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1 Introduction

Flavor symmetry, as a powerful tool to analyze heavy meson and baryon weak decays, has
been extensively studied in literature [1–67]. It leads to linear relations between amplitudes
of some hadronic processes, known as flavor sum rules. Isospin symmetry is the most precise
flavor symmetry. Isospin breaking is naively expected as δI ' (mu − md)/ΛQCD ∼ 1%,
while V /U -spin breaking is δV/U ' ms/ΛQCD ∼ 30%. Isospin sum rules could provide
knowledge on unmeasured channels and be used to extract useful information of hadronic
dynamics. For instance, the isospin sum rule of B → ππ system is critical in the Gronau-
London method [68] of determining the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
parameter α ≡ Arg[VtdV ∗tb/VudV ∗ub].

Flavor sum rules are usually found by observing decay amplitudes expressed by the
Wigner-Eckhart invariants [69, 70]. For example, the isospin sum rule of B → ππ system
is derived from the isospin decompositions of B− → π0π−, B0 → π+π− and B0 → π0π0

modes. A useful method for generating SU(3) sum rules for charm meson decays without
the Wigner-Eckhart invariants was proposed in [71]. The effective Hamiltonian of charm
quark decay is invariant under operators T− and S, which allows us to generate SU(3)
sum rules through several master formulas. This approach has been extended to singly
and doubly charmed baryon decays [72]. However, T− is a linear combination of isospin
and V -spin operators and S is a linear combination of three U -spin operators. Isospin sum
rules cannot be generated by T− and S.

In this work, we propose an approach to generate isospin sum rules by a series of
isospin lowering operators In−. Isospin sum rules are derived though several master formulas.
Taking the nonleptonic decays of D and B mesons as examples, our method is shown in
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detail. The V - and U -spin sum rules can also be derived in a similar algorithm by replacing
In− with V n

− and Un−. This approach could be easily applied to other decay modes such as
heavy baryon decays, multi-body decays, etc. It provides a systematic way to analyze
flavor symmetry in c- and b-hadron decays.

The rest of this paper is structured as follows. In section 2, the D → PP modes
are selected as examples to introduce the theoretical framework of generating isospin sum
rules. The isospin sum rules of B meson decays are discussed in section 3. Section 4 is a
short summary. And the V - and U -spin sum rules are investigated in appendices A and B,
respectively.

2 Isospin sum rules in the D → P P decays

In this section, we present our theoretical framework for generating isospin sum rules,
taking the nonleptonic D meson decays as examples. The decays of charm quark are
classified as Cabibbo-favored (CF), singly Cabibbo-suppressed (SCS), and doubly Cabibbo-
suppressed (DCS) decays. The flavor structures of CF, SCS and DCS decays are c→ sd̄u,
c→ dd̄u/ss̄u, c→ ds̄u, respectively. For CF decay, isospin and its third component change
as ∆I = 1, ∆I3 = 1. For SCS decay, isospin and its third component change as ∆I = 3/2
or 1/2, ∆I3 = 1/2. And for DCS decay, isospin and its third component change as ∆I = 1
or 0, ∆I3 = 0. There exists a basis in which isospin sum rules involve only CF, SCS or
DCS decays respectively.

The effective Hamiltonian of charm quark decay in the Standard Model (SM) is [73]

Heff = GF√
2

 ∑
q=d,s

V ∗cq1Vuq2

( 2∑
i=1

Ci(µ)Oi(µ)
)
− V ∗cbVub

( 6∑
i=3

Ci(µ)Oi(µ) + C8g(µ)O8g(µ)
)

+ h.c., (2.1)

where the tree operators are

O1 = (ūαq2β)V−A(q̄1βcα)V−A, O2 = (ūαq2α)V−A(q̄1βcβ)V−A, (2.2)

with α, β being color indices. The QCD penguin operators are

O3 = (ūαcα)V−A
∑

q′=u,d,s
(q̄′βq′β)V−A, O4 = (ūαcβ)V−A

∑
q′=u,d,s

(q̄′βq′α)V−A,

O5 = (ūαcα)V−A
∑

q′=u,d,s
(q̄′βq′β)V+A, O6 = (ūαcβ)V−A

∑
q′=u,d,s

(q̄′βq′α)V+A. (2.3)

The chromomagnetic penguin operator is

O8g = gs
8π2mcūασµν(1 + γ5)T aαβGaµνcβ , (2.4)

which can be included into the penguin operators [74–76]. In the SU(3) picture, the effective
Hamiltonian of charm quark decay is written as [62]

Heff =
3∑

i,j,k=1
H ij
k O

ij
k =

3∑
i,j,k=1

H ij
k (q̄iqk)(q̄jc). (2.5)
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The coefficient matrix H is obtained from the map (ūq1)(q̄2c) → V ∗cq2Vuq1 for current-
current operators and (q̄′q′)(ūc) → −V ∗cbVub for penguin operators. Since q1 and q2 could
be d or s quark and q′ could be u, d or s quark according to eq. (2.1), the non-zero H ij

k

induced by tree and penguin operators include

{H(0)}13
2 = V ∗csVud, {H(0)}12

2 = V ∗cdVud, {H(0)}13
3 = V ∗csVus, {H(0)}12

3 = V ∗cdVus,

{H(1)}11
1 = −V ∗cbVub, {H(1)}21

2 = −V ∗cbVub, {H(1)}31
3 = −V ∗cbVub, (2.6)

where superscripts (0) and (1) are used to differentiate the tree and penguin contributions.
The light pseudoscalar meson state is expressed as |Pα〉 = (Pα)ij |P ij 〉, in which |P ij 〉

is the quark composition |P ij 〉 = |qiq̄j〉 and (Pα) is the coefficient matrix. In the SU(3)
picture, the pseudoscalar meson octet |P8〉 is expressed as

|P8〉 =


1√
2 |π

0〉+ 1√
6 |η8〉, |π+〉, |K+〉

|π−〉, − 1√
2 |π

0〉+ 1√
6 |η8〉, |K0〉

|K−〉, |K0〉, −
√

2/3|η8〉

 . (2.7)

The charmed meson state is expressed as |Dα〉 = (|D0〉, |D+〉, |D+
s 〉). The decay amplitude

of Dγ → PαPβ mode can be constructed as

A(Dγ → PαPβ) = 〈PαPβ |Heff |Dγ〉

=
∑
ω

(Pα)nm〈Pnm|(Pβ)sr〈P sr ||H
jk
l O

jk
l ||(Dγ)i|Di〉

=
∑
ω

〈PnmP sr |O
jk
l |Di〉 × (Pα)nm(Pβ)srH

jk
l (Dγ)i

=
∑
ω

Xω(Cω)αβγ . (2.8)

According to the Wigner-Eckhart theorem [69, 70], Xω = 〈PnmP sr |O
jk
l |Di〉 is the reduced

matrix element that is independent of α, β and γ. All information about initial/final states
is absorbed into the Clebsch-Gordan (CG) coefficient (Cω)αβγ = (Pα)nm(Pβ)srH

jk
l (Dγ)i.

