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1 Introduction

Black strings [1] have been studied over the past several decades as models for understand-
ing the behaviour of black holes in higher dimensions. One of the most striking properties
of black strings is the Gregory-Laflamme instability [2, 3], where black strings are unsta-
ble under perturbations that break translation symmetry along the string direction. The
Gregory-Laflamme instability also affects other higher dimensional black holes such as black
rings [4–6] and ultraspinning Myers-Perry black holes [7–15]. The nonlinear dynamics of
the Gregory-Laflamme instability was studied in [16, 17], where evidence suggests that the
instability leads to a violation of the weak cosmic censorship.

Rotating black strings also exhibit the superradiant instability. The Kaluza-Klein cir-
cle creates an effective mass that confines perturbations of a rotating black string around its
horizon and can (but does not always) induce a superradient instability, even in asymptoti-
cally flat spacetimes [18–21]. While the instability was first identified in the five-dimensional
Kerr black strings, the situation is quite different in higher dimensions. For instance, in
single-spinning Myers-Perry black strings [20] no instability was found for massless scalar
fields. However, it was later shown in [22] that gravitational perturbations (unlike massive
scalar fields) do lead to an instability. There, an interplay between the Gregory-Laflamme
and superradiant instabilities was also discussed.

The nature of the superrariant instability has been well studied in asymptotically anti-
de Sitter space (AdS) [23–32]. In this context, it was shown that helically-symmetric black
holes called “black resonators” are nonlinear back-reactions of superradiant gravitational
modes [33]. Because these solutions typically have few symmetries, it is not easy to study
their properties. Fortunately, in the five-dimensional equal-spinning case, cohomogeneity-1
black resonators were found [34], and their linear perturbations were also studied [35]. The
superradiant instabilities for matter fields also lead to cohomogeneity-1 resonating black
holes [29, 36, 37].

In this manuscript, in a similar manner as the construction of cohomogeneity-1 black
resonators in AdS, we will construct cohomogeneity-1 deformed black string solutions
branching from the superradiant instability of six-dimensional equal-spinning Myers-Perry
black strings.1 Since such cohomogeneity-1 solutions have helical symmetries formed by
the linear combination of the time translation, shift along the string, and rotation, we will
call them helical black strings. The existence of black strings with helical symmetry has
been first observed in [39] using the blackfold effective worldvolume theory. In our recent

1Similar to the Kaluza-Klein spacetime considered here, a five-dimensional cohomogeneity-1 geometry
as nonlinear extension of Kaluza-Klein modes in Poincaré AdS space with a S1 direction has also been
obtained in [38].
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paper [40], we obtained black resonator string solutions which also branch from the same
onset of the superradiant instability. However, black resonator strings are cohomogeneity-2
non-stationary solutions, while helical black strings are cohomogeneity-1 stationary solu-
tions. All three solutions (Myers-Perry black strings, helical black strings and black res-
onator strings) compete in the microcanonical ensemble for asymptotically Kaluza-Klein
solutions.

This manuscript is organized as follows. In sections 2 and 3, we review the equal-
spinning Myers-Perry black string and its superradiant instability as studied in detail
in [22]. Here, we put emphasis on introducing the rotating frame at infinity and also
discuss the isometries preserved by the superradiant perturbation of relevance to us. In
section 4, setups for constructing cohomogeneity-1 helical black strings are introduced. To
check our results and further explore the phase space, we will find helical black strings in
the spherical gauge (section 4.1) and, alternatively, in the Einstein-DeTurck gauge (sec-
tion 4.2). To complement the numerical analysis in the setup of section 4, in section 5, we
describe the perturbative construction of helical black strings, an analysis that is however
valid only in the vicinity of the superradiant onset. In section 6, we present our nonlinear
numerical results and discuss the physical properties of helical black strings. We also dis-
cuss their competition with the black resonator strings of [40]. We give our conclusions in
section 7. Technical details for some of our calculations are provided in several appendices.

2 The Myers-Perry black string

The Myers-Perry (MP) black hole [41] extends the Kerr solution to higher dimensions. In
five dimensions, it can be parameterized by a mass radius parameter r0 and two angular
momenta parameters a1 and a2 [23, 41]. In general, this is a cohomogeneity-2 solution with
the isometry group Rt × U(1)2 but, in the equal-spinning case a1 = a2 ≡ a, the solution
has the enhanced isometry group Rt × U(2) (Rt denotes time translation) and thus it has
cohomogeneity-1 (i.e. it depends nontrivially only on a single coordinate) [42, 43].

We are interested in the associated 6-dimensional rotating black string (with equal
angular momenta) that asymptotes to M1,4 × Rz orM1,4 × S1 if the string’s direction is
compactified (M1,4 is 5-dimensional Minkowski space). This black string is obtained by
adding an extended flat direction z to the 5-dimensional Myers-Perry black hole. In this
section, we introduce this solution and briefly discuss its properties.

The metric of the 6-dimensional equal-spinning Myers-Perry black string (MPBS),
which solves RAB = 0 (with RAB being the Ricci tensor), can be given by2

ds2
MP string = −F

H
dt2 + dr2

F
+ r2

[
H

(
σ3
2 −

Ω
H

dt
)2

+ ds2
CP1

]
+ dz2 , (2.1)

2The radial coordinate used here can be related to the standard Boyer-Lindquist radial coordinate
of [41] through r2 → r2 + a2. We shall use notation where capital Latin indices (A,B, . . . ) run over the
6-dimensional coordinates, small Latin indices (a, b, . . . ) run over the 5-dimensional coordinates except the
radial one, and (i, j, . . . ) are used for SU(2) indices.
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where
F (r) = 1− r2

0
r2 + a2r2

0
r4 , H(r) = 1 + a2r2

0
r4 , Ω = a r2

0
r4 , (2.2)

and ds2
CP1 = 1

4
(
σ2

1 + σ2
2
)
is the metric of the complex projective space CP1 (isomorphic to

the 2-sphere S2).3 We have defined the SU(2)-invariant 1-forms σi (i = 1, 2, 3) on S3 as

σ1 = − sin(2ψ) dθ + cos(2ψ) sin θ dφ ,
σ2 = cos(2ψ) dθ + sin(2ψ) sin θ dφ ,
σ3 = 2 dψ + cos θ dφ ,

(2.3)

where (θ, φ, ψ) denote the Euler angles of the S3 with the ranges chosen as 0 ≤ θ < π,
0 ≤ φ < 2π, and 0 ≤ ψ < 2π. These satisfy the Maurer-Cartan equation dσi = 1

2εijkσj∧σk.
This solution has an event horizon at r = r+ (given by the largest real root of f) with

the Killing horizon generator K = ∂t + ΩH∂ψ, where ΩH ≡ Ω(r+)/H(r+) = a/r2
+ is the

horizon angular velocity. The mass radius parameter can then be expressed as

r0 =
r2

+√
r2

+ − a2
= r+√

1− Ω2
Hr

2
+

. (2.4)

The angular velocity parameter of the MPBS is bounded from above by regularity as
r0 ≥ a. This translates into the condition for the horizon angular velocity as ΩHr+ ≤ 1/

√
2.

The MPBS is extremal (i.e. with zero temperature) at the upper limit of the angular
velocity: Ωext

H r+ = 1/
√

2.
The isometry group of the MPBS is Rt×Rz×U(1)ψ×SU(2), whose six Killing vectors

are listed as follows. The metric (2.1) is clearly invariant under ∂t and ∂z. The 1-forms (2.3)
are invariant under the operation of the following SU(2) generators,

ξ1 = cosφ∂θ + 1
2

sinφ
sin θ ∂ψ − cot θ sinφ∂φ ,

ξ2 = − sinφ∂θ + 1
2

cosφ
sin θ ∂ψ − cot θ cosφ∂φ ,

ξ3 = ∂φ .

(2.5)

These generators satisfy the SU(2) commutation relation [ξi, ξj ] = εijkξk and leave σi
invariant as £ζiσj = 0, where £ denotes the Lie derivative. Finally, the metric is also
invariant under ∂ψ which mixes (σ1, σ2): £ 1

2∂ψ
σ1 = −σ2 and £ 1

2∂ψ
σ2 = σ1. The round

S2 ∼= CP1, ds2
CP1 = 1

4
(
σ2

1 + σ2
2
)
, is invariant under ∂ψ.

3 Superradiant instability of the Myers-Perry black string for
non-axisymmetric perturbations

3.1 Decoupled tensor perturbations

As we have studied in detail in the companion paper [22], the MPBS exhibits a superradiant
instability for decoupled tensor gravitational perturbations. Here, we focus on the pertur-

3In D = 2N + 3 dimensions, the equal-spinning Myers-Perry black hole has a homogeneously squashed
S2N+1 written as an S1 fibred over CPN . The Fubini-Study metric for CP1 happens to be the more familiar
metric for S2. For further details see [9, 26, 42, 43].
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bation with the lowest nontrivial azimuthal quantum number, which preserves the SU(2)
isometry (whereas it is broken for higher azimuthal quantum numbers [22]). In this section,
we first recall the relevant superradiant perturbation of the background metric (2.1), which
is written in the non-rotating frame at infinity. We then introduce the rotating frame at
infinity, which is convenient for constructing helical solutions in following sections.

The U(1)Ψ-charges of the MPBS are fundamental for the decoupling of the tensor
gravitational perturbations from other sectors of perturbations. To classify perturbations
using these charges, it is convenient to use

σ± = 1
2 (σ1 ∓ iσ2) = 1

2e
∓2iψ (∓ i dθ + sin θ dφ) . (3.1)

These satisfy £(i/2)∂ψσ± = ±σ±, which means that σ± have charges ±1 with respect to
the U(1)Ψ. Because of this property, the following charge-2 perturbation of the MPBS is
decoupled:4

hMNdxMdxN = e−iωt+ikzr2δη(r)σ2
+ . (3.2)

This perturbation has the lowest nontrivial azimuthal quantum number in the ψ-direction
and preserves the SU(2) symmetry. The linearized equation for the above perturbation is
given by

δη′′ +
(
F ′

F
+ 3
r

)
δη′ + 1

F

(
8
r2 −

16
r2H

+ (ω + 4Ω/H)2

f
− k2

)
δη = 0 . (3.3)

Note the plus sign in ω+ 4Ω/H in (3.3) because we consider the perturbation with respect
to σ2

+ (3.2); see also footnote 4.

3.2 Rotating frame at infinity

We find it convenient to work in the rotating frame at infinity which we introduce in this
section. The metric (2.1) was written in the standard non-rotating frame at infinity, where
Ω(r)|r→∞ → 0 and the angular velocity of the black hole is read off from the rotation at the
horizon, ΩH = Ω(r+)/H(r+). We now redefine the angular coordinate ψ in a t-dependent
manner so that the rotation is carried by spatial infinity and the horizon has zero angular
velocity. In addition, the ψ-dependence of σ± (3.1) suggests that we can also absorb the
z-dependence in (3.2) by a redefinition of ψ.

We use the upper case (T, Z,Ψ), together with (r, θ, φ), for the coordinates in the
rotating frame. The transformation from the non-rotating to the rotating frames can be
given by

T = t , Z = z , Ψ = ψ − ΩHt−
k

4z . (3.4)

The dual vectors to these coordinates are

∂T = ∂t + ΩH∂ψ , ∂Z = ∂z + k

4∂ψ , ∂Ψ = ∂ψ . (3.5)

4[22] considered a perturbation of the form hMNdx
MdxN = e−iωt+ikzr2δη(r)σ2

−, corresponding to the
azimuthal quantum number m = 2, whereas the perturbation (3.2) corresponds to m = −2. These are
physically equivalent and differ in the direction of the Kaluza-Klein momentum.
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Let Σi denote the SU(2) invariant 1-forms in the rotating frame, which are obtained by
replacing ψ by Ψ in (2.3):

Σ1 = − sin(2Ψ) dθ + cos(2Ψ) sin θ dφ ,
Σ2 = cos(2Ψ) dθ + sin(2Ψ) sin θ dφ ,
Σ3 = 2dΨ + cos θ dφ .

(3.6)

In the rotating frame at infinity, the MPBS metric (2.1) becomes

ds2 = −f(r)dT 2 + dr2

g(r) + r2

4

[
Σ2

1 + Σ2
2 + β(r)

(
Σ3 + 2h(r)dT + k

2dZ
)2]

+ dZ2 , (3.7)

where

f = g

β
, g = F (r) h = ΩH −

Ω(r)
H(r) , β = H(r) (3.8)

with F (r), H(r), Ω(r) given in (2.2). In (3.8), one can see that the rotating frame at infinity
satisfies h(r+) = 0. This means that ∂T coincides with the Killing horizon generator:
K = ∂T = ∂t+ΩH∂ψ. The rotation is carried by the asymptotic infinity as h(r)|r→∞ = ΩH .

3.3 Onset of superradiant instability

In the rotating frame at infinity, the perturbation (3.2) is rewritten as

e−iωt+ikzr2δη(r)σ2
+ = e−iω̂tr2δη(r)Σ2

+ , (3.9)

where the frequency parameter is shifted as ω = ω̂ − 4ΩH . The perturbation (3.9) is
manifestly Z-independent on the right hand side. The perturbation equation (3.3) has the
same form under the frame change aside from the shift. In the new variables (3.8), it reads

δη′′ +
(
g′

g
+ 3
r

)
δη′ + 1

g

(
8
r2 −

16
r2β

+ (ω̂ − 4h)2

f
− k2

)
δη = 0 . (3.10)

As studied in [22], the solutions to this equation, when ω is varied as a parameter, give an
instability for a bounded range of k — the superradiant instability. In this paper, we are
particularly interested in the onset of the instability, as it locates where new black string
solutions branch from the MPBS.

A nice feature of using the rotating frame at infinity is that ω̂ = 0 at the onset of
instability. Typically, Im ω̂ = 0 at the onset of instability but, additionally, we can show
that Re ω̂ = 0 as follows. At the horizon, the perturbation satisfies the ingoing wave
boundary condition

δη(r) ∼ (r − r+)−iω̂/(2κ) , (3.11)

where κ =
√
f ′g′/2|r=r+ is the surface gravity ( ′ denotes an r-derivative). Meanwhile, at

asymptotic infinity r →∞, the perturbation behaves as

δη(r) ∼ 1
r3/2 e

−
√
k2−(ω̂−4ΩH)2 r , (3.12)

– 5 –
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where we assume k2− (ω̂− 4ΩH)2 > 0. The Wronskian for the linearized system (3.3) can
be given by

W = r3√fgβ(δη∗δη′ − δηδη∗′) . (3.13)

When Im ω̂ = 0, the Wronskian is conserved along the r-direction, dW/dr = 0. This
can be checked by using the perturbation equation (3.3). With the behaviours (3.11)
and (3.12), the Wronskian can be evaluated at the horizon and infinity as W (r = r+) ∝ ω̂
and W (r =∞) = 0, respectively. Then, it follows that not only Im ω̂ but also Re ω̂ vanish
at the onset of instability.

At ω̂ = 0, the perturbation equation (3.3) has nontrivial linear mode solutions only
for specific values of parameters (kr+,ΩHr+), corresponding to the onset of an instability.
With ω̂ = 0, the ingoing solution (3.11) is replaced with a regular solution (normalised as
δη(r+) = 1),

δη(r) = 1−
(1− Ω2

Hr
2
+){(k2 − 16Ω2

H)r2
+ + 8}

2r+(1− 2Ω2
Hr

2
+)

(r − r+) + · · · . (3.14)

With this boundary condition and the regular asymptotic behaviour (3.12), we numerically
solve (3.3) and find linear mode solutions for specific values of (kr+,ΩHr+). These corre-
spond to the onset of superradiant instability of the MPBS. The analysis has been done in
detail in [22]. The location of the onset will be plotted together with our results later.

