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1 Introduction

The holographic correspondence, [1–4] has offered from the start a new tool to approach
the strongly coupled low energy physics of QCD or QCD-like theories in the large-N
limit [5–14]. This applies in particular to the description of baryon bound states. These
have been investigated both in top-down string-theoretical constructions [15–21, 34, 35] and
in simple bottom-up phenomenological models [36–38]. In all these models, the baryon can
be understood as an instanton of the bulk non-abelian gauge fields which are holographically
dual to the U(Nf )L ×U(Nf )R flavor currents.

Within the bottom-up approach, one of the most complete phenomenological frameworks
is the V-QCD setup [39–51], a five-dimensional holographic model which aims at describing
the Veneziano limit (large Nc, large Nf with Nc/Nf fixed) of QCD with Nc colors and
Nf flavors.

The V-QCD model has 22 parameters in its CP-even part and one extra parameter in
the Chern-Simons term. Although upon a more complete fit it may turn out that some
parameters may not be as important, a substantial number of parameters is necessary
because the model has the ambition to describe a rather complete set of observables that
go well beyond other competing models. The model can provide upon calculation, most
T = 0 mass spectra including baryons, thermodynamic functions and phase diagram in a
multidimensional space of temperature, baryon and isospin chemical potentials, correlation
functions of several local operators at finite temperature and density, including transport
coefficients and quasinormal modes and eventually way out-of equilibrium observables like
quenches. It therefore can provide info that goes well beyond the parameter input to define
the theory.

There are several approaches and competing phenomenological models that we summa-
rize below.

• Lattice Quantum Chromodynamics, [22]. This is an ab-initio approach. Wherever
it is applicable, and the numerics are reliable, it gives the proper answer of QCD.
It has however, computational limitations: finite density is out of direct reach as
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the probability density is not real and similar remarks apply to real time dynamical
processes. Clearly, phenomenological models like V-QCD are useful if they can address
issues that cannot be studied by Lattice techniques. The problems mentioned above
are in this class and as known, holographic models are well-tuned to address them.

• Chiral Perturbation Theory (CPTh), [23–25]. This is an Effective Theory based on
symmetry principles and as such reliable in the low-energy pion sector. The addition
of baryons is more tricky and although the formalism is well-studied, it rests on
shakier principles. That being said, this approach is the workhorse for analysing
low-energy phenomena and low-density phase diagrams of the hadronic phase. It
is however unsuitable for the study of other phases where confinement and chiral
symmetry are realized differently. Therefore V-QCD is more appropriate to address
static and dynamical issues in the various plasma phases.

• FRG improved CPTh, [26]. This is CPTh improved with the functional Renormaliza-
tion Group. It allows CPTh to extend a bit up in energy but has similar limitations
as CPTh.

• PNJL models, [27, 28]. These are extensions of the NJL model, [29, 30], by including
the Polyakov loop as one extra order parameter. They are phenomenological, but
well-motivated and have made predictions on the phase diagram of QCD. They are
expected to work less well in phases where chiral symmetry is unbroken, and quarks
are not confined. V-QCD is well tuned for dynamical questions in such phases.

• Quark-Meson-Coupling models, [31, 32]. They are hybrids between MIT bags for
nucleons and meson exchanges and they were developed as extensions of nuclear QFT
Serot-Walecka models. They can describe well parts of nuclear phenomenology in the
hadron phase, and possibly in medium quark condensates, but are not best suited for
pure deconfined/quark-gluon plasma phases.

• HTL quasiparticle models, [33]. This is a class of weakly-coupled models of massive
quasi-particles with improved HTL propagators, used to extrapolate calculations of
finite temperature static quantities to finite chemical potential. Their use so far is
restricted to static properties and their success is localized.

Compared to all the approaches above, V-QCD is a model that can address a wider
variety of problems than any of them. Moreover, unlike other approaches, it describes
naturally both phases and dynamics with broken or unbroken chiral symmetry, as well as
confined and deconfined phases.

Up to very recently, a description of the baryon state in V-QCD was missing. This
was due in part to the incomplete understanding of Chern-Simons terms in this theory.
These terms are crucial for the construction of the baryon as an instanton, since a) they
contribute to stabilising the instanton size and position in the bulk; b) they provide the
correct identification between bulk instanton number and boundary baryon number.

Recently, this gap was filled by the authors of the present work in [52], where, in the
limit of zero quark masses, a systematic analysis of the allowed Chern-Simons terms in
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V-QCD was performed and the general construction of the baryon solution was presented.
In that work, it was shown that an axial SU(2) instanton ansatz satisfying appropriate
boundary conditions (normalizability close to the AdS boundary and regularity in the
interior) has indeed all the properties of a single localized baryon state: finite boundary
energy and unit boundary baryon charge. The latter is indeed a topological quantity, which
matches both the bulk instanton number and the boundary Skyrmion number (written in
terms of an appropriate unitary pion matrix).

1.1 Summary

The present work is the direct continuation of [52]. While that work presented the general
features of the solution, here we construct the baryon in a specific model: we first obtain
numerically the static instanton solution (which corresponds to the baryon ground state),
then we analyse the instanton collective modes and their quantization (which correspond to
baryon excited states).

As important ingredient of this work, we present a specific model in the V-QCD class
which offers a good quantitative match to low-energy QCD parameters, including some
parameters in the flavor sector (like the pion decay constant) which were not correctly
reproduced in previous models.

We now give a summary of the results obtained in this work. We refer the reader to
the introduction of [52] for a more detailed discussion and an extensive list of references on
holographic baryons.

Fit to QCD data. We carry out an extensive comparison of the model predictions to
experimental and lattice QCD data in order to pin down the parameters of the V-QCD
action in section 2. The comparison consists of two main steps:

1. Qualitative comparison to QCD physics. The action both in the limit of weak and
infinitely strong coupling, up to a few remaining parameters, can be determined by
requiring that the model respects known properties of QCD such as confinement and
asymptotic freedom. This work has been done in earlier literature [39, 40, 44–48, 53],
and we simply review the results here.

2. Quantitative comparison to QCD data. The details of the action at intermediate
coupling, as well as the few remaining weak and strong coupling parameters, can be
tuned so that the predictions of the model match with QCD data. In this step, the
dependence of the predictions on the exact values of the model parameters is typically
weak. Despite this, the model has been able to describe various observables to a high
precision [41–43, 54, 55].

As for the second step, the work in this article extends the earlier work where the full
V-QCD model was separately compared to data for thermodynamics [54] and to meson
spectra [55]:

• We fit the model parameters to data for thermodynamics and spectra simultaneously.
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• Unlike in [55] (where the model was fitted to a large number of excited meson states),
we stress the lowest lying meson states.

• Importantly, we require a good match of the model with the experimental value of the
pion decay constant fπ ≈ 92 MeV, which was poorly reproduced in both previous fits.

We now discuss the fit in more detail. The V-QCD model contains two sectors,
corresponding to gluons (improved holographic QCD [39, 40]) and quarks (tachyon Dirac-
Born-Infeld actions for space filling branes [14, 56]). The former sector can be separately
compared to data from lattice analysis of pure Yang-Mills theory [41–43]. In this article,
we use the fit of [55] for the gluon sector, and check explicitly that it reproduces both the
lattice data for the thermodynamics of Yang-Mills at Nc = ∞ (see figure 1) and for the
glueball spectrum (see table 2) to a good precision.

Most of the freedom in the full V-QCD model is however in the quark sector. In order
to determine the model parameters in this sector, we compare the predictions to

• Lattice data for the thermodynamics of full QCD with Nf = 2 + 1. We use both the
data for the equation of state at vanishing chemical potential (see figure 2) and for the
first nontrivial cumulant of the pressure at nonzero chemical potential (see figure 3).

• Experimental data for lowest lying meson masses and the pion decay constant. See
table 4.

The final values of the model parameters are given in table 3. Apart from a few exceptions,
the model depends on these parameters through four different functions of the coupling,
which are shown in figure 4 for the final fit.

The fit in figures 2, 3 and table 4 has rather good quality. However, the agreement when
fitting the thermodynamics [54] and the spectra [55] separately was significantly better.
This is the case because the combined fit is challenging: there is some clear tension between
the fit to the properties of the finite temperature state and the zero temperature vacuum
state. It is likely that this tension can be reduced by carrying out a simultaneous numerical
fit of all parameters to all data. We do not attempt to do this technically demanding task
here, but are planning to return to it in future work. Notice also that, at least to our
knowledge, an overall fit to QCD data of the similar extent as presented in this article has
not been attempted in any other model in earlier literature.

Static baryon solution. Starting from the formalism introduced in [52], we compute in
section 3 the numerical bulk solution for a single static baryon, with the V-QCD potentials
presented in section 2.1 In the Veneziano limit Nc →∞, Nf →∞, the baryon contribution
to the bulk action is of order Nc, which is negligible compared to N2

c and NcNf . This implies
that the leading order baryon solution can be treated as a “probe” on the background dual
to the vacuum of the boundary theory.

The numerical baryon solution is computed both at leading order and including the
first corrections to the background, which are of order O(1/Nc, 1/Nf ). The leading order

1In addition, the solutions with a different choice of potentials are discussed in appendix D.
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baryon solution is reliably calculated, by ignoring both the tachyon and glue backreactions.
The backreaction of the baryon solution to the tachyon is computed by neglecting the glue
backreaction for simplicity. It is expected that the back-reaction on the color sector, does
not affect the qualitative results for the tachyon backreaction.

For the leading order probe solution, the following results are obtained:

• The instanton number and bulk Lagrangian densities (figure 5) are confined to a
region of finite extent in the bulk, which confirms the solitonic nature of the baryon
solution. The integrals of these densities give respectively the baryon number, which
is confirmed to be equal to 1 numerically, and the classical contribution to the nucleon
mass. The latter is found to be relatively close to the experimental nucleon mass for
Nc = 3 colors

M0 '
Nc

3 × 1150MeV . (1.1)

We recall however, that the full result for the V-QCD baryon mass should also include
quantum corrections: these should be computed from the perturbations around the
baryon, together with an appropriate subtraction of the similar fluctuations around
the vacuum state. Computing these corrections goes beyond the scope of this work.
Although these corrections are subleading at large Nc, starting at order O

(
N0
c

)
, they

may give a sizeable contribution when Nc is set to 3. Note that this state of affairs
regarding quantum corrections is not particular to our model, and is true also for
both the Skyrme model and other holographic models.

• In [52], it was found that, for the baryon solution, the pion matrix at the boundary
follows the Skyrmion hedgehog ansatz

UP (ξ) = exp
(
iθ(ξ)x · σ

ξ

)
, (1.2)

with ξ the 3-dimensional radius. Also, the baryon number was shown to be equal to
the skyrmion number for the pion matrix. This indicates that the baryon solution
in V-QCD is qualitatively similar to the Skyrme model skyrmion solution.2 To
measure the difference with the Skyrme model skyrmion, the pion phase θ(ξ) is
compared with the Skyrme result in figure 6. This indicates that the two solutions
are quantitatively close.

At the next order in the large N expansion, the back-reacted solution provides the
following information:

• The modulus of the chiral condensate
∣∣∣〈ψ̄ψ〉∣∣∣ is observed to decrease towards the

baryon center, as shown in figure 7. This signals the expected partial restoration of
the chiral symmetry inside the baryon.

2This should not come as a surprise, as we already know that the dual boundary theory can be understood
in the confined phase as a chiral effective theory coupled to a tower of massive mesons.
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• The correction to the baryon Lagrangian density from the back-reaction is calculated
numerically and presented in figure 8. The observed behavior is well understood in
terms of the chiral restoration, which has two effects. First, the negative contribution
in the UV is mainly understood as a direct consequence of the decrease of the
contribution from the chiral condensate to the Lagrangian density. Second, a positive
correction is observed in the IR, which corresponds to a shift of the baryon towards
the IR. This shift also contributes to the negative region in figure 8, and is understood
as a consequence of the weakening of the IR-repelling bulk force felt by the baryon in
the chirally broken background. The results also indicate that the correction to the
classical soliton mass is negative, and relatively small in absolute value.

Rotating baryon solution and spin-isospin spectrum. The second part of this work
is devoted to the quantization of the isospin collective coordinates of the bulk soliton dual
to a baryon. In the large Nc limit, the moment of inertia λ of the baryon is of order O(Nc)
and the quantization is that of a solid rotor. The result of this procedure is the derivation
of the spin-isospin baryon spectrum for the V-QCD model considered in this work.

The starting point for the quantization of the collective coordinates is the classical bulk
solution obtained by a time-dependent isospin rotation of the static soliton, parametrized by

V (t) ≡ exp (it ωaλa) ∈ SU(Nf )L+R

with ωa the rotation velocity. In this work we restrict to the following regime
• Only an SU(2) subgroup (the same where the static soliton sits) of the full isospin

subgroup is quantized. This means that we impose that V (t) ∈ SU(2)L+R. By doing
so, we compute only a subset of the full spin-isospin spectrum, corresponding to
baryons composed of quarks with 2 flavors (or equivalently, the states with strong
hypercharge Y = 1).

• The rotation is assumed to be stationary and slow. In terms of the rotation velocity
ωa, this means that ωa is assumed to be a constant and obey ω2 � M0/λ. This
regime describes well the baryon states with spins

s� Nc .

The quantization therefore requires the calculation of the bulk solution corresponding
to a slowly rotating baryon. This calculation is done at linear order in ω. Already at this
order, it turns out that a simple rotation of the static soliton fields with V (t) ∈ SU(2)L+R
is not a solution of the bulk equations of motion. Instead, as soon as the soliton is made to
rotate, some new flavor fields are turned on in the bulk, at linear order in ω [57]. These are
the flavor equivalents of the magnetic field sourced by a rotating charge.

The appropriate ansatz for the rotating fields is constructed in section 5, by imposing
the same symmetries as for the static solution, apart from time-reversal. These include
3-dimensional rotations and parity. Once this ansatz is determined, the construction of the
rotating soliton solution follows the same steps as in the static case:

• We derive the expression of the moment of inertia of the soliton in terms of the
ansatz fields.
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Spin V-QCD mass Experimental mass
s = 1

2 MN ' 1170MeV MN = 940MeV

s = 3
2 M∆ ' 1260MeV M∆ = 1234MeV

Table 1. Baryon spin-isospin spectrum in the V-QCD model with the potentials of section 2,
compared with experimental data.

• We derive the full equations of motion for the fields of the rotating ansatz.

• We identify the boundary conditions such that the moment of inertia is finite. The
boundaries here are 1) the near-AdS region UV boundary r → 0, where the solution
should satisfy vev-like boundary conditions for all the fields; 2) the boundary at
spatial infinity |~x| → ∞, where the fields have to vanish fast enough for the moment
of inertia to be finite.

• We identify suitable regularity conditions in the IR region of the geometry.

The last part of this work presents the results of the numerical calculation of the
solution to the equations of motion for the rotating ansatz fields. From this solution, the
moment of inertia is calculated and the corresponding spin-isospin baryon spectrum in
table 1. We emphasize that these numbers where obtained by substituting Nc = 3 in the
leading order large Nc and Nf result. In principle, at small values of Nc and Nf , one does
not expect this result to be quantitatively accurate.

1.2 Discussion and outlook

The V-QCD baryon solution we present here has several advantages with respect to similar
constructions in the literature, as well as some limitations. In order to discuss them, we shall
compare the results of this work with the two main models of holographic QCD in which
single-baryon solutions were analyzed. These are the top-down Witten-Sakai-Sugimoto
model (WSS) [12, 13, 19] and the bottom-up Hard-Wall model (HW) [38, 58, 59].

The main improvement with respect to both models mentioned above is that the
V-QCD background solution on which the baryon solution is constructed is a more accurate
description of the QCD vacuum. The V-QCD vacuum possesses a rich structure, including
the running of the Yang-Mills coupling and the spontaneous breaking of the chiral symmetry
in the chiral limit. Moreover, it incorporates the back-reaction of the flavor sector onto the
color sector, due to the Veneziano limit. The model can have several parameters that can
be adjusted to experimental data if one wants to produce a precise phenomenological model
for strongly-coupled QCD [46–50] although generically, the dependence on these parameters
is weak.

Let us now focus on the comparison with the HW model. In the HW model, a baryon
state was constructed as a bulk axial instanton for the chiral gauge fields, using the same
kind of ansatz that is considered in this work [37]. However, the main difference is that the
bulk geometry was arbitrarily fixed to AdS5, where a hard wall was placed in the IR for the
boundary theory to be confining. Because of the gravitational potential, the bulk soliton
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was found to fall on the IR wall. This indicates that the hard wall model is too crude to
stabilize the baryon solution dynamically. Moreover, since its position is at the very end of
space, the properties of the soliton will strongly depend on the IR boundary conditions. On
the contrary, the baryon solution that is constructed in the present work is well localized in
the holographic direction. It stands at a value of the holographic coordinate of the order of
the inverse of the soliton mass. This is due to the fact that, beyond the metric, the V-QCD
vacuum contains another field under which the baryon is charged: the tachyon field3 dual
to the quark bilinear operator. The combined effect of the baryon boundary conditions and
the interaction of the gauge fields with the tachyon field, result in a force that balances the
gravitational attraction towards the IR.

Let us now discuss the WSS model. There, the main drawback of the baryon solution
that was constructed in [19] is that the baryon size was found to be parametrically small at
large ’t Hooft coupling. Instead, the size of the baryon solution that we derived in V-QCD
is set by the mass scale of the boundary theory, which roughly corresponds to ΛQCD. Note
that this was not an obstacle to the calculation of meaningful baryon form factors in the
WSS model, as the latter were found to be related to the scale set by the rho meson mass
rather than the soliton mass [62]. Nevertheless, the infinitesimal size of the soliton will be
an issue for classical fields in the bulk, such as the chiral condensate.

Another aspect where our construction is an improvement, compared with previous
settings, lies in the tachyon dependence of the bulk action. First, the DBI form of the
kinetic action for the flavor fields contains an infinite sum of corrections compared with the
quadratic action considered in the HW model. In vacuum, such a square-root behavior was
found to play an important role to reproduce linear trajectories for the meson spectrum [46–
48]. Although in the WSS model the same kind of action was introduced in [63], the present
work is the first one in which a baryon solution is computed by keeping the full DBI action
for the tachyon.4 Second, and most importantly, we consider for the fist time the tachyon
dependence of the topological Chern-Simons (CS) term. In our bottom-up approach, this
term was constructed in [52] as the most general topological action compatible with QCD
symmetries and chiral anomalies.

The approach we followed here presents also some limitations. Apart from the usual
drawbacks which are intrinsic in a bottom-up model (a certain amount of indeterminacy
in the action, no known embedding as a low energy approximation of string theory), the
most important limitation is that the solution presented here is only valid in the exact
chiral limit. This is related to the CS term mentioned above: as was explained in [52], our
construction only applies in the limit of zero quark masses, as turning on non-zero quark
masses requires modifying both the CS term and the instanton ansatz. We refer the reader
to [52] for a more extended discussion of this point.