In general, the flavor sum rules are derived by writing decay amplitudes and combining
several modes to form a polygon in the complex plane. However, this method is laborious
and unsystematic. The authors of ref. [71] proposed an approach to generate flavor sum
rules for charmed meson decays without the Wigner-Eckhart invariants. The idea is that
if there is an operator T under which TH = 0, it follows that

〈PαPβ |THeff |Dγ〉 =
∑
ω

〈PnmP sr |O
jk
l |Di〉 × (Pα)nm(Pβ)sr(TH)jkl (Dγ)i = 0. (2.9)

Operator T can be applied to the initial/final states rather than the effective Hamiltonian.
Then the l.h.s. of eq. (2.9) is turned into a sum of several decay amplitudes and eq. (2.9)
becomes a flavor sum rule.

It is found in ref. [71] that the effective Hamiltonian is invariant under T− and S, i.e.,
T−H = 0, SH = 0. T− and S are expressed as [71]

T− =

 0 0 0
1 0 0
λ 0 0

 and S =

 0 0 0
0 −λ 1
0 −λ2 λ

 , (2.10)
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where λ is a Wolfenstein parameter given by λ ≈ 0.225 [77]. S is a linear combination of
U -spin operators and T− is a linear combination of isospin and V -spin operators,

S = −λU3 − λ2U− + U+, T− = I− + λV−. (2.11)

The SU(3) sum rules generated by S and T− are U -spin sum rules and combinations
of isospin and V -spin sum rules, respectively. Besides, the premise of T−H = 0 and
SH = 0 is that the CKM matrix elements in charm decay are approximated to be Vud ≈ 1,
Vus ≈ λ, Vcd ≈ −λ, Vcs ≈ 1. If the next order correction is included in the Wolfenstein
parametrization, we have T−H 6= 0 and SH 6= 0. So the SU(3) sum rules generated though
S and T− dependent on the Wolfenstein approximation of the CKM matrix elements in
charm sector. S and T− cannot be used to construct SU(3) sum rules of b-hadron decay.

The three operators associated with isospin are I3, I+ and I−. In this work, we try to
establish the master formulas of isospin sum rules through the isospin lowering operator
I−, where I− is expressed as

I− =

 0 0 0
1 0 0
0 0 0

 . (2.12)

To achieve this goal, we decompose the four-quark operator Oijk to SU(3) irreducible rep-
resentations, 3⊗ 3⊗ 3 = 3p ⊕ 3t ⊕ 6⊕ 15. The explicit decomposition is [71]

Oijk = 1
8 O(15)ijk + 1

4 ε
ijlO(6)lk+δjk

(3
8O(3t)i−

1
8O(3p)i

)
+δik

(3
8O(3p)j−

1
8O(3t)j

)
. (2.13)

According to the map rule below eq. (2.5), the non-zero coefficients corresponding to the
tree operators include

{H(0)(6)}22=−2V ∗csVud, {H(0)(6)}23=(V ∗cdVud−V ∗csVus), {H(0)(6)}33=2V ∗cdVus,

{H(0)(15)}11
1 =−2(V ∗cdVud+V ∗csVus), {H(0)(15)}13

2 =4V ∗csVud, {H(0)(15)}12
3 =4V ∗cdVus,

{H(0)(15)}12
2 =3V ∗cdVud−V ∗csVus, {H(0)(15)}13

3 =3V ∗csVus−V ∗cdVud,

{H(0)(3t)}1=V ∗cdVud+V ∗csVus. (2.14)

The non-zero coefficients corresponding to the penguin operators include

{H(1)(3t)}1 = −V ∗cbVub, {H(1)(3p)}1 = −3V ∗cbVub. (2.15)

The 6 representation can be written in matrix form as [H(0)(6)]ij = [H(0)(6)]ij with

[H(0)(6)] =

 0 0 0
0 −2V ∗csVud (V ∗cdVud − V ∗csVus)
0 (V ∗cdVud − V ∗csVus) 2V ∗cdVus

 . (2.16)

Under the isospin lowering operator I−, [H(0)(6)] is transformed as

I−[H(0)(6)] = I− · [H(0)(6)] + I− · [H(0)(6)]T = 0, (2.17)
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where symbol “·” represents the dot product of two matrices and superscript T represents
the transposition of matrix. The three 3-dimensional presentations are written in matrix
form as

[H(0)(3t)] = (V ∗cdVud + V ∗csVus, 0, 0 ), (2.18)

[H(1)(3t)] = (−V ∗cbVub, 0, 0 ), (2.19)

[H(1)(3p)] = (−3V ∗cbVub, 0, 0 ). (2.20)

Under the isospin lowering operator I−, [H(0,1)(3t,p)] are transformed as

I−[H(0,1)(3t,p)] = [H(0,1)(3t,p)] · I− = 0. (2.21)

One can find [H(0)(6)] and [H(0,1)(3t,p)] are zero under I−. The 15 representation is written
in matrix form as {[H(0)(15)]i}kj = [H(0)(15)]ijk with

[H(0)(15)]1 =

−2 (V ∗cdVud + V ∗csVus) 0 0
0 (3V ∗cdVud − V ∗csVus) 4V ∗csVud
0 4V ∗cdVus (3V ∗csVus − V ∗cdVud)

 , (2.22)

[H(0)(15)]2 =

 0 0 0
(3V ∗cdVud − V ∗csVus) 0 0

4V ∗cdVus 0 0

 , (2.23)

[H(0)(15)]3 =

 0 0 0
4V ∗csVud 0 0

(3V ∗csVus − V ∗cdVud) 0 0

 . (2.24)

The tensor transformation law of [H(0)(15)] under I− is

{I−[H(0)(15)]i}kj = 2 {[H(0)(15)](i · I−}kj) − {I− · [H
(0)(15)]i}kj . (2.25)

Under the isospin lowering operator I−, [H(0)(15)]2,3 are zero but [H(0)(15)]1 is non-zero,

I−[H(0)(15)]2,3 = 0, I−[H(0)(15)]1 =

 0 0 0
8V ∗cdVud 0 0
8V ∗cdVus 0 0

 6= 0. (2.26)

Thereby, the isospin lowering operator I− cannot be used to construct flavor sum rules
directly like T− and S.