3.4 Isometries of the perturbed Myers-Perry black string

With a non-zero Kaluza-Klein wavenumber k, we assume that the black string is compact-
ified with periodicity

L ≡ 2π/k . (3.15)

In the non-rotating frame coordinates, the isometry group of the MPBS is Rt × U(1)z ×
U(1)ψ × SU(2), and the spacetime is asymptotically Kaluza-KleinM1,4 × S1.

The perturbation (3.2) breaks some isometries of the MPBS. At first sight, it manifestly
breaks the three symmetries Rt, U(1)z and U(1)ψ in the non-rotating frame at infinity.
However, some of their linear combinations (which can be identified with the isometries
in the rotating frame at infinity) can be preserved. Hence, it is more appropriate to
argue isometry breaking in the rotating frame at infinity, where we have the isometries
RT , U(1)Z , U(1)Ψ for the MPBS. In our preceding paper [40], after back-reaction, the
perturbation is extended to nonlinear black resonator strings, where both U(1)Ψ and U(1)Z
are broken. In this paper, we focus on different nonlinear solutions that break only the
U(1)Ψ and preserve the U(1)Z . Thanks to the U(1)Z , such solutions are described by a
cohomogeneity-1 metric.

Summing (3.9) and its complex conjugate (as well as multiplying them by a normal-
ization factor), we obtain a real gravitational perturbation at the onset of instability,

hMNdxMdxN = r2

2 δη(r)(Σ2
+ + Σ2

−) = r2

4 δη(r)(Σ2
1 − Σ2

2) . (3.16)

This perturbation is obviously invariant under ∂T , ∂Z as well as the generators of SU(2),
while U(1)Ψ is broken. Thus, the MPBS perturbed by (3.16) admits the isometry group

– 6 –
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RT × U(1)Z × SU(2). In the original non-rotating frame at infinity, the onset perturba-
tion (3.16) takes the form

hMNdxMdxN = r2

2 δη(r)(e−4iΩH teikzσ2
+ + e4iΩH te−ikzσ2

−) . (3.17)

It is obvious that ∂t and ∂z are no longer Killing vectors independently. Their helical
combinations with ∂ψ as in (3.5) generate the RT and U(1)Z isometries.

The perturbed MPBS spacetime is also invariant under two discrete transformations
P1 and P2 defined by

P1(T,Ψ, θ, φ, Z) = (−T,−Ψ, θ,−φ,−Z) , (3.18)
P2(T,Ψ, θ, φ, Z) = (T,Ψ + π/2, θ, φ, Z) . (3.19)

The 1-forms (dT, dZ,Σ1,Σ2,Σ3) are transformed by P1 and P2 as

P1(dT, dZ,Σ1,Σ2,Σ3) = (−dT,−dZ,−Σ1,Σ2,−Σ3) ,
P2(dT, dZ,Σ1,Σ2,Σ3) = (dT, dZ,−Σ1,−Σ2,Σ3) .

(3.20)

Both the perturbation (3.16) and background (3.7) are invariant under P1 and P2.
Notably, the spacetime perturbed by (3.16) is still stationary.5 Indeed, let us consider

a linear combination of the Killing vectors of the perturbed MPBS: ζ ≡ cT∂T + cZ∂Z .
Near the spatial infinity, the norm of this Killing vector becomes

ζ2 = (gMN + hMN )ζMζN = (4cTΩH + cZk)2

16 r2 + (−c2
T + c2

Z) +O(r−2) . (3.21)

While we include hMN of (3.16) in (3.21) to describe the metric of the perturbed spacetime,
hMN is actually exponentially decaying near the asymptotic infinity and does not affect
the asymptotic power series of ζ2. Choosing cT = k and cZ = −4ΩH , we obtain ζ2 =
−(k2 − 16Ω2

H) + O(r−2), where k2 − 16Ω2
H > 0 at the onset of instability [22]. Hence,

the Killing vector ζ = k∂T − 4ΩH∂Z is timelike at asymptotic infinity, and the perturbed
MPBS is stationary.

4 Cohomogeneity-1 helical black strings

To check our results as much as we can and further explore the phase space, we will find
helical black strings in the spherical gauge (section 4.1) and, alternatively, in the Einstein-
DeTurck gauge (section 4.2).

4.1 Helical black string ansatz in the spherical gauge

4.1.1 Metric ansatz

We wish to construct a new family of black hole solutions with the isometry group RT ×
U(1)Z × SU(2), branching from the onset of the superradiant instability. To write a met-
ric ansatz that nonlinearly extends the perturbation (3.16), we also assume the discrete

5A spacetime is stationary when it admits a Killing vector field that becomes timelike near asymptotic
infinity.
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isometries P1 and P2. With these isometries, we introduce the following cohomogeneity-1
metric ansatz:6

ds2 = − f(r)dT 2 + dr2

g(r) + r2

4

[
η(r)Σ2

1 + 1
η(r)Σ2

2

+β(r)
(

Σ3 + 2h(r)dT + k(r)
2 dZ

)2]
+ γ(r) (dZ + q(r)dT )2 .

(4.1)

We have used the freedom of the redefinition of the radial coordinate to fix the gauge such
that the product of the metric coefficients of σ2

1 and σ2
2 is r4/16. In the absence of a better

nomenclature, we call this as the spherical gauge because the area of the S2 base space is
then simply proportional to r2. The metric ansatz is not invariant under a U(1)Ψ shift if
η(r) 6= 1. Instead, the ansatz has a discrete symmetry

η(r)→ 1
η(r) , (4.2)

because the coordinate transformation Ψ → Ψ + π/2 flips σ1 and σ2 as σ1 → −σ2 and
σ2 → σ1.

The event horizon r = r+ is located at the largest root of f(r) = g(r) = 0. The
generator of the horizon is given by

K = ∂T − (4h0 − k0q0)∂Ψ − q0∂Z , (4.3)

where h0 ≡ h(r = r+), k0 ≡ k(r = r+), and q0 ≡ q(r = r+) (see also (4.12)).
The perturbation equation at the onset of instability (i.e. (3.10) at ω̂ = 0) must be

reproduced by a small fluctuation of (4.1) around the MPBS as we check next. For the
MPBS (3.7), f(r), g(r), h(r), β(r) are given in (3.8), and the other field variables are
η(r) = γ(r) = 1, k(r) = k, q(r) = 0. Introducing a linear perturbation as η(r) = 1 + δη(r),
we obtain the perturbation equation (3.10) for ω̂ = 0, as it should be.

We will construct solutions with η(r) 6= 1 in the metric ansatz (4.1). From the symme-
tries of the spacetime, we call such solutions helical black strings. This is a nomenclature
that was first proposed in [39]. Because of the cohomogeneity-1 ansatz, the Einstein field
equations are reduced to coupled ODEs. These are given by

f ′ = 1
r (rγβ′ + rβγ′ + 6βγ)

[
1
16r

4β2
(
fk′2 − γ

(
4h′ − k′q

)2)− r2βγ2q′2

+ fβγ

{
8
g

(
η + 1

η
− β

2

)
+ r2η′2

η2 + 12
}
− f

(
rβ′ + 6β

) (
rγ′ + 4γ

)
+ 1

4g

(
η − 1

η

)2 {
r2βγ(4h− kq)2 − f

(
r2k2β + 16γ

)} ]
, (4.4)

g′ = 4
r

(
η + 1

η
− β − g

)
− (fβγ)′g

fβγ
, (4.5)

6We can also consider the helicity-flipped metric by k(r)dZ → −k(r)dZ. That has the same physical
properties along with the opposite direction of Kaluza-Klein momentum.
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h′′ = 1
2h
′
(
−f
′

f
− g′

g
− 3β′

β
+ γ′

γ
− 10

r

)
+ 1

4k
′q′

+ 1
4

(
f ′

f
− qγq′

f
− γ′

γ

) (
4h′ − k′q

)
+

4h
(
η − 1

η

)2

r2gβ
, (4.6)

k′′ = 1
2k
′
(
−f
′

f
− g′

g
− 3β′

β
+ γ′

γ
− 10

r

)
− γq′ (4h′ − k′q)

f
+

4k
(
η − 1

η

)2

r2gβ
, (4.7)

q′′ = 1
2q
′
(
f ′

f
− g′

g
− β′

β
− 3γ′

γ
− 6
r

)
− r2βk′ (4h′ − k′q)

16γ −
k
(
η − 1

η

)2
(4h− kq)

4gγ , (4.8)

η′′ = 1
2η
′
(
−f
′

f
− g′

g
+ 2η′

η
− β′

β
− γ′

γ
− 6
r

)
+ η

g

(
η − 1

η

)[1
4

(
η + 1

η

)( 16
r2β

+ k2

γ
− (4h− kq)2

f

)
− 4
r2

]
, (4.9)

β′′ = 1
2β
′
(
−f
′

f
− g′

g
+ β′

β
− γ′

γ
− 6
r

)
−

4
(
η + 1

η

)
β

r2g

+ β2
(
r2

16

(
k′2

γ
− (4h′ − k′q)2

f

)
+ 8
r2g

)
−

4
(
η − 1

η

)2

r2g
, (4.10)

γ′′ = 1
2γ
′
(
−f
′

f
− g′

g
− β′

β
+ γ′

γ
− 4
r

)
− 1

16r
2βk′2 − γ2q′2

f
−
k2
(
η − 1

η

)2

4g

+ γ

r2

rf ′
f

+
rg′ − 4

(
η + 1

η

)
+ 4β

g
+ rβ′

β
+ 4

 . (4.11)

These will be solved with suitable boundary conditions at the horizon r = r+ and spatial
infinity r =∞.

4.1.2 Boundary conditions at the horizon and infinity

First, let us discuss the boundary conditions for the black hole horizon at r = r+. Let
X ≡ (f, g, h, k, q, η, β, γ) denote all field variables collectively. The fields can be expanded
near the horizon as a Taylor series

X(r) =
∞∑
n=0

Xn(r − r+)n , (4.12)

where f0 = g0 = 0 for the black hole horizon. Coefficients Xn are determined order by
order when this series expansion is substituted into the equations of motion (4.4)–(4.11).
At the leading order, the nontrivial equation is given by

(4h0 − k0q0)(η0 − 1) = 0 . (4.13)

When η0 = 1, we recover the MPBS. Other solutions with η0 6= 1 are possible if

4h0 − k0q0 = 0 . (4.14)
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The horizon generator (4.3) of such solutions is

K = ∂T − q0∂Z . (4.15)

We assume (4.14) is solved as h0 = k0q0/4, leaving k0 and q0 as free parameters that will
be fixed by the equations of motion subject to the two boundary conditions. Continuing to
higher orders in the asymptotic expansion, we find that 8 parameters (f1, h1, k0, q0, q1, η0,

β0, γ0) remain undetermined in the asymptotic analysis near the horizon. Other (sublead-
ing) coefficients are completely fixed by these leading order coefficients (see appendix A.1
for details). Because of the coordinate freedom (4.2), we can assume η0 ≤ 1 without loss
of generality.

The asymptotic analysis near the horizon also tells us that the event horizon remains
a Killing horizon. Although ∂Ψ is no longer a Killing vector if η 6= 1, the coefficient in front
of ∂Ψ in (4.3) actually vanishes by (4.14), and the horizon generator is given by (4.15).

At spatial infinity, we impose the asymptotically locally flat condition with no Lorentz
boost (i.e. with zero momentum, as defined in (4.30), along the z-direction, P = 0):

f, η, β, γ → 1 , q → 0 , r2q → 0 (r →∞) . (4.16)

Then, g → 1 automatically follows from the equations of motion. This imposes 6 conditions
on the coefficients in the asymptotic expansion in r →∞, whose detailed analysis is given
in appendix A.2. Note that we require that both the leading term of q as well as its next-
to-leading term vanish. As we will see in section 4.1.4, r2q|r=∞ is related to the amount
of the Lorentz boost along the string. The condition (4.16) corresponds to imposing no
Lorentz boost (P = 0).

To summarize our asymptotic analyses, in units where r+ = 1, there are 8 free pa-
rameters at the horizon and 6 conditions at spatial infinity that these coefficients have to
obey. Hence, the helical black string is a 2-parameter family. One might naively think that
6 parameters at the horizon need to be tuned. In practice, however, the number of the
tuning parameters can be reduced to 2 because of 4 residual coordinate degrees of freedom,
whose details are explained in appendices B and C.

4.1.3 Non-rotating frame at infinity

The cohomogeneity-1 metric ansatz (4.1) is given in the rotating frame at infinity. With
the boundary condition (4.16), the asymptotic form of the metric (4.1) is

ds2 = −dT 2 + dr2 + r2

4

[
Σ2

1 + Σ2
2 +

(
Σ3 + 2h∞dT + 1

2k∞dZ
)2
]

+ dZ2 , (4.17)

where h∞ ≡ h(r = ∞) and k∞ ≡ k(r = ∞) are non-zero in general. We assume that the
black string is compactified with the length scale set by

L ≡ 2π/k∞ , (4.18)

which is reduced to (3.15) for the MPBS.

– 10 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
1

We will use the non-rotating frame at infinity when we discuss physical quantities such
as conserved charges. The transformation to the non-rotating frame at infinity, whose
coordinates are denoted by (t, z, ψ), is given by

t = T , z = Z , ψ = Ψ + h∞T + k∞
4 Z . (4.19)

For the MPBS, this is nothing but the inverse of (3.4). The dual vectors are related as

∂T = ∂t + h∞∂ψ , ∂Z = ∂z + k∞
4 ∂ψ , ∂Ψ = ∂ψ . (4.20)

For MPBS, this coincides with (3.5). The asymptotic metric in the non-rotating frame at
infinity reads

ds2 = −dt2 + dr2 + r2

4
(
σ2

1 + σ2
2 + σ2

3

)
+ dz2 . (4.21)

When η(r) 6= 1, i.e. when the U(1)Ψ is broken, the frame change (4.19) introduces
explicit (t, z) dependence in the bulk metric. This is because of the relation of the SU(2)-
invariant 1-forms between the two frames,

Σ± = e±iΘ(t,z)σ± , (4.22)

where

Θ(t, z) ≡ 2h∞t+ 1
2k∞z . (4.23)

The asymptotic metric does not have (t, z)-dependence because Σ2
1 + Σ2

2 = σ2
1 +σ2

2, as seen
in (4.21). The bulk metric has a part that is not proportional to Σ2

1 + Σ2
2 if η(r) 6= 1. It is

transformed as

ηΣ2
1 + 1

η
Σ2

2

= 2
(
η + 1

η

)
Σ+Σ− +

(
η − 1

η

)(
Σ2

+ + Σ2
−

)
= 1

2

(
η + 1

η

)(
σ2

1 + σ2
2

)
+
(
η − 1

η

)(1
2 cos(2Θ)

(
σ2

1 − σ2
2

)
+ sin(2Θ)σ1σ2

)
.

(4.24)

The last bracket, proportional to (η − 1/η) vanishes for the MPBS (η = 1), while it gives
explicit (t, z)-dependence when η 6= 1. Then, continuous shifts of t and z are no longer
independent isometries. The metric is periodic in t and z. The periodicities of t and z are
π/(2h∞) and 2π/k∞, respectively. These are mixed with ψ-shifts to form helical isometries
∂T and ∂Z as in (4.20).

We could consider alternative coordinates in which the bulk metric does not depend on
“time” (that would be different from t) while the coordinates are non-rotating at infinity.
We will comment on such coordinates in section 6.3.