3The baryon solution including a non-trivial tachyon in the context of the HW model was considered
in [38, 60, 61]. In that work it was also found, as in our model, that considering a non-trivial tachyon
resulted in a repulsive force on the baryon from the IR, although the mechanism for this to happen is
different (in our case the baryon is a probe on the tachyon background). At large chiral condensate, this
could eventually make the baryon detach from the IR wall, but only a finite distance from it.

4Note that the calculation is done here by expanding the DBI action at quadratic order in the non-abelian
fields, but keeping the abelian part of the tachyon fully non-linear.
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In this work, we focused on a small subsector of the baryon spectrum. This is due to
the specific ansatz considered for the quantization of the soliton excitations:

• We considered only the zero-modes, which resulted in the spin-isospin spectrum
of the baryons. However, the experimentally observed baryon spectrum contains
higher excited states for each isospin eigenvalue. These states are understood in
the holographic picture as non-zero modes of the soliton, that is modes that are
associated with a non-trivial potential, for which the soliton solution sits at the
minimum. These include for instance the dilation and oscillating modes considered in
the WSS model [19].

• Within the isospin zero-modes, we focused on a subgroup containing Nf = 2 flavors.
For phenomenology, it is interesting to quantize higher subgroups, in particular Nf = 3.
When introducing asymmetric masses for the quarks, this will make it possible to
discuss the properties of holographic hyperons.

• We restricted to the case of a slowly rotating soliton, which is enough to compute the
spin-isospin spectrum at s� Nc. In particular, at linear order in the rotation velocity
ω, there is no deformation of the static fields, such that the cylindrical symmetry
is preserved. The consequence on the spectrum is that only states with equal spin
and isospin s = I are reproduced. States that do not obey s = I are observed
experimentally, such as N(1520) or ∆(1950). Reproducing such states will require a
rotating ansatz that deviates from cylindrical symmetry. This can be obtained, for
example, by computing the solution at next order in ω.

• The assumption of slow rotation also means that the linear Regge trajectories that are
observed experimentally cannot be reproduced. Namely, the spin-isospin spectrum
that we compute is that of the rigid rotor, for which the masses go as M ∼ s2 at
large spin, instead of M ∼ s1/2 for a linear trajectory. It is expected that reaching the
linear regime, if it can be reached in this framework, will require to consider states
with s & Nc. For such high spins, the relevant ansatz for the rotating soliton should
be fully non-cylindrical. In particular, it will reproduce the linear Regge behavior if it
turns out that the solution resembles a string at high rotation velocity [64].

All the points above can be the subject of future improvements.

2 The V-QCD model: comparison to data

We start by briefly reviewing the V-QCD model [44]. First, we discuss the definitions needed
for the data comparison. We only discuss the main points, see the companion article [52]
and the review [65] for more details.

We then go on and determine the parameters of the model by comparing to QCD
data. This is done in two stages: In the first stage, we choose the asymptotics of the
functions so that the model has the potential to resemble QCD. In the second stage, we
fit the remaining parameters to QCD data. In earlier work, this second step has been
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done for pure Yang-Mills [41–43] (see also [66, 67]), as well as for full QCD by fitting the
thermodynamics [54] and meson spectrum [55] separately. Here we carry out a simultaneous
fit to the thermodynamic and spectrum data for full QCD, with a slightly higher weight
on the spectrum fit because it probes directly the vacuum phase which is relevant for the
current study. Apart from just combining the earlier thermodynamics and spectra fits,
we also choose a different set of observables for the latter fit as compared to [55]. In this
reference, the stress was on fitting a high number of meson masses including relatively
heavy states, in order to obtain a good description of Regge trajectories. Here we focus on
the mesons with lowest masses and also fit the pion decay constant.

2.1 The action of V-QCD

V-QCD is a bottom-up holographic model for QCD with Nc colors and Nf flavors. The
holographic description is obtained by working in the Veneziano large-N limit [68]:

Nc →∞ and Nf →∞, with x ≡ Nf

Nc
fixed . (2.1)

The five-dimensional dynamical fields of the bulk theory are in one-to-one correspon-
dence with the lowest-dimensional gauge-invariant operators in QCD. They are

1. The metric gMN , dual to the stress-tensor of QCD;

2. The dilaton λ, dual to the operator TrGµνGµν (where Gµν is the Yang-Mills field
strength);

3. Non-Abelian gauge fields LM , RM , of the bulk gauge group U(Nf )L × U(Nf )R, dual
to the currents

(J (L)
µ )ij = q̄iLγµqL j , (J (R)

µ )ij = q̄iRγµqRj i, j = 1 . . . Nf (2.2)

where qL,R are the left and right-handed quarks;

4. The tachyon, i.e., a Nf ×Nf complex scalar field T ij , dual to the quark bilinear q̄iRqL j ,
which therefore transforms in the bi-fundamental representation of U(Nf )L×U(Nf )R.

The five-dimensional action

SV-QCD = Sg + SDBI + SCS (2.3)

is the sum of three terms.5 First is the glue term Sg, equivalent to the action of IHQCD [39,
40, 70]. The second and third terms are the flavor terms inspired by a configuration of
space-filling D4-branes and D4-branes. The flavor action separates into a Dirac-Born-Infeld
action (second term) and a Chern-Simons action (third term).

5The action generically contains an additional CP-odd term that couples the flavor fields to the holographic
axion, dual to the Tr(G ∧ G) operator. This term was derived in [47, 69] based on the ideas of [14]. We
do not write this term here because, as explained in section 5.1, the coupling to the axion is ignored in
the following.
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We now discuss explicit expressions for the terms in the action. The first term associated
to pure Yang-Mills, is given by the five-dimensional Einstein-dilaton gravity:

Sg = M3N2
c

∫
d5x
√
−g

[
R− 4

3λ2 g
MN∂Mλ∂Nλ+ Vg(λ)

]
. (2.4)

This action is that of IHQCD [39, 40, 70, 71]: it can be obtained from noncritical five-
dimensional string theory, which also gives a prediction for the potential Vg. However, in
order to obtain a phenomenologically interesting model, we need to switch to a bottom-up
approach and choose a potential which reproduces known features of Yang-Mills theory. We
shall discuss this in more detail below. For the vacuum background solution, the dilaton
field will be running from λ = 0 at the UV boundary to λ =∞ in the IR (see appendix B).
Because the dilaton is dual to the TrGµνGµν operator, the corresponding source is the ’t
Hooft coupling g2

YMNc. As the source term dominates the background solution near the
boundary, the dilaton can be in practice identified with the ’t Hooft coupling of YM theory,
in this region.

As for the flavor terms, the simplified DBI action introduced in [51] is enough to discuss
the properties of the background, assuming that it is homogeneous and that all quark flavors
have the same mass. For the full DBI action see [52]. The simplified DBI action reads

SDBI,simpl =−M3NcNf (2.5)

×
∫
d5x Vf (λ, τ)

√
−det (gMN + κ(λ)∂Mτ∂Nτ + w(λ)FMN ) ,

where τ is the scalar tachyon field defined through T ij = τδij , with i, j = 1 . . . Nf , and FMN

is the field strength of the Abelian vectorial gauge field vM , defined through

(LM )ij = (RM )ij = vMδ
i
j . (2.6)

This form of the DBI action follows the ideas of Sen [72] for the decay of a pair of unstable D-
branes. Accordingly, the tachyon potential should be chosen to be exponentially suppressed
at large τ , Vf (λ, τ) ∼ exp(−aτ2), which models the annihilation of the branes in the IR.
As the tachyon is dual to the q̄q operator in QCD, the bulk tachyon condensate driven by
the exponential potential gives rise to a chiral condensate and chiral symmetry breaking on
the QCD side.

We do not present explicitly the CS term SCS here, as it is complicated and not needed
for the background analysis — please see [52] for details. It is however essential for the
baryon solutions that we construct below.

2.2 Comparing V-QCD to data: asymptotics

We now discuss in more detail how the potentials Vg(λ), Vf (λ, τ), κ(λ) and w(λ) are
determined. We start by considering the asymptotic constraints as λ→ 0 (UV) or λ→∞
(IR), which arise from comparison to QCD.

In the UV, the field theory becomes weakly coupled and it is far from obvious that
gauge/gravity duality can provide useful predictions. In this region we follow the usual
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practice for bottom-up models and adjust the model by hand so that it mimics closely
the behavior of QCD in the perturbative regime. Such choices are expected to give good
boundary conditions for the more interesting, strongly coupled IR physics.

In order to write down the asymptotics as λ→ 0, we write down the effective potential

Veff(λ, τ) = Vg(λ)− Nf

Nc
Vf (λ, τ) , (2.7)

as well as the expansion of the flavor potential at small tachyon:

Vf (λ, τ) = Vf,0(λ)
[
1− â(λ)τ2 +O

(
τ4
)]

. (2.8)

The UV behavior is in general chosen such that the geometry is asymptotically AdS5 and
the asymptotics of the bulk fields match with the expected (free field) UV dimensions of the
dual operators. Moreover, one can require that the logarithmic running of the dilaton agrees
with the two-loop perturbative running of the QCD coupling. This maps the subleading
terms in the potential Vg and the effective potential Veff to the two-loop β functions of the
YM theory and full QCD, respectively. We implement this constraint here for the gluon
potential Vg only, and choose to fit the other higher order coefficients to low energy data
instead. The explicit definitions of the UV expansions take the form

Vg(λ) = Vg,0
[
1 + Vg,1λ+O(λ2)

]
Veff(λ, τ = 0) = V0

[
1 + V1λ+O(λ2)

]
Vf,0(λ) = W0

[
1 +W1λ+O(λ2)

]
,

κ(λ) = κ0
[
1 + κ1λ+O(λ2)

]
, λ→ 0, (2.9)

w(λ) = w0
[
1 + w1λ+O(λ2)

]
,

â(λ) = 1 + a1λ+O(λ2) .

Here the coefficients Vg,0 and V0 are linked to the radii of the UV AdS5 geometry in the
absence of flavors, and for the full background, respectively:

Vg,0 = 12
`2g
, V0 = Vg,0 − xW0 = 12

`2
. (2.10)

We fixed the normalization of the tachyon field such that â(λ = 0) = 1.6
The requirement that the asymptotic dimension of the q̄q operator equals 3 sets

κ0 = 2`2
3 . (2.11)

The subleading coefficients Vg,1 and Vg,2 are determined by comparing to the YM β function,
which sets

Vg,1 = 11
27π2 , Vg,2 = 4619

46656π4 . (2.12)

The rest of the parameters are left free at this point.
6This is without loss of generality, as we have left the normalization of the tachyon kinetic term free for

the moment.
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The IR (λ→∞) asymptotics of the various functions is chosen such that the model
agrees with various qualitative features. First, the asymptotics of Vg(λ) is adjusted such
that the model has a discrete glueball spectrum with Regge-like linear radial trajectories (i.e.
that the masses behave as m2

n ∼ n as a function of the radial excitation number n). This
requirement automatically implies also color confinement and magnetic screening, [39, 40].

The geometry ends in a “good” IR singularity according to the classification by Gub-
ser [73]. Second, several requirements constrain the asymptotics of the functions in the
DBI action:

• The IR singularity should remain fully repulsive, so that the boundary conditions for
the background and fluctuations are properly determined [44].

• The meson mass spectrum needs to be discrete, admit linear Regge-like radial trajec-
tories, and all meson trajectories should have the same universal slope [46–48].7 The
mass gap of, say, vector mesons should grow linearly with quark mass at large values
of the mass [45].

• The flavor action should vanish in the IR for chirally broken backgrounds, corre-
sponding to the annihilation of the flavor branes in the IR, [72]. Moreover, the
phase diagram as a function of x, T , µ and the θ-angle, should have the qualitatively
correct structure.

These requirements can be met if we choose the flavor action which behaves as

Vf (λ, τ) ∼ e−a(λ)τ2
, τ → +∞ (2.13)

with a(λ) > 0, and require that as λ→∞

Vg ∼ VIRλ
4/3(log λ)1/2, Vf,0 ∼WIRλ

vp ,

κ ∼ κIRλ
−4/3(log λ)1/2, a ∼ aIR, w ∼ wIRλ

−4/3(log λ)wl , (2.14)

with 4/3 < vp < 10/3 and wl > 1/2 (see [46–48] for details).

2.3 Comparing V-QCD to data: fit of parameters

After the asymptotics of the potentials have been fixed, the remaining task is to determine
the leftover freedom by doing a more precise comparison to QCD data. We shall be using
lattice data for the thermodynamics of the YM theory and QCD as well as glueball masses,
and experimental data for meson masses and decay constants.

7There is a certain freedom in this direction. Tachyon condensation induces a mass term for the axial
gauge field in the bulk, and depending on bulk IR asymptotics, it may change the slope of the radial
trajectories for the axial and vector mesons, [74, 75]. It is not yet clear whether this is true in QCD, [76].
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The complete ansatz is given by

Vg(λ) = 12
[
1+Vg,1λ+ Vg,2λ

2

1+cλλ/λ0
+VIRe

−λ0/(cλλ)
(
cλλ

λ0

)4/3√
log(1+cλλ/λ0)

]
(2.15)

Vf (λ,τ) = Vf0(λ)
(
1+τ4

)τp exp
(
−a(λ)τ2

)
(2.16)

Vf0(λ) =W0 +W1λ+ W2λ
2

1+cfλ/λ0
+WIR

(
1+ W̄1λ0

cfλ

)
e−λ0/(cfλ)(cfλ/λ0)2 (2.17)

a(λ) = 1+ 1
2ast [1+tanh(−ash +log(λ/λ0))] (2.18)

κ(λ) = κ0

[
1+ κ̄0

(
1+ κ̄1λ0

cκλ

)
e−λ0/(cκλ) (cκλ/λ0)4/3√

log(1+cκλ/λ0)

]−1
(2.19)

w(λ) =w0

{
1+ w1cwλ/λ0

1+cwλ/λ0
(2.20)

+ w̄0e
−λ̂0/(cwλ) (cwλ/λ0)4/3

log(1+cwλ/λ0)
[
1+was (log (1+cwλ/λ0))4

]}−1

where λ0 = 8π2. We have also chosen vp = 2 in the IR, and set `g = 1, so that the AdS
radius is given by

` = 1√
1− xW0/12

(2.21)

and consequently
κ0 = 2

3 (1− xW0/12) . (2.22)

Requiring agreement with the two-loop β-function of Yang-Mills fixes the subleading
coefficients of Vg in the UV to the values given in (2.12).

We now set x = 2/3, roughly corresponding to QCD with Nf = 2 light quarks and
Nc = 3. The rest of the parameters are fitted to data. In addition to the parameters
of the potentials, we also fit the 5D Planck mass M and the characteristic scale Λ of
the background solutions, which is roughly dual to the scale ΛQCD in field theory, see
appendix B.

The fit is carried out in steps. We fit the various functions sequentially to appropriately
chosen observables as we explain below. Although the best strategy would be a global fit of
all the parameters to all appropriate data, this is numerically very demanding and we are
not yet able to do it.

The function Vg is chosen to be the same as in the fit of [55] where it was determined
through a global fit to the QCD spectrum. Even if it was not directly fitted to the data
from Yang-Mills theory, it does produce a good description of the lattice data for Yang-Mills
thermodynamics [77] and the glueball spectra [78–80], see figure 18 and table 2.

The next function to be fitted is Vf (λ, τ ) at zero tachyon, i.e., Vf0(λ). For this function,
we mostly use the lattice data for QCD thermodynamics at high temperatures and zero

8In this figure, the Planck mass M and the scale parameter Λ were fitted independently of the later fits
to full QCD data. This reflects the dependence on x of these parameters: the values for Yang-Mills are those
with x = 0, whereas for full QCD we take x = 2/3.
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Figure 1. Our result for the thermodynamics of pure Yang-Mills theory (dashed curves) compared
to lattice data interpolated to Nc →∞ [77] (solid curves and error bars). The red, blue, and green
curves show the normalized energy density, pressure, and interaction measure, respectively.

Ratio Model Lattice (Nc = 3) Lattice (Nc =∞)

m0∗++/m0++ 1.52 1.603± 0.042 [78]
1.719± 0.016 [80]

1.835± 0.032 [78]
1.903± 0.018 [80]

m2++/m0++ 1.29 1.346± 0.037 [78]
1.437± 0.011 [80]

1.451± 0.048 [78]
1.497± 0.008 [80]

Tc/m0++ 0.162 0.182± 0.004 [78, 79] 0.181± 0.003 [78, 79]

Table 2. Our results for glueball mass ratios and the ratio of the mass to the critical temperature
compared to lattice results.

density in the chirally symmetric phase. As we are working at zero quark mass in the
holographic model, chiral symmetry is fully restored in this phase, meaning that the tachyon
is identically zero. This means that the thermodynamics only depends on Vf0 through the
effective potential

Veff(λ, τ = 0) = Vg(λ)− xVf0(λ) .

In order to present our results, we introduce a reference value MUV for the Planck mass,
defined by

M3
UV ≡

1
45π2`3

(
1 + 7x

4

)
, x ≡ Nf

Nc
, (2.23)

where x = 2/3. This expression is obtained by requiring agreement of the pressure with the
perturbative QCD result in the limit T → ∞. We fitted this effective potential to latice
data for various fixed values of the Planck mass M while the other scale parameter Λ, which
only affects the temperature scale in the plots, was allowed to vary freely. See figure 2 for
fits with M3/M3

UV = 1.5 (dashed thin black curves) and M3/M3
UV = 4 (solid thin black
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curves).9 Note, that while the fit results are determined mostly by Veff(λ, τ = 0), M , and
Λ, they also depend on other parameters of the theory via the critical temperature of the
phase transition between the chirally-unbroken and the chirally-broken vacuum.

When fitting, we therefore took the critical temperature as an additional fit parameter.
In the next step, the tachyon dependent functions were adjusted such that the critical
temperature is indeed close to the fitted value. The two values will however be slightly
different, and therefore the results for the thermodynamics for the final fit parameters,
which are also shown in figure 2 and will be discussed in detail below, differ from the direct
fits of the effective potential.

The best fits were obtained at low M3/M3
UV . 2. However, in the analysis that follows

we chose a high value M3/M3
UV ' 4. The reason is that such high values lead to a better

description of the spectrum and in particular of the pion decay constant, which, as we
remarked above, are stressed in the fit. We also note that there is a simple flat direction
in this fit as the thermodynamics is unchanged under uniform rescalings of the coupling
λ 7→ cλ in the effective potential. This happens because the kinetic term in (2.4) is invariant
under such rescalings, so that a constant in Veff multiplying λ can be eliminated through a
field redefinition. We use this freedom to ensure that the constructed effective potential
is consistent with the choice of Vg, meaning, in particular, that Vf0 is set to be positive
and monotonic.