Notice the matrix I−[H(0)(15)]1 does not include V ∗csVud. By combining with
eqs. (2.17), (2.21) and (2.26), it is found that the Hamiltonian of CF decay is zero un-
der I−, i.e., I−HCF = 0. Observe that the matrix I−[H(0)(15)]1 is invariant under I−,

I2
−[H(0)(15)]1 = I−{I−[H(0)(15)]1} = 0. (2.27)

So the Hamiltonian of SCS and DCS decays is zero under I2
−, i.e., I2

−HSCS,DCS = 0. In
fact, we can define a series of operators In−. The Hamiltonian of charm quark decay is zero
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under In− if n ≥ 2 since I−0 = 0. If the operator T in eq. (2.9) is replaced by In−, eq. (2.9)
will be an abstract isospin sum rule,

〈PαPβ |In−Heff |Dγ〉 =
∑
ω

〈PnmP sr |O
jk
l |Di〉 × (Pα)nm(Pβ)sr(In−H)jkl (Dγ)i = 0. (2.28)

The derivation of eqs. (2.17), (2.21), (2.26) and (2.27) does not involve the values of CKM
matrix elements. So the isospin sum rules generated from eq. (2.28) do not rely on any
approximation of the CKM matrix.

The abstract isospin sum rule (2.28) becomes explicit isospin sum rules by applying
In− to initial/final states and computing the coefficients expanded by initial/final states as
bases [72]. Under the isospin lowering operator I−, we have

I−|Dγ〉 =
∑
α

|Dα〉〈Dα|I−|Dγ〉 =
∑
α

(Dα)j [I−]ij(Dγ)i|Dα〉 =
∑
α

{[I−]D}αγ |Dα〉. (2.29)

[I−]D is the coefficient matrix of I−|Dγ〉 expanded by |Dα〉, which is derived to be

[I−]D =

 0 0 0
1 0 0
0 0 0

 . (2.30)

The isospin lowering operator I− acting on a pseudoscalar meson octet is a commutator,

I−〈[P8]α| = [I−, 〈[P8]α|] = I− · 〈[P8]α| − 〈[P8]α| · I−
=
∑
β

Tr{[ I−, [P8]α ] · [P8]Tβ }〈[P8]β | =
∑
β

{[I−]P8}βα〈[P8]β |, (2.31)

where [I−]P8 is coefficient matrix of commutator [ I−, 〈[P8]α| ] expanded by 〈[P8]β |. If we
define pseudoscalar meson octet as

〈[P8]β | = (〈π+|, 〈π0|, 〈π−|, 〈K+|, 〈K0|, 〈K0|, 〈K−|, 〈η8|), (2.32)

we get

[I−]P8 =



0 0 0 0 0 0 0 0
−
√

2 0 0 0 0 0 0 0
0
√

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0


. (2.33)

With the matrices [I−]D and [I−]P8 , the sum of decay amplitudes generated by I− is
written as

SumI− [γ, α, β] =
∑
µ

[
{[I−]P8}µαAγ→µβ + {[I−]P8}

µ
βAγ→αµ + {[I−]D}µγAµ→αβ

]
. (2.34)
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Since the effective Hamiltonian of CF decay is invariant under I−, SumI− [γ, α, β] is
zero if it is a sum of amplitudes of several CF decay channels. An isospin sum rule is gener-
ated via eq. (2.34) if appropriate α, β and γ are selected. I− is the isospin lowering operator.
I− acting on the final/initial state lowers/arises I3 by one. Then α, β can be chosen as the
states with the maximal I3, and γ can be chosen as the state with the minimal I3. In the
D → PP decays, the choice of {γ, α, β} = {D0, π+,K

0} generates an isospin sum rule as

SumI− [D0, π+,K
0] = −

√
2A(D0 → π0K

0)−A(D0 → π+K−) +A(D+ → π+K
0) = 0.
(2.35)

For the SCS and DCS decays, equation I2
−HSCS,DCS = 0 indicates that the isospin sum

rules are obtained by acting I− on the final and initial states twice. Specifically, the
isospin sum rule of singly Cabibbo-suppressed D → ππ system is generated by I2

− with
{γ, α, β} = {D0, π+, π+},

SumI2
−[D0,π+,π+]=−

√
2SumI−[D0,π+,π0]−

√
2SumI−[D0,π0,π+]+SumI−[D+,π+,π+]

=4
[
A(D0→π0π0)−A(D0→π+π−)−

√
2A(D+→π+π0)

]
=0. (2.36)

The isospin rum rule of doubly Cabibbo-suppressed D → Kπ decays is generated by I2
−

with {γ, α, β} = {D0, π+,K+},

SumI2
− [D0,π+,K+]=SumI− [D0,π+,K0]−

√
2SumI− [D0,π0,K+]+SumI− [D+,π+,K+]

=−2
[√

2A(D0→π0K0)+A(D0→π−K+)
+
√

2A(D+→π0K+)−A(D+→π+K0)
]
=0. (2.37)

The three isospin sum rules derived from I− and I2
− are consistent with the results given

by ref. [71].
From above analysis, it is found that the isospin sum rules are obtained by applying

In− to the initial/final states if the effective Hamiltonian is invariant under In−. Isospin sum
rules can also be generated by isospin raising operators In+. The results are the same as
the ones derived from In−. One should note that not arbitrary choices of {γ, α, β} and In−
generate isospin sum rules. There are two requirements for {γ, α, β} and In−. Firstly, the
choices of {γ, α, β} and In− should be associated with physical amplitudes. For example, the
choice of {γ, α, β} = {D+, π+,K

0} and I− cannot generate an isospin sum rule. It because
that I− is a QED charge lowering operator and then I− acting on {D+, π+,K

0} cannot
derive charge preserving decay amplitudes. The choice of {γ, α, β} = {D0,K+,K+} and
I2
− cannot generate an isospin sum rule since I− does not change strangeness and ∆S = −2
amplitudes are forbidden in charm decay. Secondly, the isospin sum rule is generated by
In− only if n ≥ 1 for CF decay and n ≥ 2 for SCS and DCS decays. For example, the sum of
amplitudes derived by the choice of {γ, α, β} = {D0,K+,K

0} and I− is not zero because
it is a sum of SCS amplitudes and I−HSCS 6= 0,

SumI− [D0,K+,K
0] = A(D0 → K0K

0)−A(D0 → K+K−) +A(D+ → K+K
0) 6= 0.