– 11 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
1

4.1.4 Thermodynamic quantities

Requiring the canonically normalised asymptotic conditions (4.16) except the last one (this
condition r2q|r→∞ → 0 corresponds to setting cq = 0), we obtain the asymptotic form of
the metric components at spatial infinity as

f = 1 + cf
r2 + · · · , h = h∞ + ch

r4 + · · · , k = k∞ + ck
r4 + · · · , q = cq

r2 + · · · ,

η = 1 + · · · , β = 1 + cβ
r4 + · · · , γ = 1 + cγ

r2 + · · · ,
(4.25)

where the subleading terms of η are suppressed exponentially. See appendix A.2 for more
details, where the asymptotic expansion is naively given in the form (A.3), and then we
set (f∞, γ∞, q∞) = (1, 1, 0) in (A.3) by the scaling symmetries (B.1)–(B.3) (see also (C.1),
which are nothing but the first two conditions in (4.16)). We do not impose cq = 0 at this
point; it is instructive to keep track of cq for a while and see how it is related to a physical
quantity of the string. Eventually, we will set cq = 0 when we compare results by selecting
the Lorentz boost to be such that there is no momentum (P = 0).

Using the asymptotic solutions (4.25), we derive the Brown-York quasi-local stress
tensor [44, 45] (see appendix D for details). The result is given in the non-rotating frame
at infinity as

16πG6r
3Tabdxadxb

= −(3cf + cγ) dt2 + 4cq dtdz + 4ch dt σ3 + (3cγ + cf ) dz2 + ck dy σ3

+ 2cβσ2
3 + 1

6(3c2
f + 3c2

γ + 2cfcγ + 4c2
q − 16cβ)dΩ2

3 ,

(4.26)

where a, b = t, z, θ, φ, ψ and dΩ2
3 = (σ2

1 + σ2
2 + σ2

3)/4 is the metric of a unit S3.
Conserved charges can be defined by integrating the quasi-local stress tensor. Let ξa

be an asymptotic Killing vector at r → ∞. On a constant time slice for the asymptotic
time t, the conserved charge associated to ξa can be defined as

Q[ξ] = lim
r→∞

∫
dΩ3dZ r3ξaTta . (4.27)

Note that ∂t, ∂ψ, ∂z are not Killing vectors in the bulk if η 6= 1, but they are so at
asymptotic infinity (4.21), i.e. they are asymptotically Killing vector fields. Associated to
these asymptotically Killing vectors are the energy E, angular momenta J , and momentum
P along the string given by

E = lim
r→∞

∫
dΩ3dZ r3Ttt = − πL

8G6
(3cf + cγ) , (4.28)

J = − lim
r→∞

∫
dΩ3dZ r3Tt(2ψ) = − πL

4G6
ch , (4.29)

P = − lim
r→∞

∫
dΩ3dZ r3Ttz = − πL

4G6
cq , (4.30)

where
∫

dΩ3 = 2π2 and L ≡
∫

dZ.7

7In accordance with the work of [41], J is defined for Tt(2ψ)dt d(2ψ) because our ψ is related to the
Boyer-Lindquist angular coordinates φ1,2 as d(2ψ) = dφ1 + dφ2.
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The tension of the string is given by [46]

Tz = − lim
r→∞

∫
dΩ3 r

3Tzz = − π

4G6
(3cγ + cf ) . (4.31)

Note that the definition for Tz does not include the z-integral. The tension of the MPBS
satisfies

TzL

E
= 1

3 . (4.32)

We will see that this relation does not hold if η 6= 1.
The temperature TH and entropy SH of the black string can be obtained from the field

variables at the horizon as

TH =
√
f ′g′

4π

∣∣∣∣∣
r=r+

, SH = 1
4G6

∫
dΩ3dz r

3√βγ∣∣∣
r=r+

. (4.33)

The angular velocity of the horizon ΩH and the horizon velocity along the string vH
can identified from the Killing horizon generator in the non-rotating frame at infinity. By
using (4.20), the horizon generator (4.15) is rewritten as

K = ∂t +
(
h∞ −

k∞q0
4

)
∂ψ − q0∂z , (4.34)

where the coefficients (h∞, k∞, q0) are read off from numerical data in the rotating frame
at infinity. Comparing this with K = ∂t + ΩH∂ψ + vH∂z, we find

ΩH = h∞ −
k∞q0

4 , vH = −q0 . (4.35)

The quantities obtained above satisfy thermodynamic relations. The first law of ther-
modynamics is given by8

dE = TdS + 2ΩHdJ + vHdP + T eff
z dL , (4.36)

where the effective tension is introduced as [48]9

T eff
z ≡ Tz + vHP

L
. (4.37)

That is to say, Tz is the conserved charge (4.31) associated to ∂z but the thermodynamic
potential conjugate to the string length L is T eff

z (not Tz) which differs from Tz when there
is momentum along the string. The Smarr formula can be derived by using the first law
and dimensional analysis as

E = 4
3(TS + 2ΩHJ) + vHP + 1

3T
eff
z L

= 4
3(TS + 2ΩHJ + vHP ) + 1

3TzL , (4.38)

8The first law for the Schwarzschild black string [46, 47] was generalized to include boost [48]. This can
be straightforwardly generalized to the MPBS.

9The helical black strings that we will find have P = 0 − see discussions of (4.16) or (4.57) − and thus,
for our solutions, one effectively has T eff

z = Tz.
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These relations can be explicitly checked for the boosted MPBS (E.1) analytically. We can
also check them for numerical solutions. From the Smarr relation, the relation∣∣∣∣1− 4(TS + ΩHJ + vHP ) + LTz

3E

∣∣∣∣ (4.39)

must vanish. We use this for monitoring our numerical results, that fail to satisfy the Smarr
relation when the numerical errors increase. This happens especially when the deformation
(1 − η0) is increased. We stop data generation if (4.39) is not satisfied with an accuracy
0.1%.

We measure the thermodynamic quantities in units of L as

E ≡ E

L3 , J ≡ J

L4 , Tz ≡
Tz
L2 , P ≡ P

L3 ,

τH ≡ THL , σH ≡
SH
L4 , ωH ≡ ΩHL , vH . (4.40)

That is to say, the thermodynamic quantities relevant for physical discussions are the
dimensionless quantities (4.40). In an abuse of language but for simplicity, onwards we
will omit the prefix “dimensionless-” when referring to the dimensionless thermodynamic
quantities (4.40). For example, the dimensionless-energy E will be simply called the energy.
For the MPBS, the angular momenta are bounded from above as

G6J ≤
23/2

33/2π1/2 (G6E)3/2 , (4.41)

which follows from a ≤ r0. The equality is satisfied in the extremal MPBS (zero tempera-
ture). We can write the extremal MPBS’s J and σH as functions of E ,

G6J ext = 23/2

33/2π1/2 (G6Eext)3/2 , G6σ
ext
H = 25/2π1/2

33/2 (G6Eext)3/2 , (4.42)

and these quantities will be shown later in figure 7.
We can show that the parameter region of the angular velocity ωH is bounded for

helical black strings. From (A.5), the presence of the exponentially decaying asymptotic
solution (µ > 0) implies

k∞ − 4h∞ > 0 , (4.43)

where we have imposed f∞ = γ∞ = 1 and q∞ = 0. The exponential tail ceases to exist if
k∞ = 4h∞. Rewriting this equality by using (4.18) and (4.35), we obtain

ωH = π(1 + vH)
2 . (4.44)

Because the parameter region of vH can be −1 < vH < 1, where |vH | = 1 corresponds to
the speed of light, it follows that the range of ω for the helical black string is 0 < ωH < π.
The angular velocity will be maximal ωH → π when vH → 1 (and minimal ωH → 0 if
vH → −1). We will come back to this when discussing the results of figure 7.
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4.2 Helical black string ansatz in the Einstein-DeTurck gauge

In the previous subsection 4.1 we described how we can search for helical black strings
using the spherical gauge ansatz (4.1). To further test our numerical results, and to ex-
plore some corners of the parameter space more easily, in this subsection we describe an
alternative/independent approach to construct the helical black strings. This time we use
the Einstein-DeTurck gauge with associated ansatz (4.45) that we describe below. Of
course, the physical properties of the two numerical/gauge constructions agree. Moreover,
in section 5 we will use the Einstein-DeTurck gauge formulation to find a perturbative
description of the helical black strings (alternatively, we could have done this perturbative
analysis in the spherical gauge).

Without fixing the gauge, a most general ansatz that describes an asymptotically
M1,4 × S1 rotating string with the isometries of a helical black string − isometry group
Rτ × Rx × SU(2) and discrete isometries P1 and P2 − can be written as (in the rotating
frame at infinity)

ds2 = r2
+

{
− y2F q1

H
dτ2 + 4q2

(1− y2)4F
dy2 + q5

(
L̃

2 dx+ q8y
2(1− y2)dτ

)2

+ 1
(1− y2)2

[
q3H

(
Σ3
2 + y2W

H

[
1 + (1− y2)3q6

]
dτ

+ π

4
[
1 + (1− y2)3q7

]
dx

)2

+ q4
1
4

(
q9Σ2

1 + Σ2
2
q9

)]}
, (4.45)

where qj = qj(y), for j = 1, 2, 3, · · · , 9, are nine functions of a radial coordinate y (to
be discussed below), and all coordinates are adimensional: τ is a time coordinate, x is
the direction along which the string − with physical length L − extends, and Σ1,2,3 are
the SU(2) left-invariant 1-forms of S3, in the rotating frame, as defined in (3.6). Finally,
in (4.45) one has:

F(y) =
(
2− y2

)(
1− ã2

1− ã2 (1− y2)2
)
,

H(y) = 1 + ã2

1− ã2 (1− y2)4 ,

W(y) = ã
(
2− y2

) [
1 +

(
1− y2

)2
]
, (4.46)

where ã = a/r+.
In (4.45), x ∈ [−1, 1] is the periodic coordinate along the string direction. The radial

coordinate y is compact: one has y ∈ [0, 1] with y = 0 being the horizon location and y = 1
the asymptotic boundary. The ansatz (4.45) describes black strings with horizon generator

K = ∂τ . (4.47)
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To further understand the motivation for the ansatz (4.45), note that doing the coor-
dinate and field redefinitions

τ = 1
r+

t− v z√
1− v2

, y =
√

1− r+
r
, Ψ = ψ − 2a

r+
τ − π

2x, x = 2
L̃

1
r+

z − v t√
1− v2

;

F =
(

1− r+
r

)−1
F , H = H, W =

(
1− r+

r

)−1 ( a

r+
H − r+Ω

)
, (4.48)

while also setting q1,2,3,4,5,9 = 1 and q6,7,8 = 0, takes (4.45) into the MPBS (2.1)–(2.2) with
an additional boost v along the string direction. The relation between the (dimensionful)
string length L and the dimensionless parameter L̃ introduced in (4.45) is

L̃ = L

r+

(√
1− v2 + v

2
π

a

r+

L

r+

)−1
. (4.49)

So, in the absence of boost, v = 0, one has x = 2
L̃
z, where z ∈ [−L/2, L/2] is the coordinate

used in (2.1) and L̃ = L/r+.
The ansatz (4.45) is in the rotating frame, i.e. it describes solutions that have rotation

and velocity along the string direction at infinity, but have vanishing angular velocity and
velocity at the horizon. However, the coordinate transformation (4.48) brings the system to
a frame − that we call the non-rotating frame − that has no rotation nor velocity at infinity.
Consequently, in this frame, solutions of (4.45) have angular velocity ΩH = 2ã

r+

√
1− v2 and

velocity vH = v at the horizon, and the horizon generator (4.47) now reads10

K = ∂t + ΩH ∂ψ + vH ∂z , (4.50)

with ΩH = 2a
r2

+

√
1− v2 and vH = v .

Later, we will choose v such that there is also no momentum at infinity along the string
direction. Essentially, the latter is proportional to a subleading decay of gtz. Thermody-
namics quantities will be computed in this non-rotating frame.

Unlike the S2 or spherical gauge ansatz (4.1) that we used in section 4.1, the DeTurck
ansatz (4.45) leaves the gauge unconstrained (the gauge is fixed à posteriori after solving
the equations of motion (4.52)). In particular, the system has a nonlinear symmetry that
leaves the metric (4.45) invariant when we shift the Euler angle Ψ by a constant Ψ0,
Ψ → Ψ + Ψ0, and there is a choice of Ψ0 that allows to set the cross term Σ1Σ2 to zero.
Perturbations along CP1 have thus only two degrees of freedom that at nonlinear level are
described by the functions q4 and q9.

10Strictly speaking, (4.47) and (4.50) differ by an (irrelevant) global factor of r+/
√

1− v2.
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To discuss the relation between the spherical gauge (4.1) and DeTurck (4.45) ansatzë,
note that (4.1) corresponds to taking (4.45) and setting

q1 = r f

r − r+

H
F
, q2 =

(
1− r+

r

) F
g
, q3 = β

H
, q4 = 1, q5 = γ,

q6 = r3 [r+r hH− (r − r+)W]
r3

+(r − r+)W
, q7 = r3

r3
+

(
L̃r+
2π k − 1

)
,

q8 = r

r+

(
1− r+

r

)−1
q, q9 = η, (4.51)

while doing the coordinate transformations τ = T
r+

, y =
√

1− r+
r and x = 2

L̃

Z
r+

.
Further notice that linearizing (4.45) about the MPBS one gets a perturbation that

is described by (3.16) with δη ≡ δq9 (after imposing the traceless-transverse gauge that
sets q4 = 1). Thus, (4.45) is a good ansatz to study the nonlinear back-reaction of the
superradiant onset mode discussed previously. This is possible because this onset mode is
regular both at the future and past event horizons.

With the exception of the MPBS limit, solutions of (4.45) are not time independent
nor axisymmetric since the associated Rt and U(1)ψ symmetries that exist in the equal
angular momenta MPBS are broken in (4.45) when q9 6= 1.11 However, the helical black
string solutions of (4.45) do preserve the translation invariance along the string direction
x. Thus, (4.45) has Rτ × Rx × SU(2) symmetries with the Rτ (time-periodic) isometry
generated by the helical horizon generator (4.47) and Rx by the Killing vector field ∂x.
The helical black strings we will find are stationary spacetimes since we will conclude that
the helical Killing vector field (4.47) is everywhere timelike at the asymptotic boundary,
|∂τ |y=1 < 0.

It is important to emphasize that the MPBS and the helical black strings that we
find here are not the only asymptotically M1,4 × S1 equal angular momenta solutions
of Einstein gravity. Indeed, there are also black resonator string solutions recently found
in [40]. Like the helical black strings, black resonator strings are time-periodic solutions but
not time symmetric nor axisymmetric.12 But, unlike the helical strings, resonator strings
further break translational invariance along the string direction. Ultimately, this justifies
why black resonator strings are cohomogeneity-2 solutions [40] while helical black strings
are cohomogeneity-1 solutions. Interestingly, the helical strings share another important
feature with resonators strings that is ultimately responsible for the interesting fact that
they encounter each other in phase diagrams. Indeed, helical and resonator strings merge
with MP strings along the same 1-parameter family of solutions. This merger is described

11This becomes evident when we return to the frame that does not rotate at infinite and rewrite

q9Σ2
1 + 1

q9
Σ2

2 = 1
2

(
q9 −

1
q9

)[(
σ2

1 − σ2
2
)

cos(4ΩHt) + 2σ1σ2 sin(4ΩHt)
]

+ 1
2

(
q9 + 1

q9

)(
σ2

1 + σ2
2
)

which explicitly depends on t when q9 6= 1. Moreover, this term also depends explicitly on ψ, when q9 6= 1,
as can be seen when we expand

(
σ2

1 − σ2
2
)

= cos(2ψ)
(
−dθ2 + sin2 θdφ2) − 2 sin(2ψ) sin θdθdφ in terms of

the Euler angles. Further recall that
(
σ2

1 + σ2
2
)
is the line element of CP1 ' S2.

12They are the string counterparts of the black resonators in AdS with spherical horizon topology [29, 33–
35, 37].
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by the onset superradiant mode described by (3.2) or (3.16). This superradiant onset mode
is the same for the resonator and helical systems, as discussed in detail in [22].