The most complicated step in the fit is the next step, where we choose the form of
Vf (λ, τ) at nonzero tachyon, including the function a(λ) in the exponential factor, and
the tachyon kinetic term κ(λ). These functions are probed by the chirally broken vacuum,
which has nonzero bulk tachyon condensate. The main observables are the pion decay
constant, the mass of the ρ meson, and the mass of the lightest scalar flavor nonsinglet (i.e.,
isotriplet for Nf = 2) state. When doing the fit, it is important to keep an eye on the ratio
of the meson masses to the critical temperature.

As it turns out, fitting the thermodynamics and meson spectra simultaneously leads to
tensions in the choices of potentials. The basic issue is that it is difficult to find a choice of
function that would, at the same time, give high enough pion decay constant, heavy enough
scalar states, and the experimentally observed meson mass to critical temperature ratio. In
order to alleviate this tension we introduced an ansatz for the tachyon dependence of Vf
in (2.16) and (2.18), which is somewhat more detailed than those used in previous studies.
This ansatz has the following properties

• It includes a new parameter τp in (2.16), controlling a term which depends on the
tachyon only. We find that increasing τp leads to better fits, so we choose the value
τp = 1 which is close to the maximal possible value. This maximum arises because
Vf (λ, τ) needs to be monotonic in τ at small λ, otherwise no appropriate background
solutions exist.

• The exponent in the tachyon exponential a in (2.16), is taken to be a function of the
dilaton a(λ). a(λ) needs to be constant at both large and small λ, but may have a

9In the right hand plot disentangling the two curves is difficult because they almost overlap.
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step in the middle. The fit result is that the IR value of a(λ) should be significantly
higher than the UV value (that was normalized to one).

In addition, the function κ(λ) has three free parameters (notice that κ0 in the ansatz (2.19)
is given in (2.22)). One of these (in practice κ̄1) is fitted such that the final critical
temperature is close to that obtained from the fit of Veff discussed above. Due to tension
with the fit to thermodynamics, we however choose a value that is a bit higher than obtained
in the fit. The other two parameters κ̄0 and cκ, are used to adjust the function such that
the pion decay constant and the scalar masses are optimal. This means, in practice, taking
κ̄0 to be close to the critical value beyond which the model stops to be confining for mesons
(see [46–48]), and adjusting cκ according to the fit of the masses and the decay constant.

The remaining task is to fit the function w(λ), parametrized in (2.20). The spectra, in
particular the vector and axial meson masses, do depend on this parameter. But as it turns
out, the dependence is rather weak. Therefore, we fit this function to lattice data on the
baryon number susceptibility

χB(T ) = 1
N2
c

∂2p(T, µ)
∂µ2

∣∣∣
µ=0

(2.24)

following [54]. Here µ is the quark chemical potential. For the parameter was in (2.20), we
choose a small value10

was = 2× 10−5 (2.25)

so that this fit is essentially independent of the IR modification (i.e., the factor in the square
brackets in (2.20)). Due to the weak dependence of the spectrum on w(λ) the last two steps
of the fitting procedure need to be done in part in parallel: in practice we determine first
Vf (λ, τ) and κ(λ) using a choice of w(λ) that produces a rough fit to the lattice data for
the susceptibility. When Vf (λ, τ) and κ(λ) are known, we then tune w(λ) to obtain a good
fit as the last step.

The final parameter values are collected in table 3. The fits for the QCD thermodynamics
are shown in figures 2 and 3. The results for the most important meson masses and the fπ
are shown in table 4.

Before discussing the details of the fit results, we give a summary of the observables
the various parameters were fitted to. Notice that the parameters in table 3 were grouped
in six groups. In the first group (top left), we show the final values fixed to fπ and mρ for
the mass scales M and Λ, as well as the values preferred by the fit to the lattice results
for thermodynamics (values in parentheses). The value of M at x = 0 is the one used in
figure 1 for the thermodynamics of pure Yang-Mills.

The parameters of Vg (middle left group) were not fitted here but we used the values
from [55]. The thermodynamics and glueball masses from this choice were however seen to
agree well with lattice data (figure 1 and table 2).

The parameters of the Vf0 potential (the bottom left group) are fitted to the thermody-
namic data of figure 2 and the parameters of the w potential (the bottom right group) are

10This value can also be chosen to be zero without affecting the quality of the fits.
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Parameter Value
M3/M3

UV 4.929 (3.8)
Λ 4107MeV (3350MeV)

M3/M3
UV|x=0 1.4

VIR 1.804
cλ 2.833
W0 2.376
W1 0.04603
W2 0.02546
WIR 1.783
W̄1 4.357
cf 1.463

Parameter Value
τp 1
ast 2.5
ash 1.5
κ̄0 2.429
κ̄1 0.32
cκ 2.0
w0 1.17
w1 52.5
w̄0 200
cw 0.18
was 2× 10−5

Table 3. Choices of model parameters, split in groups. For the first two parameters, the Planck
mass M and the scale Λ, the first set of values are determined by the ρ mass and fπ, whereas the
values in parentheses are the values preferred by the fit to thermodynamics. We also set x = 2/3
and b = 10 for the additional parameter appearing in the CS action [52].
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Figure 2. Fits to the thermodynamics lattice data [81] of QCD with 2+1 flavors. The thin black
solid and dashed curves are direct fits of the effective potential Veff . The dotted blue and solid
magenta curves are final fits with scale parameters M and Λ optimized for thermodynamics and
spectrum data, respectively, with fit parameters given in table 3. These two fits have different
transition temperature as the direct fits of the effective potential; see the text for details.

fitted to the susceptibility in figure 3. The remaining parameters of the tachyon potential
Vf (top right group) were adjusted to obtain a spectrum that mimics that of QCD, as
shown in table 4. The parameters of the κ potential (middle right group) were fitted in
part to the thermodynamics and in part to the spectrum.

Apart from the parameters fitted to data here, there is a single parameter arising from
the CS sector, which was discussed in the companion article [52]. In [52] we derived the
most general CS term which is compatible with known constraints, and which contains
four functions fi(τ) which are only known at τ = 0 and at τ = ∞. We will use here the
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Figure 3. Fits to the lattice data (with 2+1 flavors) [82] for the light quark susceptibility of
QCD. The dotted blue and solid magenta curves are final fits with scale parameters optimized for
thermodynamics and spectrum data, respectively.

Quantity Model Experiment [83]
fπ 92MeV∗ 92MeV
mρ 775MeV∗ 775MeV
mρ∗ 886MeV 1465± 25MeV
ma1 1240MeV 1230± 40MeV
mπ∗ 1260MeV 1300± 100MeV
ma0 639MeV —

Table 4. Fitted low lying (flavor nonsinglet) meson masses and the pion decay constant. The values
of the scale parameters M and Λ were chosen such that the values of fπ and mρ, marked with
asterisks, match exactly the experimental values.

functions derived in [14] arising from flat space string theory, up to the parameter b which
corresponds to a rescaling of the tachyon field in the CS term. The precise functions are
given in equation (3.17) of [52]

f1(τ) = −1
6e
−bτ2

, f2(τ) = i

12(1 + bτ2)e−bτ2
,

f3(τ) = − 1
12e

−bτ2
, f4(τ) = 1

120(2 + 2bτ2 + b2τ4)e−bτ2
. (2.26)

Our results here turn out to have little dependence on different finite values of this additional
parameter; we set b = 10 following [53].

We now discuss some additional details of the fit. Figures 2 and 3, show the final fit to
the thermodynamic data, with the values of M and Λ given in the parentheses in table 3.

The dotted blue curves in figure 2, show the results for the thermodynamic fit to the
equation of state. They differ from the direct fit of Veff , the solid black curve, because
the transition temperature was adjusted differently in the final fit, in order to obtain a
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better agreement with the experimental meson spectrum. As we pointed out above, the
final transition temperature is determined, apart from the effective potential, by the values
of κ̄0, κ̄1 and cκ in table 3.

Finally, the solid magenta curves show the fit for the values of M and Λ that reproduce
the values of fπ and the ρ mass, i.e., the values in table 3 which are not in parentheses.
Their difference to the dashed blue curves therefore demonstrates the remaining tension
between the fits to thermodynamic and spectrum data. Because we are interested in baryons
in the zero temperature vacuum state in this article, we chose to use this latter fit in the
analysis of the properties of the baryon solution in the rest of this paper.

Notice that we only fit the lattice data above the QCD crossover, and in the deconfined
phase of the holographic model, where the phases are separated by a first order phase transi-
tion. The phase transition in the model, is at the same time a deconfining transition as well
as a chiral restoration transition. Since we are in the massless quark case this is in agreement
with universality arguments, [49, 50]. It is possible to obtain higher order phase transitions
by tuning the potentials [84], but such tuning would contradict the other constraints we
have set, in particular the requirement of linear radial glueball trajectories. However, it is
expected that stringy loop corrections, which map to the pressure of pions and other light
hadrons on the QCD side, can make the transition continuous also in the current setup
for the holographic model [49, 50]. Such corrections are neglected in the holographic model,
but may be added as in the second reference in [49, 50]. After the holographic model has
been fitted to lattice data, even simple hadron resonance gas models for the confined phase
equation of state match almost continuously with the model in the deconfined phase [85].

Regarding the meson spectrum, we compare in table 4 the masses of the flavor nonsinglet
mesons (i.e. the fluctuation modes with vanishing trace in flavor space) to the experimental
values of isospin I = 1 mesons from the particle data group tables [83]. We also include the
pion decay constant, and its value as well as the ρ meson mass are used to determine the
final values of M and Λ, as mentioned above.

Of the remaining mesons, the mass of the lowest axial vector and the mass of the first
pion excitation agree very well with the experimental values. The mass of the excitation
of the ρ meson is however too low. As it turns out, requiring the scalar mass to be high
with respect to the ρ mass leads to a situation where excited states in all sectors are rather
close to the ground states. One should however also notice that the state in QCD that we
are comparing is suspected not to be a clean radial excitation of the ρ but to contain a
significant hybrid component [83]. This may in part explain the difference in the numbers.

As we remarked above, the mass of the lowest scalar ma0 is low: it is slightly less than
mρ. We do not attempt to compare this mass directly to the experimental data as the
scalar sector in QCD has a rather involved structure with several states that resemble pion
and kaon molecules. Nevertheless our result is too low to be identified with any known
state in the spectrum. This is perhaps not surprising since similar issues often appear in
simple potential quark models. We do note, however, that the model of [74, 75], which
is closely related to V-QCD, does produce a significantly heavier flavor non-singlet scalar
state. We also remark that we did not try to fit the pion mass as we carried out the fit
at zero quark mass. It would be simple to fit the pion mass accurately by turning on a
nonzero quark mass.
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Figure 4. Potentials for the choice of parameters given in table 3. Notice that the left (right) plot
uses linear (logarithmic) scale for the dilaton λ.

Finally we show the potentials after the fit in figure 4. We remark that all the functions
are simple, i.e. monotonic functions with no rapid changes in behavior. Notice also that
even though we list a high number of parameters in table 3, almost all of these parameters
only appear through the functional form of the functions shown in these plots. As the
asymptotic form of the functions is fixed by comparison of QCD properties independently of
the values of the parameters, they only affect the details of the functions in the middle, i.e.,
for λ/λ0 = O(1). That is, despite the high number of parameters, the details of the model
and therefore predictions for the observables are tightly constrained from the beginning,
and the fit basically amounts to small tuning of the final results.

3 The static soliton

We discuss in this section the bulk soliton dual to a static baryon state at the boundary. A
single static baryon is realised in the bulk as a Euclidean instanton of the non-abelian bulk
gauge fields extended in the three spatial directions plus the holographic direction. We
start by reviewing the main ingredients of the formalism described in [52] that are necessary
for the present discussion. In particular, we describe the ansatz that is used to compute
the instanton solution in the bulk. We then present the numerical results for the static
soliton solution.

3.1 Ansatz for the instanton solution

The ansatz that is relevant for the instanton solution is obtained by requiring that the
solution is invariant (up to a global chiral transformation) under a maximal set of symmetries
of the V-QCD action (and QCD) compatible with a finite baryon number. These symmetries
are cylindrical symmetry (rotations in the 3 spatial directions of the boundary), parity and
time-reversal. The parity and time-reversal symmetries act non-trivially on the fields in
addition to their usual action on space-time. The explicit transformations can be found
in [52].
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Ansatz for the glue sector. As explained in [52] and reviewed in the next subsection,
at leading order in Nc, the glue sector composed of the metric and dilaton is not affected
by the presence of the baryon, and is identical to the vacuum solution. The latter depends
only on the holographic coordinate r

ds2 = e2A(r)(−dt2 + dx2 + dr2) , (3.1)

λ = λ(r) . (3.2)

Gauge fields ansatz. The left and right handed gauge fields are denoted

L = L+ L̂INf , R = R+ R̂INf , (3.3)

where L and R correspond to the SU(Nf ) part of the gauge fields, and L̂ and R̂ to the
U(1) part.

Because for any Nf > 1, the homotopy groups of U(Nf ) and SU(2) are equal

π3 (U(Nf )) = π3 (SU(2)) = Z , (3.4)

a U(Nf ) instanton can be constructed by embedding an SU(2) instanton in U(Nf ). The
SU(2) subgroup couples to a U(1) subgroup via the CS term, in such a way that the baryon
ansatz belongs to a U(2) subgroup of U(Nf )

L = La
σaL
2 + LTI2,L , R = Ra

σaR
2 +RTI2,R , (3.5)

where σaL/R are the Pauli matrices and I2,L/R are the unit matrices in the subgroups.
By imposing invariance under the cylindrical symmetry, time-reversal and parity, the

U(2) instanton ansatz for the gauge fields is

Lai = −1 + φ2(ξ, r)
ξ2 εiakxk + φ1(ξ, r)

ξ3 (ξ2δia − xixa) + Aξ(ξ, r)
ξ2 xixa , (3.6)

Rai = −1 + φ2(ξ, r)
ξ2 εiakxk −

φ1(ξ, r)
ξ3 (ξ2δia − xixa)−

Aξ(ξ, r)
ξ2 xixa , (3.7)

Lar = Ar(ξ, r)
ξ

xa , Rar = −Ar(ξ, r)
ξ

xa , (3.8)

LT
0 = Φ(r, ξ) , RT

0 = Φ(r, ξ) , (3.9)

where i, k = 1, 2, 3 refer to spatial indices, ξ ≡
√
x2

1 + x2
2 + x2

3 is the 3-dimensional spatial
radius and a = 1, 2, 3 is the index for the components in the SU(2) basis. Note that the
gauge field ansatz is fully specified by 5 real functions

Aµ̄ ≡ (Aξ, Ar) , φ ≡ φ1 + iφ2 and Φ , (3.10)

depending on the two variables xµ̄ ≡ (ξ, r), that are used as coordinates on a 2D space.
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The choice of the ansatz partially fixes the gauge but there is still a residual (axial)
U(1) invariance, corresponding to the SU(2) transformation

gL = g†R = exp
(
iα(ξ, r)x · σ2ξ

)
, (3.11)

where
x · σ ≡ xaσa . (3.12)

Under this gauge transformation, Aµ̄ is the gauge field, φ has charge +1 and Φ is neutral

Aµ̄ → Aµ̄ + ∂µ̄α , φ→ eiαφ , Φ→ Φ . (3.13)

Tachyon ansatz. For the tachyon matrix restricted to the SU(2) subgroup T SU(2), the
ansatz compatible with the symmetries of the V-QCD action is of the form

T SU(2) = τ(r, ξ) exp
(
iθ(r, ξ)x · σ

ξ

)
, (3.14)

which reproduces the Skyrmion ansatz for the unitary part of the tachyon. This last point is
more than a coincidence. Indeed, from the near-boundary behavior at r → 0 of the tachyon
field at zero quark mass, the pion matrix in the boundary theory is identified to be

UP (ξ)† ≡ exp
(
iθ(0, ξ)x.σ

ξ

)
. (3.15)

Also, the baryon number in the boundary theory can be shown to be equal to the Skyrmion
number for UP [52]. Note that under the residual U(1) gauge freedom (3.11), the tachyon
phase in (3.14) transforms as

θ → θ − α . (3.16)

To summarize the content of this subsection, the ansatz for the instanton solution (3.6)–
(3.9), and (3.14) contains 7 real dynamical fields

Φ(r, ξ) , φ(r, ξ) ≡ φ1(r, ξ) + iφ2(r, ξ) , Aµ̄(r, ξ) ≡ (Aξ(r, ξ), Ar(r, ξ)) , (3.17)

τ(r, ξ) , θ(r, ξ) ,

that depend on the two coordinates xµ̄ = (ξ, r) and have a U(1) gauge redundancy under
which the fields transform as

φ→ eiαφ , Aµ̄ → Aµ̄ + ∂µ̄α , θ → θ − α . (3.18)

At this point, a useful observation is that there exists a redefinition of the fields (3.17)
such that, in the equations of motion for the flavor fields, the phase θ in the tachyon
ansatz (3.14) can be absorbed into the gauge field. By doing so, the dynamical field content
is reduced to a set of 6 fields invariant under the residual gauge freedom. In practice, if
we define

g(θ) ≡ exp
(
iθ
x · σ
2ξ

)
, (3.19)

then we consider the following redefinition of the gauge fields

LM → L̃M ≡ g(θ)LMg(θ)† + ig(θ)∂Mg(θ)† , (3.20)
RM → R̃M ≡ g(θ)†RMg(θ) + ig(θ)†∂Mg(θ) , (3.21)
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which for the ansatz (3.6)–(3.9) is equivalent to

Aµ̄ → Ãµ̄ ≡ Aµ̄ + ∂µ̄θ , φ→ φ̃ ≡ eiθφ , Φ→ Φ . (3.22)

From (3.18), we see that the gauge fields thus redefined are indeed invariant under the
residual gauge transformation (3.11).

In the following, we find it convenient to use the redefined fields in several places.
When they appear, we always write the tildes so that it is clear that we are using the
gauge-invariant fields.

Lorenz gauge. To compute the baryon solution, we need to solve the bulk equations
of motion with the ansatz (3.6)–(3.9). The equations of motion can be written in terms
of the redefined gauge fields (3.22). In particular, when solving the equations of motion
numerically, we find convenient to work with φ̃ instead of φ as a dynamical field.

However, as far as the 2-dimensional gauge field Aµ̄ is concerned, the equations of
motion written in terms of Ãµ̄ are not elliptic. While this is not problematic per se, the
heat diffusion method that we use to solve the equations numerically requires that they are
in elliptic form.

The equations of motion can be recast in elliptic form if we write them instead in terms
of the gauge variant fields (3.6)–(3.8), and then fix the gauge with the Lorenz condition

∂rAr + ∂ξAξ = 0 . (3.23)

This is the gauge that we shall use in the following.

3.2 Probe and back-reacting solutions

The instanton dual to a baryon state is a configuration of the ansatz of equations (3.6)–(3.9)
and (3.14) that obeys the bulk equations of motion. These are written in appendix F of [52].