(2.38)
The change of strangeness in CF, SCS, DCS transitions are ∆S = −1, 0 and 1,

respectively. In− cannot change strangeness, then we can distinguish the three decay modes
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though ∆S in γ → αβ. Considering that I− is a QED charge lowering operator, we
conclude the selection rule of {γ, α, β}. The choice of {γ, α, β} corresponding to a ∆Q = 1
and ∆S = −1 amplitude produces an isospin sum rule of CF mode. The choice of {γ, α, β}
corresponding to a ∆Q = 2 and ∆S = 0 amplitude produces an isospin sum rule of SCS
mode. And the choice of {γ, α, β} corresponding to a ∆Q = 2 and ∆S = 1 amplitude
produces an isospin sum rule of DCS mode. For other choices, no sum rule is generated.
In the D → PP decays, there are only four choices of {γ, α, β} satisfying above selection
rule, {γ, α, β} = {D0, π+,K

0}, {D0, π+, π+}, {D0, π+,K+} and {D+
s , π

+, π+}. The first
three choices generate the isospin sum rules (2.35)∼(2.37) respectively. And the choice of
{γ, α, β} = {D+

s , π
+, π+} generates an isospin sum rule as

SumI− [D+
s , π

+, π+] = −2
√

2A(D+
s → π+π0) = 0. (2.39)

The approach for generating isospin sum rules can be extended to other decay modes
such as B meson decays, heavy baryon decays, multi-body decays, etc. It provides a
programmatic way to derive isospin sum rules for heavy hadron decays. In the next section,
the applications of our method in the B → DP and B → PP decays are discussed. For the
isospin sum rules of other heavy hadron decays and the phenomenological discussions, we
will leave them in the future work. In addition, the V - and U -spin sum rules are derived
by V n

− and Un− operators with D → PP , B → DP and B → PP decays as examples in
appendices A and B.

3 Isospin sum rules in the B meson decays

3.1 Isospin sum rules in the B → DP decays

The effective Hamiltonian of b→ cuq transition is given by [73]

Heff = GF√
2
∑
q=d,s

VcbV
∗
uq [C1(µ)O1(µ) + C2(µ)O2(µ)] + h.c., (3.1)

where the tree operators are

O1 = (q̄αuβ)V−A(c̄βbα)V−A, O2 = (q̄αuα)V−A(c̄βbβ)V−A. (3.2)

In the SU(3) picture, Oij is decomposed into irreducible representations as 3 ⊗ 3 = 8 ⊕ 1.
The non-zero CKM components include

{H(0)(8)}21 = VcbV
∗
ud, {H(0)(8)}31 = VcbV

∗
us. (3.3)

H(0)(8) is written in matrix form as

[H(0)(8)] =

 0 VcbV ∗ud VcbV ∗us
0 0 0
0 0 0

 . (3.4)
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Under In−, [H(0)(8)] is transformed as

I−[H(0)(8)] = I− · [H(0)(8)]− [H(0)(8)] · I− =

−VcbV
∗
ud 0 0

0 VcbV
∗
ud VcbV

∗
us

0 0 0

 , (3.5)

I2
−[H(0)(8)] = I−{I−[H(0)(8)]} =

 0 0 0
−2VcbV ∗ud 0 0

0 0 0

 , (3.6)

I3
−[H(0)(8)] = I−{I−{I−[H(0)(8)]}} = 0. (3.7)

The effective Hamiltonian of b → cud (b → cus) transition is zero under In− with n ≥ 3
(n ≥ 2). So the isospin sum rules of b→ cud (b→ cus) transition can be generated by In−
if n ≥ 3 (n ≥ 2).

Under the isospin lowering operator I−, [I−]B = [I−]D if the B meson anti-triplet
is defined as |Bα〉 = (|B−〉, |B0〉, |B0

s〉). The sum of decay amplitudes generated from
Bγ → DαPβ under I− is

SumI− [γ, α, β] =
∑
µ

[
{[I−]TD}µαAγ→µβ + {[I−]P8}

µ
βAγ→αµ + {[I−]B}

µ
γAµ→αβ

]
. (3.8)

The transposition of matrix [I−]D is arisen from the initial-final transformation of D meson
anti-triplet. With eq. (3.8), isospin sum rules in the B → DP modes are derived to be

SumI3
−[B−,D+,π+]=−SumI2

−[B−,D0,π+]−
√

2SumI2
−[B−,D+,π0]+SumI2

−[B0
,D+,π+]

=2
√

2SumI−[B−,D0,π0]−2SumI−[B−,D+,π−]

−2SumI−[B0
,D0,π+]−2

√
2SumI−[B0

,D+,π0]

=6
[
A(B−→D0π−)+

√
2A(B0→D0π0)−A(B0→D+π−)

]
=0, (3.9)

SumI2
−[B−,D+,K

0]=−SumI−[B−,D0,K
0]−SumI−[B−,D+,K−]+SumI−[B0

,D+,K
0]

=2
[
A(B−→D0K−)−A(B0→D0K

0)−A(B0→D+K−)
]
=0, (3.10)

SumI2
−[B0

s,D
+,π+]=−SumI−[B0

s,D
0,π+]−

√
2SumI−[B0

s,D
+,π0]

=2
[√

2A(B0
s→D0π0)−A(B0

s→D+π−)
]
=0. (3.11)

3.2 Isospin sum rules in the B → P P decays

The effective Hamiltonian of b→ uuq transition is given by [73]

Heff = GF√
2
∑
q=d,s

[
V ∗ubVuq

( 2∑
i=1

Cui (µ)Oui (µ)
)

+ V ∗cbVcq

( 2∑
i=1

Cci (µ)Oci (µ)
)]

(3.12)

− GF√
2
∑
q=d,s

[
VtbV

∗
tq

( 10∑
i=3

Ci(µ)Oi(µ) + C7γ(µ)O7γ(µ) + C8g(µ)O8g(µ)
)]

+ h.c..

