string tension and the lightest glueball mass. We present and analyze
the closed flux tube spectra in 3d Z2 gauge theory for a wide range of string lengths. We
start with the absolute ground state and continue onto excited states in different sectors. In
particular, we identify a massive resonance state that is not described by the Nambu-Goto
theory. Then we describe the checks which we performed, which indicate that the observed
state is not in fact a novel worldsheet state but rather a scattering state of a long string
with an additional unbound glueball. In section 6, we present our conclusions and discuss
future directions.

2 Ising model and Z2 gauge theory

The 3d Ising model is one of the simplest spin models of (anti-)ferromagnetism. Its partition
function is given by

Z =
∑
si

e
−H(si)
T , (2.1)

where the Ising Hamiltonian is given by

H(si) = −J
∑
〈i,j〉

sisj − h
∑
i

si . (2.2)

Here the first sum runs over all neighboring pairs of spins si = ±1 on a cubic lattice. In the
present paper we are interested in the Ising model with a vanishing external magnetic field

h = 0 .

Then the theory enjoys a global Z2 symmetry, which flips signs of all spins. Positive
values of the coupling constant J correspond to ferromagnetism and negative ones to
anti-ferromagnetism. Indeed, for positive J the Hamiltonian is smaller for spins pointing
in the same direction making it energetically favorable for spins to be aligned. On the
other hand, thermal fluctuations tend to randomize the spins. Which effect wins depends
on the temperature, so the model exhibits a (second order) phase transition at a critical
temperature Tc. As a consequence of the bipartite property of the square lattice the
ferromagnetic and anti-ferromagnetic models are equivalent at h = 0. Namely, they can be
mapped into each other by taking J → −J and flipping half of the spins, which correspond
to one of the sublattices. In what follows we assume

J > 0 .

At a critical temperature T = Tc the spins develop long range correlations which are
described by a conformal field theory. At temperatures below the critical one the global Z2
symmetry is spontaneously broken and a typical spin configuration describes clusters of
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positive and negative spins separated by domain walls of positive tension. In the vicinity of
the critical temperature,

T . Tc

this phase is described by a continuous gapped Ising field theory. As reviewed in the
introduction, it is a longstanding question whether it is possible to rewrite the Ising
dynamics as a tractable continuum string theory, where the string worldsheet describes the
dynamics of the domain walls. Our goal here is to study the structure of the Ising strings
through the lattice Monte-Carlo simulation.

To study the string dynamics it is instructive to map the Ising model into a Z2
gauge theory. This map has been constructed by Wegner [13] and can be considered as
a generalization of the Kramers-Wannier duality of the 2d Ising model (see, e.g., [24] for
a review). Unlike in the 2d Ising model which is self-dual, the duality maps the 3d Ising
model into a different theory defined by the following partition function

Zgauge(β) =
∑

{σl=±1}
exp

(
β
∑
�

σ�

)
. (2.3)

Here σl variables define a Z2 gauge connection which lives on the links of the dual lattice.
The coupling constant β of the dual theory is related to the Ising model parameters via

β = −1
2 log tanh J

T
. (2.4)

This Abelian gauge theory exhibits a number of properties characteristic of the non-Abelian
SU(N) Yang-Mills theory. First, it enjoys a global 1-form Z2 center symmetry (see [25] for
a modern introduction). Similarly to the SU(N) case, upon compactification on a circle the
Z2 center symmetry is realized by (pseudo)gauge transformations with twisted boundary
conditions. A Polyakov loop operator, defined as a Wilson loop wound around the circle,
carries a negative Z2 charge. As a result, in the phase with unbroken center symmetry a
sector with a Polyakov loop insertion is orthogonal to a trivial sector with no operators
wound around the circle. Analogously to the SU(N) case we will refer to the states created
by topologically trivial operators as glueballs. Deformed Polyakov loops acting on a vacuum
produce “long” flux tube states, which are the main target of our study.

The phase with unbroken center symmetry, which describes the confined phase of the
Z2 gauge theory, is realized at [26]

β < βc ≈ 0.7614133(22) ,

where the critical value β = βc corresponds to the conformal Ising point. In addition, Ising
strings exhibit a roughening transition at [27]

β = βr = 0.47542(1) ,

so we are interested in the range βr < β < βc, where the string dynamics is described by a
continuum theory in the scaling limit β → βc.
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The deconfining phase transition at β = βc needs to be distinguished from the one
that happens when the circumference R of the spatial circle gets sufficiently small, namely
at [16]

R = Rc ≈ 0.82`s , (2.5)

where `−2
s is the tension of a confining string. Later we are going to refer to ls as the

(intrinsic) string width, given that we only have one mass scale in the theory. The latter
transition corresponds to the finite temperature deconfining phase transition of the Z2
gauge theory understood as a (2 + 1)-dimensional quantum field theory. The parameter
β is a coupling constant of this theory, which also has an interpretation as the inverse
temperature, if one understands the Z2 gauge theory as a 3-dimensional classical statistical
model. The Polyakov loop plays a role of the order parameter for both phase transitions.

In principle, both Ising and Z2 descriptions can be used for Monte-Carlo studies of
Ising strings (see, e.g., [16–18, 28] for some previous work). In the Ising description this is
achieved by introducing “interfaces”, i.e., by flipping the sign of the coupling J on the links
which intersect the string worldsheet. To study the spectrum of string excitations, which
is our main goal here, the gauge theory description appears more convenient. Indeed, in
this description excited strings states are created by deformed Polyakov loops. As reviewed
in section 4 this makes it straightforward to produce a large basis of excited states by
changing the shape of the Polyakov loop. Furthermore, a precision mass determination
requires a good overlap of the operator basis with the low lying string states. The gauge
theory formulation allows this to be achieved by the well-developed techniques of blocking
and smearing.

For future reference, note that in addition to the string tension `−2
s , the Z2 gauge theory

in the confining phase has another characteristic energy scale — the inverse correlation
length ξ−1, which is set by the lightest glueball mass. Given that the parity invariant Ising
model has a single relevant deformation, in the scaling limit the ratio of the two scales is
universal. Its numerical value is [29]

ξ2

`2s
≈ 0.1056(19) . (2.6)

3 Effective string theory

In the absence of additional symmetries confining strings are not expected to carry any
massless states on the worldsheet apart from the (D − 2) gapless translational Goldstone
bosons describing transverse oscillations of a string. Here D is the total number of
space-time dimensions. In particular, one expects to find a single massless mode on the
worldsheet of D = 3 Ising strings. Then the spectrum of low lying long string excitations is
strongly constrained by the non-linearly realized target space Poincaré symmetry and can
be calculated using the effective string theory (see, e.g., [30, 31] for a review). Effective
string theory provides a natural reference point to be compared with the actual string
spectrum, so let us briefly summarize properties of the effective string spectrum.

The most straightforward approach for calculating the effective string theory predictions
is based on the perturbative expansion which uses the ratio `s/R as a small parameter. As
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a consequence of the non-linearly realized Poincaré symmetry all terms in this expansion up
to (and including) O(1/R5) are universal. This means that those terms are insensitive to the
microscopic theory as soon as no additional massless degrees of freedom are present on the
worldsheet. This universality provides a powerful self-consistency check for lattice results.
On the other hand it makes it quite challenging to probe the underlying microscopic theory
by high precision measurements of the string ground state for which the `s/R expansion
has good convergence properties.

Furthermore, the `s/R expansion exhibits poor convergence for excited string states.
An efficient technique to calculate the effective string theory predictions for these states
is based on the Thermodynamic Bethe Ansatz [32, 33], which can also be reformulated as
an undressing method based on the T T̄ deformation [34]. In this approach one calculates
perturbatively the worldsheet S-matrix, and then makes use of a non-perturbative relation
between the S-matrix and the finite volume spectrum to predict the latter. This technique
is a close cousin of the familiar Lüscher method [35] combined with the TBA method [36] for
calculating the leading order winding corrections, which is possible due to an approximate
integrability of the effective string theory. The leading order TBA string spectrum is
given by

EGGRT(Nl, Nr) =
√

4π2(Nl −Nr)2

R2 + R2

`4s
+ 4π
`2s

(
Nl +Nr −

D − 2
12

)
, (3.1)

which is nothing but the Goddard-Goldstone-Rebbi-Thorne (GGRT) spectrum [37] of
a bosonic string in a winding sector. Here Nl and Nr are non-negative integers called
levels, which count the total left- and right-moving momenta along the string. The total
longitudinal momentum is given by

p = 2π(Nl −Nr)
R

. (3.2)

In what follows it will be instructive to compare the Ising string spectrum with the GGRT
one. Note that at D = 26 the GGRT spectum (3.1) coincides with the exact spectrum
of critical bosonic strings. At D 6= 3, 26 this spectrum is not compatible with the D-
dimensional Poincaré symmetry and should be considered as a leading order approximation
in the ls/R expansion. The D = 3 case is somewhat special, and an integrable theory
of a single massless boson with the spectrum given by (3.1) appears to be a consistent
candidate for the worldsheet theory of a long D = 3 string. Motivated by the lattice data,
the confining string of D = 3 Yang-Mills theory was conjectured to describe a single massless
bosons, however, the corresponding spectrum deviates from the D = 3 GGRT formula. As
we will see, for the Ising string the deviations are even more pronounced.