As explained in the previous subsection, we shall consider a baryon whose flavor
quantum numbers are a U(2) subgroup of the U(Nf ) flavor group. This implies that the
flavor action (composed of the DBI and CS actions in (2.3)) for the baryon ansatz does
not depend on Nf and is of order Nc. On the other hand, the glue action is of order N2

c .
Likewise, the tachyon modulus background contributes a factor Nf more than the baryon
fields to the bulk action, which can be seen explicitly from (3.25) below. So, at leading
order in the Veneziano limit, both the glue sector (metric and dilaton) and the tachyon
modulus τ are not affected by the presence of the baryon, and remain identical to the
vacuum solution.

We start by computing the numerical baryon solution in this leading order probe regime.
In this case, the dynamical fields are those listed in (3.17) with the exception of the tachyon
modulus τ , which is fixed to its background value. The equations of motion obeyed by
those fields are written in appendix F.1 of [52].

In the Veneziano limit, the back-reaction on the background starts at order O(1/Nc).
At this order, the correction to the glue sector (metric and dilaton) and tachyon modulus τ
can be computed by solving the linearized Einstein-dilaton equations sourced by the probe
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baryon solution, together with the linearized equations for τ . Qualitatively, we do not expect
a dramatic effect on the glue sector from the presence of the baryon. Correspondingly, the
back-reaction on the glue sector is not expected to affect much the flavor structure of the
baryon, which is its most important dynamical property. This motivates the approximation
that we consider in the following, where the baryon is assumed to back-react only on the
tachyon background. The equations of motion in this case are written in appendix F.2 of [52].

In summary, we consider two different regimes for the baryon solution, with different
treatments of the tachyon modulus:

• The probe baryon solution, where the tachyon modulus τ is fixed to its vacuum value.
This corresponds to the solution at leading order in the Veneziano expansion. At this
order, the chiral condensate profile around the baryon is trivial, but the other flavor
properties of the baryon are expected to be qualitatively correct.

• The back-reacted tachyon regime, where the equations of motion for τ are solved,
with the gauge fields and tachyon phase θ fixed to the probe baryon solution. In
the Veneziano limit, this will reproduce the leading order O(1/Nf ) correction to the
tachyon background, assuming no back-reaction on the glue sector. In this case, the
solution obtained for the tachyon modulus should give a good idea of the qualitative
behavior of the chiral condensate in presence of the baryon.

3.3 Boundary conditions

The equations of motion for the fields of the instanton ansatz can be derived in the form
presented in appendix F of [52]. These equations must be subject to appropriate boundary
conditions both at spatial infinity ξ → +∞ and at the UV boundary r → 0. The appropriate
conditions were derived in [52] from the requirement that the baryon mass be finite and the
baryon number equal to 1. Moreover, it was observed that certain (generalized) regularity
conditions must be imposed at the center of the instanton ξ = 0 and in the bulk interior.
We list in table 5 the conditions that are imposed on the fields of the ansatz (3.17) in Lorenz
gauge and refer to [52] for more details about the derivation. The conditions are the same
for the probe and back-reacted cases.

3.4 Baryon mass

Once the soliton solution is found, several static properties of baryons can be computed [37,
62]. The most elementary of these properties is the nucleon mass. This mass is the sum of
a classical contribution and quantum corrections

Mnucleon = M0 + δMQ . (3.24)

The classical contribution is computed from the bulk on-shell action evaluated on the soliton
solution [52]. In terms of the ansatz fields (3.17), its expression in the approximation where
the back-reaction on the glue sector is neglected is given by

M0 = Nc

(
NfSτ + SB

)
− EDBI,vac , (3.25)

where EDBI,vac is the DBI contribution to the vacuum energy

EDBI,vac =
∫

drdξ 4πξ2ρDBI,vac , ρDBI,vac ≡M3
√

1 + e−2Aκ(∂rτ0)2 Vf (λ, τ0)e5A, (3.26)

– 25 –



J
H
E
P
0
5
(
2
0
2
3
)
0
8
1

ξ → 0 ξ →∞ r → 0 r → rIR →∞
∂ξφ̃1 − (Aξ + ∂ξθ)→ 0 ξ1/2φ̃1 → 0 φ̃1 → sin θ φ̃1 → 0

1+φ̃2
ξ → 0 ξ1/2

(
φ̃2 − 1

)
→ 0 φ̃2 → − cos θ ∂rφ̃2 → 0

∂ξAξ → 0 ∂ξAξ → 0 Aξ → 0 Aξ → 0

Ar → 0 ξ3/2
(
Ar − π

rIR

)
→ 0 ∂rAr → 0 ∂rAr → 0

∂ξΦ→ 0 Φ→ 0 Φ→ 0 ∂rΦ→ 0
θ → 0 θ → π

(
1− r

rIR

)
∂rθ +Ar → 0 θ → 0

∂ξτ → 0 τ → τb(r) τ → 0 τ → τb(rIR)

Table 5. Boundary conditions in Lorenz gauge. Here, τb(r) is the vacuum profile for the tachyon
modulus. L and rIR are the spatial and IR cut-offs, respectively. These are introduced to solve the
equations of motion numerically.

with τ0(r) the vacuum profile of the tachyon field. The baryon contribution to the bulk
action is split into two pieces

Sτ =
∫

drdξ 4πξ2ρτ , SB =
∫

drdξ 4πξ2ρB , (3.27)

ρτ ≡M3
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ)e5A , (3.28)

ρB ≡M3
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA

×
(

e2Aκ(λ)τ2
(

e2A∆rrÃ
2
r +

(
1− e2A∆ξξ

)
Ã2
ξ + (φ̃+ φ̃∗)2

2ξ2

− 2e2A∆ξrÃrÃξ

)

+ w(λ)2
(1

8e2A
[
∆rr

(
1− e2A∆ξξ

)
− e2A∆2

ξr

]
(Fµ̄ν̄)2

+ 1
2ξ2

((
1− e2A∆ξξ

)
|Dξφ|2 + e2A∆rr |Drφ|2

)
+
(
1− |φ|2

)2
4ξ4 − 1

2ξ2 e2A∆ξr(Drφ
∗Dξφ+ h.c.)

−
(
e2A∆rr(∂rΦ)2 +

(
1− e2A∆ξξ

)
(∂ξΦ)2

− 2e2A∆ξr∂ξΦ∂rΦ
)))

+ 1
π2ξ2 ε

µ̄ν̄∂µ̄Φ

×
[
(f1(τ) + f3(τ))

(
Ãν̄ + 1

2(−iφ∗Dν̄φ+ h.c.) + 1
4i∂ν̄(φ̃2 − (φ̃∗)2)

)
+1

2(3if2(τ)− f1(τ)− f3(τ))(φ̃+ φ̃∗)2Ãν̄

]
. (3.29)
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The covariant quantities Fµ̄ν̄ and Dµ̄φ are defined in appendix A.5 and the symbol ∆µ̄ν̄

in (E.14)–(E.16). The fi(τ) are the Chern-Simons potentials, whose expressions are given
in (2.26). Note that, as far as flavor fields are concerned, Sτ depends only on the tachyon
modulus τ , whereas SB contains the dependence on the baryon fields. In particular, in the
leading order probe baryon regime, only SB contributes to M0. The total bulk Lagrangian
density will be denoted by ρM

ρM ≡ Nc(Nfρτ + ρB)− ρDBI,vac . (3.30)

Computing the quantum corrections δMQ requires to take the sum of the ground state
energies for the infinite set of bulk excitations on the instanton background, and subtract
the vacuum energy. It is not known how to do this calculation, so we can only assume that
the classical mass gives the dominant contribution. Note that, in terms of the expansion in
Nc, the classical mass is of order O(Nc), whereas the quantum corrections start at order
O(1). So the statement that the classical contribution dominates is correct at least in the
large Nc limit.

The experimental spectrum of baryons contains the nucleons, but also many excited
states, such as the isobar ∆. The calculation of the spin dependence of the baryon mass
spectrum is the subject of section 4.

3.5 Numerical results

We present in this subsection the numerical solution for the static baryon configuration.
The equations of motion written in appendix F of [52] are solved with the gradient descent
method,11 imposing the boundary conditions of table 5. The same kind of method was
used in [35, 38] to compute baryon solutions in other holographic models. We focus here on
the results and give more details about the numerical method in appendix C. We start by
presenting the leading order probe baryon solution and then discuss the back-reaction. We
recall that the back-reacting solution is computed assuming no back-reaction on the color
sector (metric and dilaton).

3.5.1 Probe baryon solution

We start with the numerical results obtained for the probe baryon solution. In this case
the modulus of the tachyon field τ is fixed to its background value, and the equations of
motion take the form presented in appendix F.1.3 of [52].

The instanton number and bulk Lagrangian density in the (ξ, r)-plane are presented
in figure 5, where all dimensionful quantities are expressed in units of the classical soliton
mass (3.25). The bulk Lagrangian density is given by (3.30), whereas the expression for
the instanton number density can be obtained by dividing equation (6.7) of [52] by 4πξ2

ρNi ≡
1

8π2ξ2 ε
µ̄ν̄
[
Fµ̄ν̄ + ∂µ̄

(
− iφ∗Dν̄φ+ h.c.

)]
. (3.31)

Figure 5 shows the expected behavior for a solitonic configuration, that is the densities are
confined to a region of finite extent in the bulk. The size of this lump in the ξ direction

11The name heat diffusion method also appears in the literature.
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Figure 5. Instanton number (3.31) (left) and bulk Lagrangian (3.30) (right) density for the static
soliton solution in the probe baryon regime. All quantities are expressed in units of the classical
mass of the soliton (3.25). The center of the soliton is located at ξ = 0 where the density diverges as
ξ−1. The UV boundary is located at r = 0. The green line in the right plot indicates the boundary
of the region over which the mean value is computed to define the relative difference in figure 8.

gives an estimate of the baryon size, which is of the order of M−1
0 . The numerical value for

the classical soliton mass M0 is obtained by integrating the Lagrangian density in figure 5

M0 '
Nc

3 × 1150MeV . (3.32)

This number is expected to give the leading contribution to the nucleon mass in the V-QCD
model with the parameters of table 3. As discussed above, the full result for the nucleon
mass also receives quantum corrections (3.24) whose evaluation is an unsolved problem.

In figure 6, we also plot the profile at the boundary (r = 0) for the non-abelian phase θ
of the tachyon field (3.14). As stated above, the pion matrix in the boundary theory (3.15)
reproduces12 the skyrmion hedgehog ansatz, and the associated skyrmion number is equal
to the baryon number. Figure 6 should therefore be compared with the corresponding plot
of the pion field in the Skyrme model skyrmion solution in the chiral limit [86]. This plot is
reproduced13 in figure 6. It makes it clear that the shape of the boundary skyrmion is close
to that of the Skyrme model. Note, in particular, that the asymptotic behavior is the same:

θ(0, ξ) ∼
ξ→0

ξ , θ(0, ξ)− π ∼
ξ→∞

1
ξ
. (3.33)

This can be seen from the asymptotic analysis in appendix G of [52].

3.5.2 Back-reacted tachyon

We now discuss the numerical results obtained when taking into account the back-reaction
on the tachyon field. In this case, the gauge fields and tachyon phase θ are fixed to the

12This comparison is well defined even though the phase θ transforms under the residual U(1) gauge
freedom: the boundary gauge transformations of UP match exactly those of the pion matrix in the Skyrme
model, and the gauge is fixed in both cases by requiring the absence of sources for the gauge fields.

13Notice that θ goes from 0 to π, instead of π to 0 for the skyrmion, because the boundary value of the
tachyon field is the conjugate of the pion matrix (3.15). So it is actually π − Fskyrmion that is plotted in
figure 6.
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Figure 6. Radial profile of the non-abelian phase of the tachyon field (3.14) at the UV boundary
(blue line). The dashed gray line indicates the asymptotic value π. For comparison, we also plotted
in black the profile for the pion fields in the skyrmion solution of the Skyrme model. The parameters
of the Skyrme model were chosen such that fπ and the soliton mass are equal to those of the V-QCD
model, with the parameters of table 3.

probe baryon solution, and the equation of motion for the tachyon modulus τ is solved on
this background. The corresponding equation of motion for τ is written in appendix F.2
of [52].

For a back-reacted tachyon, the chiral condensate profile around the baryon can be
computed from the near-boundary behavior of the tachyon modulus

τ(r, ξ) ∼
r→0

Σ(ξ) r3 , (3.34)

where Σ is proportional to the modulus of the chiral condensate
∣∣∣〈ψ̄ψ〉∣∣∣. The relative

difference of Σ(ξ) with the vacuum value Σ(∞) is plotted in figure 7. This shows the
expected behavior, where the chiral symmetry tends to be restored inside the baryon. Note
that the result that is shown is valid in the limit of large Nc and large Nf . There is a priori
no guarantee for it to be a quantitatively accurate approximation when a small number of
flavors (for example Nf = 2 or 3) is substituted in the leading large Nf result. So, at small
Nf and Nc, figure 7 should not be considered as more than an indication of the qualitative
behavior of the chiral condensate in presence of the baryon.

Another interesting information that can be extracted from this back-reacted tachyon
solution, is the effect of the back-reaction on the soliton mass (3.25). The leading or-
der correction to the on-shell Lagrangian density due to the back-reaction on τ can be
expressed as

N−1
c δρM = 1

2Nfδτ
2 δ

2Sτ
δτ2

∣∣∣∣
probe

+ δτ
δSB
δτ

∣∣∣∣
probe

+O
(
N−2
f

)
, (3.35)
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Figure 7. Chiral condensate profile around the static soliton solution in the back-reacted tachyon
regime, where the baryon center is at ξ = 0. The plotted quantity is the relative difference between
the modulus of the chiral condensate and the chiral condensate in vacuum. In the Veneziano limit
Nc, Nf →∞, the difference is of order O(1/Nf ), so that it has to be multiplied by Nf in order to
obtain a finite result. We also divide by 3, which means that what the figure shows is the large Nf
result, where the value Nf = 3 is substituted for the number of flavors. As discussed in the text,
there is no reason for this result to be quantitatively accurate for Nf = 3, but it gives an indication
of the qualitative behavior.

where δτ refers to the order O
(
N−1
f

)
correction to τ , and Sτ and SB are defined in (3.27).

Note that we dropped the terms that vanish on-shell

δSτ
δτ

∣∣∣∣
probe

= δSB
δϕB

∣∣∣∣
probe

= 0 , ϕB ∈ {Φ, φ, Aµ̄, θ} . (3.36)

Equation (3.35) can be simplified by using the back-reacted equations of motion for the
tachyon modulus

δ(NfSτ + SB)
δτ

∣∣∣∣
back-react

= 0 , (3.37)

which, at leading order in Nf , implies that

δSB
δτ

∣∣∣∣
probe

+Nfδτ
δ2Sτ
δτ2

∣∣∣∣
probe

= O
(
N−1
f

)
, (3.38)

and finally

N−1
c δρM = −1

2Nfδτ
2 δ

2Sτ
δτ2

∣∣∣∣
probe

+O
(
N−2
f

)
. (3.39)

Although the correction to the mass (3.39) is suppressed by a factor O(1/Nf ) in the
Veneziano limit, it can be sizeable when a realistic value is substituted for Nf . Figure 8
shows the relative difference between the bulk Lagrangian density for the back-reacted
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solution and the probe baryon solution, when setting Nf = 3 in the leading large N result.
As for the chiral condensate, there is no reason for the result to be quantitatively accurate
at Nf = 3, but it gives an indication of the qualitative behavior.

We should also emphasize that the definition of the relative difference which is shown
in figure 8 is not the standard one, where the difference of the two quantities that are
compared is divided by the quantity of reference (as in (3.43) for instance). The usual
definition of the relative difference is not appropriate to compare the densities over the
(ξ, r) plane, since the place where the densities go to zero is not exactly the same for the
probe and back-reacted solutions. Instead, we define the relative difference by dividing the
difference of the two densities by a reference value ρ̄M

∆relρM ≡
ρM,back-reacted − ρM,probe

ρ̄M
. (3.40)

ρ̄M is defined as the mean value of the probe density over the region of the bulk where most
of the density is contained. To be more precise, the criterion that we used to define the
relevant region is given by

3
Nc
ρM ≥ 0.7M4

0 , (3.41)

whose boundary is shown by the green line in the right of figure 5. In practice, the mean
value is then computed numerically by averaging over the cells contained in the given region,
denoted A here

ρ̄M = 1
Ncells

∑
i∈A

ρM (i) , (3.42)

where Ncells is the number of grid cells contained in A.
Figure 8 indicates that there is a region near the UV boundary where the back-reacted

Lagrangian density decreases with respect to the probe solution. This is understood easily
as coming from the decrease of the tachyon modulus in presence of the baryon, which is
dual to the decrease of the chiral condensate observed in figure 7. Another noticeable
feature of figure 8 is the shift of the baryon Lagrangian density towards the IR. This can
be understood as another consequence of the partial chiral restoration at the baryon center.
Indeed, the interaction of the baryon with the tachyon modulus results in a repulsive force
from the IR. So a decrease of the tachyon modulus weakens this force, and implies the
observed shift towards the IR.

Even at small values of Nf , the relative difference between the probe and back-reacted
solutions is observed to be relatively small numerically, of the order of a few 10%. This is
also the case at the level of the soliton masses

Nf

3
M0,back-reacted −M0,probe

M0,probe
' −10% . (3.43)

Here again, the number in (3.43) is the leading large Nf result, that cannot precisely be
trusted for small Nf and should be considered as indicative.
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Figure 8. Relative difference of bulk Lagrangian density for the static soliton solution in the probe
baryon and the back-reacted tachyon regime. The relative difference is defined as the difference of
the two densities divided by the mean value of the probe density (3.42). The mean value is taken
over the area delimited by the green line in the right of figure 5, which is the region where the density
is substantially different from zero. The ratio is multiplied by Nf in order to obtain something finite
in the Veneziano limit. The UV boundary is located at r = 0 and the baryon center at ξ = 0.

4 Quantization of the isospin collective modes

The baryon states of equal half-integer spin and isospin are found by quantizing the soliton
collective coordinates (or zero modes) around the static solution [86]. These modes are

• The spatial position of the soliton ~X = (X1, X2, X3).

• The isospin orientation of the soliton, encoded in an SU(Nf )V matrix14 V .

The baryon solution can be deformed in many ways in addition to these modes, such as
changing the position of the soliton in the holographic direction, or the size of the soliton [19].
Quantizing such modes leads to a tower of excited baryon states in each spin sector. In the
following, we focus on the lowest states of these towers and consider only the quantization
of the zero modes.