The tree operators are

Ou1 = (q̄αuβ)V−A(ūβbα)V−A, Ou2 = (q̄αuα)V−A(ūβbβ)V−A,
Oc1 = (q̄αcβ)V−A(c̄βbα)V−A, Oc2 = (q̄αcα)V−A(c̄βbβ)V−A. (3.13)

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
0
6
4

The QCD penguin operators are

O3 = (q̄αbα)V−A
∑

q′=u,d,s
(q̄′βq′β)V−A, O4 = (q̄αbβ)V−A

∑
q′=u,d,s

(q̄′βq′α)V−A,

O5 = (q̄αbα)V−A
∑

q′=u,d,s
(q̄′βq′β)V+A, O6 = (q̄αbβ)V−A

∑
q′=u,d,s

(q̄′βq′α)V+A. (3.14)

The QED penguin operators are

O7 = 3
2(q̄αbα)V−A

∑
q′=u,d,s

eq′(q̄′βq′β)V+A, O8 = 3
2(q̄αbβ)V−A

∑
q′=u,d,s

eq′(q̄′βq′α)V+A,

O9 = 3
2(q̄αbα)V−A

∑
q′=u,d,s

eq′(q̄′βq′β)V−A, O10 = 3
2(q̄αbβ)V−A

∑
q′=u,d,s

eq′(q̄′βq′α)V−A. (3.15)

The electromagnetic penguin and chromomagnetic penguin operators are

O7γ = e

8π2mbq̄ασµν(1 + γ5)Fµνbα,

O8g = gs
8π2mbq̄ασµν(1 + γ5)T aαβGaµνbβ . (3.16)

In the SU(3) picture, the coefficient matrices induced by Ou1,2 are

[H(0,u)(6)] =

 0 −VubV ∗us VubV ∗ud
−VubV ∗us 0 0
VubV

∗
ud 0 0

 , (3.17)

[H(0,u)(15)]1 =

 0 3VubV ∗ud 3VubV ∗us
0 0 0
0 0 0

 , (3.18)

[H(0,u)(15)]2 =

 3VubV ∗ud 0 0
0 −2VubV ∗ud −VubV ∗us
0 0 −VubV ∗ud

 , (3.19)

[H(0,u)(15)]3 =

 3VubV ∗us 0 0
0 −VubV ∗us 0
0 −VubV ∗ud −2VubV ∗us

 , (3.20)

[H(0,u)(3t)] = ( 0, VubV ∗ud, VubV ∗us ). (3.21)

The coefficient matrix induced by Oc1,2 is

[H(0,c)(3t)] = ( 0, VcbV ∗cd, VcbV ∗cs ). (3.22)

The coefficient matrices induced by penguin operators are

[H(1)(3t)] = ( 0, −VtbV ∗td, −VtbV ∗ts ), [H(1)(3p)] = ( 0, −3VtbV ∗td, −3VtbV ∗ts ). (3.23)

One can find all the 3-dimensional presentations have the structure of [H(3)] = (0, a, b).
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Under the operators In−, [H(0,u)(6)], [H(0,u)(15)]i, [H(3)] are transformed as

I2
−[H(0,u)(6)] = I−{I−[H(0,u)(6)]} = I−

 0 0 0
0 −2VubV ∗us 2VubV ∗ud
0 0 0

 = 0, (3.24)

I3
−[H(0,u)(15)]1 = I−{I−{I−[H(0,u)(15)]1}} = I−

I−
 6VubV ∗ud 0 0

0 −5VubV ∗ud −4VubV ∗us
0 0 −VubV ∗ud




= I−

 0 0 0
−16VubV ∗ud 0 0

0 0 0

 = 0, (3.25)

I2
−[H(0,u)(15)]2 = I−{I−[H(0,u)(15)]2} = I−

 0 0 0
−5VubV ∗ud 0 0

0 0 0

 = 0, (3.26)

I2
−[H(0,u)(15)]3 = I−{I−[H(0,u)(15)]3} = I−

 0 0 0
−4VubV ∗us 0 0
−VubV ∗ud 0 0

 = 0, (3.27)

I2
−[H(3)] = I−{I−[H(3)]} = I− ( a 0 0 ) = 0. (3.28)

The isospin sum rules of b→ uud (b→ uus) transition can be generated by In− in the case
of n ≥ 3 (n ≥ 2). The sum of decay amplitudes generated from Bγ → PαPβ under I− is

SumI− [γ, α, β] =
∑
µ

[
{[I−]P8}µαAγ→µβ + {[I−]P8}

µ
βAγ→αµ + {[I−]B}

µ
γAµ→αβ

]
. (3.29)

With eq. (3.29), the isospin sum rules of B → PP modes are derived to be

SumI3
−[B−,π+,π+]=−

√
2SumI2

−[B−,π0,π+]−
√

2SumI2
−[B−,π+,π0]+SumI2

−[B0
,π+,π+]

=−2SumI−[B−,π+,π−]+4SumI−[B−,π0,π0]−2SumI−[B−,π−,π+]

−2
√

2SumI−[B0
,π+,π0]−2

√
2SumI−[B0

,π0,π+]

=12
[√

2A(B−→π0π−)+A(B0→π0π0)−A(B0→π+π−)
]
=0, (3.30)

SumI2
−[B−,π+,K

0]=−
√

2SumI−[B−,π0,K
0]−SumI−[B−,π+,K−]+SumI−[B0

,π+,K
0]

=2
[√

2A(B−→π0K−)−A(B−→π−K0)

−
√

2A(B0→π0K
0)−A(B0→π+K−)

]
=0, (3.31)

SumI2
−[B0

s,π
+,π+]=−

√
2SumI−[B0

s,π
0,π+]−

√
2SumI−[B0

s,π
+,π0]

=4
[
A(B0

s→π0π0)−A(B0
s→π+π−)

]
=0. (3.32)

According to eqs. (2.39), (3.11) and (3.32), the branching fractions of D+
s → π+π0,

B
0
s → D0π0, B0

s → D+π−, B0
s → π+π− and B0

s → π0π0 satisfy following equations under
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isospin symmetry,

Br(D+
s → π+π0) = 0, (3.33)

Br(B0
s → D+π−) = 2Br(B0

s → D0π0), (3.34)

Br(B0
s → π+π−) = 2Br(B0

s → π0π0), (3.35)

where the identical factor in the B0
s → π0π0 channel is considered. So we suggest to

measure the branching fractions of D+
s → π+π0, B0

s → D0π0, B0
s → D+π−, B0

s → π+π−

and B0
s → π0π0 modes to test the isospin symmetry. The branching fraction of B0

s → π+π−

mode has been measured by many experiments and averaged to be (7.0± 1.0)× 10−7 [77].
And the upper limits of Br(D+

s → π+π0) and Br(B0
s → π0π0) are given by 1.2× 10−4 and

2.1 × 10−4, respectively [77]. It is significant to perform a more precise measurement for
above five channels in the future.