The GGRT states are completely characterized by the occupation numbers nl(k), nr(k),
where k is a positive integer labeling longitudinal momenta. These string excitations are
generated by creation operators ak and a−k.3 We will denote the corresponding state as

3For convenience we omit the †. Because the annihilation operators will not appear in this paper, it
should cause no confusion.
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|nl(k), nr(k)〉, which is a shorthand notation of |nl(k), nr(k); k = 1, 2, . . . 〉. Given such a
state its levels can be computed as

Nl =
∑
k

nl(k)k, Nr =
∑
k

nr(k)k . (3.3)

In what follows we will refer to effective string excitations as phonons. For instance, the
N = Ñ = 2 GGRT level corresponds to two degenerate states. One of these states is a
two-phonon excitation with

nl(2) = nr(2) = 1 ,

and another a four-phonon excitation with

nl(1) = nr(1) = 2 ,

where in both cases all other phonon occupation numbers vanish.
As discussed in the Introduction, the long string spectrum is invariant under longitudinal

and transverse parity transformations Pl and Pt. It is straightforward to determine the
corresponding transformation properties of the GGRT states. Namely, as far as the
transverse parity is concerned, its action depends only on the total number of excitations
and all GGRT state are eigenvalues of Pt,

Pt|nl(k), nr(k)〉 = (−1)
∑

k
(nl(k)+nr(k))|nl(k), nr(k)〉 . (3.4)

On the other hand, the longitudinal parity acts by exchanging the left- and right-moving
excitations,

Pl|nl(k), nr(k)〉 = |nr(k), nl(k)〉 . (3.5)

Finally, note that in our discussion of the GGRT spectrum we implicitly set the total
transverse momentum pt to zero. By restoring the pt dependence we obtain the full set of
the GGRT states |nl(k), nr(k), pt〉, with the energies given by the conventional relativistic
formula,

E(pt) =
√
p2
t + E(0)2 .

For convenience in table 1 we present the states created by phonon creation operators
in different sectors with q = 0, 1 and Nl +Nr ≤ 6. We will discuss more about the quantum
numbers that define the sectors in section 4.3.

4 Review of lattice techniques

4.1 Lattice gauge theory and Monte-Carlo simulations

A general lattice gauge theory (LGT) is described by a set of fields associated with the links
of a lattice. Lattice links may be labeled by a pair (n, µ), where n labels the lattice site,
and µ is a direction. Each lattice link is then mapped to an element Uµ(n) of the gauge
group. For a cubic lattice the action of a LGT is given by

S = β
∑
plaq
{1− Re(TrUplaq)} , (4.1)
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q = 0
Nl, Nr Pt, Pr GGRT States

Nl = Nr = 0 ++ |0〉
Nl = Nr = 1 ++ a1a−1|0〉

Nl = Nr = 2

++ a2a−2|0〉
++ a1a1a−1a−1|0〉
−+ (a2a−1a−1 + a1a1a−2)|0〉
−− (a2a−1a−1 − a1a1a−2)|0〉

Nl = Nr = 3

++ a3a−3|0〉
++ a2a1a−2a−1|0〉
++ a1a1a1a−1a−1a−1|0〉
++ (a1a1a1a−3 + a3a−1a−1a−1)|0〉
+− (a1a1a1a−3 − a3a−1a−1a−1)|0〉
−+ (a3a−2a−1 + a2a1a−3)|0〉
−− (a3a−2a−1 − a2a1a−3)|0〉
−+ (a2a1a−1a−1a−1 + a1a1a1a−2a−1)|0〉
−− (a2a1a−1a−1a−1 − a1a1a1a−2a−1)|0〉

q = 1
Nl, Nr Pt GGRT States

Nl = 1, Nr = 0 − a1|0〉

Nl = 2, Nr = 1
+ a2a−1|0〉
− a1a1a−1|0〉

Nl = 3, Nr = 2

+ a3a−2|0〉
+ a2a1a−1a−1|0〉
+ a1a1a1a−2|0〉
− a3a−1a−1|0〉
− a2a1a−2|0〉
− a1a1a1a−1a−1|0〉

Table 1. Table with the states of the lowest GGRT levels with q = 0, 1 and Nl +Nr ≤ 6.
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where the sum is over elementary squares (“plaquettes”) of the lattice which may be labeled
as (n, µ, ν) and

Uplaq(n, µ, ν) = Uµ(n) · Uν(n+ µ̂) · U †µ(n+ ν̂) · U †ν (n) ,

is an ordered product of gauge fields around a plaquette. In our case of Z2 gauge theory,
the link elements are simply ±1 and the action is simplified as:

S = −β
∑
plaq

Uplaq . (4.2)

The action (4.2) is gauge invariant and can be used to generate Monte-Carlo simula-
tions. Periodic lattices are used in this work. In principle, one can generate millions of
configurations using Markov Chain Monte-Carlo algorithms. After achieving thermalization,
we compute statistical quantities through importance sampling. Different algorithms may
have different thermalization speeds and different step sizes between configurations. In this
paper we only use the Metropolis algorithm. For each lattice system, we created 200000
configurations to perform measurements, with 25 sweeps between two measurements in
order to reduce auto-correlation.

Statistical quantities calculated in this work are correlation functions

〈φi(U)φj(U) · · · 〉 =
∫ ∏

dUφi(U)φj(U) · · · e−S , (4.3)

of gauge invariant operators φi(U)’s. Two-point correlators calculated at different times
can be used to extract the spectrum of different physical states such as glueballs and flux
tubes. The corresponding procedure is further discussed in section 4.2.

The lattice spacing a has units of length, but in numerical simulations we only deal
with numbers, so we have to choose units where everything is dimensionless. A common
choice is to use lattice units, which sets a = 1. This choice is implicitly assumed in the
action expression (4.1). This choice is convenient during the simulations, but the cost is that
the continuum limit becomes obscure. So it is also common to express physical observables
using the units defined by a certain characteristic energy scale of interest. In this work we
are mostly interested in confining strings, so we will use string units which set the string
tension to one, `s = 1.

Independently of the units, the continuum limit is achieved when

a2

`2s
→ 0 . (4.4)

Of course, in practice this is impossible to achieve on a finite lattice. At the fixed lattice size
the quality of the continuum limit is controlled by the difference between the Z2 coupling
constant β and its critical value βc = 0.7614133(22). In order to stay in the confined phase
we need to keep β < βc. Note that we cannot take the difference β − βc too small, because
otherwise one should use very large lattices in order to make sure that the string width
does not exceed the size of the lattice.
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4.2 Extracting spectra

In this work we use the framework of [20, 22, 38] to measure the spectrum. Namely we
construct a set of operators φi in a sector characterized by certain quantum numbers and
acting on constant time slices.4 Then a two-point correlator of two operators separated by
nt lattice units in the time direction, which corresponds to the physical time t = ant, can
be written in the following form

Cij(t) = 〈φ†i (t)φj(0)〉 =
∑
k

〈v|φ†ie
−Ht|k〉〈k|φj |v〉 =

∑
k

cikc
∗
kje
−Ekt, (4.5)

where the sum goes over a complete set |k〉 of energy eigenstates with the chosen quantum
numbers, |v〉 is the absolute vacuum state and cik’s are the overlap coefficients

cik = 〈v|φ†i |k〉 .

As the time separation increases, higher energy contributions decay faster and only
lowest energy states survive. It can be shown [39] that at large times the eigenvalues λa(t)
of the matrix C−1(0)C(t) are given by the spectrum,

λa(t) ≈ e−tEa , t→∞ , (4.6)

if the basis of operators is large enough. To determine the energies in practice one
first constructs the approximate eigenstates Φi by diagonalizing the correlation matrix
C−1(0)C(t = a) at early times, and then extracts the corresponding energy eigenvalues from
the exponential falloff of the diagonal correlation functions 〈Φ†i (t)Φi(0)〉. To illustrate this
procedure, let us consider the simplest case of a single operator, which allows to determine
the ground state energy in the corresponding sector. In this case the diagonalization is
trivial, so one simply studies the correlator

〈φ†(t)φ(0)〉 =
∑
n

|〈v|φ|n〉|2e−Ent →
t→∞

|〈v|φ|0〉|2e−E0t. (4.7)

To analyze its behavior it is convenient to define an effective mass

ameff(t) = − ln
(
〈φ†(t)φ(0)〉
〈φ†(t− a)φ(0)〉

)
. (4.8)

In the limit of an infinite statistics it decreases monotonically over time and asymptotes to
the actual ground state energy in the φ sector,

ameff(t) →
t→∞

aE0. (4.9)

In practice one plots the effective mass as a function of time and extracts E0 from the
position of a plateau, which is followed by statistical fluctuations. For the ground state, the
effective mass sets an upper bound on the actual energy and it is possible to observe the
plateau up to rather late times.

4Of course, we work on an Euclidean lattice, so a choice of the “time” direction is a matter of convention.
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A general strategy for measuring energies of excited states is similar, but the practicali-
ties become more and more challenging for highly excited states. Indeed, statistical noise in
the measured effective mass is an unavoidable feature of the Monte-Carlo simulations using
the importance sampling to compute correlators. The amplitude of the noise stays constant
in time, while correlators exhibit an exponential decay. Inevitably, at large enough time tn
statistical noise becomes larger than the signal and the effective mass needs to be measured
before this happens. Correlators corresponding to heavier excited states decay faster, so
that the critical time tn is shorter for them.