In this section, because our ansatz (4.45) itself has not fixed a gauge, we find the
helical string solutions using the Einstein-DeTurck formalism [15, 49–51]. This formalism
formulates the Einstein equation into a manifestly elliptic form without à priori gauge
fixing. The DeTurck gauge-fixing is not an algebraic gauge-fixing condition. Instead, the
DeTurck gauge-fixing is itself a differential equation for the (unknown) metric g given
a choice of reference background g that is solved simultaneously with the gravitational
differential equations. Consequently, the differential DeTurck gauge-fixing condition is
imposed by the end of the computation, i.e. after solving the full set of equations. The
Einstein-DeTurck formulation of the gravitational equations requires a choice of reference
metric g, which must have the same causal structure and contain the same symmetries of
the desired solution (it can have other symmetries). For the reference metric we choose the
MPBS which, as discuss above, is given by (4.45) with q1,2,3,4,5,9 = 1 and q6,7,8 = 0. The
DeTurck method modifies the Einstein equation RAB = 0 into

RAB −∇(AξB) = 0 , ξA ≡ gCD[ΓACD − ΓACD] , (4.52)

where Γ and Γ define the Levi-Civita connections for g and ḡ, respectively. Unlike RAB = 0
with our ansatz, this equation yields a well-posed elliptic boundary value problem. Indeed,
it was proved in [50] and [52] that static and stationary (with t − ψ symmetry) solutions
to (4.52) necessarily satisfy the DeTurck gauge-fixing condition ξA = 0, and hence are
also solutions to RAB = 0. Note that the results of [50, 52] apply to asymptotically flat
and asymptotically AdS spacetimes and, of relevance here, to asymptotically Kaluza-Klein
backgrounds.

We now have to discuss the physical boundary conditions of the problem. At the
asymptotic boundary, y = 1, we impose as a Dirichlet condition that our solutions must
approach the reference metric. At y = 0, we demand a regular bifurcate Killing horizon
generated by ∂τ . This amounts to imposing Neumann boundary conditions, q′j(0) = 0,
j = 1, · · · 9.

We are now ready to solve the Einstein-DeTurck differential equations subject to the
above boundary conditions. We will do this within perturbation theory (to higher order)
in section 5. But we will also solve the nonlinear problem numerically. For that, we will
use a standard Newton-Raphson algorithm and discretise the Einstein-DeTurck equations
using pseudospectral collocation (with Chebyshev-Gauss-Lobatto nodes). The resulting
algebraic linear systems are solved by LU decomposition. These methods are detailed in
the review [15].

The helical black strings depend on three dimensionful parameters that we could take
to be the horizon radius r+, the rotation parameter a and the length L. For convenience,
we will opt here to work in units of r+ by using the scaling symmetry

{τ, y, θ, φ,Ψ} → {τ, y, θ, φ,Ψ}, {r+, a, L} → {λ r+, λ a, λL} , {qj} → {qj},
(4.53)
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which rescales the line element as ds2 → λ2 ds2, namely gAB → λ2 gAB but leaves the
equations of motion invariant (since the affine connection ΓCAB, and the Riemann (RABCD)
and thus Ricci (RAB) tensors are left invariant). We can use this scaling symmetry to fix the
horizon radius to r+ ≡ 1 so that helical strings are parametrized by only two dimensionless
ratios, ã = a/r+ and L̃ defined in terms of L/r+ in (4.49).

However, it is more appropriate to measure thermodynamic/physical quantities in units
of L as in (4.40) with vH = v. The (dimensionful) energy E, angular momenta J , tension Tz
and associated effective tension (4.37) (see also footnote 9), momentum P , temperature TH ,
entropy SH , angular velocity ΩH and velocity vH are computed from (4.45) after moving to
the non-rotating frame via (4.48) and using the counterterm formalism of appendix D [45,
53, 54] and (4.27)–(4.31). In terms of the functions introduced in (4.45), the associated
dimensionless thermodynamic quantities (4.40) then read:

E = 1
G6L̃2

(π − 2ãL̃v)2

32π (1− v2)2

(4
(
3− v2)

1− ã2 + 3q′′2(1) + q′′5(1) + 8vq′8(1)− v2 [q′′1(1) + 3q′′2(1)
])
,

J = 1
G6L̃4

(π − 2ãL̃v)3

32π2 (1− v2)2

(
4ãL̃

1− ã2 + 2ãL̃q′6(1)− πvq′7(1)
)
,

T eff
z = 1

G6L̃2
(π − 2ãL̃v)2

32π (1− v2)2

(4
(
1− 3v2)
1− ã2 + q′′1(1)− v2q′′5(1)− 8vq′8(1) + 3

(
1− v2

)
q′′2(1)

)
,

P = 1
G6L̃2

(π − 2ãL̃v)2

32π (1− v2)2

( 4v
1− ã2 + 2

(
1 + v2

)
q′8(1)− 1

2v
[
q′′1(1)− q′′5(1)

] )
,

τH = L̃

2π
π
(
1− v2)

π − 2ãL̃v
1− 2ã2
√

1− ã2
,

σH = 1
G6L̃3

(π − 2ãL̃v)3

2π
√

1− ã2 (1− v2)2

√
q3(0)q4(0)2q5(0) ,

ωH = 2ã L̃ π
(
1− v2)

π − 2ãL̃v
,

vH = v . (4.54)

Starting from the first law (4.36) and Smarr relation (4.38) for the dimensionful ther-
modynamic quantities, one can show (following the steps of, e.g., [40]) that the first law
and Smarr relations for the dimensionless quantities (4.54) (a.k.a. Gibbs-Duhem and Euler
relations) are:

dE = τH dσH + 2ωH dJ + vHdP , (4.55)

E = 4
3

(
τH σH + 2ωH J + 3

4vHP + 1
4T

eff
z

)
. (4.56)

We will use these two relations to check our results.
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We are interested on helical black strings that have no momentum P along the string.
This fixes the boost velocity parameter v to be:13

P = 0 ⇒ v = − 8
(
1− ã2) q′8(1)

χ+
√
χ2 − 64 (1− ã2)2 q′8(1)2

(4.57)

with χ = 8−
(
1− ã2) [q′′1(1)− q′′5(1)].

Note that although there is no linear momentum along the string, the horizon linear velocity
is non-vanishing, vH = v.

When we set q1,2,3,4,5,9 = 1 and q6,7,8 = 0 (and thus v = 0) in (4.54) we recover
the dimensionless thermodynamic quantities of the MP string. The latter is a 2-parameter
family of solutions parametrized by (L̃, ã), and the extremal MPBS is a 1-parameter family
of solutions with ã = 1/

√
2 parametrized by L̃.

We can now discuss the strategies we will use to numerically generate the 2-parameter
space of helical black strings. The above discussion naturally invites us to follow one of
two strategies (we will use both):

1. We can choose to generate lines of helical strings that have the same dimensionless
rotation ã as the MPBS they bifurcate from. The dimensionless length L̃ is varying
along these lines of solutions.

2. Alternatively, we can choose to generate lines of helical strings that have the same
dimensionless length L̃ as the MP string they bifurcate from (i.e. we fix the length
to be L = 2π/k(0) where k(0) is the zero mode wavenumber for the superradiant
instability of the MP string that was found in [40] and discussed previously).

We use these two strategies to span the 2-dimensional phase space parameter of helical
black strings. We will present our results in section 6.

5 Perturbative construction of helical black strings

In the previous subsection 4.2 we have set up the boundary value problem (BVP) that will
allow us to find the helical black strings in the Einstein-DeTurck gauge (4.45) that obey
the boundary conditions discussed below (4.52). This nonlinear BVP can be solved in full
generality using numerical methods outlined below (4.52) [15]. Alternatively, we can find
the helical black strings using the spherical gauge ansatz (4.1) of section 4.1. We will find
these nonlinear solutions using both formulations and discuss the full phase diagram of
solutions in section 6.

Meanwhile, in the present section, we complement these nonlinear numerical analyses
with a nonlinear perturbative analysis that finds helical strings in the region of the phase
diagram near their merger with the MPBS. For that we choose to work in the Einstein-
DeTurck gauge ansatz (4.45) of subsection 4.2 (although, with no disbenefit, we could have
used the spherical gauge ansatz (4.1) of subsection 4.1). This perturbative analysis will

13In the spherical gauge ansatz case, this condition was imposed in (4.16).
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already provide valuable physical properties of the system. Additionally, these perturbative
results will also be important to test the numerical results of section 6. We solve the BVP in
perturbation theory up to fifth order in the expansion parameter where we can distinguish
the thermodynamics of the helical and MP strings.

We follow a perturbative approach developed in [55] (to find vacuum lattice branes),
in [56] (to find AdS lumpy branes) and, more recently, to find black resonator strings in [40].
This perturbative scheme has its roots in [57–59] (to explore the existence of vacuum non-
uniform black strings associated to the Gregory-Laflamme instability of the Schwarzschild
black string). More concretely, our perturbative strategy has two main steps:

1. At linear (n = 1) order in perturbation theory, we find the locus in the phase space
of MP strings where a superradiant onset mode, namely a mode that is marginally
stable, exists. In practice, we identify this locus by finding the critical length L̃ =
L̃(0) (wavenumber k̃(0) = 2π/L̃(0)) above (below) which MP strings become locally
unstable (stable). This linear analysis was already performed in [40] and is briefly
reviewed below.

2. The second step is to extend perturbation theory to higher orders, n ≥ 2, and con-
struct the helical black strings that bifurcate (in a phase diagram of solutions) from
the superradiant onset curve of MP strings.

We adopt a perturbation scheme that is consistent with our nonlinear ansatz (4.45)
and we will linearize the nonlinear Einstein-DeTurck equations of motion (4.52) to get the
perturbative equations of motion (EoM). At linear order in perturbation theory about the
MPBS, we consider perturbations of the form qj(y) = Qj + ε q

(1)
j (y) where Q1,2,3,4,5,9 = 1,

Q6,7,8 = 0 describe the background solution and q(1)
j (y) its relevant linear perturbations.14

Here, ε � 1 is the amplitude of the linear perturbation and, ultimately, it will be the
expansion parameter of our perturbation theory to higher order. Consistent with the
discussion of section 3.4, we want to consider perturbations of the form (3.16) that break
the U(1)Ψ symmetry of the MP string. This means that, at linear order, the only metric
component that is perturbed is q9(y) with a deformation of the form

q
(1)
9 (y) = q

(1)
9 (y) , q

(1)
1,2,3,4,5,6,7,8(y) = 0. (5.1)

The physical length L of the periodic coordinate is given in terms of the wavenumber
k of the perturbation by L = 2π/k, and it will change with high-order corrections in
perturbation theory. Since the equations of motion depend on L, this relation L = 2π/k
introduces the onset mode wavenumber k in the problem. We denote the leading-order
contribution to k̃ as k̃(0).

In these conditions, the linearized equations of motion for q(1)
9 (y) becomes a quadratic

eigenvalue problem for κ̃ ≡
√
k̃2

(0) − 4Ω̃2
H (where Ω̃H = ΩH/r+ and k̃ = kr+) that we solve

to ultimately get the leading-order wavenumber k̃(0). Actually, this eigenvalue problem was
14The superscript (n)here and henceforth always denotes the order n of the perturbation theory, not order

of derivatives.
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already solved in [40] since it determines the onset of the superrradiant instability on the
MPBS.

Next, we want to climb the perturbation ladder to higher order, n ≥ 2. Before we do
so, we must fix the expansion parameter of our perturbation scheme unambiguously. We

define q
(1)
9 (y) =

(
1− y2)3/2 e−

√
k̃2

(0)−4Ω̃2
H/(1−y

2)
q̂9(y) and choose q̂9|y=1 ≡ 1. The solution

of the linear order eigenvalue problem (including, of course, its boundary conditions) then
determines the horizon value q̂9|y=0 ≡ q̂H9 . We then require that higher order perturbations
do not change the value at the horizon of q9. This procedure uniquely fixes the expansion
parameter ε.

Although the sector of perturbations we look at only excites q9(y) at linear order
as in (5.1), at higher orders the back reaction of the linear mode perturbs all metric
components. So, to find the solution at order O(εn), we expand the metric functions and
wavenumber in powers of ε:

qj(y) = Qj +
∞∑
n=1

εn q
(n)
j (y); (5.2a)

k̃ =
∞∑
n=1

εn−1k̃(n−1) ≡ k̃(0) +
∞∑
n=2

εn−1k̃(n−1), with L̃ = 2π
k̃
, (5.2b)

where Qj (j = 1, · · · , 9), already given above (5.1), describe the background MPBS solu-
tion.

We have already found the n = 1 contribution, (5.1) and k̃(0) ≡ k̃(0), of this expansion
by solving a homogeneous quadratic eigenvalue problem. The expansion (5.2) is now such
that at order O(εn), we must solve the BVP to find the coefficients {k̃(n−1), q

(n)
j }. Further

note that, as explained above, our choice of perturbation scheme is such that the length L̃
is corrected at each order n. That is, one has

L̃ = L̃(0) +
∞∑
n=2

εn−1L̃(n−1) , (5.3)

where the coefficients L̃(n−1) can be read straightforwardly from (5.2b).
At order O(εn), n ≥ 2, the perturbative equations are no longer homogeneous. Instead,

they describe an inhomogeneous BVP with a source S(n)
j . Not surprisingly, this source is a

function of the lower order solutions {k̃(i−1), q
(i)
j }, i = 1, . . . , n− 1 (and their derivatives):

S(n)
j (k̃(i−1), q

(i)
j ). Actually, because q9 is the only field that is excited at linear order, it

turns out that for n ≥ 2 the perturbative equation for q9 decouples from the set of 8 coupled
ODEs for q1,··· ,8. More concretely, the structure of the perturbative equation of motion is

LH q
(n)
j = S(n)

j , if n ≥ 2 and j = 1, · · · , 8. (5.4)

LH,9 q(n)
9 = k̃(n−1) 8k̃(0)q

(1)
9

(1− y2)4f
+ S(n)

9 , if n ≥ 2 and j = 9. (5.5)

The differential operators LH and LH,9 that describe the associated homogeneous system
of equations are the same at each order O(εn). That is, they only depend on the MPBS
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Figure 1. Superradiant instability (for azimuthal number m = −2; see footnote 4) and Gregory-
Laflamme instability of Myers-Perry black strings with parameters k̃(0), Ω̃H . Superradiant insta-
bility occurs inside the triangular region ABc, and Gregory-Laflamme instability occurs below the
curve marked by orange squares. The Gregory-Laflamme onset curve intersects with the edge of
the unstable superradiant region at points ã and β. For reference, Ω̃H |c = 3/5 and the vertical
dashed line at Ω̃H = 1/

√
2 is extremality.

Qj we expand about and k̃(0). It follows that the complementary functions of the homo-
geneous system are the same at each order O(εn), n ≥ 2. But, we also need to find the
particular integral of the inhomogeneous system and this is different for each n since the
sources S(n)

j differ. We now have to solve (5.4) for q(n)
j≤8(y) and (5.5) to find the eigenvalue

k̃(n−1) and q
(n)
9 (y). We impose the boundary conditions discussed below (4.52), namely

we impose vanishing asymptotic Dirichlet boundary conditions q
(n)
j |y=1 = 0 − since the

full solution (5.2) must approach the DeTurck reference MPBS solution − and Neumann
conditions at the horizon, q(n) ′

j |y=0 = 0.
We complete this perturbation scheme up to order O(ε5): this is the order required to

find a deviation between the relevant thermodynamics of the helical and MPBS, as it will
be found when obtaining (5.11).