There is no guarantee in principle that the rotation modes can be studied as those of a
rigid rotor, independently from the dilation mode of the soliton. In [19], it was actually
found that the geometry of the collective modes manifold for dilation and isospin rotation
had to be such that the modes are rather quantized as a 4D harmonic oscillator, with energy
levels given by equation (5.24) in this reference. The rigid rotor is a good approximation to
the harmonic oscillator only when its fundamental frequency is very large compared with

14The relevant collective coordinates are actually only a subgroup of the isospin group SU(Nf )V . For
instance, for Nf = 2 they are the elements of SU(2)V /Z2 and for Nf = 3, the elements of SU(3)V /U(1)Y ,
where U(1)Y refers to the strong hypercharge subgroup.
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its inverse moment of inertia. In QCD, this condition is fulfilled in the large Nc limit. This
property is reproduced in the holographic QCD model of [19], as is manifest from the large
Nc limit of the energy levels, equation (5.31) in [19]. Their equation (5.24) also indicates
that the rigid rotor (large Nc) approximation is better for lower spins. In the following,
we assume that the rotation modes can be treated as those of a rigid rotor. According to
the previous discussion, once we set the number of colors to its physical value Nc = 3, this
should not induce too large errors for the low spin modes that exist in real QCD (s = 1/2
and 3/2). Note that the same rigid rotor approximation was considered in the context of
the hard wall model [57].

The spatial position of the baryon is actually irrelevant to the study of baryon states,
so it will be kept fixed at ~X = 0. We are therefore left with the problem of quantizing the
isospin rotation mode of the soliton. To do so, we consider a configuration where the soliton
isospin orientation V (t) evolves with time, but sufficiently slowly to be approximated by
the ansatz

L(t) = V (t)L(sol) (r, ξ)V (t)† − idV (t)V (t)† , (4.1)
R(t) = V (t)R(sol) (r, ξ)V (t)† − idV (t)V (t)† , (4.2)
T (t) = V (t)T (sol) (r, ξ)V (t)† , (4.3)

where the superscript (sol) refers to the field evaluated in the static soliton solution. V (t)
is parametrized as

V (t) ≡ exp (it ωaλa) , (4.4)

the λa’s being the generators of SU(Nf ), and the angular velocity is identified to be

ωaλa = −iV (t)†dV (t)
dt . (4.5)

We assume that the rotation is stationary

dωa
dt = 0 , (4.6)

and slow, so that ω can be treated as a perturbation on top of the static soliton background.
Also, from now on we restrict to the case of Nf = 2. This means that we shall quantize
only a subset of the full isospin rotations. Specifically, we restrict to V (t) ∈ SU(2)V , in the
same subgroup as the baryon solution.

The starting point for the quantization of the isospin rotation modes is the classical
Lagrangian that controls their dynamics. The latter is obtained in the next section by
substituting the slowly rotating ansatz (4.1)–(4.3) into the bulk action (2.3) and evaluating
it on-shell for the slowly rotating soliton solution

Lrot = −M0 + 1
2λ~ω

2 , (4.7)

where M0 is the mass of the static soliton and λ its moment of inertia. The classical
Hamiltonian is then computed, and quantized in the canonical way described in appendix F.
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As a result, the eigenstates of the Hamiltonian are shown to have same spin and isospin
and its eigenvalues are given by

Es = M0 + 1
2λs(s+ 1) , (4.8)

where s refers to the spin. In particular, the nucleon states correspond to s = 1/2 and the
isobar ∆ to s = 3/2.

5 The rotating soliton

This section is dedicated to the calculation of the rotating soliton solution, from which
can be computed the moment of inertia λ that controls the splitting of the baryon energy
levels (4.8). We start by determining the ansatz relevant to the solution, before deriving
the equations of motion for the fields of the ansatz as well as the boundary conditions they
should obey. We finally describe the numerical solution for the rotating solution. We work
with a slowly rotating soliton, at first order in the rotation velocity ω. Also, we recall that
we only consider the quantization of the subsector of the chiral group that contains the 2
flavors of the soliton solution.

5.1 Ansatz for the rotating instanton

Substituting the naive ansatz (4.1)–(4.3) with V (t) ∈ SU(2) into the equations of motion,
reveals that this ansatz in itself cannot solve the time-dependent equations of motion. The
reason is that the components (L/R)a0 and (LT/RT)r,i in (3.5) are turned on at linear order
in ω [57], as is the abelian phase of the tachyon (detT − 1). Accordingly, the ansatz (4.1)
for the gauge fields should be supplemented by

L0(t) = V (t)L(rot)
0 (r, ξ; ~ω)V (t)† − i∂0V (t)V (t)† , (5.1)

LT
r,i(t) = L

T,(rot)
r,i (r, ξ; ~ω) , (5.2)

and likewise for the right-handed fields. Also, the ansatz for the tachyon field (4.3) should
be modified to

T (t) = V (t)T (rot)(r, ξ; ~ω)V (t)† , (5.3)

where L(rot) and (detT (rot) − 1) start at linear order in ω.
To determine relevant ansätze for L(rot) and T (rot), we proceed as in the case of the

static soliton [52] and impose the maximal number of symmetries of the bulk action. In
the rotating case, this includes the cylindrical symmetry and parity. For Nf = 2 flavors,
the cylindrical symmetry of the static soliton solution (3.6)–(3.9) implies that a constant
isospin rotation of the soliton is equivalent to a constant spatial rotation. So the soliton
rotating in isospin space can be seen as rotating instead in physical space, with angular
momentum ~ω. In particular, ~ω transforms as a pseudo-vector in 3-dimensional space.15 At

15Strictly speaking, ~ω is a definite 3-dimensional vector, and the rotation breaks the cylindrical symmetry.
However, as is standard for broken symmetries, the appropriate ansatz can be derived by assuming that ~ω
transforms as a pseudo-vector (in that case, ~ω is regarded as a field, called a spurion).
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linear order in ~ω, the cylindrically symmetric ansatz for the gauge fields of the rotating
soliton is then [21, 57]

(L/R)i = V (t)(L/R)(sol)i V (t)† , (L/R)r = V (t)(L/R)(sol)r V (t)† , (5.4)

(L/R)T0 = (L/R)T,(sol)0 ,

(L/R)0 = V (t)
(
ωb

[
χ

(L/R)
1 (r, ξ)εabcx

c

ξ
+ χ

(L/R)
2 (r, ξ)

(
xaxb

ξ2 − δ
ab

)]
(5.5)

+ v(L/R)(r, ξ)
ξ2 (~ω.~x)xa + ωa

)
σa

2 V (t)† ,

(L/R)Ti = ρ(L/R)(r, ξ)
ξ

(
ωi − (~ω · ~x)xi

ξ2

)
+B(L/R)

ξ (r, ξ)(~ω · ~x)xi
ξ2 +Q(L/R)(r, ξ)εibcωb

xc

ξ
,

(5.6)

(L/R)Tr = B(L/R)
r (r, ξ)~ω · ~x

ξ
, (5.7)

where the superscript (sol) refers to the field in the static soliton configuration,16 and we
introduced the new 2-dimensional fields

χ
(L/R)
1,2 , v(L/R) , ρ(L/R) , B

(L/R)
µ̄ , Q(L/R) . (5.8)

Imposing symmetry under the parity transformation (the full transformation P = P1 ·P2 in
terms of the definitions in appendix A)

P : ~x→ −~x , L↔ R , ~ω → ~ω , (5.9)

relates the right-handed and left-handed fields as

χ1 ≡ χL1 = −χR1 , χ2 ≡ χL2 = χR2 ,

v ≡ vL = vR ,

ρ ≡ ρL = −ρR ,
Bµ̄ ≡ BL

µ̄ = −BR
µ̄ ,

Q ≡ QL = QR .

(5.10)

For the tachyon field, the ansatz that has the right transformation properties under 3-
dimensional rotations and parity takes the form

T = V (t) exp
(
iζ(r, ξ)~ω · ~x

ξ

)
T (sol)V (t)† , ζ(r, ξ) ∈ R . (5.11)

The ansatz thus defined is invariant under a U(1)s × U(1)r residual gauge freedom,
where the first factor was already present in the static case (3.11), as denoted by the

16At order O(ω2), the static fields will receive corrections from the rotation. These could in principle
contribute to the moment of inertia in (5.21). It is not the case because the static fields sit at a saddle point
of the static action. The leading contribution to the Lagrangian (5.21) from the O(ω2) correction to the
static fields therefore starts at order O(ω4), corresponding to an O(ω2) correction to the moment of inertia.
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subscript “s”, and the second factor appears in the rotating solution, as denoted by the
subscript “r”. This new factor is an axial U(1) gauge freedom that is a subgroup of the
chiral U(1)A

ĝL = ĝ†R = exp
(
iβ(r, ξ)~ω · ~x

ξ

)
, (5.12)

under which only Bµ̄, ρ and ζ transform, with transformation rules

Bµ̄ → Bµ̄ + ∂µ̄β , ρ→ ρ+ β , ζ → ζ − 2β . (5.13)

Also, the complex scalar field
χ ≡ χ1 + iχ2 , (5.14)

transforms as a charge 1 complex scalar field under U(1)s in (3.11).
In the case of a rotating soliton, one should in principle consider the coupling to

the holographic axion A, dual to the boundary Yang-Mills instanton density operator
Tr (G ∧G) [39, 40, 47, 69]. This coupling appears because of the additional residual U(1)A
gauge freedom (5.12), which turns on the abelian phase of the tachyon ζ and the axial
part of the abelian gauge field Bµ̄ and ρ. However, as for the other color fields, the action
of the baryon on the axion is suppressed by a factor O

(
N−1
c

)
in the large Nc limit. The

rotating baryon solution will therefore decouple from the axion field at leading order in Nc.
At next-to-leading order, the axion will contribute to the order O

(
N−1
c

)
correction to the

moment of inertia.17 In the following, we consider the same approximation as in the static
case and ignore the action on the color sector. This implies in particular that we set the
axion to 0.

As in the case of the static soliton, there exists a redefinition of the ansatz fields such
that the tachyon phases θ and ζ are absorbed into the gauge fields

χ̃ ≡ eiθχ , B̃µ̄ ≡ Bµ̄ + 1
2∂µ̄ζ , ρ̃ ≡ ρ+ 1

2ζ . (5.15)

The resulting fields are invariant under the residual gauge freedom (3.11) and (5.12). In
addition to this field redefinition, for later use it is also convenient to define the field strength
for the Bµ̄ gauge field

Bµ̄ν̄ ≡ ∂µ̄Bν̄ − ∂ν̄Bµ̄ , (5.16)

and the covariant derivative for the ρ and χ field

Dµ̄ρ = ∂µ̄ρ−Bµ̄ , Dµ̄χ = (∂µ̄ − iAµ̄)χ . (5.17)

Lorenz gauge. Because we obtain the static soliton solution by fixing the residual gauge
freedom (3.11) to the Lorenz gauge

∂rAr + ∂ξAξ = 0 , (5.18)

we work in the same gauge for the rotating soliton. Also, we fix the additional gauge
freedom (5.12) by imposing a similar Lorenz condition for Bµ̄

∂rBr + ∂ξBξ = 0 . (5.19)
17The g0i component of the metric will also be turned on by rotation, and contribute at order O

(
N−1
c

)
.
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For this choice, the equations of motion for Bµ̄ (E.8) and (E.9) are elliptic and can be
solved numerically by a heat diffusion method upon setting the right boundary conditions.

Note that the Lorenz condition (5.19) leaves a residual gauge freedom of the form

Bµ̄ → Bµ̄ + ∂µ̄f , ∂2
r f + ∂2

ξ f = 0 , f(0, ξ) = 0 . (5.20)

Part of the choice of boundary conditions will correspond to the choice of residual gauge
freedom (5.20). The explicit choice that we make is discussed below, in section 5.3.

5.2 Moment of inertia and equations of motion

The Lagrangian for the rotational collective modes of the soliton is obtained by substituting
the ansatz (5.4)–(5.7) and (5.11) into the bulk action (2.3). This yields the Lagrangian of
a rigid rotor

Lrot = −M0 + 1
2λ~ω

2 , (5.21)

where M0 is the mass of the static soliton (3.25), and we defined the moment of inertia

λ ≡ λDBI + λCS , (5.22)

λDBI =
∫

drdξ 4πξ2ρλ,DBI , λCS =
∫

drdξ 4πξ2ρλ,CS , (5.23)

ρλ,DBI ≡ −
2
3M

3NcVf (λ, τ)eA
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)

×
(

e2Aκ(λ)τ2
(

4e2A∆rrB̃
2
r + 4(1− e2A∆ξξ)

[
B̃2
ξ + 2

ξ2 ρ̃
2
]

− 8e2A∆ξrB̃ξB̃r − 2χ̃2
1

)
− w(λ)2

(1
2(1− e2A∆ξξ)|Dξχ|2 + 1

2e2A∆rr|Drχ|2

− 1
2e2A∆ξr (Dξχ

∗Drχ+ h.c.) + 1
4(1− e2A∆ξξ)(∂ξv)2

+ 1
4e2A∆rr(∂rv)2 − 1

2e2A∆ξr∂rv∂ξv

+ 1
2ξ2 (v2 + |χ|2)(1 + |φ|2)− v(χφ∗ + h.c.)

− 2e2A∆rrξ
−2(Drρ)2 − 2(1− e2A∆ξξ)ξ−2(Dξρ)2

+ 4e2A∆ξrξ
−2DrρDξρ− 2e2A∆rr(∂rQ)2

− 2(1− e2A∆ξξ)(∂ξQ)2 + 4e2A∆ξr∂rQ∂ξQ

− 2ξ−2Q2
[
2− e2Aξ

(
∂ξ∆ξξ + e2A∂r(e−2A∆ξr)

) ]
− 1

2
[
e2A∆rr(1− e2A∆ξξ)− e4A∆2

ξr

]
(Bµ̄ν̄)2

))
, (5.24)
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where the ∆ symbol is defined in appendix E,

ρλ,CS ≡
2Nc

3π2ξ2 ε
µ̄ν̄
(
Dµ̄ρ

(
(f1(τ) + f3(τ))(Dν̄φχ

∗ + h.c.)

− 2(2f3(τ)− f1(τ))
(
Dν̄ φ̃+ h.c.

)
χ̃1

− 4(f1(τ)− f3(τ)− if2(τ))Ãν̄ φ̃1χ̃2
)

+ ρ̃
(
2(f3(τ)− if2(τ))

(
− Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(i∂ν̄φχ∗ + h.c.)

)
− ∂ν̄τf ′1(τ)(Dµ̄φχ

∗ + h.c.) + ∂ν̄τf
′
3(τ)(Dµ̄φ̃χ̃+ h.c.)

− 2i∂ν̄τf ′2(τ)Ãµ̄φ̃1χ̃2
)

+ 2∂ν̄τ(f ′1(τ)− f ′3(τ))Dµ̄ρ χ̃1φ̃1

+ ∂µ̄(ξQ)
(
(f1(τ) + f3(τ)) (iχ∗Dν̄φ+ h.c.)

+ 4(f1(τ) + f3(τ)− 3if2(τ))Ãν̄ φ̃1χ̃1
)

+ 2∂ν̄τ(f ′1(τ) + f ′3(τ))∂µ̄(ξQ)φ̃1χ̃2

− 8(f1(τ) + f3(τ))ξQDµ̄ρ∂ν̄Φ + 8∂ν̄τ(f ′1(τ) + f ′3(τ))ξQρ̃∂µ̄Φ

+ v
(
Bµ̄ν̄

[1
2(f1(τ) + f3(τ)) (|φ|2 − 1) + (f1(τ)− f3(τ)− if2(τ))φ̃2

1

]
+ (f1(τ) + f3(τ))ξQFµ̄ν̄ − 2(f3(τ)− if2(τ))B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1

)
+ v∂ν̄τ

(
(f ′1(τ) + f ′3(τ))

(
B̃µ̄(1− |φ|2)− 2ξQÃµ̄

)
+ 2if ′2(τ)B̃µ̄φ̃2

1

))
. (5.25)

We recall that the tildes on the static fields refer to the redefined fields that contain the
non-abelian tachyon phase θ (3.22). The total bulk Lagrangian density for the rotating
fields is denoted by ρλ

ρλ ≡ ρλ,DBI + ρλ,CS . (5.26)

The equations of motion for the fields of the rotating soliton ansatz are obtained by
extremizing the moment of inertia (5.22) with respect to small deformations of the fields.
They are presented in appendix E.

5.3 Boundary conditions

We present in table 6 the boundary conditions that are imposed on the fields of the rotating
soliton ansatz (5.4)–(5.7) and (5.11), which obey the equations of motion (E.5)–(E.12). We
discuss separately the 4 boundaries of the (ξ, r) space

• UV. In the UV limit r → 0, the condition that v, χ̃, Bξ, ρ and Q should vanish comes
from requiring that there is no source for the gauge fields at the boundary. Moreover,
the condition for Br comes from imposing the Lorenz gauge.
The condition for ζ is somewhat more subtle than the other fields. The reason is
that, because the quark mass is set to 0, there is no source term for the tachyon
field. The abelian phase ζ is therefore not associated with any source. At the level of
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ξ → 0 ξ → L→∞ r → 0 r → rIR →∞
v + χ̃2 → 0 v → −1 v → −1 ∂rv → 0
χ̃1 → 0 χ̃1 → 0 χ̃1 → − sin θ χ̃1 → 0
∂ξχ̃2 → 0 χ̃2 → −1 χ̃2 → cos θ ∂rχ̃2 → 0
∂ξBξ → 0 ∂ξBξ → 0 Bξ → 0 Bξ → 0
Br → 0 Br → 0 ∂rBr → 0 ∂rBr → 0

∂ξρ−Bξ → 0 ρ→ 0 ρ→ 0 ρ→ 0
Q→ 0 Q→ 0 Q→ 0 ∂rQ→ 0
ζ → 0 ζ → 0 rζ → 0 ζ → 0

Table 6. Boundary conditions for the rotating soliton solution in Lorenz gauge.

the near-boundary behavior, it translates into the fact that the boundary value of ζ
appears in front of the vev term for the tachyon field

T (r, ξ) =
r→0

`Σ(ξ) exp
(
iζ(0, ξ)~ω · ~x

ξ
+ iθ(0, ξ)x · σ

ξ

)
r3(− log (rΛ))−c (1 + · · · ) ,

(5.27)
where the dots refer to terms that go to 0 near the boundary; Σ(ξ) is proportional
to the modulus of the chiral condensate in the boundary theory

∣∣∣〈ψ̄ψ〉∣∣∣. The UV
condition for ζ will therefore not come from a choice of source at the boundary, but
rather from the requirement that the solution be regular. The equation of motion for
ζ (E.12) has two linearly independent solutions, one of which behaves as r−2 near the
boundary and the other as r0. Requiring that

rζ →
r→0

0 , (5.28)

will therefore select the regular behavior.