4 Summary

Flavor symmetry is a model-independent tool to analyze heavy meson and baryon decays.
The flavor invariants are independent of the detailed dynamics and determined by fitting
experimental data. In this work, we propose a simple algorithm to generate the isospin, V -
spin and U -spin sum rules of heavy hadron decays. We found that the effective Hamiltonian
of heavy quark decay is fully invariant under a series of lowering operators In−, V n

− and Un−.
The isospin, V -spin and U -spin sum rules can be generated from several master formulas
without the Wigner-Eckhart invariants. Taking the two-body decays of D and B mesons
as examples, our approach is presented in detail. In addition, we suggest to measure
the branching fractions of D+

s → π+π0, B0
s → D0π0, B0

s → D+π−, B0
s → π+π− and

B
0
s → π0π0 modes to test the isospin symmetry.
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A V -spin sum rules

In this appendix, we derive the V -spin sum rules in the D → PP , B → DP and B → PP

modes. The V -spin lowering operator V− is

V− =

 0 0 0
0 0 0
1 0 0

 . (A.1)

In the charm quark decay, [H(0)(6)], [H(0)(15)]i, [H(0,1)(3t,p)] are transformed under V n
− as

V−[H(0)(6)] = 0, V−[H(0)(15)]2,3 = 0, V−[H(0,1)(3t,p)] = 0, (A.2)

V 2
−[H(0)(15)]1 = V−

 0 0 0
8V ∗csVud 0 0
8V ∗csVus 0 0

 = 0. (A.3)
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So the V -spin sum rules of DCS transition can be generated by V n
− if n ≥ 1, and the V -spin

sum rules of CF and SCS transitions can be generated by V n
− if n ≥ 2. The coefficient

matrix [V−]D is derived to be

[V−]D =

 0 0 0
0 0 0
1 0 0

 . (A.4)

The coefficient matrix [V−]P8 is derived to be

[V−]P8 =



0 0 0 0 0 0 0 0
0 0 0 − 1√

2 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1√

2 0 0 0 0 0
√

6
2

0 0 0 −
√

6
2 0 0 0 0


. (A.5)

The sum of decay amplitudes generated from Dγ → PαPβ under V− is

SumV− [γ, α, β] =
∑
µ

[
{[V−]P8}µαAγ→µβ + {[V−]P8}

µ
βAγ→αµ + {[V−]D}µγAµ→αβ

]
. (A.6)

The V -spin sum rules in the D → PP modes are derived to be

SumV 2
−[D0,π+,K+]=−SumV−[D0,π+,π0]√

2
−
√

3
2SumV−[D0,π+,η8]

+SumV−[D0,K
0
,K+]+SumV−[D+

s ,π
+,K+]

=2A(D+
s →K+K

0)−
√

6A(D+
s →π+η8)−

√
2A(D+

s →π+π0)

−
√

6A(D0→K0
η8)−

√
2A(D0→π0K

0)
−2A(D0→π+K−)=0, (A.7)

SumV 2
−[D0,K+,K+]=−SumV−[D0,π0,K+]√

2
−SumV−[D0,K+,π0]√

2
−
√

3
2SumV−[D0,K+,η8]

−
√

3
2SumV−[D0,η8,K

+]+SumV−[D+
s ,K

+,K+]

=−2
√

6A(D+
s →K+η8)−2

√
2A(D+

s →π0K+)+3A(D0→η8η8)
−4A(D0→K+K−)+2

√
3A(D0→π0η8)

+A(D0→π0π0)=0, (A.8)

SumV−[D0,K+,K0]=A(D+
s →K+K0)−

√
3
2A(D0→K0η8)

−A(D0→π0K0)√
2

−A(D0→π−K+)=0. (A.9)
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In the b→ cūq transition, [H(0)(8)] is transformed under V n
− as

V 3
−[H(0)(8)] = V−

V−
−VcbV

∗
us 0 0

0 0 0
0 VcbV

∗
ud VcbV

∗
us


 = V−

 0 0 0
0 0 0

−2VcbV ∗us 0 0

 = 0. (A.10)

So the V -spin sum rules of b → cūd transition can be generated by V n
− if n ≥ 2, and the

V -spin sum rules of b→ cūs transition can be generated by V n
− if n ≥ 3. Under the V -spin

lowering operator V−, we have [V−]B = [V−]D. The sum of decay amplitudes generated
from Bγ → DαPβ under V− is

SumV− [γ, α, β] =
∑
µ

[
{[V−]TD}µαAγ→µβ + {[V−]P8}

µ
βAγ→αµ + {[V−]B}

µ
γAµ→αβ

]
. (A.11)

The V -spin sum rules in the B → DP modes are derived to be

SumV 2
−[B−,D+

s ,K
0]=−SumV−[B−,D0,K0]−SumV−[B−,D+

s ,π
−]+SumV−[B0

s,D
+
s ,K

0]

=−2
[
A(B0

s→D+
s π
−)+A(B0

s→D0K0)−A(B−→D0π−)
]
=0, (A.12)

SumV 2
−[B0

,D+
s ,K

+]=−SumV−[B0
,D0,K+]−SumV−[B0

,D+
s ,π

0]√
2

−
√

3
2SumV−[B0

,D+
s ,η8]

=−2A(B0→D+
s K

−)+
√

6A(B0→D0η8)

+
√

2A(B0→D0π0)=0, (A.13)

SumV 3
−[B−,D+

s ,K
+]=−SumV 2

−[B−,D0,K+]−
SumV 2

−[B−,D+
s ,π

0]√
2

−
√

3
2SumV

2
−[B−,D+

s ,η8]+SumV 2
−[B0

s,D
+
s ,K

+]