Having described the perturbation scheme, we are now ready to discuss the properties
that can be extracted from the perturbative analysis. The leading wavenumber k̃(0)(Ω̃H)
(already computed in [40]) is described by the blue curve Ac of figure 1. Borrowing the
details found in [40], the MPBS is unstable for Ω̃H |c ≤ Ω̃H ≤ 1/

√
2 with Ω̃H |c = 3/5 and

k̃?(Ω̃H) ≤ k̃ ≤ k̃(0)(Ω̃H) where [40]

k̃
(m)
? (Ω̃H) = 3

√
1− Ω̃2

H (5.6)

is the green curve Bc in figure 1. The instability shuts down below this cut-off curve Bc
because the superradiant modes are no longer bounded states with exponentially decaying
behaviour at the asymptotic infinity (see [40] for details). So, the MPBS is unstable inside
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Figure 2. Wavenumber corrections k̃(2) (top-left panel), k̃(3) (top-right panel) and k̃(4) (bottom
panel), as defined in (5.2b), as a function of the dimensionless angular velocity of the MP string
Ω̃H = ΩHr+ = ã (Ω̃H |c ≤ Ω̃H ≤ 1/

√
2). The vertical red dashed line represents the extremal

configuration with Ω̃H = 1/
√

2. Recall that the leading wavenumber k̃(0) is given in figure 1 and
we find that k̃(1) = 0.

the region bounded by the closed curve ABc in figure 1. For completeness, in figure 1
we also show as the orange curve the zero mode wavenumber k̃(0)

∣∣
GL

(Ω̃H) of the Gregory-
Laflamme instability of the MPBS. The MPBS is unstable below this onset curve which
exists for any rotation, 0 ≤ Ω̃H ≤ 1/

√
2 (see [40] for details).

Moving to order n ≥ 2, we find that the next-to-leading order wavenumber correction
vanishes, k̃(1) = 0. This has important consequences that we discuss later. On the other
hand, the wavenumber corrections k̃(2), k̃(3) and k̃(4), as defined in (5.2b), are plotted
in figure 2. The fact that these higher order quantities grow large as one approaches
Ω̃H = Ω̃H |c and Ω̃H = 1/

√
2 tells us that our perturbation theory breaks down in these

regions. We will also come back to this below.
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Once we have found all corrections q(n)
j (y) and k̃(n−1) up to n = 5, we can reconstruct

the nine fields qj(y) using (5.2). We can then substitute these fields in the thermodynamic
formulas (4.54) of section 4.2 to obtain all the thermodynamic quantities of the system up
to O(ε5).

Before discussing helical strings, it is useful to recall that it follows from (4.54) (with
q1,2,3,4,5,9 = 1 and q6,7,8 = 0) that the thermodynamic quantities of the MPBS parametrized
by L̃, ã (vH = 0) are given by

E
∣∣
MP

= 1
G6

3π
8L̃2

1
1− ã2 , J

∣∣
MP

= 1
G6

π

4L̃3
ã

1− ã2 , Tz
∣∣
MP

= 1
G6

π

8L̃2
1

1− ã2 ,

τH
∣∣
MP

= L̃

2π
1− 2ã2
√

1− ã2
, ωH

∣∣
MP

= ã L̃ , σH
∣∣
MP

= 1
G6

π2

2L̃3
1√

1− ã2
. (5.7)

We can represent these MPBS (and other solutions) in a phase diagram E-J . Actually, to
better differentiate the different families of solutions, it is convenient to plot instead E vs
∆J where

∆J ≡ (J − Jext MP)|same E (5.8)

describes the angular momentum difference between a given solution and the extremal
MPBS, with J = Jext MP defined in (4.42) with the same E . This phase diagram E-∆J
is displayed in figure 3. The horizontal red line with ∆J = 0 represents the 1-parameter
family of extremal MPBSs with Ω̃H = ã = 1/

√
2. It extends to arbitrarily large E . Non-

extremal MPBSs exist below this line.
Besides the extremal MPBS, there are other special 1-parameter families of black

strings that play a relevant role in our discussion:

1. Replacing the superradiant onset mode L̃(0)(Ω̃H) = 2π/k̃(0)(Ω̃H) of figure 1 in (5.7),
we get the thermodynamics of the 1-parameter family of the MPBS that are at the
onset of the superradiant instability, as shown in the blue disk curve Ac of figure 3.

2. Recall that the MPBS is unstable if its length is longer that the superradiant onset
mode length, L̃ > L̃(0)(Ω̃H), but smaller that the critical cut-off length L̃ = L̃?(Ω̃H) =
2π/k̃?(Ω̃H) with k̃?(Ω̃H) given by (5.6), i.e. if they are above the green curve Bc of
figure 1. Inserting L̃ = L̃?(Ω̃H) into (5.7) we get the 1-parameter family Bc (vertical
green curve) of MPBSs in the E-∆J plane of figure 3.15

3. For reference, since the MPBS also has the GL instability, in figure 3 we also display
the Gregory-Laflamme onset curve (orange squares). This curve is also obtained
from (5.7) when we replace L̃ = L̃(0)|GL, where the latter can be read from the
orange square data of figure 1. The MPBS above this orange square curve, all the
way up to the axis ∆J = 0, are unstable to the Gregory-Laflamme instability.

15There is a series of onset and cut-off superradiant curves alike the ones described in items 1 and 2 for
m = 2 modes, but this time for m ≥ 2. The reader can find a discussion and phase diagrams for these cases
in [40].
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Figure 3. Superradiant instability (for m = −2; see footnote 4) and Gregory-Laflamme insta-
bility of Myers-Perry black strings with parameters E , J . For presentation, we show the angular
momentum difference with the extremal Myers-Perry black string G6∆J ≡ G6(J −Jext MP)same E .
Superradiant instability occurs inside the triangular region ABc, and Gregory-Laflamme insta-
bility occurs above the curve marked by orange squares. The Gregory-Laflamme onset curve
intersects with the edge of the unstable superradiant region at points ã and β. The horizontal
red line at ∆J = 0 is extremality. For reference, G6E|c = G6E|B = 27/(32π) ' 0.268574 and
G6E|A = 45/(16π) ' 0.895247.

The superradiant onset curve Ac in figure 3 also represents where the MPBS and
helical black strings merge. At order O(ε), perturbation theory identifies this merger but
it does not describe the properties of the helical strings as we move away from the merger
line. For that, we need to proceed to higher order O(εn) in the perturbation theory.
We do so up to n = 5 and thus we get the thermodynamic description of helical black
strings up to O(ε5). We can then compare it against the thermodynamics of the MPBS
and find which of these two families is the preferred. We are particularly interested in
the microcanonical ensemble (with all solutions having the same Kaluza-Klein circle size
L), so the dominant phase is the one with the highest dimensionless entropy σH for a
given (E ,J ) (i.e. energy and angular momenta in units of the circle length L). Let QMP
and Qhel denote generic thermodynamic quantities Q for the MP string and helical black
string, respectively. When comparing these two solutions in the microcanonical ensemble,
we must use the same Kaluza-Klein circle size L and require that the solutions have the
same dimensionless energy and angular momenta:

Ehel = EMP , Jhel = JMP. (5.9)
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Given a helical black string with (Ehel,Jhel), we must thus identify the parameters (L̃MP, ãMP)
of the MP string whose energy and angular momenta satisfy (5.9), with L̃MP = LMP/r+,
namely:

L̃MP =
√

3π
√
Ehel

Σ+
, ãMP = 1

12
√

3π
Σ+Σ2

−

JhelE
3/2
hel

with Σ± ≡
√

4E2
hel ±

√
2
√

8E4
hel − 27πJ 2

helEhel (5.10)

We can now place these quantities in (5.7) with the identifications L̃→ L̃MP and ã→ ãMP

to find the thermodynamic quantities (in particular, the entropy σH) of the MPBS with
the same energy and angular momenta as the helical string. The thermodynamics of the
MPBS is then expressed as a function of (Ehel,Jhel). The latter, and thus the former as
well, have an expansion in ε.

We now compute the entropy difference ∆σH = (σH,hel − σH,MP) |same (E,J ) between
helical strings and the MPBS with the same energy and angular momenta. This yields
∆σH = c

(2)
∆σε

2+c(3)
∆σε

3+c(4)
∆σε

4 where c(2)
∆σ, c

(3)
∆σ and c(4)

∆σ are functions of q(n)
j |y=0 (n = 2, 3, 4).

However, our solutions satisfy the first law of thermodynamics (4.55), as we explicitly verify.
As a further check of our solutions we also verify that the Smarr relation (4.56) is obeyed.

This first law must be obeyed at each order in ε and thus it effectively gives three
conditions (one at each order εn−1, n = 2, 3, 4) that we can use to express the second
derivatives of q(2)

5 |y=1, q(3)
5 |y=1 and q

(4)
5 |y=1 as a function of other functions q

(n)
j and their

first derivatives evaluated at the horizon, y = 0, or at y = 1. When we do this, we simplify
c

(2)
∆σ, c

(3)
∆σ and c(4)

∆σ. In particular, we find that c(2)
∆σ ≡ 0 and c(3)

∆σ ≡ 0 which justifies our need
to extend the perturbation expansion up to O(ε5).

Altogether, after using the first law of (4.55), we find that

∆σH = (σH,hel − σH,MP)
∣∣
same (E,J )

= G6 c
(4)
∆σ ε

4 +O(ε6) (5.11)

with

c
(4)
∆σ =

k̃2
(0)

384π
√

1− ã2 (1− 2ã2)

{
k̃(0)

[
2
(
1− ã2)2 (3− 2ã2) ã2q

(2) ′
6 (1)2

−8
(
ã4 − 3ã2 + 2

)
ã2
(
q2
3(0) + 2q2

4(0) + q2
5(0)

)
q

(2) ′
6 (1)

−
(
4ã4 − 10ã2 + 1

) (
q2
3(0) + 2q2

4(0) + q2
5(0)

)2
]

−12ã
(
1− ã2) q(2) ′

8 (1)
[
2
(
1− ã2) ã2q

(2) ′
6 (1) +

(
1− 2ã2) (q2

3(0) + 2q2
4(0) + q2

5(0)
)]

−6k̃(2)

[
2
(
1− ã2) ã2q

(2) ′
6 (1) +

(
1− 2ã2) (q2

3(0) + 2q2
4(0) + q2

5(0)
)]}

, (5.12)
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Figure 4. Perturbative identification of the dominant microcanonical phase. The horizontal axis
shows the dimensionless angular velocity Ω̃H of the MP string. The vertical axis displays the
difference (5.12) between the dimensionless entropy of the helical and the MPBS with the same
(E ,J ). Since c(4)

∆σ > 0, i.e. ∆σH > 0, for any Ω̃H |c ≤ Ω̃H ≤ 1/
√

2 (see inset plot that zooms in the
region where c(4)

∆σ attains its lower values), black helical strings always dominate the microcanonical
ensemble around the superradiant merger line.

where q
(2) ′
6,8 (1) stands for the first derivative of q

(2)
6,8 evaluated at y = 1 and all other

functions in (5.12) are evaluated at y = 0.16

We now need to evaluate the positivity of c(4)
∆σ to determine which phase is preferred.

For that, recall that we are doing perturbation about the merger line Ac of MP and helical
black strings (see figure 1 or figure 3). This curve is parametrized by Ω̃H |c ≤ Ω̃H ≤
1/
√

2. Thus, to analyse the positivity of ∆σH , we just need to compute the coefficient
c

(4)
∆σ in (5.11)–(5.12) as a function of Ω̃H . This is done in figure 4. For any value of

Ω̃H |c ≤ Ω̃H ≤ 1/
√

2, we find that c(4)
∆σ and thus ∆σH are positive quantities. It follows

that, in a neighbourhood of the merger line Ac, helical black strings that branch from the
superradiant onset of MPBS have higher entropy than the MPBS with the same length,
energy and angular momenta. That is to say, at least in a neighbourhood of the merger
line Ac in the E-J phase diagram, helical black strings are the preferred phase in the
microcanonical ensemble. To find if this is true non-perturbatively far from the merger
line, we need to solve the full nonlinear gravitational equations: we do this in section 6.

In figure 4 we see that the entropy correction c(4)
∆σ ε

4 − which should not be larger than
O(ε) − is growing large as we approach both endpoints c and A of the merger line. So,
the higher order perturbative theory breaks down in the vicinity of these points no matter
how close to the merger line we are.

On last remark is in order. We find that all the thermodynamic quantities of heli-
cal black strings have a vanishing leading order correction (n = 1), which is ultimately a

16The entropy difference depends also on functions evaluated at the asymptotic boundary because we
have subtracted the MPBS background that obeys (5.9) and because we used first law to get (5.12).
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consequence of the fact that the leading wavenumber correction vanishes, k̃(1) = 0. Conse-
quently, the leading correction to the entropy difference (5.11) appears at fourth order, i.e.
c

(3)
∆σ = 0. It follows that the perturbations ±|ε| are physically equivalent and thus there is
a single family (and not two) of helical black strings solutions that branch from the merger
line Ac. There are other situations where two families branch from a merger, but this is
not the case here.17 This information is also useful when looking for nonlinear helical black
strings: once we find one branch of solutions emerging from the merger line, we know there
is not a second one.

6 Results and discussion of physical properties

In this section, we describe the phase diagram of helical black strings and discuss their
physical/thermodynamic properties. Recall that we find the nonlinear numerical solutions
by solving the boundary value problem in the spherical gauge ansatz (4.1) of section 4.1
and/or the Einstein-DeTurck gauge ansatz (4.45) of section 4.2. Moreover, we also compare
these full nonlinear numerical results with the perturbative results of section 5.

6.1 Phase diagram and physical properties of helical black strings

In figure 5, we show the entropy difference ∆σH between a black helical string and a
Myers-Perry black string (at the same E and J as defined in (5.11)), for strings at constant
G6E = 0.35. The black solid line shows the perturbative result (5.11)–(5.12) constructed in
section 5, whereas the green disks give the fully nonlinear numerical data using either the
spherical gauge ansatz (4.1) of section 4.1 or the Einstein-DeTurck gauge ansatz (4.45) of
section 4.2. As anticipated, the perturbative analysis provides a very good approximation
near the merger with the MP black string (blue disk with ∆σH = 0). Further note that
the fact that ∆σH ≥ 0 indicates that black helical strings dominate the microcanonical
ensemble over MPBS.

In the spherical gauge ansatz (4.1) of section 4.1, helical black strings are charac-
terized by having the metric function η(r) 6= 1 (with the MPBS having η = 1). Some
profiles of the metric component functions of (4.1) are shown in figures 6(a))–(6(h). We
pick up three particular solutions: the MPBS/helical string at the onset of instability for
ΩH/Ωext

H = 0.89 (blue MPBS), and two helical black strings (orange HBS1, and green
HBS2). Specifically, the HBH1 and HBH2 helical black strings have (G6E , G6J , G6σH) =
(0.170, 0.0567, 0.00977) and (0.481, 0.215, 0.0395), respectively. It can be seen that the de-
formation (w.r.t. MPBS) of the helical string metric typically takes place near the horizon
(i.e, in a neighbourhood of r/r+ ∼ 1).

17Black hole resonators that bifurcate from the onset of other superradiant systems (typically, in asymp-
totically AdS spaces [29, 33–35, 37, 60–62] or in asymptotically flat backgrounds with bound states confined
by a massive scalar [63] or by a box [64–66]) also have a single branching family. The non-uniform strings
that bifurcate from the Gregory-Laflamme onset also have this property [51, 55, 57–59, 67–77]. However,
there are also systems that have two families of solutions branching from the onset of the instability. This is,
e.g., the case in ultraspinning unstable systems [7–15, 78], in the GL instability of black branes/lattices [55],
and in the GL-like instability of AdS5 × S5 [79, 80].
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Figure 5. Comparison between nonlinear helical string solutions and the perturbative result (5.11)–
(5.12) of section 5. The solid black line is the perturbative expansion (5.11), whereas the green disks
are the full nonlinear results. Both curves were generated with G6E = 0.35 (recall that ∆σH is the
difference with respect to the Myers-Perry black string at the same E and J ). The Myers-Perry
superradiant onset is the blue disk with ∆σH = 0 (it has Ω̃H ' 0.64821697).