Clearly, this implies that one needs to achieve a maximal possible overlap of the
approximate eigenstates Φi with the true energy eigenstates, so that the plateau can be
measured as early as possible. On the other hand, given that we perform a diagonalization
in an artificially truncated finite dimensional Hilbert space, every approximate eigenstate
necessarily has an admixture of heavier states which needs to decay before the plateau can
be observed. This problem becomes more and more severe for highly excited states.

To overcome this problem one needs to maximize the projection of an approximate
eigenstate on the true energy eigenstates. This projection can be estimated by the gap
between the value of the effective mass at t = a and the plateau. Typically, for us this
projection drops below ∼ 0.5 around level Nl, Nr = 3, so we do not expect the corresponding
energy determinations to be reliable.

There are several ways to improve a quality of the plateau. First, one may try to
minimize the measured energies in lattice units. This can be achieved by choosing the
values of the parameters such that the string tension is smaller in the lattice units. In
the Ising model this can be achieved by picking the value of β close to the critical point.
However, other issues arise as one approaches the critical point. First, as one does this, one
needs to take a larger lattice to model a system of the same physical size (i.e., as measured
in string units). Given that we work on a three-dimensional lattice, the simulation time
grows as a cube of the lattice size. Also, close to the critical point, correlations between
gauge field configurations created by the Metropolis algorithm become higher. To overcome
this one needs to increase the sampling interval, which also results in a longer simulation
time. All in all, a limited computing power prevents one from approaching the critical point
too closely.

The second way to reduce statistical errors is by creating a larger size of samples. This
is also limited by the computing resource.

Finally, one can improve the quality of the operators, so that the overlaps of the
approximate eigenstates to the exact ones are closer to unity. This can be achieved both by
starting with a larger set of operators, and also by suppressing the overlap of the operators
with the highly energetic microscopic states using blocking and smearing techniques. We
will discuss this more in section 4.3.

4.3 Constructing flux tube operators

In this paper we work in the confining phase of the Z2 gauge theory. Equivalently, this is
the phase with an unbroken center symmetry. Recall that given a gauge theory compactified
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on a circle, the center symmetry may be defined5 by making use of the “twisted gauge
transformation” generated by gauge functions g satisfying

g(R) = Λg(0) , (4.10)

where Λ is a center element of the gauge group, and R is the circumference of the circle. The
Yang-Mills action functional is invariant under such a transformation. However, given that
the gauge function (4.10) is not periodic, this transformation defines a global (rather than a
gauge) symmetry of the theory. On the other hand, any two transformations satisfying (4.10)
with the same Λ can be related to each other by a conventional gauge transformations.
Hence, after dividing out over the conventional gauge transformations, one obtains a global
symmetry transformation which is isomorphic to the center subgroup of the gauge group.
For SU(N) gauge theory it is the ZN center symmetry, and Λ = e

2πik
N . For the Z2 gauge

theory the center symmetry is Z2 itself.
This definition makes it clear that an arbitrary Wilson loop

WC = Tr
[
P exp(i

∮
C
Aµ(x)dxµ)

]
, (4.11)

corresponding to the contour C with a trivial winding along the chosen compact direction is
neutral under the center symmetry. Indeed, such a loop necessarily crosses any transverse
slice an equal number of times from both sides and all factors of Λ cancel out. On the other
hand, a Polyakov loop is wound around the periodic dimension, so it crosses any transverse
slice in one direction one time more than in the opposite direction. As a result, it is charged
under the center symmetry transformation. This also shows that its vacuum expectation
value(vev) plays a role of the order parameter for the center symmetry. In the confining
phase Polyakov loops have zero vev, and a long string sector is generated by acting on the
vacuum by (an arbitrarily deformed) Polyakov loop. Of course, in addition one may add
also any number of topologically trivial Wilson loops creating additional glueball states.
The center symmetry ensures that this sector does not mix with the topologically trivial
one, which is generated by the glueball operators only.

Before describing the set of operators which we used to probe long strings, let us describe
conserved quantum numbers in these sector. First, there is a longitudinal momentum p

along the flux tube. Flux tubes are wound around a circle of a circumference R, so the
longitudinal momentum is quantized

p = 2πq
R

,

with q being an integer. The ground state is translationally invariant, which corresponds
to q = 0.

In addition, there are two parity transformations Pt and Pl, which we already introduced
in our discussion of the GGRT spectrum in section 3. It is straightforward to describe

5A modern definition of the center symmetry as a 1-form symmetry does not require to consider a
compactification [25] (see also [40] for a more recent work). A traditional and less general discussion
presented here is enough for our purposes.
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how they act on the gauge theory operators, without any reference to effective strings. Let
us consider a long string winding around the x direction. Then the transverse parity is a
mirror transformation acting on the transverse y direction,

(x, y) Pt−→ (x,−y) .

Similarly, the longitudinal parity Pl acts as a mirror transformation of the longitudinal
x-direction,

(x, y) Pl−→ (−x, y) .

Note that in general the longitudinal parity does not commute with the longitudinal
momentum,

Pl pPl = −p ,

so that only q = 0 states may be simultaneous eigenstates of p and Pl.
Finally, long string states may also carry a non-vanishing transverse momentum pt. It

does not convey any useful information about the worldsheet dynamics and we will always
set it to zero by averaging over transverse positions of all operators.

Let us describe now the set of operators, which we use to probe the long string sector.
The simplest operator charged under the center symmetry associated to the compact x
direction is the straight Polyakov loop

φP (y, t) =
R/a∏
n=1

Ux(x+ na, y, t) , (4.12)

where R = La is the string length. In principle, this operator can be used to measure the
ground state energy of a long flux tube. However, its overlap with the ground state of the
flux tube is quite poor. Indeed, the Polyakov loop (4.12) creates a string with a width of
order the lattice spacing a. On the other hand, a physical string close to its ground state is
expected to have width of order the characteristic string scale `s.

The overlap can be improved by applying a combination of smearing and blocking
procedures [41]. One starts with the usual link field, which corresponds to blocking level
Nbl = 1. Then one replaces an original link with a sign of a weighted average over the
link itself and two staples attached to it (see figure 1). In our simulations we chose the
averaging weight to be 0.75.6 Finally, one constructs a twice longer link by multiplying two
consecutive smeared links. The result is what one calls a level 2 blocked link. To construct
the links at Nbl-th blocking level one applies the same procedure using the blocking level
Nbl − 1 links as an input.

Using the blocked links we can now create a basis of Polyakov loop operators of different
shapes. In figure 3 we present the shapes used in our simulation. We try to use the operators
that are as simple as possible, meanwhile including enough operators that break those two
parities, especially transverse parity Pt, so as to have decent overlaps onto all the sectors

6The weight will in general affect the overlaps onto low-lying states. But the difference is checked to be
small for different weights in the U(1) calculation [19]. Because we have already got good overlaps, we don’t
try to optimize this parameter in this work.
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Figure 1. Increasing the blocking level of a link by one.

For an Abelian gauge group

Figure 2. For an Abelian gauge group there is no sharp distinction between string excitations and
additional glueballs.

we are interested in. Note that some of these operators look like creating a flux tube and an
additional glueball rather than just a flux tube excitation. Equivalently, using the SU(N)
language, they look like multi trace operators. However, for the Z2 theory there is no sharp
distinction between single trace and multi trace operators, because any operator can be
formally presented in the single trace form by connecting different components by going
back and forward along some path between them (see figure 2), given the Abelian nature.

Finally, to obtain operators with a definite set of quantum numbers one performs
averaging over the action of the corresponding symmetry transformation. For example, in
order to construct an operator with a definite longitudinal momentum p, one sums over all
longitudinal translations with a phase

φ(p) =
L∑
k=1

φ(x+ ak)eipak . (4.13)

In the same way one constrains pt = 0 by summing over all the translations in the transverse
y direction without a phase.

Similarly, one may obtain operators with definite value of transverse and longitudinal
parities (Pt, Pl). For example, as we discussed, at p = 0 both parities can be assigned, so
we get four different sectors (++), (+−), (−+) and (−−). To construct the corresponding
operators one starts with a Wilson line operator UC corresponding to a certain path C, and
defines the following eigenstate combination

ŨC = (UC ± UPlC)± (UPtC ± UPtPlC) . (4.14)

Here the signs inside the brackets correspond to the eigenvalue of Pl, and the sign in the
middle corresponds to the eigenvalue of Pt.
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Figure 3. The set of operators used in our simulation.

5 Results

Let us now present results of our simulations. In this work we performed Z2 lattice gauge
theory simulations at β = 0.756321. This value corresponds to the rough and confining
phase. It is sufficiently close to the critical value βc = 0.7614133(22) [26], to allow for
sufficiently long and clear plateaux in the effective mass. Namely, as follows from the results
presented later, for this value of β the correlation length ξ (which is set by the inverse mass
of the lightest glueball ξ = m−1

G ) is equal to

ξ = 4.631(8)a .

Unless specified otherwise, the results presented are obtained on lattices of a size

l⊥ = lt = 70a ,

in the transverse and time directions, and the lattice size along the string is varied in the
range

R ∈ [20a, 80a] ,

which corresponds to the range

R ∈ [1.38`s, 5.53`s] ,

in string units, where the string length is obtained by fitting the absolute ground state energy
of the flux tube to the GGRT formula. Recall that the finite temperature deconfinement
transition corresponds to R ∼ 0.82`s. In order to estimate finite volume corrections and for
some other checks we also used lattices with other transverse sizes in the range from 55a to
300a. These values of lattice parameters and the corresponding basic physical observables
are summarized in table 2.