• ξ → L (L → ∞). Requiring that the moment of inertia (5.22) should be finite
imposes that, as ξ →∞

ξ3/2χ̃1 → 0 , ξ3/2∂µ̄χ̃2 → 0 , ξ3/2∂µ̄v → 0 , (5.29)

ξ3/2
(
Bµ̄ + 1

2∂µ̄ζ
)
→ 0 , ξ1/2

(
ρ+ 1

2ζ
)
→ 0 , ξ3/2∂µ̄Q→ 0 . (5.30)

For regularity ∂ξζ should go to 0 as ξ →∞ so Bξ should also tend to 0 from (5.30).
Then the Lorenz gauge condition in the limit where ξ →∞ reads

∂rBr = 0 = −1
2∂

2
r ζ , (5.31)

so at ξ →∞, ζ should take the form

ζ →
ξ→∞

ζ(0) + rζ(1) . (5.32)

In the UV, from (5.30)

lim
ξ→∞

ζ(ξ, 0) = −2 lim
ξ→∞

ρ(ξ, 0) = 0 , (5.33)
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because the source for ρ is set to 0. We shall further fix the residual gauge free-
dom (5.20) such that ζ = 0 in the IR. With this choice, the linear part also vanishes
in (5.32) and

ζ →
ξ→∞

0 . (5.34)

The final condition for Bξ, ∂ξBξ → 0 rather than Bξ → 0, is chosen to impose Lorenz
gauge even at finite L in the numerical solution.

• IR. As for the static soliton [52], the conditions in the IR limit r → rIR are regularity
conditions. In [52] it was found that the resulting conditions for the gauge fields were
equivalent to the conditions imposed in the hard-wall model for chiral symmetry to
be broken on the IR wall

(L−R)|rIR
= 0 ,

(
F(L)
µr + F(R)

µr

)∣∣∣
rIR

= 0 . (5.35)

In the following, our strategy is to assume that the IR regularity conditions for the
gauge field are still equivalent to (5.35) in the case of the rotating soliton. This
assumption will be confirmed numerically if a solution can be found with this behavior
in the IR. It can also be checked analytically by studying the IR asymptotics of the
equations of motion. With the ansatz (5.4)–(5.7), (5.35) translates to

χ1|IR = 0 , Bξ|IR = 0 , ρ|IR = 0 , (5.36)

∂rχ2|IR = 0 , ∂rQ|IR = 0 . (5.37)

Finally, the condition for Br comes from the Lorenz gauge (5.19) and, as stated in the
previous point, the residual gauge freedom (5.20) is chosen such that ζ = 0 in the IR.

• ξ = 0. The boundary conditions in the limit where ξ goes to 0 come from requiring
that L̃ and R̃ are well defined vectors at ξ = 0 and that the field strength (E.1)–(E.4)
is a well defined 2-tensor. The additional constraint on Bξ is imposed by the choice of
Lorenz gauge. The final condition ζ →

ξ→0
0 fixes what remained of the residual gauge

freedom (5.20) after setting ζ to 0 in the IR. Note that for this choice the tachyon
matrix (5.11) is well defined at ξ = 0.

5.4 Numerical results: the spin-isospin spectrum

We present in this subsection the numerical solution for the slowly rotating soliton configu-
ration. The equations of motion written in appendix E are solved with the gradient descent
method, imposing the boundary conditions of table 6.

At linear order in ω, the rotating solution is a probe on the static background. At
leading order in Nf , the static background will correspond to the probe baryon solution
presented in section 3.5.1. Order O

(
N−1
f

)
corrections to the rotating solution will come

from including the back-reaction on the tachyon in the static background, as discussed in
section 3.5.2. We start by presenting the leading order probe baryon solution and then
discuss the back-reaction. We recall that the back-reacting solution is computed assuming
no back-reaction on the color sector (metric and dilaton).
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Figure 9. Left: bulk Lagrangian density for the rotating fields (5.26) in the probe baryon approxi-
mation. All quantities are expressed in units of the classical mass of the static soliton M0 (3.25).
The center of the soliton is located at ξ = 0 where the density diverges as ξ−1. The UV boundary
is at r = 0, and the green line indicates the boundary of the region over which the mean value is
computed to define the relative difference in figure 10. Right: Same as the left figure, but at some
given value of the 3-dimensional radius ξ. This figure makes it clear that the Lagrangian density
eventually reaches 0 as r → 0, as it should in absence of sources.

5.4.1 Probe baryon background

We start with the numerical results obtained for the probe baryon background. In this case
the modulus of the tachyon field τ is fixed to its vacuum value, and the equations of motion
take the form presented in appendix E.3.

The bulk Lagrangian density for the rotating fields (5.26) in the (ξ, r)-plane is presented
in figure 9, where all dimensionful quantities are expressed in units of the classical soliton
mass M0 (3.25). As for the static fields, figure 9 shows the expected behavior for a solitonic
configuration, that is the densities are confined to a region of finite extent in the bulk. The
size of the lump is again of the order of M−1

0 .
Note that the density is observed to have a maximum very close to the UV boundary.

This is associated with the flavor gauge fields of the rotating solution having the same kind
of sharp behavior near the boundary. However, it is possible to check that the smooth
vev-like behavior is recovered asymptotically as one goes closer to r = 0

Aµ ∼ r2 × vev .

To check this, one needs to go very close to the boundary r = 0, so log coordinates u = log(r)
are more appropriate. We have explicitly checked that the vev behavior is recovered very
near the boundary. We believe that this feature is a peculiarity of the UV behavior of our
choice of V-QCD potentials, and that it can be avoided with a better choice. In particular,
this behavior is not observed for the potentials of [54], for which the solution is analyzed in
appendix D.

The numerical value for the classical moment of inertia density λ in (5.22) is obtained
by integrating the Lagrangian density in figure 9

1
λ
' 3
Nc
× 60MeV . (5.38)
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Spin V-QCD mass Experimental mass
s = 1

2 MN ' 1170MeV MN = 940MeV

s = 3
2 M∆ ' 1260MeV M∆ = 1234MeV

Table 7. Baryon spin-isospin spectrum in the V-QCD model with the potentials of section 2,
compared with experimental data.

From this result, the spin-isospin spectrum of the baryons (4.8) can be computed and
compared with experimental QCD data, as shown in table 7. We set Nc = 3 in the large N
result to make this comparison. We recall that the estimation (3.32) for the soliton mass
gives only the classical contribution, which can receive sizeable O

(
N0
c

)
quantum corrections

at finite Nc. Likewise, (5.38) is the leading order contribution to the moment of inertia in
the Veneziano limit. Also, the V-QCD potentials presented in section 2 were not fitted
to baryonic properties, but rather to QCD thermodynamics and mesonic properties. In
light of these remarks, the precise numerical value for the baryon spectrum presented in
table 7 should not be taken too seriously, but rather as an indicative result. In particular,
we shall not mention the numerical accuracy of the result as it is much better than the
theoretical uncertainty.

5.4.2 Back-reacted tachyon background

We now discuss the slowly rotating soliton solution computed on the static background that
takes into account the back-reaction on the tachyon field. The corresponding equations of
motion for the rotating fields are written in appendix E.2.

We are interested in the effect of the back-reaction on the soliton moment of inertia (5.22).
In the large Nf limit, the correction is of order O

(
N−1
f

)
δλ = δτ

δλ

δτ

∣∣∣∣
probe

+O
(
N−2
f

)
, (5.39)

where δτ refers to the order O
(
N−1
f

)
correction to τ . Figure 10 shows the relative difference

between the bulk Lagrangian density for the back-reacted and probe backgrounds, when
setting Nf = 3 in the large N result. The definition of the relative difference is analogous
to the static case (3.40)

∆relρλ ≡
ρλ,back-reacted − ρλ,probe

ρ̄λ
, (5.40)

where the criterion defining the region over which the mean value ρ̄λ is computed is now
given by

3
Nc
ρλ ≥M2

0 . (5.41)

This region is delimited by the green line in figure 9.
The dominant effect of the tachyon back-reaction observed in figure 10 is the same as in

the static case shown in figure 8: the density decreases in the UV and is shifted towards the
IR. Even more strikingly than for the soliton mass in the static case, even at small values
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Figure 10. Relative difference of bulk Lagrangian density for the slowly rotating soliton computed
on the probe baryon and the back-reacted tachyon backgrounds. The relative difference is defined as
the difference of the two densities divided by the mean value of the probe density. The mean value
is taken over the area delimited by the green line in the left of figure 9, which is the region where
the density is substantially different from zero. The ratio is multiplied by Nf in order to obtain
something finite in the Veneziano limit. The UV boundary is located at r = 0 and the baryon center
at ξ = 0.

of Nf , the relative difference between the probe and back-reacted solutions is observed to
be small numerically, of the order of a few percent. At the level of the soliton moment of
inertia we obtain

Nf

3

1
λback-reacted

− 1
λprobe

1
λprobe

' 0.37% . (5.42)

As for the static mass, we would like to emphasize here again that precise quantitative
results such as (5.42) cannot be trusted when substituting a small number of flavors in
the large N result. The result in (5.42) should be considered as an indication, that the
moment of inertia does not seem to be affected much by the back-reaction of the baryon on
the background.
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A Conventions and symmetry transformations

A.1 Gauge fields

We choose the following conventions for the SU(Nf ) generators λa

(λa)† = λa , Tr(λaλb) = 1
2δ

ab , (A.1)

where a, b = 1, . . . N2
f − 1. The normalization of the U(1) generator is chosen to be

λ0 = I . (A.2)

Here I denotes the Nf ×Nf unit matrix. The SU(Nf ) generators satisfy

[λa, λb] = ifabc λ
c , Tr(λa{λb, λc}) = dabc , (A.3)

where fabc are the structure constants of SU(Nf ) and dabc are the normalized anomaly
Casimirs.

The gauge fields are written in terms of the generators as

Aµ = ÂµI +Aaµλ
a , (A.4)

where the components Âµ and Aaµ are real. In terms of differential forms, we can write,
following the conventions of appendix B in [87],

F = dA− iA ∧A , D ≡ d− iA· (A.5)

Here A· stands for the action on the fields which depends on the representation of the gauge
group under which they transform. The Bianchi identity can be written as

DF = dF + iF ∧A− iA ∧ F = 0 . (A.6)

Moreover the derivatives of the tachyon fields are

DT = dT + i TAL − iART DT † = dT † − iALT † + i T †AR . (A.7)

A.2 Chiral currents

We choose conventions where the chiral currents are Hermitian. In the case of SU(Nf ), we
write

Jµ = 1
2Nf

ĴµI + Jaµλ
a . (A.8)

For this choice the currents should be normalized as

Ja µL,R = Trflavor
(
iq̄γµ

1± γ5
2 λaq

)
, (A.9)

J
U(1) µ
L,R = Trflavor

(
iq̄γµ

1± γ5
2 q

)
. (A.10)

For our normalization conventions then

2
∫
d4xTr(JµAµ) =

∫
d4x

(
ĴµÂµ + JaµAaµ

)
. (A.11)
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A.3 Gauge transformations

The gauge transformations of the gauge fields and the tachyon are given as

AL → VLALV
†
L − idVLV

†
L , AR → VRARV

†
R − idVRV

†
R ,

FL → VL FL V
†
L , FR → VR FR V †R ,

T → VRTV
†
L , T † → VLT

†V †R ,

(A.12)

where (VL, VR) ∈ SU(Nf )L×SU(Nf )R. We then consider infinitesimal gauge transformations
Vε(x) = eεΛ(x) ' 1 + εΛ(x) such that the gauge field transforms as A → A + εδΛA. The
transformations (A.12) then imply

δΛA = −iDΛ = −i dΛ + [Λ, A] ,
δΛF = [Λ, F ] ,
δΛLT = −TΛL ,
δΛRT = ΛRT .

(A.13)

The generators Λ are antihermitian. Their decomposition in the U(1) and SU(Nf ) compo-
nents is defined as

Λ = iαI + iΛaλa . (A.14)

Here α and Λa are real. Combining with (A.4) and (A.14) we find

δÂµ = ∂µα and δAaµ = (DµΛ)a . (A.15)

A.4 Discrete symmetries

We specify here our conventions for the transformation of the gauge fields and the tachyon
under parity and charge conjugation, following [14].

Parity. The parity transformation is

P = P1 · P2 . (A.16)

Here the second operator P2 represents the action of parity on space

P2 : (x1, x2, x3)→ (−x1,−x2,−x3) , (A.17)

and P1 represents the action on the flavor fields:

P1 : L↔ R , T ↔ T † . (A.18)

Charge conjugation. The charge conjugation acts on the flavor fields as follows:

C : L→ −Rt , R→ −Lt , T → T t , T † →
(
T †
)t
. (A.19)
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A.5 Definitions for the static ansatz fields

We present here the conventions and definitions for the fields of the static instanton ansatz
living on the 2D subspace (ξ, r) ≡ xµ̄. First, we choose the 2D Levi-Civita tensor as

εξr = 1 . (A.20)

In the ansatz (3.6)–(3.9) for the static soliton, the fields transform under the residual
gauge freedom (3.11) as follows:

• Φ is neutral.

• φ ≡ φ1 + iφ2 has charge 1.

• Aµ̄ ≡
(
Aξ, Ar

)
is a gauge field.

The covariant derivatives of the complex scalars φ under the residual gauge freedom are then

Dµ̄φ ≡
(
∂µ̄ − iAµ̄

)
φ , (A.21)

with real and imaginary parts

Dµ̄φ1 = ∂µ̄φ1 +Aµ̄φ2 , Dµ̄φ2 = ∂µ̄φ2 −Aµ̄φ1 . (A.22)

The gauge-invariant field strength of the gauge field Aµ̄ is given as

Fµ̄ν̄ = ∂µ̄Aν̄ − ∂ν̄Aµ̄ . (A.23)

B Vacuum solution

In this appendix we briefly review the solution on the gravity side which corresponds to the
Poincaré-invariant vacuum of the dual field theory. For more details, we refer the reader
to [46–48].

In the vacuum solution, the gauge fields are set to zero and the non-trivial fields are
the 5d metric, the dilaton λ(r) and, if all quark masses are equal, the scalar tachyon τ(r)
defined below equation (2.5). The Poincaré invariant solution can be put in the form:

ds2 = e2A(r)
(
dr2 + ηµνdx

µdxν
)
, λ = λ(r), τ = τ(r), (B.1)

where r is the holographic radial coordinate and xµ the coordinates of 4d flat space-time
where the dual QFT lives.

Since the gauge fields are not turned on, the CS action does not contribute to the field
equations, and only the first two terms in (2.3) are relevant for the solution (B.1).

The asymptotic form of the functions A(r), λ(r), τ(r) can be obtained analytically
in the UV (r → 0) and IR (r → +∞). It is determined by the asymptotic form of the
potentials appearing in (2.4) and (2.5).
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UV asymptotics. The limit r → 0 corresponds to the UV of the field theory. In this
region, eA → +∞ and λ→ 0. One finds (see e.g. [46–48]):

A(r) = − log
(
r

`

)
+ 4

9 log(rΛ) +O
( 1

log(rΛ)2

)
, (B.2)

λ(r) = − 1
V1

8
9 log(rΛ) +O

( 1
log(rΛ)2

)
, (B.3)

1
`
τ(r) = mr(− log(rΛ))c

(
1 +O

( 1
log(rΛ)

))
+ σr3(− log(rΛ))−c

(
1 +O

( 1
log(rΛ)

))
. (B.4)

Here, ` is the asymptotic AdS length, V1 is defined in equation (2.9), and Λ, m and σ are
integration constants. In the dual field theory language, Λ is the holographic analog of the
QCD scale, which measures the breaking of conformal invariance in the UV; m corresponds
to the quark mass;18 σ is the chiral condensate. The near-boundary expansion of the
tachyon field corresponds to a dimension-3 field theory operator, with the extra logarithmic
correction reproducing the mass anomalous dimension of QCD. The exponent c is fixed by
the equation:

c = 4
3

(
1 + κ1 − a1

V1

)
. (B.5)

IR asymptotics. The IR of the geometry is the region where eA → 0 and λ→ +∞. In
the solution exhibiting chiral symmetry breaking, which has a non-trivial τ(r), the tachyon
also goes to infinity in this region. With the potential such as in (2.14), the IR is reached
as r → +∞. In this limit, the fields behave as follows:

λ(r) = e
3r2
2R2 +λc

(
1 +O

(
r−2

))
, (B.6)

eA(r) =
√
r

R
e−

r2
R2 +Ac

(
1 +O

(
r−2

))
, (B.7)

τ(r) = τ0

(
r

R

)Cτ (
1 +O

(
r−2

))
. (B.8)

In the equations above, the constant Cτ is fixed by the asymptotic behavior of the potentials
in equations (2.13) and (2.14), and it must satisfy the constraint Cτ > 1; the integration
constants R, τ0 are functions of the UV integration constants Λ,m. The constants Ac, λc can
be expressed in terms of the coefficients in the IR expansions of the potentials (see [44, 46–
48]). The quantity R is the IR manifestation of the non-perturbative scale of the field theory.

C Numerical method

We detail in this appendix the numerical method that was used to solve the static soliton
equations of motion. We summarize how the gradient descent method works, and specify
the type of grid that was used to obtain the solution. We also present some precision tests
that support the validity of the numerical solution.

18We are working under the assumption that the quark mass matrix is proportional to the identity.
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C.1 Method and grid choice

In the gradient descent method, the solution to the equations of motion is found by
rephrasing the original minimisation of the energy M0 problem, into a flow in a fictitious
time, so that the limit of that flow is the solution of the original problem. Specifically, the
limiting field configuration of the flow will minimize the soliton energy M0. The limiting
solution is found, by starting from a reasonable initial field configuration that satisfies the
boundary conditions, and then evolving the fields. In practice, the fictitious time evolution
equations are taken to be

∂τΦ = δM0
δΦ , ∂τ φ̃1,2 = − δM0

δφ̃1,2
, ∂τAµ̄ = −δM0

δAµ̄
, ∂τθ = −δM0

δθ
, (C.1)

and they are solved numerically. The fields above have been defined in section 3.1. Equa-
tions (C.1) must be also supplemented by the boundary conditions of table 5 for any value
of the fictitious time.

Note that the gradients of the action with respect to the fields are nothing but the
respective equations of motion. Also, the signs in front of the gradients, mean that M0
is maximized with respect to Φ, and minimized with respect to all the other fields. This
choice of sign ensures that the coefficient of the Laplacian is positive in the right hand sides
of (C.1). In these conditions, the ellipticity of the equations of motion guarantees that the
diffusive problem has a limiting solution which is the solution we are looking for.