Shown also in figure 6(i) is the squared of the asymptotically timelike Killing vector
ζ as discussed perturbatively in (3.21) of section 3.4 and given nonlinearly in (6.3) of
section 6.3. Note that ζ2 is finite at the horizon r = r+, but the horizon value of ζ2 is
outside the plotted region. The value is positive near the horizon, crosses zero at finite
r, and becomes ζ2 → −1 as r → ∞. This shows that helical black strings are stationary
spacetimes.

Dimensionless thermodynamic quantities of helical black strings, as defined in (4.40),
are summarized in figure 7 (for the solutions we obtained numerically18). In figures 7(a)
and 7(b), the blue, green, and red lines correspond to the onset of the instability of the
MPBS (i.e. blue cA curve in figure 3), confining cutoff for the asymptotic exponential decay
of the MPBS perturbation (i.e. green line cB in figure 3), and extremal MPBS, respectively.
Non-extremal MPBS exist below (above) the extremal red line in figure 7(a) (figure 7(b));
otherwise MPBS describes a naked singularity. In the ‘triangular-like’ region bounded by
these three curves (blue, green, red), the MPBS is superradiant unstable to the spin-2

18From the analyses leading to figures 1 and 3 one knows that the superradiant onset curve cA runs
over Ω̃H |c ≤ Ω̃H ≤ Ω̃H |A with Ω̃H |c = 3/5 and Ω̃H |A = Ωext

H = 1/
√

2 which corresponds to the energy
range E|c ≤ E ≤ E|A with G6E|c = 27/(32π) ' 0.268574 and G6E|A = 45/(16π) ' 0.895247. This is
the range of the blue superradiant onset curve in figure 7. Although, this onset starts at Ω̃H |c/Ωext

H =
3
√

2/5 ' 0.848528, in figure 7 we only display helical strings near the onset for ΩH/Ωext
H ≥ 0.865, since for

3
√

2/5 ≤ ΩH/Ωext
H < 0.865 the asymptotic exponential decay (A.2) is very weak, and the numerical analysis

is difficult. In particular, we have evidence that the edge Ω̃H → Ω̃H |+c is obtained in the limit η0 → 1,
but in this limit the helical solution is distinct from MPBS (which has η = 1) and may not be described
by a regular solution. Technical details for constructing these numerical solutions are further explained in
appendix C (in the case of the spherical gauge ansatz).
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(a) f (b) g (c) h

(d) k (e) q (f) η

(g) β (h) γ (i) ζ2

Figure 6. (a)–(h) bulk profiles of the metric fields, and (i) ζ2 (see section 6.3). Lines are
for the MPBS at ΩH/Ωext

H = 0.89 (blue) and helical black strings with (G6E , G6J , G6σH) =
(0.170, 0.0567, 0.00977) (HBH1, orange) and (0.481, 0.215, 0.0395) (HBH2, green).

tensor perturbation with the lowest azimuthal quantum number |m| = 2 (as detailed in
the discussions of section 3, footnote 4 and of figures 1 and 3).

In figure 7(a), we plot the angular momentum difference as defined in (5.8), ∆J ≡
(J − Jext MP)|same E , and the horizon angular velocity ωH (see the color code on the right
column) as a function of the energy E . As expected from the perturbative analysis, helical
black strings exist at and above the blue superradiant onset line (where they merge with
MPBS), but now, with the full nonlinear data, we see that they can extend well above
for higher values of J . In particular, helical black strings exist even in the parameter
space where the MPBS is super-extremal and thus singular, i.e., where ∆J > 0 (above
the horizontal red line). Altogether, figure 7(a) gives the phase space region (E ,J ) where
helical black strings exist, which is information relevant to discuss the properties of the
black string system in the microcanonical phase diagram.
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(a) (E ,∆J ;ωH). (b) (E , σH ; τH).

(c) (E , Tz/E ; vH). (d) (ωH , vH ;σH).

Figure 7. Thermodynamic quantities of helical black strings.

In figure 7(b), we plot the entropy σH of helical strings, and their temperature τH
(see the color code on the right column), as a function of the energy E . The entropy σH
can be very close to zero at nonzero (E ,J ). In the zero entropy limit (bottom of the
plot), the temperature τH is likely non-zero and finite. Note that this zero entropy limit
corresponds, in figure 7(a), to the left end of the upper boundary in the region (E ,∆J )
of existence of the helical strings. Although this is not clear from figure 7(b), we have
explicitly checked (with analyses similar to the one in figure 5 but for other values of E
besides G6E = 0.35) that, for a given (E ,J ) where helical strings and MPBS co-exist,
helical black strings always have higher entropy than MPBS. This is in agreement with
the perturbative findings summarized in figure 4 but extend them beyond the superradiant
merger vicinity. Thus, helical black strings dominate the microcanonical phase diagram
over MPBS (more discussion about this important property will be given in section 6.2).

To further unravel properties of helical black strings, in figure 7(c) we plot the ratio
of the tension along the string direction and the energy, Tz/E , and the horizon velocity vH
(see the color code on the right column) as a function of the energy E . Here, the horizontal
black line corresponds to the exact result for the MPBS, Tz/E = 1/3 as follows from (4.32),
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and the superradiant merger line is the blue straight line with 0.268574 . G6E . 0.895247
on this MP line (thus, also with Tz/E = 1/3). We compare results for solutions with no
momentum, P = 0 (i.e., no Lorentz boost). In particular, this means that in figure 7(d)
the MPBS has vH = 0, but the helical strings have vH 6= 0 (recall the discussions of (4.16)
or (4.57)). At the onset one has vH = 0 but the vH of helical strings grows substantially as
we move away from the onset (see also the color in figure 7(c)). The fact that our helical
solutions have P = 0 but vH 6= 0 means that vH is an intrinsic velocity of the system that is
generated spontaneously since it is required to support the symmetries of the helical black
string. This corresponds to the configuration without a Lorentz boost (hence P = 0); of
course we can then generate boosted helical and MP black strings by applying a Lorentz
boost to these fundamental solutions (which we are not doing in the presentation of any
of our results). Analysing figure 7(c), we conclude that the ratio Tz/E of helical strings is
always smaller than the MPBS ratio. In particular, as vH grows (say, in the region where
0.3 . vH ≤ 1), one sees that Tz/E can become negative with TzL/E → −1 as vH → 1.19

This might suggest that helical strings can have some instability in this negative tension
region of parameters, but we do not address this possibility here. The tension to energy
ratio reaches its minimum, TzL/E → −1, when the horizon velocity approaches the speed of
light, vH → 1, where the entropy also seems to approach zero (as far as we can numerically
check), σH → 0, and the angular velocity seems to reach its maximum value of ωH → π

(consistent with the analytical result (4.44)). This limit also provides helical black strings
with minimum energy and tension, G6E ' −G6Tz ' 0.09, and with maximum angular
momenta and temperature, G6J ' 0.03 and τH ' 0.29 (where we used extrapolation of
the data in figure 7 to obtain these critical values).

Given the above properties of the phase diagram of helical strings, one naturally won-
ders whether there is room for the existence of regular Kaluza-Klein geons (i.e., horizonless
strings whose centrifugal force balances self-gravitation) in the zero entropy limit of our
helical strings (since this is a common feature in resonator and hairy black object solu-
tions). We considered this possibility seriously, but to the best of our attempts our answer
to this question is negative. In appendix E, we discuss the absence of Kaluza-Klein geons
as well as the vH → 1 limit and pp-wave solutions in more detail. Although the horizon
area vanishes in the vH → 1 limit, we have evidence that the geometry becomes singular
in this limit. In particular, we have evaluated the Kretschmann curvature scalar at the
horizon and find that it diverges in the σH → 0 limit. This behaviour is thus similar to the
zero horizon size limit of a Schwarzschild black hole, where no regular geon is obtained.

6.2 Phase diagram of helical and resonator black strings

Helical and MP black strings are not the only asymptotically Kaluza-Klein solutions
(M1,4×S1) of 6-dimensional Einstein gravity. Indeed, as discussed in detail in [22, 40], the
phase diagram of solutions also includes the so-called black resonator strings found in [40].
Interestingly, the latter bifurcate from the MP black strings along the same superradiant

19It is known that the bare tension can be negative [81] for a boosted black string, while the effective
tension remains positive [48] That situation is different from ours where the tension can be negative even
for P = 0.
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onset curve as the helical black strings, for reasons detailed in section 4.4 of [22]. When they
co-exist, we already know that resonator and helical black strings have higher entropy than
MP strings with the same energy and angular momenta (and same Kaluza-Klein length
L). However, it is also important to ask which of the two solutions, helical or resonator
strings, dominate the microcanonical ensemble. We find that, for fixed values of the energy
E and angular momenta J where they co-exist, resonator black strings [40] always have
higher entropy σH than the helical black strings.

This is explicitly demonstrated in figure 8. In the left panel, we focus our attention
only in the region of the phase diagram that is in a neighbourhood of the superradiant
onset/merger line of the MP black string (recall this is the blue line cA in figures 1 and 3).
In this region we can simply use the perturbative helical string result (5.11)–(5.12) of
section 5, and borrow the resonator perturbative counterpart given in equations (4.14)-
(4.15) of [40], as good approximations. In this comparison, we have to be cautious because
the expansion and rotation parameters of the two solutions are not the same. To find
the relation between the two, we need to expand the expansion and rotation parameters
{ε, ã}|res of the resonator strings, as given in [40], as a function of the helical expansion
and rotation parameters {ε, ã} to find the relation that describes resonator strings with
the same energy E and angular momenta J as the helical string (since we want to compare
them in the microcanonical ensemble with fixed Kaluza-Klein length L). After completing
this task, we can then compute the perturbative expansion of the entropy difference − let
us call it δσH − between resonator strings and the helical string with the same energy and
angular momenta:

δσH = (σH,res − σH,hel)
∣∣
same (E,J )

= G6 δc
(4)
δσ ε

4 +O(ε6), (6.1)

where ε is the helical expansion parameter introduced in section 5.
The coefficient δc(4)

δσ of (6.1) is plotted along the superradiant onset/merger line cA
parametrized by Ω̃H |c ≤ Ω̃H ≤ 1/

√
2 (see figures 1 and 3) in the left panel of figure 8.

Since one always has δc(4)
δσ > 0, we conclude that, around the merger line with the MP

black strings, black resonator strings have higher entropy than helical black strings with
the same E and J .

We may then ask if resonator strings still dominate the microcanonical phase diagram
far away from the superradiant onset where the perturbative results no longer provide a
good description/approximation. For that we need to use the full nonlinear helical solutions
of figure 7 and the nonlinear resonators in figure 6 of [40]. We find that when they co-exist,
resonator strings always have higher entropy than the helical strings (with the same E and
J ) no matter how far away they are from the superradiant onset. This is illustrated in the
right panel of figure 8 for a particular family of black helical and resonator strings with
G6E = 0.35. Resonator (green curve) and helical (purple curve) strings bifurcate from the
MP black string (black curve) at G6J ' 0.06277479 (blue disk) − which corresponds to
the point with Ω̃H ' 0.64821697 in the left panel − and both extend to higher values of
J . As stated above, we clearly see that for a given J where the three (or two) solutions
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Figure 8. Left panel: coefficient of the entropy difference δσH between the black resonator and
helical strings near the superradiant merger (i.e. as given by the perturbative analysis of section 5)
as a function of the horizon angular velocity along the merger curve (notice the logarithmic scale;
the red dashed vertical corresponds to ΩH = Ωext

H ). Right panel: comparison of the entropy
∆σH of the MP black strings (black curve), helical black strings (purple curve) and black resonator
strings (green curve) with the same energy G6E = 0.35 as a function of the angular momentum not
only near the merger (blue disk) but also away from it (nonlinear results). The blue disk where the
three families meet is the superradiant onset/merger (it corresponds to the point in the left panel
with Ω̃H ' 0.64821697) and the red dot at the endpoint of the MP curve marks the extremal MP
black string.

co-exist, the black resonator strings always have higher entropy than the black helicoidal
strings (and the MP strings).

6.3 Stationarity of the helical black string revisited

As discussed previously, it can be shown that the helical black string spacetime is stationary.
That is, the spacetime admits an asymptotically timelike Killing vector. In this section we
argue that this property does not violate the rigidity theorem.

Let us consider a linear combination of ∂T and ∂Z as

ζ ≡ cT∂T + cZ∂Z , (6.2)

where cT , cZ are some constants. Using the asymptotic expansion (4.25), we obtain as
r →∞

ζ2 = gMNζ
MζN = (4cTh∞ + cZk∞)2

16 r2 + (−c2
T + c2

Z) +O(r−2) . (6.3)

If 4cTh∞ + cZk∞ 6= 0, this diverges, ζ2 → +∞. By setting cT = k∞ and cZ = −4h∞, the
behavior becomes

ζ2 → −(k2
∞ − 16h2

∞) (r →∞) . (6.4)

For all numerical helical black strings, we find ζ2 < 0 (see figure 6(i)). That is, ζ is an
asymptotically timelike Killing vector, and hence this spacetime is stationary. Meanwhile,
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the U(1)Ψ rotational isometry is broken by the superradiant instability. Thus, the helical
black string is a stationary non-axisymmetric spacetime.

The rigidity theorem for higher dimensional black holes states that a stationary black
hole should have a Killing vector field other than an asymptotically timelike Killing vec-
tor [82–84]. The point of the rigidity theorem is that the Killing horizon generator is space-
like in asymptotic infinity, and therefore a stationary black solution should be equipped
with another Killing vector in addition to the asymptotically timelike Killing vector so that
the latter can be given as a linear combination of the Killing horizon generator and the
extra Killing vector. For the helical black string geometry, while the axisymmetry U(1)Ψ
is broken, we can use the translation symmetry generated by ∂Z . The presence of this
symmetry makes the helical black string solution consistent with the rigidity theorem.

In stationary spacetimes, we could use coordinates where the time translation Killing
vector is asymptotically timelike. For the helical black string, the transformation from
(T, Z) to such coordinates (T̃ , Z̃) can be done by the Lorentz boost (B.4) with tanh b =
−4h∞/k∞,

T̃ = 1√
k2
∞ − 16h2

∞
(k∞T + 4h∞Z) , Z̃ = 1√

k2
∞ − 16h2

∞
(k∞Z + 4h∞T ) . (6.5)

Their dual vectors are

∂
T̃

= 1√
k2
∞ − 16h2

∞
(k∞∂T − 4h∞∂Z) , ∂

Z̃
= 1√

k2
∞ − 16h2

∞
(k∞∂Z − 4h∞∂T ) . (6.6)

The first one, ∂
T̃
, is nothing but the asymptotically timelike Killing vector (6.4) normalised

as (∂
T̃

)2|r→∞ → −1. The first equation in (6.6) shows that the asymptotically timelike
Killing vector ∂

T̃
is a linear combination of the Killing horizon generator ∂T and the Killing

vector ∂Z corresponding to the U(1)Z isometry. Conversely, this implies that the Killing
horizon generator is formed as a linear combination of the asymptotically timelike Killing
vector and the Killing vector of U(1)Z .