Let us now present results of simulations with these parameters. We start with
the absolute flux tube ground state, and continue to excited states in different sectors.
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β βc R/a Rc/a a/`s amG

0.756321 0.7614133(22) [20,80] ∼ 11.8 0.0691(1) 0.2159(4)

Table 2. Basic parameters of our simulation: the value of the coupling and its critical value,
the range of the string circumference and its critical value, the string tension and the lightest
glueball mass.

Comparing the result to the GGRT spectrum we find that the most pronounced qualitative
difference is the presence of an extra state in the parity (++) sector at q = 0. This state
can naturally be interpreted as a massive scalar resonance on the string worldsheet. We
identify the corresponding state also in the q = 1 sector. Later we present results of an
additional dedicated analysis which indicates that this resonance is actually caused by the
bulk glueball rather than by a genuine worldsheet state.

5.1 The absolute ground state and the string tension

The flux tube ground state is translationally invariant, has q = 0, and belongs to the
(++) sector. Understandably, of all the string states this one is the most straightforward
to identify. As illustrated in figure 4, the corresponding effective mass exhibits a well
pronounced plateau even for the longest string circumference R = 80a considered in our
simulations, which allows for a high precision determination of the ground state energy as a
function of R.

In figure 5 we present the ground state energy as a function of circumference R. The
solid line shows the GGRT ground state energy. These results are plotted in string units
with the string length parameter `s determined by fitting the data to the GGRT ground
state energy. For the `s extraction we used the data in the range R ∈ [25a, 80a], where the
quality of the GGRT fit is the best. The resulting value of `s in lattice units is presented
in table 2. We observe that the GGRT approximation reproduces very well the ground
state energy of the Ising string all the way down to R ∼ 1.4`s. On the other hand, the
measured ground state energy significantly deviates from the GGRT formula at shorter
values of R. In particular, the GGRT ground state energy vanishes at R ≈ 1.02`s, while
the Ising ground state energy stays positive (and approximately linear) down to a smaller
critical value given by (2.5).

To quantify the agreement of the measured ground state energy with the GGRT
approximation, we also fitted the observed energies at the short string regime using the
following ansatz

E0(R) = EGGRT(R) + cγ
`s

(
`s
R

)γ
, (5.1)

for different values of γ and using the string length `s and the coefficient cγ as the fitting
parameters. To interpret the results it is instructive to compare the obtained values of cγ
with the corresponding coefficients of the `s/R expansion of the GGRT ground state energy
itself,

E0(R) = R

`2s
− π

6
1
R
− π2

72
`2s
R3 −

π3

432
`4s
R5 +O(`6s) , (5.2)
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Figure 4. The effective mass computed as in formula (4.8) as a function of time for the absolute
ground states at string circumference R/a = 20, 40, 60, 80, represented as blue, yellow, green and
red dots. The horizontal solid lines are the resulting fitted values of the state’s energies. The shaded
bands represent the corresponding 1σ uncertainty intervals.
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Figure 5. The absolute ground state energy at different string lengths in string units. The solid
line is the GGRT approximation for the ground state energy.

where we listed all the universal terms in the `s/R expansion. For γ = 1, the best fit value
of c1 is obtained by fitting within [1.8ls, 3.5ls] with χ2 = 1.16:

c1 ≈ −0.009(18)� π

6 ≈ 0.52 .

The correction c1 we obtain is negligible compared to the value of the corresponding term
in (5.2), so we conclude that our results provide a quite precise determination of the first
universal term in the `s/R expansion (also known as the Lüscher term). On the other hand
for γ = 3 we obtain by fitting within [1.4ls, 2.8ls]:

c3 ≈ 0.074(28) . π2

72 ≈ 0.14 ,

so that our results are consistent with the 1/R3 universal term, but cannot be considered
as a high precision test of the universality at this order.

As an additional crosscheck of our simulation we also determined the mass of the
lightest glueball mG. When expressed in string units it reads

mG ≈ 3.124(10)`−1
s , (5.3)

which agrees well with earlier measurements (cf. (2.6)).
It is instructive to take a look at the ground state energy for even shorter strings:

R . 1.2`s, as also shown in figure 5. Here one observes a large deviation from the GGRT
formula. Clearly in this regime the `s/R expansion does not converge, so that it cannot
be used to measure the perturbative non-universal corrections to the GGRT formula. It
is worth noting that these data do seem to extrapolate towards the deconfining point
and exhibit scaling behavior, which indicates that it is a second order phase transition.
According to the Svetitsky-Yaffe conjecture [42], this deconfining transition is described by
the 2d Ising universality class, of which the scaling behavior is linear

E0(R) R→Rc∝ (R−Rc) . (5.4)
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(ly/a)× (lt/a) lx/a aE; 0+

70× 70

25 0.1978(28) 0.2531(91) 0.3519(75)*
30 0.2075(30) 0.2992(87) 0.3726(110)*
35 0.2163(16) 0.3635(51) 0.4528(117)*
40 0.2170(15) 0.3804(81) 0.5097(95)
45 0.2144(17) 0.3896(54) 0.5329(100)
47 0.2118(14) 0.3865(96) 0.5319(115)
50 0.2159(20) 0.3742(62) 0.5019(166)
52 0.2131(22) 0.3920(52) 0.5237(93)
54 0.2182(12) 0.3899(89) 0.5141(93)
55 0.2141(20) 0.3990(40) 0.5326(108)
56 0.2169(18) 0.3953(44) 0.5462(59)
58 0.2152(22) 0.3849(66) 0.4947(158)
60 0.2178(20) 0.3998(52) 0.5080(154)
65 0.2138(20) 0.3906(64) 0.5153(182)
70 0.2168(11) 0.3984(61) 0.5497(67)
75 0.2159(17) 0.4025(44) 0.5541(66)
80 0.2175(17) 0.3886(73) 0.5216(144)

Fitted masses 0.2159(4) 0.3937(16) 0.5359(27)

Table 3. The spectrum of Z2 glueballs in the 0+ sector at β = 0.756321 for different lattice sizes.

From our measurements, it is plausible to be linear. But to really determine the exponent,
we need results of higher precision and more data points. One difficulty around the critical
point is that the ground state energy goes to zero, so that a larger lattice is needed to
perform its accurate determination.

5.2 Glueball states

As a cross-check for our results, we also calculated the low-lying spectrum of Z2 glueballs
in the 0+ sector, which is summarized in table 3. Here we can observe the finite volume
corrections for low-lying glueball states. For example, for the lightest glueball, the finite
volume correction becomes observable for R ≤ 30a. One may also wonder whether we can
observe the state corresponding to two parallel flux tubes, which also has the same quantum
numbers. It has the mass of two ground state flux tubes. We do not observe such a state
here, which indicates that the local operators we use for glueball states have poor overlap
on these states. Comparing our results with that in [29], our measurements have higher
precision, and they agree well. The largest deviation is found for the second excited state,
for which our mass is somewhat lower, but still within a 2σ interval.

5.3 Excited states

Let us now present our results for the excited state’s energies of the Ising string. We
start with zero momentum states, q = 0. As discussed before, these states split into four
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subsectors with different transverse and longitudinal parities,

(Pt, Pl) = (++), (+−), (−+), (−−) . (5.5)

In figure 6 we presented the energy differences between the first three excited states in the
(++) sector and the ground state energy. As we will see later, restricting to these three
states somewhat oversimplifies the overall picture. Nevertheless, it provides a good strating
point for interpreting our results. The numerical values of the corresponding energies (and
also of higher excited states) can be found in table 4 in the appendix. In addition to two
levels, which are naturally associated with the (1, 1) and (2, 2) GGRT states,7 we observe
on this plot an additional level, which is not associated with any of the GGRT states. Given
that the energy gap between this exotic level and the absolute ground state is approximately
constant over the large range of R, it is natural to associate this state with a massive (++)
resonance on a string worldsheet. The resonance mass can be estimated by fitting the
energy gap to a constant, which results in

m`s = 3.825(50) , (5.6)

where we performed the fit at the intermediate values of string circumference, R/`s ∈
[2.4, 4.2] to reduce possible effects related to level crossing and winding corrections. The
latter can be incorporated by applying the TBA technique (cf. [33]); we will present results
of this analysis in a separate publication.

There are two subtleties worth mentioning here. First, the resonance exhibits two level
crossings with the GGRT states in the range of R covered by our data. Namely, it crosses
the (1, 1) level at R ∼ 2`s, and the (2, 2) level at R ∼ 5`s. In the GGRT spectrum the
(2, 2) level corresponds to two degenerate states — a two-phonon and a four-phonon states.
By inspecting table 4 one indeed observes two nearly degenerate states close to the (2, 2)
level at R . 4`s. However, one of these states disappears as one approaches the second
level crossing at R & 4`s. The explanation for this is not clear at this point. As follows
from the data presented in table 4, the energy of the second (2, 2) GGRT state starts to
increase away from the GGRT spectrum at around R & 3.8`s. As we will see later the
(++) resonance is actually a glueball state mixed with the flux tube. It is possible that
these large deviations from the GGRT formula appear above the glueball threshold, due to
interactions between the unbound glueball and the flux tube.