=
√

2SumV−[B−,D0,π0]+
√

6SumV−[B−,D0,η8]

−2SumV−[B−,D+
s ,K

−]−2SumV−[B0
s,D

0,K+]

−
√

2SumV−[B0
s,D

+
s ,π

0]−
√

6SumV−[B0
s,D

+
s ,η8]

=3
[
−2A(B0

s→D+
s K

−)+
√

6A(B0
s→D0η8)

+
√

2A(B0
s→D0π0)+2A(B−→D0K−)

]
=0. (A.14)

In the b → uūq transition, [H(0,u)(6)], [H(0,u)(15)]i, [H(3)] are transformed under V n
−

as

V 2
−[H(0,u)(6)] = V−

 0 0 0
0 0 0
0 −2VubV ∗us 2VubV ∗ud

 = 0, (A.15)
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V 3
−[H(0,u)(15)]1 = V−

V−
 6VubV ∗us 0 0

0 −VubV ∗us 0
0 −4VubV ∗ud −5VubV ∗us




= V−

 0 0 0
0 0 0

−16VubV ∗us 0 0

 = 0, (A.16)

V 2
−[H(0,u)(15)]2 = V−{V−[H(0,u)(15)]2} = V−

 0 0 0
−VubV ∗us 0 0
−4VubV ∗ud 0 0

 = 0, (A.17)

V 2
−[H(0,u)(15)]3 = V−

 0 0 0
0 0 0

−5VubV ∗us 0 0

 = 0, (A.18)

V 2
−[H(3)] = V−( b 0 0 ) = 0. (A.19)

So the V -spin sum rules of b→ uud (b→ uus) transition can be generated by V n
− if n ≥ 2

(n ≥ 3). The sum of decay amplitudes generated from Bγ → PαPβ under V− is

SumV− [γ, α, β] =
∑
µ

[
{[V−]P8}µαAγ→µβ + {[V−]P8}

µ
βAγ→αµ + {[V−]B}

µ
γAµ→αβ

]
. (A.20)

With eq. (A.20), the V -spin sum rules in the B → PP modes are derived to be

SumV 2
−[B−,K+,K0]=−SumV−[B−,π0,K0]√

2
−SumV−[B−,K+,π−]

−
√

3
2SumV−[B−,η8,K

0]+SumV−[B0
s,K

+,K0]

=−
√

6A(B0
s→K0η8)−

√
2A(B0

s→π0K0)

−2A(B0
s→π−K+)−2A(B−→K0K−)

+
√

6A(B−→π−η8)+
√

2A(B−→π0π−)=0, (A.21)

SumV 2
−[B0

,K+,K+]=−SumV−[B0
,π0,K+]√

2
−SumV−[B0

,K+,π0]√
2

−
√

3
2SumV−[B0

,η8,K
+]−

√
3
2SumV−[B0

,K+,η8]

=3A(B0→η8η8)−4A(B0→K+K−)

+2
√

3A(B0→π0η8)+A(B0→π0π0)=0, (A.22)

SumV 3
−[B−,K+,K+]=SumV 2

−[B0
s,K

+,K+]−
SumV 2

−[B−,π0,K+]√
2

−
SumV 2

−[B−,K+,π0]√
2

−
√

3
2SumV

2
−[B−,K+,η8]−

√
3
2SumV

2
−[B−,η8,K

+]

=SumV−[B−,π0,π0]+
√

3SumV−[B−,π0,η8]−2SumV−[B−,K+,K−]
−2SumV−[B−,K−,K+]+

√
3SumV−[B−,η8,π

0]

+3SumV−[B−,η8,η8]−
√

2SumV−[B0
s,π

0,K+]
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−
√

2SumV−[B0
s,K

+,π0]−
√

6SumV−[B0
s,K

+,η8]

−
√

6SumV−[B0
s,η8,K

+]

=3
[
3A(B0

s→η8η8)−4A(B0
s→K+K−)+2

√
3A(B0

s→π0η8)

+A(B0
s→π0π0)+2

√
6A(B−→K−η8)

+2
√

2A(B−→K−π0)
]
=0. (A.23)

B U -spin sum rules

In this appendix, we derive the U -spin sum rules in the D → PP , B → DP and B → PP

modes. The U -spin lowering operator U− is

U− =

 0 0 0
0 0 0
0 1 0

 . (B.1)

In charm quark decay, [H(0)(6)], [H(0)(15)]i, [H(0,1)(3t,p)] are transformed under Un− as

U2
−[H(0)(6)]=U−

 0 0 0
0 0 0
0 −4V ∗csVud 2(V ∗cdVud−V ∗csVus)

=0, (B.2)

U−[H(0,1)(3t,p)]=0, (B.3)

U3
−[H(0)(15)]1 =U−

U−
 0 0 0

0 4V ∗csVud 0
0 4(V ∗csVus−V ∗cdVud) −4V ∗csVud




=U−

 0 0 0
0 0 0

−4V ∗csVud −4V ∗csVud 0

=0, (B.4)

U3
−[H(0)(15)]2 =U−

U−
 0 0 0

4V ∗csVud 0 0
4(V ∗csVus−V ∗cdVud) 0 0


=U−

 0 0 0
0 0 0

−8V ∗csVud 0 0

=0, (B.5)

U2
−[H(0)(15)]3 =U−

 0 0 0
0 0 0

−4V ∗csVud 0 0

=0, (B.6)

The U -spin sum rules of DCS, SCS and CF transitions are generated by Un− if n ≥ 1, n ≥ 2
and n ≥ 3, respectively. The coefficient matrix [U−]D is derived to be

[U−]D =

 0 0 0
0 0 0
0 1 0

 . (B.7)
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The coefficient matrix [U−]P8 is derived to be

[U−]P8 =



0 0 0 −1 0 0 0 0
0 0 0 0 1√

2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 1√

2 0 0 0 0 0
√

6
2

0 0 1 0 0 0 0 0
0 0 0 0 −

√
6

2 0 0 0


. (B.8)

The sum of decay amplitudes generated from Dγ → PαPβ under U− is

SumU− [γ, α, β] =
∑
µ

[
{[U−]P8}µαAγ→µβ + {[U−]P8}

µ
βAγ→αµ + {[U−]D}µγAµ→αβ

]
. (B.9)

The U -spin sum rules in the D → PP modes are derived to be

SumU3
− [D+,K+,K0] =SumU2

− [D+
s →K+K0]−

√
3
2 SumU

2
− [D+→K+η8]