The coordinates (T̃ , Z̃) are in the rotating frame at infinity and have their counterparts
(t̃, z̃) in the non-rotating frame at infinity. The transformation is analogous to (4.19), but
now the transformation of the angular coordinate Ψ does not involve T̃ , giving

t̃ = T̃ , z̃ = Z̃ , ψ̃ = Ψ +
√
k2
∞ − 16h2

∞
2 Z̃ . (6.7)

The dual vectors are related as

∂
T̃

= ∂t̃ , ∂
Z̃

= ∂z̃ +
√
k2
∞ − 16h2

∞
2 ∂ψ , ∂Ψ = ∂ψ̃ . (6.8)

In these coordinates, the bulk metric does not explicitly depend on t̃, while it explicitly
does depend on z̃. Combining (4.19), (6.5), and (6.8), one can deduce that z̃ is precisely
related to Θ in (4.23) as

z̃ = 2√
k2
∞ − 16h2

∞
Θ . (6.9)
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The corresponding part of the bulk metric in the non-rotating frame at infinity (4.24)
indicates that a z̃-shift is not an isometry. As shown in (6.8), the isometry ∂

Z̃
is given by a

linear combination of ∂z̃ and ∂ψ, both of which are broken translations but the particular
combination realizes an isometry.

One is aware that using (t̃, z̃) would simplify the bulk metric in the non-rotating
frame at infinity. However, there is a drawback in that the helical black strings in these
coordinates have nonzero boost P 6= 0 in general. This is clear from the Lorentz boost
involved in the coordinate transformation (6.5). When we consider black strings, we prefer
to compare non-boosted solutions, where an interesting aspect in the helical black string
geometry is the spontaneous generation of the (intrinsic) horizon velocity vH even for
P = 0 which is required to support the symetries of the helical black strings. Hence,
in the non-rotating frame at infinity, we put priority to setting P = 0, at the cost of
allowing explicit t-dependence in the bulk metric as (4.24). This is not a problem because
thermodynamic quantities constructed from asymptotic infinity and horizon quantities are
not time dependent.

7 Conclusion

In this paper, we constructed cohomogeneity-1 helical black strings with RT × U(1)Z ×
SU(2) isometries branching from the superradiant instability of the six-dimensional equal
angular momenta Myers-Perry black string (MPBS). We showed that the helical black
string is a stationary non-axisymmetric spacetime since it has a Killing vector field that
is timelike everywhere at the asymptotic boundary. The helical black string is supported
by a nonzero intrinsic horizon velocity vH along the direction of the string even though
the solution was no momentum along the string, P = 0. So, this is an intrinsic horizon
velocity required to support the helical symmetry of the helical strings and not a velocity
that emerges after applying a Lorentz boost (which we can also do, but we do not); see
discussions of (4.16) or (4.57). In a phase diagram of asimptotically Kaluza-Klein solutions,
the helical black strings bifurcate from the MPBS at the onset of the superradiant instability
and then they extend to higher values of angular momenta J beyond the region where
MPBS can exist (the boundary of the latter is the extreme T = 0 family of solutions
with maximal J ); see e.g. figure 7(a). The entropy (i.e. dimensionless entropy measure in
units of the string length L) of the helical black string is always higher than that of the
MPBS with the same (dimensionless) energy E and angular momenta J when they coexist
in the E − J phase space (see e.g. figures 5 or 8 for illustrations of this property). This
demonstrates that helical strings dominate the microcanonical phase diagram over the MP
strings, and indicates (using the second law of thermodynamics) that an unstable MPBS
can dynamically evolve into a helical black string. It was observed that the small entropy
limit σH → 0 of the helical string corresponds to the maximal velocity limit vH → 1 where
the horizon velocity reaches the speed of light.

In addition to the helical black string with RT × U(1)Z × SU(2) isometries, there is
another black string solution with fewer isometries (namely RT × SU(2)), coined black
resonator string [40], that also branches-off from the same superradiant instability of the
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MPBS and has the same Kaluza-Klein asymptotics. In addition to U(1)Ψ, the U(1)Z
isometry is also broken in the black resonator strings and hence they are non-uniform
string solutions. Remarkably, the black resonator string is a non-stationary spacetime in
contrast to the helical black string. For the latter, the presence of the U(1)Z isometry makes
it possible to form an asymptotically timelike Killing vector as a linear combination of the
Killing horizon generator, which is asymptotically spacelike, and the U(1)Z translation
Killing vector. For (dimensionless) energy E and angular momenta J where the three
(helical, resonator and MP) black string solutions co-exist, the black resonator string always
has the highest dimensionless entropy (for a given {E ,J }), and the MPBS has the lowest
entropy. This is illustrated in figure 8. Therefore, the black resonator strings dominate the
microcanonical ensemble (and helical black strings dominate over MPBS). This entropic
property also suggests that it is possible to have a dynamical time evolution from helical
black strings to black resonator strings or from a MPBS towards the resonator string
(eventually with the helical strings being a metastable configuration).

This aspect is worth of a more detailed discussion. The fact that helical black strings
remain cohomogeneity-1, yet break rotational and time translation symmetries makes them
uniquely simple objects for studying black strings that break these symmetries. It would be
considerably simpler to study their perturbations and basic time evolution properties than
similar (5-dimensional Kerr or other) black strings which are typically cohomogeneity-2 or
higher. We leave this study for future work.

Nevertheless, we can briefly give a possible scenario for the nonlinear dynamics. For
a fine-tuned initial superradiant perturbation (3.9) of the MPBS, in which there is exact
translation symmetry generated by ∂Z , the evolution would likely proceed towards a helical
black string solution. But from entropic arguments, the helical black string is further
unstable to modes which break the translation symmetry ∂Z and would continue to evolve
towards the black resonator string. Depending on the time scale of the instability of the
helical black string, the helical black string may be realized as a transient state or simply as
a short-lived metastable state. Interestingly, we should also note that comparing the E −J
region of existence of helical strings in figure 7(a) with the region of existence of black
resonator strings (figure 6 of [40]) one sees that there is a small window of parameters
(roughly, for 0.09 . E . 0.2) where helical black strings exist but there are no black
resonators (at least with |m| = 2). Such helical strings might then be stable (although
|m| > 2 or other superradiant or Gregory-Laflamme perturbations might still make them
unstable). In this short discussion we have not considered the competition between the
superradiant and Gregory-Laflamme instabilities in possible time evolutions of MP black
strings, though this was discussed in [40].

The stability analysis of helical black strings would be an interesting direction to
understand the dynamics of rotating black strings, especially given the high-symmetry of
helical black strings, unlike other rotating black string solutions. We would expect the
Kerr string to exhibit similar physics, such as the existence of black resonator and helical
strings that compete in the microcanonical ensemble, and a similar competition between
superradiant and Gregory-Laflamme instabilities, but the Kerr case is significantly more
difficult to study due to a lack of symmetry.

– 38 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
1

We also tried to find the horizonless limit (zero entropy limit) of the helical black
string, which one might naively have expected to be a regular Kaluza-Klein geon. How-
ever, we did not find such solutions when considering the zero horizon radius limit of the
cohomogenenity-1 helical black strings. In more detail, the zero entropy limit of the he-
lical black strings is accompanied with sending the horizon velocity to the speed of light,
vH → 1, as well as with approaching the maximal angular frequency, ωH → π. Our numer-
ical results suggest that in this limit the metric fields cease to be exponentially decaying
at asymptotic infinity, meaning that the confinement mechanism for superradiant bound
states is lost. (Obstacles for obtaining such Kaluza-Klein geons are further discussed in
appendix E). It should also be said that in [40], a non-uniform Kaluza-Klein geon with
RT × SU(2) isometries was found that is not the zero horizon radius limit of the black
resonator string. We cannot exclude the existence of a similar Kaluza-Klein geon with
RT × U(1)Z × SU(2) isometries that is not the zero horizon radius limit of the helical
string. However, we have not found evidence for the existence of this solution either (see
appendix E for further discussions of our attempts).
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A Asymptotic solutions in the spherical gauge ansatz

A.1 Solutions near horizon

In the context of the helical black string ansatz in the spherical gauge of section 4.1, near
the horizon, the metric components are expanded as in (4.12). Substituting these into the
equations of motion (4.4)–(4.11), we obtain the regular series expansion of the metric. For
the expansion to be around the black hole horizon, f0 = g0 = 0 are imposed. At the leading
order, we obtain (4.14), introducing one relation among 6 other coefficients. We regard h0
to be fixed by (4.14). Thus, we get 5 unfixed coefficients in the leading order. In the next
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order, (f1, h1, q1) remain free, and the other coefficients satisfy

g1 =2(η2
0 − η0β0 + 1)
r+η0

,

k1 =2{2r+h1q1η0β0γ0(η2
0 − η0β0 + 1)− f1k0(η2

0 − 1)2}
r+β0η0(γ0q0q1 − f1)(η2

0 − η0β0 + 1)
,

η1 =
(η2

0 − 1)2{r2
+β0k

2
0(η2

0 + 1) + 16γ0(η2
0 − η0β0 + 1)}

8r+β0γ0(η2
0 − η0β0 + 1)

,

γ1 =− r+f1k
2
0(η2

0 − 1)2 + 8η0γ
2
0q

2
1(η2

0 − η0β0 + 1)
8f1η0(η2

0 − η0β0 + 1)
,

β1 = 1
4r+η2

0(γ0q0q1 − f1)2(η2
0 − η0β0 + 1)2 [−4r3

+η
2
0β

2
0f1h

2
1(η2

0 − η0β0 + 1)2

+ 4r2
+η0β0f1h1k0q0(η2

0 − 1)2(η2
0 − η0β0 + 1)− r+f1k

2
0q

2
0(η2

0 − 1)4

− 8(η4
0 + η3

0β0 − 2η2
0β

2
0 − 2η2

0 + η0β0 + 1)η0(γ0q0q1 − f1)2(η2
0 − η0β0 + 1)] ,

(A.1)

These are determined by 8-parameters (f1, η0, β0, h1, k0, γ0, q0, q1) together with horizon
radius r+. Higher order coefficients in the series expansion are also fixed by these 8+1
parameters.

A.2 Solutions near infinity

We have already seen in the linear analysis that the perturbation δη decays exponentially
as (3.12) in the asymptotic infinity r → ∞. To systematically incorporate this behaviour
in the other fields beyond the linear order, we expand the fields in powers of exponentially
decaying functions as

X(r) =
∞∑
n=0

X(n)(r)
(
e−µr

r3/2

)n
, (A.2)

where the constant µ > 0 will be identified shortly. At each level n, we can evaluate X(n)(r)
as a regular power series.

At n = 0, we have η(0) = 1 identically. The asymptotic behaviour of the other fields
takes the form

f(0) = f∞ + cf
r2 + · · · , h(0) = h∞ + ch

r4 + · · · , k(0) = k∞ + ck
r4 + · · · ,

q(0) = q∞ + cq
r2 + · · · , β(0) = 1 + cβ

r4 + · · · , γ(0) = γ∞ + cγ
r2 + · · · ,

(A.3)

where the 11 coefficients (f∞, h∞, k∞, q∞, γ∞, cf , ch, ck, cq, cβ , cγ) are not fixed by the
asymptotic analysis and need to be determined by matching the bulk profile; for further
context see also discussion of (4.25). The series solution of g is fixed by the equations of
motion as

g(0) = 1 +
(
cf
f∞

+ cγ
γ∞

) 1
r2 + · · · . (A.4)

At n = 1, the “mass” µ for the exponential decay is given by

µ =

√
k2
∞
γ∞
− (4h∞ − k∞q∞)2

f∞
. (A.5)
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With this exponent, the power series behaviour of η(1) is

η(1) = cη + · · · , (A.6)

while the rest of the fields vanish at n = 1: X̂(1) = 0 for X̂ ≡ (f, g, h, k, q, β, γ). In fact, we
find that X̂(n) = 0 for all odd n in higher orders. This order leaves cη as another coefficient
that is not fixed by the asymptotic analysis. Thus we have 12 undetermined parameters
before this order.

Coefficients in orders higher than n are completely determined by these 12 coefficients.
At n = 2, η(2) is analytically related to η(1) as

η(2) = 1
2η

2
(1) . (A.7)

The asymptotic solution hence becomes

η(2) =
c2
η

2 + · · · . (A.8)

The coefficients for the other variables are also obtained as

f(2) =
c2
η

4µ2 (4h∞ − k∞q∞)2 + · · · , g(2) =
c2
η

4 + · · · , h(2) =
4h∞c2

η

µ2
1
r2 + · · · ,

k(2) =
4k∞c2

η

µ2
1
r2 + · · · , q(2) = −

k∞c
2
η

4γ∞µ2 (4h∞ − k∞q∞) + · · · ,

β(2) = −
5c2
η

µ2
1
r2 + · · · , γ(2) = −

k2
∞c

2
η

4µ2 + · · · .

(A.9)

In summary, the regular asymptotic expansion in r →∞ has the following structure:

X̂(r) = X̂(0)(r) + X̂(2)(r)
e−2µr

r3 + · · · , (A.10)

η(r) = 1 + η(1)(r)
e−µr

r3/2 + η(2)(r)
e−2µr

r3 + · · · , (A.11)

where X̂(n)(r) and η(n)(r) can be obtained by solving power series expansion. Solutions for
n ≤ 2 are explicitly given above.

Naively, there are quite a few parameters in the series solutions at the horizon and in
asymptotic infinity. However, many of these are fixed by either scaling symmetries as we
will argue next.

A.3 Marginal solution

The exponential decay (A.10) or (A.11) becomes power law when µ→ 0. This limit occurs
when the confinement by the Kaluza-Klein mass becomes absent, and it would lead to a
marginally bounded helical solutions (that may be called warm holes following [85]). Here,
we argue that no such marginally bounded solutions exist, by asymptotic analysis.

If µ = 0, the form of the expansion at asymptotic behavior is different from (A.10)
and (A.11). Solving µ = 0 for (A.5) with f∞ = γ∞ = 1 and q∞ = 0, we obtain k∞ = 4h∞.
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If this condition is satisfied, the asymptotic series becomes power law. Let us focus on η

first. If k∞ = 4h∞, instead of (A.11), we have

η(r) = η+(r−1+
√

∆0 + · · · ) + η−(r−1−
√

∆0 + · · · ) . (A.12)

where η± are constants and

∆0 = 9− 16πG6(E + 2P − Tz) . (A.13)

If ∆0 > 0, the solution with r−1−
√

∆0 gives a normalizable behavior, whereas the other one
is unphysical and removed. However, for all numerical results, we find ∆0 < 0, ruling out
the existence of normalizable solutions with a power law tail.

B Scaling transformations

B.1 Scaling symmetry

The cohomogeneity-1 metric (4.1) has four scaling symmetries in the (T, Z)-plane: Z →
Z + c1, T → T + c2, t → c3T, Z → c4Z. Among these, the second one turns out to be
a bit complicated. Therefore, we will instead use the Lorentz boost, which in fact can be
formed by combining the four. The transformation rules of the fields for the other three
are given by

Z → Z + c1 , h→ h− c1
4 k , q → q − c1 , (B.1)

T → c3T , f → f

c2
3
, h→ h

c3
, q → q

c3
, (B.2)

Z → c4Z , γ → γ

c2
4
, k → k

c4
, q → c4q . (B.3)

The Lorentz boost in the (T, Z)-plane is given by

T → cosh b T − sinh b Z , Z → cosh b Z − sinh b T , (B.4)

where b is the boost parameter. The boost (B.4) transforms the metric components as

f → f
γ

γb
, γ → (cosh b+ q sinh b)2 γ − f sinh2 b ≡ γb ,

h→ h cosh b+ k

4 sinh b , k → k cosh b+ 4h sinh b ,

q → γ

γb

(
q cosh(2b) + 1

2 sinh(2b)
(

1 + q2 − f

γ

))
.

(B.5)

B.2 Scaling of asymptotic coefficients

We use the scaling symmetries to remove redundancies in the asymptotic spherical gauge
solutions, as described next. In our numerical treatment, raw numerical solutions we
obtain have (f∞, γ∞, q∞) 6= (1, 1, 0) in general (see appendix C). Using the scaling trans-
formations (B.1)–(B.3), we can set the asymptotic values of the metric components as
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(f∞, γ∞, q∞) = (1, 1, 0). Accordingly, coefficients in the asymptotic expansion of the fields
in (B.1)–(B.3) are also scaled.