The second subtlety, which is likely related to the first one, is that the energy gap (5.6)
is larger than the mass of the lightest glueball (5.3) in the infinite volume theory. This
implies that (5.6) is not a strictly localized worldsheet state, but rather a metastable bound
state between a flux tube and a glueball. In particular, in addition to decaying into a
two-phonon flux tube excitation it may also decay into a flux tube and a glueball state.
Note that the Ising model does not have a parameter which would suppress mixing between
genuine flux tube excitations and flux tube states with additional glueballs. This is different
from the Yang-Mills case, where such a mixing is suppressed in the ’t Hooft large-N limit.
As a result, one may doubt whether the state (5.6) is really due to intrinsic worldsheet

7In the following, for convenience we denote the GGRT levels of states in the format (Nl, Nr).
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Figure 6. Energy differences with the ground state for q = 0 excited states in the (++) parity
sector as a function of string circumference at different string lengths. Blue curves are the (1, 1) and
(2, 2) GGRT levels. The red horizontal line is the fitted resonance mass.

dynamics. Perhaps, this state should be considered instead as an admixture of the flux tube
and an unbound bulk glueball. On the other hand, our basis of operators was designed to
have a good overlap with states localized in the vicinity of the flux tube, so a priori one
could expect that it is not sensitive to the states with additional unbound glueballs.

We performed several checks to clarify the proper interpretation of this state. First, if
the exotic state (5.6) were due to an additional unbound glueball, then one would expect
to find a state with similar properties also in the (−+) sector. Indeed, in infinite volume
adding a glueball to a flux tube ground state leads to a continuum of states labeled by
the asymptotic transverse momentum. In a finite volume this continuum turns into a
“discretuum”. In the absence of interactions between the flux tube and the glueball this
discretuum would correspond to the ground state (++) and a series of degenerate doublets
with (++) and (−+) parities. However, the interaction with the flux tube breaks the
degeneracy, so one obtains a series of alternating (++) and (−+) eigenstates.

Furthermore, energies of all these states, possibly apart from the lowest one, have a
rather strong dependence on the transverse size l⊥, due to the momentum quantization.
This dependence may be used to distinguish between strongly bound flux tube excitations
and unbound states from the discretuum.

To probe these states, one may enlarge the set of operators in figure 3 by adding
operators which are expected to have a good overlap with unbound flux tube/glueball states,
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to see whether additional states indeed appear. We will describe the results of this analysis
in section 5.5. As we will see there, our overall conclusion is that the state (5.6) should
indeed be interpreted as a state with an additional unbound glueball.

Let us turn now to excited states in other sectors. For the q = 0 (+−) sector the
effective string theory predicts that the lowest energy state appears at the (3, 3) GGRT
level and corresponds to a Pl odd linear combination of nl(3) = 1, nr(1) = 3 and nr(3) = 1,
nl(1) = 3 states. Indeed, our analysis does not reveal any low lying states in this sector.
We provide the measured energies of the lightest (+−) state in table 5 in the appendix.
At R/`s & 4 these energies are in between the (3, 3) and (4, 4) GGRT levels and become
significantly heavier at shorter R. Given how heavy these states are we expect that their
energy determinations are likely to be subject to significant systematic uncertainties. The
only robust conclusion one can draw from these results at the moment is that no anomalous
light states appear in this sector.

Let us discuss now Pt odd states, which are the states with an odd number of phonons.
For both (−+) and (−−) sectors the lowest GGRT states appear at the (2, 2) level, and
they correspond to even and odd linear combinations of nl(2) = 1, nr(1) = 2 and nr(2) = 1,
nl(1) = 2 states. We plot the measured energies of the lightest states in these sectors in
figure 7, and present the numerical values of these energies and those of the heavier states
in tables 6, 7 in the appendix. We observe that at R & 4`s these two states are nearly
degenerate, as expected for the GGRT spectrum. In this range of R their energies are quite
close to the expected (2, 2) GGRT value, with a minor systematic disagreement. It is most
likely due to an overestimate of these rather heavy energies due to an admixture of higher
excited states.

At R . 4`s the two states are split, and this splitting becomes very large at R . 3`s,
mostly due to a rather dramatic increase in the energy of the (−−) state. Interestingly, the
energy of the lightest (+−) states discussed earlier exhibits a similar feature in the same
range of R. At the moment it is hard to tell what is the cause of this effect. Note that, as
discussed in a similar context in [34] for the SU(N) data from [21], the splitting between
three-phonon (−+) and (−−) cannot be explained by a correction to the two-phonon phase
shift. Instead, it is indicative of a strong inelastic multi-phonon scattering. Interestingly,
this splitting appears to be much more dramatic in the Ising case as compared to the SU(N)
flux tubes.

Finally, let us discuss states with nonzero longitudinal momentum q = 1, which are
plotted in figure 8 and tabulated in tables 8, 9. The ground state in this sector, which is
parity odd, agrees exceptionally well with the GGRT (1, 0) prediction. This is expected,
given that the (1, 0) GGRT state corresponds to adding an essentially free (modulo winding
corrections) phonon to the ground state of a flux tube. The first excited parity odd state
also agrees very well with the (2, 1) GGRT level.

To interpret the two lowest energy parity even q = 1 states it is instructive to compare
their energies to the (2, 1) GGRT level and also to the free approximation for the energy of
the boosted resonance state,

∆E =
√
m2 + p2 , (5.7)
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Figure 7. Energy differences with the ground state for q = 0 excited states in the (−+) (blue dots)
and (−−) (brown dots) parity sectors as a function of string circumference at different string lengths.
The blue curve is the energy of the (2, 2) GGRT level.

where p = 2π
R . We observe from figure 8 that the two low lying states naturally correspond

to a level crossing between the (2, 1) GGRT level and a boosted resonance state.
To illustrate how statistical fluctuations influence our results, especially for higher level

states, it is instructive to take a look at the effective mass plateaux behaviour for different
states and at the corresponding effective mass fits. In figure 4 we plotted the effective
mass as a function of time separation for the absolute ground states at different string
lengths. As expected, we see that as the string length increases, which corresponds to the
heavier ground state energy, statistical fluctuations become larger and the uncertainty in
the effective mass determination grows. A generic behavior observed for each of the states is
that the effective mass exhibits a drop at early times and then stabilizes on a plateau. The
rate of the initial drop characterizes the quality of the overlap of our operator basis onto
the corresponding state. Statistical fluctuations increase at larger with time and dominate
the measurement at late times.

All these features are even more pronounced for excited states as illustrated in figure 9.
Here we chose the string length such that the non-universal corrections to the GGRT
spectrum is small, and at the same time the resonant state is also well pronounced. As
compared to the ground state we observe that statistical fluctuations start to dominate the
plateau at earlier times. At the energy of around 0.67a−1, which corresponds to the second
excited state in the parity (−+) sector at R = 60a, this effect reaches the point when the
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Figure 8. Energy differences with the ground state for q = 1 excited states in the (+) (blue dots)
and (−) (brown dots) parity sectors as a function of string circumference at different string lengths.
Blue curves show energies of the (1, 0), (2, 1) and (3, 2) GGRT levels. A red curve shows an estimate
for the resonance state using the resonance mass (5.6).

position of the plateau is hard to determine. Also, because statistical fluctuations here
dominate so early, they are likely to prevent us from observing the point of the plateau
stabilization, leading to a possible overestimation of the energy. Consequently, a reliable
spectrum calculation in this energy range requires a larger sample size.

5.4 Finite volume corrections

Let us discuss the finite size dependence of the presented results. To be more precise, in our
simulation we have a finite size lattice system with periodic boundary conditions: R× l⊥× lt.
The main goal of the simulation is to measure the dependence of string energy levels on the
longitudinal size R. Instead, in this section we will discuss the sensitivity of the presented
results to l⊥ and lt. Our goal is twofold. On the one hand the (in)sensitivity of the measured
string energy levels to l⊥ and lt provide a consistency check for the extrapolation of the
measured energy levels to infinite volume. On the other hand, as was already mentioned,
the scattering states containing additional glueball(s) states are expected to exhibit a strong
dependence on l⊥, which can be used to probe the nature of a massive resonance state
observed in the (++) sector.

In more detail, the spatial finite volume dependence of a single particle or string state
with zero momentum in the transverse direction is related to winding corrections associated
to (virtual) particles propagating around the spatial circle. For massive states, which is
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Figure 9. The effective mass computed as in formula (4.8) as a function of time, for the first,
second and third excited states in the q = 0 (++) sector and compactification length R = 40a,
represented as blue, yellow, green dots, and for the ground state, first and second excited states in
the q = 0 (−+) sector and compactification length R = 60a, represented as blue, yellow and green
“∗”. The horizontal solid lines in dark colors are the fitted value of the mass of the corresponding
states. The shaded bands in light colors represents ±1 standard deviations.
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always the case for us,8 these corrections are of order O(e−caml⊥), where the constant c
depends on the theory [43]. These corrections are exponentially suppressed, so as we take
the transverse size to be moderately large, it will disappear very quickly.

The story is similar for corrections associated to the finite size of the temporal circle.
To partially account for these corrections we used exponents associated with both directions
in time to fit the two-point correlators instead of a single exponential as written in (4.7).
This still neglects all the time evolutions that wind around the time circle for more than
one round, but these effects are further exponentially suppressed.

Clearly, winding corrections are most prominent for the lightest states. In particular,
l⊥ and lt need to be sufficiently large for a high precision determination of the low lying
string states at small R.