+
SumU2

− [D+→π0K+]√
2

−SumU2
− [D+→π+K0]

=−
√

6SumU− [D+
s →K+η8]+

√
2SumU− [D+

s →π0K+]

−2SumU− [D+
s →π+K0]−2SumU− [D+→K+K

0]
+
√

6SumU− [D+→π+η8]−
√

2SumU− [D+→π+π0]

=−6A(D+
s →K+K

0)+3
√

6A(D+
s →π+η8)

−3
√

2A(D+
s →π+π0)+6A(D+→π+K

0) = 0, (B.10)
SumU3

− [D0,K0,K0] =−
√

6SumU2
− [D0→K0η8]+

√
2SumU2

− [D0→π0K0]

= 3SumU− [D0→ η8η8]−4SumU− [D0→K0K
0]

−2
√

3SumU− [D0→π0η8]+SumU− [D0→π0π0] =

= 6
√

6A(D0→K
0
η8)−6

√
2A(D0→π0K

0) = 0, (B.11)

SumU2
− [D+,K+,K0] =SumU− [D+

s →K+K0]−
√

3
2 SumU− [D+→K+η8]

+ SumU− [D+→π0K+]√
2

−SumU− [D+→π+K0]

=−
√

6A(D+
s →K+η8)+

√
2A(D+

s →π0K+)−2A(D+
s →π+K0)

−2A(D+→K+K
0)+
√

6A(D+→π+η8)
−
√

2A(D+→π+π0) = 0, (B.12)
SumU2

− [D0,K0,K0] =−
√

6SumU− [D0→K0η8]+
√

2SumU− [D0→π0K0]

= 3A(D0→ η8η8)−4A(D0→K0K
0)

−2
√

3A(D0→π0η8)+A(D0→π0π0) = 0, (B.13)

– 17 –



J
H
E
P
0
5
(
2
0
2
3
)
0
6
4

SumU− [D+,K+,K0] =A(D+
s →K+K0)−

√
3
2A(D+→K+η8)

+A(D+→π0K+)√
2

−A(D+→π+K0) = 0, (B.14)

SumU− [D0,K0,K0] =−
√

6A(D0→K0η8)+
√

2A(D0→π0K0) = 0. (B.15)

One should note the U -spin sum rules derived by Un− do not dependent on the Wolfenstein
approximation of the CKM matrix.

In the b→ cūq transition, [H(0)(8)] is transformed under Un− as

U2
−[H(0)(8)] = U−

 0 −VcbV ∗us 0
0 0 0
0 0 0

 = 0. (B.16)

So the U -spin sum rules of b→ cūd transition are generated by Un− if n ≥ 1, and the U -spin
sum rules of b → cūs transition are generated by Un− if n ≥ 2. Under the U -spin lowering
operator U−, [U−]B = [U−]D. The sum of decay amplitudes generated from Bγ → DαPβ
under U− is

SumU− [γ, α, β] =
∑
µ

[
{[U−]TD}µαAγ→µβ + {[U−]P8}

µ
βAγ→αµ + {[U−]B}

µ
γAµ→αβ

]
. (B.17)

The U -spin sum rules in the B → DP modes are

SumU−[B0,D0,K0]=A(B0
s→D0K0)−

√
3
2A(B0→D0η8)+A(B0→D0π0)√

2
=0, (B.18)

SumU−[B0,D+
s ,π

−]=A(B0
s→D+

s π
−)+A(B0→D+

s K
−)−A(B0→D+π−)=0, (B.19)

SumU2
−[B0,D0,K0]=SumU−[B0

s→D0K0]−
√

3
2SumU−[B0→D0η8]

+SumU−[B0→D0π0]√
2

=
√

2A(B0
s→D0π0)−

√
6A(B0

s→D0η8)−2A(B0→D0K
0)=0, (B.20)

SumU2
−[B0,D+

s ,π
−]=SumU−[B0

s→D+
s π
−]+SumU−[B0→D+

s K
−]

−SumU−[B0→D+π−]

=2
[
A(B0

s→D+
s K

−)−A(B0
s→D+π−)−A(B0→D+K−)

]
=0. (B.21)

In the b → uūq transition, [H(0,u)(6)], [H(0,u)(15)]i, [H(3)] are transformed under Un−
as

U2
−[H(0,u)(6)] = U−

 0 0 0
0 0 0

−2VubV ∗us 0 0

 = 0, (B.22)

U2
−[H(0,u)(15)]1 = U−

 0 3VubV ∗us 0
0 0 0
0 0 0

 = 0, (B.23)
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U2
−[H(0,u)(15)]2 = U−

 3VubV ∗us 0 0
0 −2VubV ∗us 0
0 0 −VubV ∗us

 = 0, (B.24)

U2
−[H(0,u)(15)]3 = U−

 0 0 0
0 0 0
0 −VubV ∗us 0

 = 0, (B.25)

U2
−[H(3)] = U−( 0 b 0 ) = 0. (B.26)

So the U -spin sum rules of b→ uud (b→ uus) transition can be generated by Un− if n ≥ 1
(n ≥ 2). The sum of decay amplitudes generated from Bγ → PαPβ under U− is

SumU− [γ, α, β] =
∑
µ

[
{[U−]P8}µαAγ→µβ + {[U−]P8}

µ
βAγ→αµ + {[U−]B}

µ
γAµ→αβ

]
. (B.27)

With eq. (B.27), the U -spin sum rules of B → PP modes are derived to be

SumU− [B−,π−,K0]=A(B−→K0K−)−
√

3
2A(B−→π−η8)+A(B−→π0π−)√

2
=0, (B.28)

SumU− [B0,K+,π−]=A(B0
s→π−K+)+A(B0→K+K−)−A(B0→π+π−)=0, (B.29)

SumU2
− [B−,π−,K0]=SumU− [B−→K0K−]−

√
3
2SumU− [B−→π−η8]

+SumU− [B−→π0π−]√
2

=
√

2A(B−→π0K−)−
√

6A(B−→K−η8)

−2A(B−→π−K
0)=0, (B.30)

SumU2
− [B0,K+,π−]=SumU− [B0

s→π−K+]+SumU− [B0→K+K−]

−SumU− [B0→π+π−]

=2
[
A(B0

s→K+K−)−A(B0
s→π+π−)−A(B0→π+K−)

]
=0. (B.31)
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