We then apply the Lorentz boost (B.5). The boost does not change the leading asymp-
totic behaviour of f, γ, q once (f∞, γ∞, q∞) = (1, 1, 0) are fixed. Meanwhile, their sublead-
ing coefficients as well as h and k are affected. Substituting the asymptotic solutions (A.3)
with (f∞, γ∞, q∞) = (1, 1, 0) to (B.5), we find that the Lorentz boost changes the asymp-
totic coefficients as

h∞ → h∞ cosh b+ k∞
4 sinh b , k∞ → k∞ cosh b+ 4h∞ sinh b ,

cf → cf cosh2 b− cγ sinh2 b− 2cq cosh b sinh b ,

ch → ch cosh b+ ck
4 sinh b , ck → ck cosh b+ 4ch sinh b ,

cq → cq
(
cosh2 b+ sinh2 b

)
+ (cγ − cf ) cosh b sinh b ≡ c′q ,

cγ → cγ cosh2 b− cf sinh2 b+ 2cq cosh b sinh b .
(B.6)

Simultaneously, coefficients in the horizon expansion are also boosted as

f1 →
f1
ξ2
b

, h0 →
k0
4 (q0 cosh b+ sinh b) ,

h1 → h1

(
cosh b− γ0q1

f1 − γ0q0q1
sinh b+ f1k0(η0 − η−1

0 )2

r2
+β0g1(f1 − γ0q0q1)

sinh b
)
,

k0 → k0ξb , q0 →
1
ξb

(q0 cosh b+ sinh b) , q1 →
1
ξ2
b

q1 −
f1
γ0ξ3

b

sinh b , γ0 → γ0ξb ,

(B.7)

where we defined ξb ≡ cosh b+ q0 sinh b. These four scalings fix the boundary condition in
the asymptotic infinity to be locally flat without boost (4.16).

C Technical details for constructing helical black strings in the spherical
gauge ansatz

As discussed in section 4.1.2 and appendix A.1, 8 parameters (f1, η0, β0, h1, k0, γ0, q0,
q1) are undetermined in the Taylor expansion near the horizon, as well as r+. For efficient
numerical calculations, we fix 4 of these coefficients by the scaling symmetries and Lorentz
boost. By the three scalings (B.1)–(B.3), we can set without loss of generality

f1 = γ0 = 1 , q0 = 0 , (C.1)

where h0 = 0 also follows from (4.14). The Lorentz boost (B.5) is used to adjust the
input value of q1. While q1 can be any value, it is efficient to tune q1 so that P is small
because it reduces numerical errors.20 The specific procedure to adjust q1 will be explained

20In our numerical calculations in the spherical gauge ansatz, a bare numerical solution has P 6= 0 in
general. We then apply the Lorentz boost as appendix B.2 to transform the solution to P = 0. In this
procedure, numerical errors are badly enhanced if a solution with large P is unboosted to P = 0. This can
happen if we always fix q1 to some value. Therefore, it turns out effective to adjust q1 beforehand so that
numerical calculations are done at small P .
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shortly. Meanwhile, we can set r+ = 1 without loss of generality. In the end of the day, 4
parameters (η0, β0, h1, k1) are unfixed in the horizon series expansion.

Among these, we need to fix two by matching the boundary conditions in asymptotic
infinity. Practically, we use (η0, h1) as controllable parameters and determine the other
two (k0, β0) by shooting methods to satisfy the boundary condition η, β → 1. Thus, helical
black strings are a two-parameter family of solutions.

In practice, to find the helical strings in the spherical gauge ansatz (4.1), we carry out
numerical calculations as follows:

1. We pick up a MPBS at the onset of instability. From this, a sequence of helical black
strings branches off. For numerics, we rescale the MPBS solution to satisfy (C.1) by
the scaling transformations and read off the rescaled value of h1 = honset

1 . Meanwhile,
we have η0 = 1 trivially for the MPBS.

2. We slightly vary the controllable parameters as (η0, h1) = (1− εη, honset
1 − εh), where

we choose εh = 10εη, though this can be arbitrary.21 With these parameters, we tune
(β0, k1) by shooting methods so that η, β → 1 (r →∞).

3. The resulting numerical solution has f∞ 6= 1, γ∞ 6= 1, and q∞ 6= 0, as well as P 6= 0.
This bare solution is rescaled by the three scalings (B.1)–(B.3) so that f∞ = γ∞ = 1
and q∞ = 0. After that, it is unboosted with the boost parameter

tanh b =
cf − cγ +

√
(cf − cγ)2 − 4cq
2cq

, (C.2)

where the quantities on the right hand side have been read out before the boost.

4. We slightly increase the value of εη and repeat the shooting. For an initial guess of
the next step, the previous solution, which satisfies P = 0, is rescaled (B.1)–(B.3)
such that (C.1) is satisfied. Because the solution with P = 0 is used as the initial
guess, the amount of boost P in the next step’s bare numerical result can be kept
small.

5. We repeat the steps 3 and 4 as long as numerical accuracy is satisfactory.

In this way, we were able to obtain numerical data for ΩH/Ωext
H |onset ≥ 0.865. For

ΩH/Ωext
H |onset < 0.865, the asymptotic exponent m (A.5) is very small at and around

the onset, and numerical calculations are considerably harder. Our numerical results are
hence limited to ΩH/Ωext

H |onset ≥ 0.865 (as stated in footnote 18), but we believe our data
cover a reasonably wide range of the onset frequencies. It appears, however, that the
results obtained by adjusting the controllable parameters as stated above did not cover the
parameter space nicely, especially in the region where the entropy σH is small. Hence, in
addition, we did supplemental calculations by changing (η0, h1) differently to cover a wider
parameter range, especially where the entropy is small.

21We vary both parameters (η0, h1) to try to efficiently cover the parameter space.
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D On-shell action and quasi-local stress tensor

D.1 Quasi-local stress tensor using the counterterm method

We derive the Brown-York quasi-local stress tensor [44] by regularizing and renormalizing
the action in asymptotically flat spacetime. This machinery has been developed in the
AdS/CFT duality and known as the “holographic renormalization” [86–88]. This idea can
also be applied to asymptotically flat spacetime [45].

The on-shell Einstein-Hilbert action supplemented with the Gibbons-Hawking term
diverges. Therefore, we first regularize it. Let us introduce a cutoff at finite r = rΛ. LetM
and ∂M denote the regularized spacetime manifold and the cutoff surface. The regularized
Einstein-Hilbert action with the Gibbons-Hawking term is given by

Sreg = 1
16πG6

∫
M

d6x
√
−gR+ 1

8πG6

∫
∂M

d5x
√
−γK , (D.1)

where K ≡ Kabγ
ab is the trace of the extrinsic curvature Kab with respect to the induced

metric γab on ∂M , and a, b denote the five-dimensional coordinates other than the radial
direction r. To be precise, the extrinsic curvature is given by

Kab = 1
2δ

A
a δ

B
b (∇AnB +∇BnA) , (D.2)

where nA is an outward unit normal satisfying gABnAnB = 1, and γab is the pull back of
γAB = gAB−nAnB. Because our metric satisfies gAr = 0, we can take nAdxA = 1/

√
grr dr.

Because R = 0, the variation of (D.1) is given by the contribution from ∂M as

δSreg = 1
8πG6

∫
∂M

d5x
√
−γ 1

2 (Kab −Kγab) δγab , (D.3)

where we dropped total derivative terms for ∂M . However, Sreg diverges in rΛ →∞, and
therefore it needs to be “renormalised”.

We introduce counterterms to compensate the diverging behaviour of the action. Be-
cause the black string extends in one direction, we need to choose the coefficient of the
counterterm as if we have a four dimensional cutoff surface. It turns out that the following
counterterm cancels the divergence [45], and this is sufficient for our purpose:22

Sct = − 1
8πG6

∫
∂M

d5x
√
−γ
√

3
2R , (D.4)

where R is the Ricci scalar made of γab. The variation is

δSct = − 1
8πG6

∫
∂M

d5x
√
−γ 1

2

√
3

2R (Rab −Rγab) δγab . (D.5)

The renormalised action is given by sending rΛ →∞ for the sum of (D.1) and (D.4) as

Sren = lim
rΛ→∞

(Sreg + Sct) . (D.6)

The renormalised quasi-local stress energy tensor Tab is then given by

8πG6Tab = − 2√
−γ

δSren
δγab

= −Kab +Kγab +
√

3
2R (Rab −Rγab) . (D.7)

Using the boundary series expansion (4.25), we obtain the quasi-local stress tensor (4.26).
22Other counterterms were also proposed in [53].
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E Horizonless limit of helical black strings

In our numerical construction of the helical black strings, we found that these solutions
can approach σH → 0. This raises a question whether a regular horizonless soliton exists,
which may be denoted as a Kaluza-Klein geon. In this appendix, we discuss the horizonless
limit and collect evidences that regular Kaluza-Klein geons do not seem to be obtained in
the zero horizon radius limit of helical black strings. We also argue/speculate that this
limit looks more like a pp-wave.

E.1 Helical black string versus pp-wave

As we have seen in figure 7, the zero entropy σH → 0 limit of helical strings is accompanied
by the limit that the horizon velocity along the string approaches the speed of light vH → 1.
This suggests that this limit may have something to do with a pp-wave.

Let us begin with the boosted Myers-Perry black string in the rotating frame at infinity,
which can be obtained by applying the Lorentz boost (B.5) to the MPBS (3.8). In the
spherical gauge, the metric has the same form as (4.1), and now the metric components
are given by

f = f̄

γ
, h = h̄ cosh b , k = 4h̄ sinh b ,

q = cosh b sinh b f̄
γ
, γ = 1 + sinh2 bf̄ ,

(E.1)

where f̄ , h̄ are from the original non-boosted MPBS,

f̄ = 1− 2µr2

r4 + 2µa2 , h̄ = ΩH −
2µa
r4β

. (E.2)

Meanwhile, g, η, β are unaffected by the boost (i.e. g, β are still given by (3.8), and η = 1).
Taking the scaling horizonless limit of the boosted MPBS gives a pp-wave with rigid

rotation. For that, we send b→∞ together with r+ → 0, while keeping the rotation finite.
In (E.1), we rewrite (b,ΩH) with new parameters (c∗,Ω∗) as

b = log
(
c∗r+

2

)
, ΩH = c∗r+Ω∗ , (E.3)

Then, sending r+ → 0 while keeping (c∗,Ω∗) fixed gives a metric in the form (4.1) with

f(r) = c2
∗r

2

1 + c2
∗r

2 , g(r) = η(r) = β(r) = 1 , h(r) = Ω∗ , k(r) = −4Ω∗ ,

q(r) = − 1
1 + c2

∗r
2 = f(r)− 1 , γ(r) = 1 + 1

c2
∗r

2 = f(r)−1 .

(E.4)

In this limit, the Kretschmann scalar is identically zero. Hence, the geometry is regular
everywhere.

The metric (E.4) is nothing but a pp-wave with a rigid rotation. In the light-cone
coordinates defined as (u, v) = (T − Z, T + Z), the metric is written as

ds2 = −du dv + du2

c2
∗r

2 + dr2 + r2

4
[
Σ2

1 + Σ2
2 + (Σ3 + 2Ω∗du)2

]
. (E.5)
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(a) f, q (b) α (c) g, β

Figure 9. Bulk profile for a helical black string with a high velocity along the string,
(G6E , G6J , G6σH , ωH , vH) ' (0.093, 0.030, 0.00038, 3.12, 0.98), which has η0 = 0.99. In 9(a), the
difference from fpp ≡ f of the pp-wave with c∗ = 0.073 (E.4) is plotted.

The wavefront propagates along ∂v. In this metric, the rigid rotation is redundant and
can be absorbed by changing coordinate frames to the non-rotating frame at infinity. This
simply can be done by setting Ω∗ = 0, and the plane wave metric of [89] is reproduced.

So, for vH ' 1 and σH ' 0, the helical black string is comparable to a pp-wave. In
figure 9, we show the bulk profiles of the helical black string for an illustrative case with
(G6E , G6J , G6σH , ωH , vH) ' (0.093, 0.030, 0.00038, 3.12, 0.98), which also has η0 = 0.99.
As seen in figure 9(a), (f, q, γ) are indeed quite close to the pp-wave profile fpp ≡ f with
c∗ = 0.073.

From our numerical results, we find that the limit vH → 1, σH → 0, ωH → π corre-
sponds to the limit of vanishing confinement m→ 0, where there are no bounded solutions
as discussed in appendix A.3. It is then likely that a solution with η(r) = 1 is the only
possibility in the limit we are considering. While the helical black string profile shown in
figure 9 has finite deformation η(r) 6= 1, such a deformation should probably disappear and
one should approach η(r)→ 1 as vH → 1. If so, the vH ' 1 and σH ' 0 limit of a helical
black string might simply be a pp-wave.

E.2 Asymptotic analysis around the origin for Kaluza-Klein geons

In conjunction with the discussion in appendix E.1, here we describe our attempts to
directly obtain nontrivial regular Kaluza-Klein geons in the horizonless limit of the helical
black strings.

First of all, we did not find any nontrivial normal modes for the perturbation (3.16) on
theM1,4×S1 space or pp-wave (E.5) backgrounds. This already suggests that Kaluza-Klein
geons with the same symmetries of the helical string would not be a nonlinear back-reaction
of normal modes of such backgrounds.

However, there is still the possibility that horizonless Kaluza-Klein solutions exist but
are not perturbatively connected to the above backgrounds. To explore this possibility, we
assume r+ = 0 and consider the asymptotic series near r = 0.
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Requiring regularity at r = 0, we can obtain the following asymptotic expansion:

f(r) = f0 +O(r6) , g(r) = 1− β2r
2 +O(r4) ,

h(r) = h0 + h0η
2
2

2 r4 +O(r6) , k(r) = k0 + k0η
2
2

2 r4 +O(r6) ,

q(r) = q0 +O(r6) , η(r) = 1 + η2r
2 +O(r4) ,

β(r) = 1 + β2r
2 +O(r4) , γ(r) = γ0 +O(r6) .

(E.6)

This has 7 independent parameters (f0, h0, k0, q0, η2, β2, γ0). We can use one of them to
control the overall scale (the Kaluza-Klein compactification scale L). Meanwhile, the con-
ditions that need be satisfied in r →∞ are 6. Therefore, if a geon solution exists, it should
be a 0-parameter family and not continuously connected to the MPBS. Numerically, we
found only the MPBS as the solution when the boundary condition (E.6) is imposed. That
is, η2 = 0. We did not find discrete solutions separated from MPBS.

Instead, if we assume the boundary condition that is the same as the pp-wave (i.e. f(r) ∼
r2 and γ(r) ∼ r−2 as r → 0), we obtain

f(r) = f2r
2 − γ0q

2
2 +O(r6) , g(r) = 1− β2r

2 +O(r4) ,

h(r) = k0q0
4 + k0q0η

2
2

8 r4 +O(r6) , k(r) = k0 + k0η
2
2

2 r4 +O(r6) ,

q(r) = q0 + q2r
2 +O(r4) , η(r) = 1 + η2r

2 +O(r4) ,

β(r) = 1 + β2r
2 +O(r4) , γ(r) = f2

q2
2

1
r2 + γ0 +O(r2) .

(E.7)

This is also specified by 7 parameters (f2, k0, q0, q2, η2, β2, γ0). One of them is used to set
the overall scale, and we end up with a 0-parameter family again. This no-go result is
consistent with the fact that, in our numerical search, we only find the pp-wave (E.4).
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