For multiparticle scattering states there are larger finite volume corrections that go
like O(1/(ml⊥)). These are associated with finite momenta of individual particles in a
multiparticle state. In particular, the infinite volume energy spectrum of multiparticle
states is continuous. Instead, in a finite spatial volume one expects to find a discretuum of
states which becomes more and more dense as the lattice size increases.

To probe the size of finite volume effects in our results we performed simulations at
different lattices and compare the corresponding energy spectra. We do not find a significant
dependence of the measured flux tube spectrum on the temporal lattice size, as follows
from the data summarized in appendix A. These data describe low-lying flux tube spectra
measured on 40× 55× 55 and 40× 55× 70 lattices. The difference is well within error bars.
So in what follows we fix lt = 70a, where the time windings can be safely ignored.

Let us discuss now a set of plots illustrating how energies of low-lying states depend
on the transverse size. We do not discuss states in the (+−) sector because their energy
determinations are not very reliable due to large statistical uncertainties. In this section we
fix the size of the longitudinal direction to R = 40a = 2.77ls.

The transverse size dependence of the (++) states is illustrated in figure 10. Blue,
yellow, green and red dots are natural to identify with the GGRT states. They match the
corresponding GGRT energies fairly well, and do not exhibit strong finite volume dependence.
This is also true for the resonance state, which is represented by brown dots. However,
there is an extra state represented by purple dots, which exhibits a very pronounced volume
dependence at smaller values of l⊥. As follows from our earlier discussion, this volume
dependence suggests that this state belongs to a discretuum of scattering states describing
a string with an additional glueball with non-vanishing relative momentum. This suggests
that also the resonance state should be zero relative momentum at the bottom of the
string-glueball discretuum rather than a genuine string excitation. In the next section we
present further evidence supporting this conclusion.

The transverse size dependence of the (−+) states is illustrated in figure 11. These
states are quite a bit heavier than the lightest ones observed in the (++) sector and it is
harder to interpret what happens here. It looks natural to associate blue and yellow dots
with the proper string excitations. Their agreement with the GGRT predictions is not so

8Note that what matters here is the mass of a string as a whole as it move in the transverse direction.
This should not be confused with the mass of longitudinal string excitations, which is of course zero for the
Goldstone modes.
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Figure 10. Energies in the q = 0 (++) sector at R = 40a = 2.76ls as a function of the inverse
transverse size. Horizontal lines of different colors represent the GGRT spectrum starting with
N = Ñ = 0. The brown dashed line represents the resonance mass.

good, and the lightest (blue) state appears to exhibit some volume dependence at the small
values of the transverse size l⊥

√
σ . 4.5. In any case, one also observes two additional

states (green and red) which exhibit a very pronounced volume dependence. As in the (++)
case this is suggestive of the scattering states interpretation.

The transverse size dependence of (−−) states is presented in figure 12. There are no
recognizable scattering states among the low-lying states with E`s . 10. This is expected.
Indeed to construct a Pl = − scattering states one can either take a Pl = − flux tube or
glueball state, or consider a state where both flux tube and a glueball carry a non-vanishing
longitudinal momentum. In all cases the resulting state is expected to be quite heavy.

For completeness we also presented the transverse volume dependence of q = 1 states
in figures 13, 14. The corresponding scattering states can be obtained by boosting a
glueball in the q = 0 states, so these states can be used as consistency check. We expect
to find scattering states for both Pt = + and Pt = − sectors among q = 1 states. These
states with strong finite volume dependence are indeed present and represented by purple
dots in figure 13 and by red dots in figure 14. The green dots in figure 13 represent a
resonance state, which can be plausibly reinterpreted as string-glueball discretuum with
zero relative momentum.

We conclude that for the coupling β = 0.756321, which we use, a lattice with lt = l⊥ =
70a is large enough to ignore finite size effects for the GGRT states at the current level of
precision at values of R which is not too close to the deconfining value Rc = 0.82`s.
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Figure 11. Energies in the q = 0 (−+) sector at R = 40a = 2.76ls as a function of the inverse
transverse size. Horizontal lines of different colors represent the GGRT spectrum starting with N =
Ñ = 2.

We do see strong finite volume corrections associated both with lt and l⊥ dependence as
we approach the deconfinement transition Rc = 0.82`s. A much larger lattice size is needed
to perform accurate measurements in the vicinity of that point. Also, we see evidence for
the existence of the flux tube-glueball scattering states at large transverse size for both
values of the transverse parity Pt. This indicates that our set of operators have a sizable
overlap with these states and calls for a more rigorous look on the nature of the massive
state in the (++) sector. This will be the goal of the next section.

5.5 Including multitrace operators

A sizable mixing between flux tube and scattering states is an interesting peculiarity of
the Ising model, not present in the non-Abelian Yang-Mills theory. In the Yang-Mills case
the scattering states are created by multitrace operators whose overlap on the flux tube
states produced by single trace operators is suppressed even at moderately large number of
colors N . As discussed before, in the Ising case there is no distinction between multitrace
and single trace operators. We just saw, this leads to a substantial overlap of our operator
basis (which was intended to create pure flux tube states) on the scattering states. On the
other hand, this basis is definitely not very well suited for an accurate identification and
separation of the scattering states, because one still expects that the corresponding overlap
is somewhat suppressed as a consequence of locality. Hence, it should be instructive to
enlarge the operator basis by introducing additional operators with a good overlap on the
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Figure 12. Energies in the q = 0 (−−) sector at R = 40a = 2.76ls as a function of inverse transverse
size. Horizontal lines of different colors represent the GGRT spectrum starting with N = Ñ = 2.

scattering states. This will allow us to better probe the nature of the (++) resonance and
to confirm its interpretation as a zero momentum scattering state. The additional (pseudo)
multi trace operators can be constructed by considering a product of (smeared and blocked)
plaquette operators φG producing glueball states with the straight Polyakov loop (4.12),

φscattering =
l⊥/a∑
n,m=1

φP (y + na)φG(y +ma)e
2πiq⊥(n−m)a

l⊥ . (5.8)

The double sum in (5.8) is needed to project on a state with a vanishing total transverse
momentum, which is also characterized by a relative momentum q⊥.9 We include such
operators with q⊥ = 0, 1, 2, 3, 4 and Pt = ± (q⊥ = 0 state only appears in the Pt = + sector).
On the other hand, for these operators Pl = + because this holds for the φG and φP that
we use, and no relative longitudinal momentum is introduced.

We now repeat the analysis of the transverse volume dependence of the spectrum using
this extended basis of operators. This should allow a more thorough determination of the
low-lying spectrum including also the discretuum of scattering states. If the (++) resonance
is a genuine string state, one expects to find two low-lying massive states that don’t receive
pronounced finite volume corrections. One of these states would then correspond to the
lowest lying glueball scattering state and another to the string excitation (which can also
be interpreted as a bound state of a string and a glueball).

9Note that q⊥ is only an approximate quantum number.
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Figure 13. Energies in the q = 1 (+) sector at R = 40a = 2.76ls as a function of the inverse
transverse size. Horizontal lines of different colors represent the GGRT spectrum starting from
N = 2, Ñ = 1.

The results for the (++) sector are presented in figure 15. Here we chose the com-
pactification radius R = 55a to ensure that the lowest scattering state is well separated
from the GGRT states. We clearly see that beneath the (2, 2) GGRT level, there is only
one non-GGRT state (represented by cyan dots) whose energy exhibits only a moderate
dependence on a transverse size. In addition, there is a series of non-GGRT states with
a strong volume dependence (represented by yellow, brown, purple and mauve-blue dots)
which become very dense at large transverse size and accumulate around the expected
threshold for the continuum of the scattering states. It is natural to interpret these levels
as fluxtube-glueball scattering states with q⊥ = 1, 2, 3, 4 and the level represented by the
cyan dots as a q⊥ = 0 state at the bottom of the continuum.

Interestingly, this candidate q⊥ = 0 state still exhibits a noticeable transverse size
dependence in the range of `⊥ presented in figure 15. The corresponding energy gap at the
shortest values of `⊥ is significantly higher than the glueball mass. This is indicative of a
considerable repulsive interaction between the glueball and the flux tube.

These interactions appear to be important also for the states with non-zero relative
momentum q. In particular, a priori one could have expected that the `⊥ dependence of
the corresponding energies can be captured by the free dispersion relation,

E =
√
m2

flux + p2
⊥ +

√
m2

glue + p2
⊥ , (5.9)

with p⊥ = 2πq⊥/`⊥. However, we find that this ansatz does not provide a very good fit,
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Figure 14. Energies in the q = 1 (−) sector at R = 40a = 2.76ls as a function of the inverse
transverse size. Horizontal lines of different colors represent the GGRT spectrum starting from
N = 1, Ñ = 0.

indicative of considerable interactions with the flux tube. These interactions are expected
also to affect the GGRT states above the continuum threshold. This may actually resolve
one of the puzzles encountered earlier. Namely, one expects to find two states at the (2, 2)
GGRT level. However, only one such state is present in figure 15 (the one labeled by green
dots). This phenomenon is also observed in table 4, where we find out that one of the (2, 2)
GGRT states start to deviate from GGRT spectrum at R & 3.8`s. It appears that a strong
mixing between the GGRT and scattering states may provide an explantation for this effect.