The numerical algorithm is then constructed by discretizing the differential equa-
tions (C.1). That is, the bulk is covered by a grid, and the derivatives are approximated
by finite differences between the values of the fields at the points of this grid. We denote
by n the number of points in the holographic direction and by m the number in the radial
direction. Note that the bulk has infinite extent, but the soliton solution is confined to a
finite region. Therefore, it can be computed by considering finite cut-offs. In practice, the
following cut-offs

rmax ' 30M−1
0 , ξmax ' 100M−1

0

were found to be good enough to solve the problem reliably. Those numbers may seem
large given that the baryon density is mainly confined to rM0 and ξM0 of order 1, as seen
on figure 5. However, the chiral gauge fields have non-trivial power-law asymptotics19 away
from the baryon center, which can only be captured by using sufficiently large cut-offs.
The gradients associated with these long-range tails are small though, so that a few grid
points are sufficient to describe them. Instead of a linear grid, we therefore considered a
logarithmic grid, where most points are concentrated near the baryon center, and only a few
points cover the region that separates the baryon from the cut-offs. The precise definition
of the grid that we used is given by

r(k) = exp
(
k∆r + log (rmin + 1)

)
− 1 , 0 ≤ k ≤ n , (C.2)

ξ(j) = exp
(
j∆ξ

)
− 1 , 0 ≤ j ≤ m, (C.3)

19This long-range behavior of the meson cloud is due to the fact that we consider the chiral limit, and will
be suppressed exponentially when introducing finite quark masses.
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where the spatial steps are

∆r = 1
n

(
log (rmax + 1)− log (rmin + 1)

)
, ∆ξ = 1

m
log (ξmax + 1) . (C.4)

Note that we introduced a UV cut-off rmin since the boundary is a singular point of the
equations and the boundary conditions there must be imposed on a shifted boundary, as
usual. As long as rmin � r(1) in (C.2), having rmin finite does not influence the baryon
solution. In practice we found that the precision of the vacuum solution for the tachyon
field is very good for r > rmin ' 0.02M−1

0 . Also, the size of the grid that was chosen to
produce the numerical results presented in the text is (n,m) = (100, 100). Below, we show
evidence that the baryon solution has already converged well for such a grid size.

A remark is that, instead of (C.1), one can consider the diffusive problem with general
diffusion coefficients, which are generically field and position-dependent

∂τΦ = DΦ(r, ξ)δM0
δΦ , ∂τ φ̃1,2 = −Dφ(r, ξ) δM0

δφ̃1,2
, ∂τAµ̄ = −DA(r, ξ)δM0

δAµ̄
, (C.5)

∂τθ = −Dθ(r, ξ)
δM0
δθ

.

Although a uniform diffusion coefficient amounts to a redefinition of the fictitious time τ ,
the dependence on the fields and position in the bulk actually modify the diffusive problem.
A good choice for the purpose of solving (C.5) numerically is to set the diffusion coefficients
such that the coefficients of the fields’ Laplacians are equal to 1. This choice has the
advantage that the stability properties of the discretized version of (C.5) are more tractable.
If we ignore the first and zeroth order derivatives, requiring the absence of modes growing
with τ implies the famous bound on the time step ∆τ (see for example chapter 3.6 of [88])

∆τ < ∆ξ2∆r2

2(∆ξ2 + ∆r2) , (C.6)

which is valid for uniform spatial grids, with steps ∆x in the ξ direction, and ∆r in the
r direction. For the logarithmic grid that we used (C.2)–(C.3), (C.6) would still apply
with the definitions of ∆r and ∆ξ from (C.4), since they correspond to the smallest point
separation on the grid. However, the full equations of motion include first and zeroth order
derivatives of the fields, so that the stability bound is more complicated than (C.6). For
the grid that we used, we found that using as a bound

∆τ < ∆r2

4 , (C.7)

resulted in stable algorithms. We do not claim any generality of this result though, and
different bounds were actually observed for different grids.

C.2 Precision tests

We now present some tests of the numerical precision of the soliton solution computed via
the gradient-descent method. We first investigate the convergence of the observables as a
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function of the grid size. Left figure 12 shows the evolution of the calculated soliton mass
as a function of the grid size for n = m. It is observed that the soliton mass converges in
the limit of large grid size, and the value that we derive at n = m = 100 is already within
0.2% of accuracy from the limiting value. Actually, even at n = 50, the error on the mass is
already less than one percent.

As another test of the precision of the solution, we also investigated the convergence
for the divergence of the 2-dimensional gauge field

LA(r, ξ) ≡ |∂rAr + ∂ξAξ| . (C.8)

Due to the Lorenz gauge fixing (3.23), the baryon solution should be such that LA vanishes
everywhere in the bulk. To estimate what is the error on the Lorenz condition in the
numerical solution, LA(r, ξ) is computed numerically and compared with the typical scale
of the gradients of Aµ̄. One way of defining this typical scale, is via the combination of
derivatives orthogonal to (C.8)

DA(r, ξ) ≡ |∂rAr − ∂ξAξ| . (C.9)

The accuracy of the Lorenz gauge fixing will therefore be estimated by comparing the two
quantities LA and DA, where the criterion for accuracy is that LA should be much smaller
than DA. Because DA vanishes in some places in the bulk, calculating the ratio of LA over
DA does not give a globally well-defined indicator of the precision of the Lorenz gauge.
Instead, we will use two global indicators, that are defined from the maxima and mean
values of LA and DA

i1 ≡
L̄A

D̄A

, i2 ≡
LA,max

D̄A

. (C.10)

The first indicator i1 estimates the average error on the Lorenz gauge fixing over the whole
solution, whereas i2 indicates what is the error at the location in the bulk where it is
the worst. Here, it should be clarified what we mean by the mean values L̄A and D̄A

in (C.10). The definition is similar to what was used to define the mean of the Lagrangian
density (3.42). That is, the mean value is computed over a region of the bulk where the
derivatives of Aµ̄ are significantly different from zero. Specifically, the corresponding region
AD is defined as

(r, ξ) ∈ AD ⇐⇒ DA(r, ξ) ≥ 0.1DA,max . (C.11)

In the numerical solution, AD contains a finite number of grid cells, Ncells, and the definition
of the mean values over AD is analogous to (3.42)

L̄A = 1
Ncells

∑
i∈AD

LA(i) , D̄A = 1
Ncells

∑
i∈AD

DA(i) . (C.12)

For concreteness, figure 11 shows the density plot of DA over the (r, ξ) plane for a grid of
size (n,m) = (100, 100), together with the grid points that belong to AD.

The plot of the two indicators i1 and i2 defined in (C.10) is shown in the right of
figure 12, as a function of the grid size. Although it is much slower than for the baryon
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Figure 11. Density plot of the quantity DA defined in (C.9), as an function of r and ξ. All
dimensionful quantities are expressed in units of the soliton mass M0, and the grid size is (n,m) =
(100, 100). The orange dots correspond to the grid points that belong to the region AD (C.11),
where DA is significantly different from 0.

mass, i1 and i2 are also found to converge, towards a value which is consistent with zero.
The indicator i2 is observed to be much larger than i1, which means that the maximum
of the gauge field divergence LA is reached at the top of a narrow peak. In particular,
for the grid that we used to produce the numerical results presented in the main text
(n,m) = (100, 100), i1 and i2 are found to take the following values

i1(100) ' 2.5% , i2(100) ' 30% . (C.13)

This means that on average the Lorenz condition is well obeyed within 2% over most of the
baryon solution, but there is a narrow region in the bulk where the error grows up to 30%.
For the largest grid investigated that has (n,m) = (300, 300), the average accuracy of the
Lorenz gauge fixing is given by i1(300) ' 0.8%, and the maximum error by i2(300) ' 8%.

The fact that the value i2(100) is quite high, indicates that there is a small region
in the bulk where the Lorenz condition is not very well obeyed for the solution on the
grid that we used, with (n,m) = (100, 100). Since i2(300) ' 8% is much smaller, another
way of checking the quality of the solution at n = 100 is to compare the numerical field
configurations computed at n = 100 with those at n = 300. In particular, we will focus on
the two bulk quantities that were analyzed in this work, that are the instanton number and
Lagrangian densities (3.31) and (3.30). The relative differences of the two types of densities
between the n = 100 and the n = 300 solutions are shown in figure 13. The definition for
the relative differences is the same as (3.42), where the mean of the bulk Lagrangian density
is still computed over the region bounded by the green line in figure 5. For the instanton
number density, the average is computed over the region where |ρNi |M−4

0 ≥ 2.8×10−3. The
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Figure 12. Left: Relative difference of the soliton mass M0 with the value at n0 = 100, as a
function of the grid size n. Right: the two indicators for the accuracy of the Lorenz gauge fixing, i1
(orange) and i2 (blue) from (C.10), as a function of the grid size n.
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Figure 13. Left: Relative difference of the instanton number densities computed on the grids
with (n,m) = (100, 100) and (n,m) = (300, 300). Right: Relative difference of the bulk Lagrangian
densities computed on the grids with (n,m) = (100, 100) and (n,m) = (300, 300).

two solutions are compared on the grid with n = 100. Figure 13 shows that the densities
computed at n = 100 and n = 300 only differ by a few percent of the mean value, with a
maximum of about 8% in the case of the instanton number density.

In addition to the grid size, we also studied the convergence of the soliton mass as
a function of the cut-offs ξmax and rmax. As far as the radial cut-off is concerned, we
found that larger ξmax modified the soliton mass by less than 0.01%. For the holographic
coordinate, it was found that larger IR cut-offs rmax do not affect the soliton mass by more
than about 0.2%.

The conclusion of this analysis of the numerical precision is that the grid that we
used with (n,m) = (100, 100) gives a very precise value for the soliton mass M0, and a
result within a few percent of accuracy for the densities. This means that the solution
can be trusted at the qualitative level, and also at the quantitative level as far as M0 is
concerned, which is the observable that we were interested in this work. When extracting
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Figure 14. Instanton number (left) and bulk Lagrangian (right) density for the static soliton
solution in the probe baryon regime. All quantities are expressed in units of the classical mass of
the soliton (3.25). The center of the soliton is located at ξ = 0 where the density diverges as ξ−1.

other observables from the baryon solution, one should check in each case the properties
of convergence, and adapt the grid size to the desired level of accuracy. In particular, the
analysis of the densities in figure 13 indicates that accuracies better than the percent level
may require grid sizes larger than (n,m) = (100, 100).

D Numerical solutions for a different set of potentials

In this appendix we present, for comparison, the numerical baryon solution obtained for
a different set of V-QCD potentials. We focus on the leading order probe baryon case,
for static and rotating baryons. The potentials are those derived in [54], the set “7a” in
appendix A of this reference, and can also be found in appendix B of [53]. The value of the
pion decay constant fπ for these potentials is significantly smaller than the experimental
value, so they are not expected to give a quantitatively good description of all baryonic
properties. The potentials of [54] have the same UV and IR asymptotics fitted to QCD
properties as the ones that were used in this work though (with parameters given in table 5),
so the qualitative behavior should be the same. The purpose of this appendix is to check
the previous statement by reproducing the plots of the main text for the potentials of [54].
We also compute the baryon spectrum in this case and compare with table 7.

D.1 Static soliton

The instanton number and Lagrangian density in the (ξ, r)-plane are presented in figure 14,
where all dimensionful quantities are expressed in units of the classical soliton mass (3.25).
By comparing with figure 5, it is observed that the qualitative shape of the densities are
similar. However, the densities are typically located significantly closer to the UV boundary
for the potentials of [54], in units of the soliton mass. Also, the extent of the densities in
the holographic direction is smaller, especially for the Lagrangian density. The numerical
value for the classical soliton mass M0 is obtained by integrating the Lagrangian density in
figure 14

M0 '
Nc

3 × 265MeV . (D.1)
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Figure 15. Radial profile of the non-abelian phase of the tachyon field (3.14) at the UV boundary.
The blue line corresponds to the solution for the V-QCD potentials presented in section 2, and the
orange line for those of [54]. The dashed gray line indicates the asymptotic value π.

This value is about 4 times smaller than for the potentials used in the main text (3.32).
Our numerical analysis indicate that this small value for M0 can be traced back to the
smallness of the pion decay constant for the potentials of [54].

In figure 15, we also plot the profile at the boundary (r = 0) for the non-abelian phase
θ of the tachyon field (3.14), and compare with figure 6. We see that the results are close
up to the rescaling of the radial coordinate as a function of the soliton mass M0. That
being said, we notice that θ(ξM0) increases somewhat faster from the baryon center for the
potentials of [54] compared with those of the main text.

D.2 Rotating soliton

The bulk Lagrangian density for the rotating fields in the (ξ, r)-plane is presented in
figure 16, where all dimensionful quantities are expressed in units of the classical soliton
mass M0 (3.25). Comparing with figure 9, we see that the Lagrangian densities for the two
sets of potentials are qualitatively different. In particular, the maximum of the density is
well separated from the boundary for the potentials of [54]. As stated in the main text, we
believe that this behavior is more generic than that of figure 9. Also, as was observed for
the static solution, the density has a lesser extent in the holographic direction (in units of
M0) for the potentials of [54].

The numerical value for the classical moment of inertia density λ in (5.22) is obtained
by integrating the Lagrangian density in figure 16

1
λ
' 3
Nc
× 200MeV . (D.2)

From this result, the spin-isospin spectrum of the baryons can be computed and compared
with the result for the potentials of the main text, shown in table 7. This comparison
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Figure 16. Lagrangian density for the rotating fields in the probe baryon approximation, for the
potentials of [54]. All quantities are expressed in units of the classical mass of the static soliton
M0 (3.25). The center of the soliton is located at ξ = 0 where the density diverges as ξ−1. The UV
boundary is at r = 0.

Spin Pot 2 Pot 1 Experimental mass
s = 1

2 MN ' 340MeV MN ' 1170MeV MN = 940MeV

s = 3
2 M∆ ' 640MeV M∆ ' 1260MeV M∆ = 1234MeV

Table 8. Baryon spin-isospin spectrum in the V-QCD model with the potentials of [54] (Pot 2),
compared with the potentials used in the main text (Pot 1) and experimental data.

is presented in table 8, setting Nc = 3 in the large N result. Table 8 indicates that the
baryon masses for the potentials of [54] are much smaller than experimental data, which is
a consequence of the low mass of the soliton (D.1). Note however that the mass difference
between the nucleon and the ∆ is much closer to experimental data than for the potentials
of section 2.

E Equations of motion for the rotating soliton

We present in this appendix the expressions for the equations of motion for the rotating soli-
ton ansatz fields. These equations are obtained by extremizing the moment of inertia (5.22)
with respect to variation of the fields. We start by giving the expression of the components
of the field strength that are turned on by the slow rotation, as those are useful to compute
the moment of inertia. We then write the equations of motion, first in the general tachyon
back-reaction regime and then in the probe baryon regime.
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E.1 Field strength

For the slowly rotating soliton ansatz of (5.4)–(5.7) and (5.11), the components of the field
strength that are already non-zero in the static soliton solution are identical to the static
solution at linear order in ω. Their expression are given by equations (F.14)-(F.16) in [52].
The effect of slow rotation at linear order is to source the components F0r, F0i, F̂ij and F̂ir,
where the superscript (L/R) is implicit. These components are expressed in terms of the
fields of the ansatz as

F0r = V (t)
(
− (∂rχ1 +Arχ2) εabcωbx

c

ξ

+ (∂rχ2 −Arχ1)
(
ωa − (~ω.~x)x

a

ξ2

)
− ∂rv (~ω.~x)x

a

ξ2

)
σa

2 V (t)† , (E.1)

F0i = V (t)
(
xaεibcωb

xc

ξ2

(
−χ1

1 + φ2
ξ

)
+ xa

ξ

(
ωi − xi

ξ2 (~ω.~x)
)(

χ2
φ2
ξ

+ χ1
φ1
ξ
− v

ξ

)

+ ~ω.~x

ξ

(
xixa

ξ2 − δ
ia

)
χ2 − vφ2

ξ

+ εaki
(~ω.~x)xk
ξ2 (χ2 + v)φ1

ξ
+ εakiωk

(
−χ1 + χ2φ1

ξ

)
+ xiεabcωb

xc

ξ2

(
χ1 + χ2φ1

ξ
− (∂ξχ1 +Aξχ2)

)
+xi

ξ

(
ωa − xa

ξ2 (~ω.~x)
)

(∂ξχ2 −Aξχ1) + (~ω.~x)xixa
ξ3 (−∂ξv)

)
σa

2 V (t)† , (E.2)

F̂ir = xi(~ω.~x)
ξ2 (∂ξBr − ∂rBξ) +

(
ωi − xi(~ω.~x)

ξ2

)
Br − ∂rρ

ξ
− εibcωbx

c

ξ
∂rQ , (E.3)

F̂ij = xiωj − ωixj

ξ2 (∂ξρ−Bξ) + 2Q
ξ
εijkωk +

(
∂ξQ−

Q

ξ

)
ωb
xc

ξ

(
εjbc

xi

ξ
− εibcx

j

ξ

)
. (E.4)

E.2 Equations of motion in the tachyon back-reaction regime

The general equations of motion in the tachyon back-reaction regime are given by

w2
[
∂ξ
(
X (1− e2A∆ξξ)ξ2∂ξv

)
− 2X

(
v(1 + |φ|2)− (χφ∗ + h.c.)

)]
+ ∂r

(
ξ2w2X e2A∆rr∂rv

)
− ∂r

(
ξ2w2X e2A∆ξr∂ξv

)
− ∂ξ

(
ξ2w2X e2A∆ξr∂rv

)
=

2εµ̄ν̄
π2M3

(
Bµ̄ν̄

[
1
2(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

]
+ (f1 + f3)ξQFµ̄ν̄ − 2(f3 − if2)B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1

+ ∂ν̄τ
[
(f ′1 + f ′3)

(
B̃µ̄(1− |φ|2)− 2ξQÃµ̄

)
+ 2if ′2B̃µ̄φ̃2

1
])

, (E.5)

– 56 –



J
H
E
P
0
5
(
2
0
2
3
)
0
8
1

w2
[
Dξ

(
X (1− e2A∆ξξ)ξ2Dξχ̃

)
+X

(
2vφ̃− χ̃(1 + |φ|2)

)]
+Dr

(
ξ2w2X e2A∆rrDrχ̃

)
−Dr

(
ξ2w2X e2A∆ξrDξχ̃

)
−Dξ

(
ξ2w2X e2A∆ξrDrχ̃

)
+ h.c.

= 4ξ2e2AXκτ2χ̃

+ εµ̄ν̄

π2M3

(
6(f1 − f3)Dµ̄ρDν̄ φ̃− 4i(f3 − if2)ρ̃ Ãµ̄∂ν̄ φ̃

+ ∂µ̄(ξQ)
(

2i(f1 + f3)Dν̄ φ̃+ 4(f1 + f3 − 3if2)Ãν̄ φ̃
)

+ 2∂ν̄τ
[
(f ′1 − f ′3)Dµ̄ρ φ̃− (f ′1 − f ′3)ρ̃Dµ̄φ̃

])
+ h.c. , (E.6)

w2
[
− iDξ

(
X (1− e2A∆ξξ)ξ2Dξχ̃

)
− iX

(
2vφ̃− χ̃(1 + |φ|2)

)]
− iDr

(
ξ2X e2A∆rrw

2Drχ̃
)

+ iDr

(
ξ2X e2A∆ξrw

2Dξχ̃
)

+ iDξ

(
ξ2X e2A∆ξrw

2Drχ̃
)

+ h.c.