We observe similar new states with a strong volume dependence also in the (−+) sector.
The corresponding flux tube spectrum as a function of the transverse size is presented in
figure 16. Here blue and orange dots are plausible candidates for GGRT (2, 2) and (3, 3)
states given that their volume dependence is relatively mild. In addition we find four states
with a strong and monotonic volume dependence, which makes them natural candidates
for q⊥ = 1, 2, 3, 4 states in the discretuum. There is no analogue of the q⊥ = 0 state in
this sector. As in the (++) sector the complicated pattern of the corresponding energies,
suggests that a considerable mixing between flux tube and glueball states is present.

To summarize, we believe that the analysis presented here strongly disfavors the
existence of light massive excitations on the worldsheet of the Z2 confining flux tube. In
particular, the state which appears as a massive resonance in the (++) sector corresponds
to the glueball scattering state. In addition, our results indicate the presence of a significant
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Figure 15. Energies in the q = 0 (++) sector at R = 55a = 3.80ls as a function of inverse transverse
size determined using an extended operator basis. Horizontal solid lines of different colors represent
the GGRT spectrum starting from N = Ñ = 0. The lower dashed blue line represents the energy
of the absolute ground state plus the glueball mass. The upper dashed blue line represents the
absolute ground state plus the resonance mass as given by (5.6).

mixing between flux tube excitations and scattering glueball states. Hence, the effective
string theory breaks down above the threshold corresponding to the emission of glueballs.

6 Concluding remarks

To summarize, we calculated the low-lying spectrum of closed flux tube excitations up to
the N = Ñ = 3 GGRT level in the Z2 gauge theory, at a coupling β = 0.756321 which is
close to the critical point βc = 0.7614133(22) [26]. The compactification radius covers a
wide range 1.38`s ≤ R ≤ 5.53`s from moderately short strings to very long ones, but still
above the deconfinement transition at Rc ∼ 0.82`s [16]. The resulting spectrum agrees with
the GGRT predictions for N = Ñ ≤ 1 states within most of the range of R, and also for
N = Ñ = 2 states for moderately long strings.

Somewhat surprisingly, our analysis did not reveal any massive excitations on the
worldsheet of the Ising string. A heuristic argument suggesting the presence of a resonance
is based on realizing the critical Ising model as an IR fixed point of the φ4 theory. Then
one may attempt to study the properties of the Ising strings by analyzing domain walls in
a mass-deformed φ4 theory. Even though this approach is not based on a well-controlled
perturbative expansion at d = 3, it was argued [44] to provide a decent approximation to
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Figure 16. Energies in the q = 0 (−+) sector at R = 55a = 3.80ls as a function of the inverse
transverse size determined using an extended operator basis. Horizontal solid lines of different colors
represent the GGRT spectrum starting from N = Ñ = 2. The dashed green line represents the
energy of absolute ground state plus glueball mass.

the ratio of the lighest glueball mass to the string tension. A domain wall in φ4 theory does
support a massive localized resonance [45], so based on this logic one might have expected
to find one also in the Ising case. It will be interesting to study what happens to this
resonance using a more systematic approach, based on the ε-expansion rather than a direct
study of the d = 3 φ4 model.

We did observe a state in the 0++ sector which has an appearance of a massive
resonance. However, a detailed analysis revealed that this is a multitrace scattering state
with an additional glueball rather than a genuine flux tube excitation. This is related to
another interesting (and expected) aspect of the observed spectra. Namely, they indicate
the presence of a significant mode mixing between string excitations and glueball scattering
states related to the repulsive glueball/string interaction. It will be interesting to perform
an analytical analysis of these spectra using an appropriate generalization of the TBA
method and to extract the scattering amplitudes describing glueball/string interactions. It
will also be interesting to connect this data to the properties of the line defect in the Ising
model at the conformal point, which has been studied in [46].

Another possible direction to extend this work is to study the dynamics of strings in
the ZN gauge theory. In particular, it will be interesting to study how the 3d U(1) gauge
theory (studied, e.g., in [19, 47, 48]) is recovered in the N →∞ limit. It is natural to expect
that strong glueball/string interactions should be present in this whole family of theories.
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A Compilation of energy spectra

In this appendix we list all the closed flux tube spectra we’ve computed for the Z2 gauge
theory at the coupling β = 0.756321, with different lattice sizes and different quantum
numbers. The convention for denoting sectors follows (5.5).
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R/a l⊥ × lt/a2 aE(R) ; q = 0 (++)

20

70× 70

0.0668(8) 0.2384(46) 0.3460(49) 0.4893(47) 0.4882(69)
0.4996(199)* 0.6339(109)

25 0.0966(11) 0.3022(50) 0.3664(58) 0.4873(87) 0.5895(290)
0.5649(175) 0.5338(138)

30 0.1211(17) 0.3251(65) 0.3917(82) 0.5151(65) 0.5884(62)
0.4929(117) 0.5838(164)*

35 0.1506(13) 0.3456(134) 0.4167(126) 0.5460(60) 0.5479(135)
0.5542(117) 0.5416(161)

40 0.1785(14) 0.3766(60) 0.4318(124) 0.5439(80) 0.5123(161)
0.6392(117) 0.5854(80)*

45 0.2037(19) 0.3827(97) 0.4444(208) 0.5436(87) 0.5533(242)
0.6279(130) 0.5464(177)*

47 0.2143(12) 0.3969(35) 0.4737(101) 0.5448(69) 0.5596(147)
0.6539(64) 0.6010(69)

50 0.2255(34) 0.4002(58) 0.4997(108) 0.5599(52) 0.5850(154)
0.6507(96) 0.6282(109)

52 0.2339(19) 0.4118(65) 0.5009(92) 0.5634(59) 0.5813(198)
0.6407(139) 0.6327(67)*

54 0.2492(27) 0.4239(61) 0.5285(66) 0.5537(92) 0.6113(122)
0.6650(62) 0.6441(57)*

55 0.2500(29) 0.4106(100) 0.4715(280) 0.5600(61) 0.5612(242)
0.6571(100) 0.6259(72)

56 0.2571(26) 0.4214(66) 0.5043(117) 0.5583(45) 0.6008(169)
0.6671(46)*

58 0.2686(19) 0.4409(33) 0.5278(106) 0.5609(70) 0.6136(139)
0.6375(113)*

60 0.2819(29) 0.4404(72) 0.5412(138) 0.5701(75) 0.6386(207)
0.6543(88) 0.7048(96)

65 0.3085(31) 0.4640(60) 0.5683(116) 0.5850(83) 0.6663(122)
0.6567(137)* 0.6680(199)*

70 0.3238(45) 0.4678(61) 0.5612(149) 0.5935(85) 0.6718(202)*
0.6483(144)* 0.6858(174)*

75 0.3586(38) 0.5012(68) 0.6167(96) 0.6058(77) 0.7401(114)
0.6921(121)* 0.7561(118)*

80 0.3745(64) 0.5093(75) 0.6069(132) 0.6197(157) 0.7463(152)*
0.7849(126)*

40 55× 55 0.1731(19) 0.3514(57) 0.4407(90) 0.5443(86) 0.5715(177)
0.5694(118) 0.6240(146)

40 55× 70 0.1766(14) 0.3678(43) 0.4517(82) 0.5497(72) 0.5847(159)
0.5800(81)

40 65× 70 0.1772(17) 0.3662(70) 0.4162(133) 0.5506(69) 0.5665(136)
0.6653(87) 0.5415(176)

40 80× 70 0.1780(17) 0.3817(50) 0.4540(130) 0.5556(40) 0.4818(108)
0.6378(96) 0.6385(98)

40 160× 70 0.1768(15) 0.3772(44) 0.4660(61) 0.5607(41) 0.4972(94)
0.6469(57) 0.5515(104)*

40 300× 70 0.1770(13) 0.3767(21) 0.4557(63) 0.5449(48) 0.4928(96)
0.6332(122) 0.5611(103)*

Table 4. The energies, E(R), of the lightest seven flux tube states with length R in the sector
q = 0 (++).
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R/a l⊥ × lt/a2 aE(R) ; q = 0 (+−)
20

70× 70

0.9337(259)
25 0.8790(60)
30 0.8055(221)
35 0.7678(83)
40 0.7155(172)
45 0.7316(80)*
47 0.7392(99)*
50 0.7520(115)
52 0.7487(105)
54 0.6905(208)
55 0.7501(123)*
56 0.7272(85)
58 0.7644(55)*
60 0.7189(112)*
65 0.7264(132)*
70 0.7528(53)*
75 0.7401(159)*
80 0.7242(126)*
40 55× 55 0.7458(198)
40 55× 70 0.7513(183)
40 65× 70 0.7518(79)
40 80× 70 0.7478(80)
40 160× 70 0.7215(185)
40 300× 70 0.7389(79)

Table 5. The energies, E(R), of the lightest flux tube state with length R in the sector q = 0 (+−).
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R/a l⊥ × lt/a2 aE(R) ; q = 0 (−+)
20