= εµ̄ν̄

π2M3

(
Dµ̄ρ

(
−2i(f1 + f3)Dν̄ φ̃− 4(f1 − f3 − if2)Ãν̄ φ̃

)
+ 2∂µ̄(ξQ)(f1 + f3)Dν̄ φ̃+ 2(f3 − if2)ρ̃

(
2Ãµ̄∂ν̄ φ̃− Fµ̄ν̄ φ̃

)
+ 2∂ν̄τ

[
i(f ′1 + f ′3)ρ̃ Dµ̄φ̃− 2if ′2ρ̃Ãµ̄φ̃+ (f ′1 + f ′3)∂µ̄(ξQ)φ̃

])
+ h.c. , (E.7)

w2
[
∂ξ
(
X
[
e2A∆rr(1− e2A∆ξξ)− e4A∆2

ξr

]
ξ2Bξr

)
+ 2X e2A(∆rrDrρ−∆ξrDξρ

)]
=

4e4AX∆rrκτ
2ξ2B̃r − 4e4AX∆ξrκτ

2ξ2B̃ξ

− 1
2π2M3

(
(f1 + f3)(Dξφχ

∗ + h.c.)− 2(2f3 − f1)
(
Dξφ̃+ h.c.

)
χ̃1

− 4(f1 − f3 − if2)Ãξφ̃1χ̃2 − 8(f1 + f3)ξQ∂ξΦ

+ 2v(f3 − if2)(Dξφ̃+ h.c.)φ̃1

− 2∂ξ
(
v

[
1
2(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

])
− ∂ξτ

[
(f ′1 + f ′3)v(1− |φ|2) + 2if ′2 vφ̃2

1 − 2(f ′1 − f ′3)χ̃1φ̃1

])
, (E.8)

ξ2∂r

(
w2X

[
e2A∆rr(1− e2A∆ξξ)− e4A∆2

ξr

]
Brξ

)
+ 2w2X

(
(1− e2A∆ξξ)Dξρ− e2A∆ξrDrρ

)
=

4e2AX (1− e2A∆ξξ)κτ2ξ2B̃ξ − 4e4AX∆ξrκτ
2ξ2B̃r

+ 1
2π2M3

[
(f1 + f3)(Drφχ

∗ + h.c.)− 2(2f3 − f1)(Drφ̃+ h.c.)χ̃1

− 4(f1 − f3 − if2)Ãrφ̃1χ̃2 − 8(f1 + f3)ξQ∂rΦ

+ 2v(f3 − if2)(Drφ̃+ h.c.)φ̃1

− 2∂r
(
v

[
1
2(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

])
− ∂rτ

[
(f ′1 + f ′3)v(1− |φ|2) + 2if ′2 vφ̃2

1 − 2(f ′1 − f ′3)χ̃1φ̃1

])
, (E.9)
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∂r

(
w2X e2A∆rrDrρ

)
+ ∂ξ

(
w2X (1− e2A∆ξξ)Dξρ

)
− ∂r

(
w2X e2A∆ξrDξρ

)
− ∂ξ

(
w2X e2A∆ξrDrρ

)
= 4e2AX (1− e2A∆ξξ)κτ2ρ̃

+ εµ̄ν̄

4π2M3

[
∂µ̄

(
(f1 + f3)(Dν̄φχ

∗ + h.c.)− 2(2f3 − f1)(Dν̄ φ̃+ h.c.)χ̃1

− 4(f1 − f3 − if2)Ãν̄ φ̃1χ̃2 − 8(f1 + f3)ξQ∂ν̄Φ
)

− 2(f3 − if2)
(
− Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+ ∂ν̄τ

(
f ′1(Dµ̄φχ

∗ + h.c.)− f ′3(Dµ̄φ̃χ̃+ h.c.) + 2if ′2Ãµ̄φ̃1χ̃2

+ 2(f ′1 − f ′3)∂µ̄(χ̃1φ̃1)− 8(f ′1 + f ′3)ξQ∂µ̄Φ
)]
, (E.10)

ξ2∂r

(
w2X e2A∆rr∂rQ

)
+ w2∂ξ

(
X (1− e2A∆ξξ)ξ2∂ξQ

)
− ∂ξ

(
w2X e2A∆ξrξ

2∂rQ
)
− ∂r

(
w2X e2A∆ξrξ

2∂ξQ
)

=

Xw2
[
2− e2Aξ

(
∂ξ∆ξξ + e2A∂r(e−2A∆ξr)

)]
Q

− ξεµ̄ν̄

4π2M3

[
− ∂µ̄

(
(f1 + f3)(iχ∗Dν̄φ+ h.c.) + 4(f1 + f3 − 3if2)Ãν̄ φ̃1χ̃1

)
− 8(f1 + f3)Dµ̄ρ∂ν̄Φ + (f1 + f3)v Fµ̄ν̄

+ 2∂ν̄τ(f ′1 + f ′3)
(
4ρ̃∂µ̄Φ− ∂µ̄(φ̃1χ̃2)− v Ãµ̄

) ]
, (E.11)

ξ2∂r

[
e4AX∆rrκτ

2
(
Br + 1

2∂rζ
)]

+ e2Aκ

[
∂ξ

[
X (1− e2A∆ξξ)τ2ξ2

(
Bξ + 1

2∂ξζ
)]
− 2X (1− e2A∆ξξ)τ2

(
ρ+ 1

2ζ
)]

− ∂r
[
e4AX∆ξrκτ

2ξ2
(
Bξ + 1

2∂ξζ
)]
− ∂ξ

[
e4AX∆ξrκτ

2ξ2
(
Br + 1

2∂rζ
)]

= − εµ̄ν̄

4π2M3

[
∂µ̄

(
(f3 − if2)v(Dν̄ φ̃+ h.c.)φ̃1

)
+ (f3 − if2)

(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+ ∂ν̄τ

(
− 1

2(f ′1 + f ′3)∂µ̄
(
v(1− |φ|2)

)
− if ′2∂µ̄(vφ̃2

1)

− 1
2f
′
1(Dµ̄φχ

∗ + h.c.) + 1
2f
′
3(Dµ̄φ̃χ̃+ h.c.)− if ′2Ãµ̄φ̃1χ̃2

+ 4(f ′1 + f ′3)ξQ∂µ̄Φ
)]

, (E.12)

where
X =

√
1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA , (E.13)

and the symbol ∆µ̄ν̄ is given by

∆ξξ ≡
e6Aκ (∂ξτ)2

−det g̃ = e−4Aκ (∂ξτ)2

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2) , (E.14)
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∆ξr ≡
e6Aκ ∂ξτ∂rτ

−det g̃ = e−4Aκ ∂ξτ∂rτ

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2) , (E.15)

∆rr ≡
e8A(1 + e−2Aκ (∂ξτ)2)

−det g̃ = e−2A (1 + e−2Aκ (∂ξτ)2)
1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2) . (E.16)

E.3 Equations of motion in the probe baryon approximation

In the probe baryon approximation, the modulus of the tachyon field τ is fixed to its vacuum
value. In particular, it does not depend on the radius ξ, so that the equations of motion are
somewhat simplified

hw2
[
∂ξ(ξ2∂ξv)− 2

(
v(1 + |φ|2)− (χφ∗ + h.c.)

)]
+ ∂r

(
ξ2kw2∂rv

)
=

2
π2M3

(
2Bξr

[1
2(f1(τ) + f3(τ)) (|φ|2 − 1) + (f1(τ)− f3(τ)− if2(τ))φ̃2

1

]
+ 2(f1(τ) + f3(τ))ξQFξr − 2(f3(τ)− if2(τ))εµ̄ν̄B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1

)
+ 2
π2M3∂rτ

[
(f ′1(τ) + f ′3(τ))

(
B̃ξ(1− |φ|2)− 2ξQÃξ

)
+ 2if ′2(τ)B̃ξφ̃2

1

]
, (E.17)

hw2
[
Dξ(ξ2Dξχ̃) + 2vφ̃− χ̃(1 + |φ|2)

]
+Dr

(
ξ2kw2Drχ̃

)
+ h.c. =

4ξ2e2Ahκτ2χ̃

+ εµ̄ν̄

π2M3

[
6(f1 − f3)Dµ̄ρDν̄ φ̃+ ∂µ̄(ξQ)

(
2i(f1 + f3)Dν̄ φ̃+ 4(f1 + f3 − 3if2)Ãν̄ φ̃

)
−4i(f3 − if2)ρ̃ Ãµ̄∂ν̄ φ̃

]
+ 2
π2M3∂rτ

[
(f ′1 − f ′3)Dξρ φ̃− (f ′1 − f ′3)ρ̃Dξφ̃

]
+ h.c. , (E.18)

hw2
[
−iDξ(ξ2Dξχ̃)− 2ivφ̃+ iχ̃(1 + |φ|2)

]
− iDr

(
ξ2kw2Drχ̃

)
+ h.c.

= εµ̄ν̄

π2M3

[
Dµ̄ρ

(
−2i(f1 + f3)Dν̄ φ̃− 4(f1 − f3 − if2)Ãν̄ φ̃

)
+ 2∂µ̄(ξQ)(f1 + f3)Dν̄ φ̃+ 2(f3 − if2)ρ̃

(
2Ãµ̄∂ν̄ φ̃− Fµ̄ν̄ φ̃

) ]
+ 2
π2M3∂rτ

[
i(f ′1 + f ′3)ρ̃ Dξφ̃− 2if ′2 ρ̃Ãξφ̃+ (f ′1 + f ′3)∂ξ(ξQ)φ̃

]
+ h.c. , (E.19)

kw2
[
∂ξ(ξ2Bξr) + 2Drρ

]
= 4e2Akκτ2ξ2B̃r

− 1
2π2M3

[
(f1 + f3)(Dξφχ

∗ + h.c.)− 2(2f3 − f1)
(
Dξφ̃+ h.c.

)
χ̃1

− 4(f1 − f3 − if2)Ãξφ̃1χ̃2 − 8(f1 + f3)ξQ∂ξΦ
+ 2v(f3 − if2)(Dξφ̃+ h.c.)φ̃1

− 2∂ξ
(
v

[1
2(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

]) ]
, (E.20)
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ξ2∂r(kw2Brξ) + 2hw2Dξρ = 4e2Ahκτ2ξ2B̃ξ

+ 1
2π2M3

[
(f1 + f3)(Drφχ

∗ + h.c.)− 2(2f3 − f1)
(
Drφ̃+ h.c.

)
χ̃1

− 4(f1 − f3 − if2)Ãrφ̃1χ̃2 − 8(f1 + f3)ξQ∂rΦ
+ 2v(f3 − if2)(Drφ̃+ h.c.)φ̃1

− 2∂r
(
v

[1
2(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

])
− ∂rτ

[
(f ′1 + f ′3)v(1− |φ|2) + 2if ′2 vφ̃2

1 − 2(f ′1 − f ′3)χ̃1φ̃1
] ]

, (E.21)

∂r(kw2Drρ) + hw2∂ξDξρ = 4e2Ahκτ2ρ̃

+ 1
4π2M3

[
εµ̄ν̄∂µ̄

(
(f1 + f3)(Dν̄φχ

∗ + h.c.)− 2(2f3 − f1)
(
Dν̄ φ̃+ h.c.

)
χ̃1

− 4(f1 − f3 − if2)Ãν̄ φ̃1χ̃2 − 8(f1 + f3)ξQ∂ν̄Φ
)

− 2(f3 − if2)εµ̄ν̄
(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+ ∂rτ

(
f ′1(τ)(Dξφχ

∗ + h.c.)− f ′3(τ)(Dξφ̃χ̃+ h.c.) + 2if ′2(τ)Ãξφ̃1χ̃2

+ 2(f ′1 − f ′3)∂ξ(χ̃1φ̃1)− 8(f ′1 + f ′3)ξQ∂ξΦ
)]
, (E.22)

ξ2∂r(kw2∂rQ) + hw2
[
∂ξ(ξ2∂ξQ)− 2Q

]
= (E.23)

− ξ

4π2M3

[
− εµ̄ν̄∂µ̄

(
(f1 + f3)(iχ∗Dν̄φ+ h.c.) + 4(f1 + f3 − 3if2)Ãν̄ φ̃1χ̃1

)
− 8(f1 + f3)εµ̄ν̄Dµ̄ρ∂ν̄Φ + (f1 + f3)v εµ̄ν̄Fµ̄ν̄

+ 2∂rτ(f ′1 + f ′3)
(
4ρ̃∂ξΦ− ∂ξ(φ̃1χ̃2)− v Ãξ

) ]
,

ξ2∂r

[
e2Akw2κτ2

(
Br + 1

2∂rζ
)]

+ e2Ahw2κτ2
[
∂ξ

[
ξ2
(
Bξ + 1

2∂ξζ
)]
− 2

(
ρ+ 1

2ζ
)]

= − 1
4π2M3

[
εµ̄ν̄∂µ̄

(
(f3 − if2)v(Dν̄ φ̃+ h.c.)φ̃1

)
+ (f3 − if2)εµ̄ν̄

(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+ ∂rτ

(
− 1

2(f ′1 + f ′3)∂ξ
(
v(1− |φ|2)

)
− if ′2∂ξ(vφ̃2

1)

− 1
2f
′
1(τ)(Dξφχ

∗ + h.c.) + 1
2f
′
3(τ)(Dξφ̃χ̃+ h.c.)

− if ′2(τ)Ãξφ̃1χ̃2 + 4(f ′1 + f ′3)ξQ∂ξΦ
)]

, (E.24)
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where

k(r) = eA√
1 + e−2Aκ(∂rτ)2

Vf (λ, τ2) , h(r) = eA
√

1 + e−2Aκ(∂rτ)2Vf (λ, τ2) . (E.25)

F Quantization of the rigid rotor

We proceed in this subsection to the quantization of the classical Lagrangian (5.21) along
the lines of [57]. For this purpose, it is more convenient to reintroduce the SU(2) matrix
V (t) from the definition of ~ω in (4.5). It gives

Lrot = −M0 + 2λ
3∑

a=0
u̇2
a , (F.1)

where we parametrized the SU(2) matrix V (t) as

V (t) = u0I2 + iuiσ
i , (F.2)

where the ua’s parametrize the 3-sphere20 S3∑
a

u2
a = 1 . (F.3)

S3 can be alternatively described by 3 unconstrained coordinates [57] qα ≡ (y, θ1, θ2) in the
domains

y ∈ [−1, 1] , θ1, θ2 ∈ [0, 2π) , (F.4)

which are related to the ua’s as

u1 + iu2 ≡ z1 =
√

1− y
2 eiθ1 , u0 + iu3 ≡ z2 =

√
1 + y

2 eiθ2 . (F.5)

In terms of these coordinates, the Lagrangian (F.1) is rewritten as

Lrot = −M0 + 2λGαβ q̇αq̇β , (F.6)

where G is the metric of S3, which in the qα coordinates reads

Gαβdqαdqβ = 1
4

1
1− y2 dy2 + 1− y

2 dθ2
1 + 1 + y

2 dθ2
2 . (F.7)

The momentum conjugate to qα is then

pα ≡
∂L

∂q̇α
= 4λGαβ q̇β , (F.8)

and the classical Hamiltonian

Hc = M0 + 1
8λG

αβpαpβ . (F.9)

20The ua’s actually parametrize S3/Z2 because the collective coordinates live in SU(2)V /Z2. This means
that ua and −ua correspond to the same point. In the qα coordinates, the identification is between (y, θ1, θ2)
and (y, θ1 + π, θ2 + π).
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The quantum Hamiltonian operator is found by applying the quantization rules

Hq = M0 −
1

8λ
1√
G
∂α
(√

GGαβ∂β
)

= M0 −
1

8λ∇α∇
α , (F.10)

which is hermitian [57] with respect to the scalar product

〈A|B〉 ≡
∫

dq3√GfA(q)∗fB(q) . (F.11)

Spin and isospin operators. The classical Hamiltonian (F.9) is invariant under an
SO(4) rotation of the momentum pα. Because SO(4) ' SU(2)× SU(2), this symmetry can
be mapped to two SU(2) symmetries which are

• (Time-independent) isospin rotation of the fields, which acts on V (t) as

V (t)→WV (t) , W ∈ SU(2) . (F.12)

• 3D (time-independent) spatial rotation, which acts on V (t) as21

V (t)→ V (t)R , R ∈ SU(2) . (F.13)

After quantization, there should be an isospin operator Ii that generates the symmetry
of (F.12) and a spin operator Si that generates the symmetry of (F.13)

[Ii, V ] = σi

2 V , [Si, V ] = V
σi

2 , (F.14)

where the multiplication should be understood as the action on the wave function. The
expression for the spin and isospin operators can be derived explicitly

S3 = − i
2(∂θ1 + ∂θ2) ,

S+ = 1√
2ei(θ1+θ2)

(
i
√

1− y2∂y + 1
2

√
1+y
1−y∂θ1 − 1

2

√
1−y
1+y∂θ2

)
,

S− = 1√
2e−i(θ1+θ2)

(
i
√

1− y2∂y − 1
2

√
1+y
1−y∂θ1 + 1

2

√
1−y
1+y∂θ2

)
,

(F.15)


I3 = − i

2(∂θ1 − ∂θ2) ,
I+ = − 1√

2ei(θ1−θ2)
(
i
√

1− y2∂y + 1
2

√
1+y
1−y∂θ1 + 1

2

√
1−y
1+y∂θ2

)
,

I− = − 1√
2e−i(θ1−θ2)

(
i
√

1− y2∂y − 1
2

√
1+y
1−y∂θ1 − 1

2

√
1−y
1+y∂θ2

)
,

(F.16)

where the raising and lowering are defined as usual

S± = 1√
2

(S1 ± iS2) , I± = 1√
2

(I1 ± iI2) . (F.17)

Si and Ii are checked to be hermitian with the scalar product of (F.11).
The Hamiltonian (F.10) then takes a simple form in terms of the spin and isospin

operators
Hq = M0 + 1

2λS
2 = M0 + 1

2λI
2 , (F.18)

21Under a spatial rotation xiσi → R†xiσ
iR, so the fields of (5.4)–(5.5) and (5.11) are invariant if V (t)

transforms as in (F.13).
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which makes it clear that the eigenstates of Hq have same spin and isospin and the eigenvalues
are given by

Es = M0 + 1
2λs(s+ 1) , (F.19)

where s refers to the spin. In particular the nucleon states correspond to s = 1/2 and their
wavefunctions are easily found to be

|p ↑〉 = 1
πz1 , |n ↑〉 = i

πz2 ,

|p ↓〉 = − i
π z̄2 , |n ↓〉 = − 1

π z̄1 ,
(F.20)

where z1 and z2 where defined in (F.5). The next level s = 3/2 corresponds to the isobar
∆ states.
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