70× 70

0.4497(43) 0.6023(116) 0.6516(268) 0.9297(72)
25 0.4572(88) 0.5693(87) 0.7823(110) 0.8336(357)
30 0.4634(65) 0.5525(107) 0.7294(197) 0.7506(230)*
35 0.4784(45) 0.5851(41) 0.7281(41) 0.7736(329)
40 0.4686(65) 0.5666(73) 0.7019(137) 0.7166(222)*
45 0.4925(54) 0.5682(177) 0.6753(100) 0.7935(123)
47 0.5095(46) 0.5961(98) 0.6698(121) 0.7487(241)*
50 0.5261(52) 0.5991(87) 0.6866(71) 0.7826(102)
52 0.5364(59) 0.6139(58)* 0.6904(88) 0.7770(115)
54 0.5310(64) 0.6063(100)* 0.6897(69) 0.8138(53)
55 0.5405(56) 0.6393(63) 0.6994(91) 0.7418(258)*
56 0.5561(57) 0.6405(58) 0.6923(84) 0.7685(137)*
58 0.5467(39) 0.6314(62) 0.6979(83) 0.7007(83)
60 0.5717(44) 0.6331(78) 0.6604(148)* 0.8186(61)
65 0.5795(60) 0.6652(71)* 0.6964(108)*
70 0.6059(40) 0.7006(330) 0.7084(104)*
75 0.6259(38) 0.6874(218)* 0.7141(98)*
80 0.6177(125) 0.7305(118)* 0.7384(73)*
40 55× 55 0.5278(42) 0.6653(115) 0.7093(101)
40 55× 70 0.5308(62) 0.6988(136) 0.7007(83)
40 65× 70 0.5052(53) 0.5939(80) 0.7149(90) 0.7571(208)
40 80× 70 0.4801(83) 0.5430(71) 0.7136(66) 0.6882(161)
40 160× 70 0.4848(53) 0.4733(55) 0.5400(80)* 0.7147(142) 0.5930(135)*
40 300× 70 0.4836(32) 0.4694(82) 0.5325(92)* 0.6608(146)

Table 6. The energies, E(R), of the lightest four flux tube states (for 40× 160× 70 it is five) with
length R in the sector q = 0 (−+).
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R/a l⊥ × lt/a2 aE(R) ; q = 0 (−−)
20

70× 70

0.7911(92) 0.8396(220) 0.8715(63)
25 0.6850(68) 0.7588(50) 0.7775(99)
30 0.6349(27) 0.7458(84) 0.9011(484)
35 0.6008(74) 0.6935(170)
40 0.5763(71) 0.6459(125) 0.6780(171)
45 0.5709(35) 0.6772(161) 0.7331(108)
47 0.5615(41) 0.6669(127) 0.7235(166)
50 0.5664(64) 0.6833(121) 0.7018(168)*
52 0.5707(69) 0.6595(131) 0.7488(163)
54 0.5704(51) 0.6867(87) 0.7153(130)*
55 0.5784(56) 0.6894(150) 0.7056(159)*
56 0.5827(51) 0.6697(186) 0.7709(76)*
58 0.5731(61) 0.7214(104) 0.7735(71)*
60 0.5838(62) 0.6984(169) 0.8113(54)*
65 0.5877(70) 0.7686(62) 0.7783(365)*
70 0.6121(77) 0.7115(210)*
75 0.6286(72) 0.6914(222)*
80 0.6424(80) 0.7357(326)*
40 55× 55 0.5763(50) 0.6136(100) 0.7731(133)
40 55× 70 0.5597(112) 0.6315(82) 0.7454(217)
40 65× 70 0.5768(47) 0.6218(129) 0.6967(191)
40 80× 70 0.5706(131) 0.6211(192) 0.7599(241)
40 160× 70 0.5805(47) 0.6568(103) 0.7938(270)
40 300× 70 0.5875(34) 0.6772(116) 0.8248(115)

Table 7. The energies, E(R), of the lightest three flux tube states with length R in the sector
q = 0 (−−).
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R/a l⊥ × lt/a2 aE(R) ; q = 1 (+)
20

70× 70

0.4899(45) 0.5612(88) 0.6680(73) 0.6693(192) 0.8066(195)
25 0.4722(37) 0.5236(92) 0.6141(132) 0.6804(73) 0.7865(307)
30 0.4644(29) 0.4919(111) 0.6029(64) 0.6480(153) 0.7514(132)

35 0.4585(41) 0.5169(85) 0.5594(197) 0.6343(83) 0.7561(34)
0.7460(141)

40 0.4778(37) 0.4953(95) 0.5904(106) 0.6632(94) 0.6684(45)
0.7484(61)

45 0.4820(34) 0.5359(51) 0.6110(73) 0.6414(69) 0.6353(95)
0.7416(71)

47 0.4801(32) 0.5323(65) 0.6249(42) 0.6377(44) 0.6633(53)
0.7538(74)

50 0.4919(29) 0.5509(61) 0.6414(48) 0.6300(35) 0.6583(131)
0.7675(98)

52 0.4898(41) 0.5536(75) 0.6269(80) 0.6236(78) 0.6246(110)
0.7402(138)

54 0.4996(41) 0.5856(62) 0.6359(64) 0.6267(51) 0.6441(232)
0.7397(84)

55 0.4938(35) 0.5478(98) 0.6345(95) 0.6167(105) 0.6546(156)*
0.7532(84)

56 0.5016(51) 0.5732(75) 0.6255(70) 0.6550(48) 0.6540(58)*

58 0.5071(37) 0.5524(118) 0.6527(44) 0.6361(57) 0.6942(82)
0.7587(69)

60 0.5228(36) 0.5882(79) 0.6614(143) 0.6439(66) 0.6799(72)*
65 0.5337(57) 0.5905(93) 0.6771(77) 0.6370(103)*
70 0.5452(44) 0.6166(94) 0.6734(97)*
75 0.5595(72) 0.6462(121) 0.7031(59)*
80 0.5865(47) 0.6628(157) 0.6883(73)*

40 55× 55 0.4621(31) 0.5323(61) 0.6214(79) 0.6969(58) 0.6851(124)
0.7858(88)

40 55× 70 0.4615(53) 0.5312(56) 0.6243(29) 0.6811(99) 0.6838(75)
0.7738(57)

40 65× 70 0.4724(25) 0.5049(53) 0.6065(52) 0.6560(93) 0.6999(53)
0.7679(71)

40 80× 70 0.4745(33) 0.5076(48) 0.5712(97) 0.5977(127) 0.6489(77)
0.6982(99)

40 160× 70 0.4737(27) 0.5317(77) 0.6076(64) 0.5532(106)* 0.6793(85)

40 300× 70 0.4701(26) 0.5394(46) 0.6040(62) 0.5587(79)* 0.6958(42)
0.6950(121)

Table 8. The energies, E(R), of the lightest six flux tube states with length R in the sector
q = 1 (+).
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R/a l⊥ × lt/a2 aE(R) ; q = 1 (−)

20

70× 70

0.4025(14) 0.5260(73) 0.6537(90) 0.6300(52) 0.6813(202)
0.7666(70)

25 0.3621(16) 0.4946(58) 0.6232(78) 0.6326(65) 0.6182(84)
0.7189(66)

30 0.3448(16) 0.4861(50) 0.5896(73) 0.5737(180) 0.6070(159)
0.6968(108)

35 0.3382(19) 0.4886(37) 0.5600(89) 0.6152(71) 0.5959(140)*
0.6828(114)

40 0.3403(14) 0.4855(52) 0.5741(107) 0.6100(70) 0.6154(54)
0.7201(63)

45 0.3467(23) 0.4857(53) 0.5562(93) 0.6007(69) 0.6247(107)
0.6813(228)

47 0.3524(21) 0.4953(31) 0.5891(51) 0.6019(50) 0.6478(58)
0.6982(81)

50 0.3577(24) 0.4911(59) 0.5963(74) 0.5999(59) 0.6490(71)
0.6966(58)

52 0.3665(23) 0.5012(58) 0.6073(41) 0.6179(61) 0.6777(79)
0.6595(143)*

54 0.3700(17) 0.5075(33) 0.6171(53) 0.6229(55) 0.6671(73)
0.6819(52)

55 0.3681(35) 0.5033(59) 0.6040(70) 0.6162(47) 0.6852(65)
0.7166(110)*

56 0.3741(24) 0.5116(38) 0.6230(35)* 0.6196(68) 0.6727(58)
0.6947(70)

58 0.3840(22) 0.5163(41) 0.6030(72) 0.6296(59) 0.6812(64)
0.6810(68)*

60 0.3899(20) 0.5221(54) 0.5940(135) 0.6431(77) 0.6850(56)
0.6740(113)*

65 0.4058(23) 0.5346(49) 0.6342(53) 0.6606(68) 0.6921(83)
0.6810(170)*

70 0.4230(26) 0.5555(52) 0.6418(222) 0.6895(86) 0.7063(61)*
75 0.4357(42) 0.5623(97) 0.6660(86) 0.7014(84)*
80 0.4572(45) 0.5701(84) 0.7048(69) 0.7088(93)*

40 55× 55 0.3424(17) 0.4991(64) 0.6044(67) 0.6363(98) 0.6713(104)
0.7215(61)

40 55× 70 0.3429(14) 0.4994(45) 0.6061(59) 0.6152(137) 0.6743(124)
0.6909(95)

40 65× 70 0.3420(19) 0.4876(47) 0.5947(123) 0.6052(27) 0.6154(93)
0.7075(118)

40 80× 70 0.3375(23) 0.4890(31) 0.5483(89) 0.6091(53) 0.6414(87)
0.7307(51)

40 160× 70 0.3426(11) 0.4855(31) 0.5294(73) 0.5975(59) 0.5975(32)
0.7095(98)

40 300× 70 0.3375(17) 0.4843(34) 0.5386(47) 0.5863(45) 0.5760(66)
0.7030(81)

Table 9. The energies, E(R), of the lightest six flux tube states with length R in the sector
q = 1 (−).
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