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1 Introduction and summary of main results

Perturbative approaches in quantum field theory are a crucial ingredient for comparing
experimental and theoretical predictions. Over the last decades, leading order (LO) and
next-to-leading order (NLO) calculations have been obtained for many relevant observables,
and in some cases even NNLO and NNNLO results are available. This situation, however,
is not the end of story in view of planned upgrades of the Large Hadron Collider (LHC)
that involves a high-luminosity phase with 14TeV center-of-mass energy in proton-proton
collisions. With experimental results for scattering processes aiming to reach per-cent level
of precision, new theoretical predictions are required.

In particular, one of the main interests in high-luminosity phase at LHC is the pro-
duction of Higgs boson in association with jets. Since the most important mechanism to
produce Higgs bosons at LHC is mediated by top quarks, one can consider an effective field
theory in which the top quark mass becomes infinity. Based on this effective interaction of
gluons and Higgs [1–3], phenomenological results were provided up to NNLO [4–7].

In view of large QCD perturbative corrections for scattering processes that involve
Higgs production and the constant progress on the experimental side, higher orders beyond
NNLO are crucial. A major bottleneck for the calculation of NNNLO theoretical predictions
is obtaining the missing three-loop integrals with one off-shell leg. The planar three-loop
ladder integrals [8] were computed some time ago, and more recently the remaining planar
integrals, of the tennis-court type, were computed in refs. [9, 10]. However, the three-
loop non-planar integrals are not known (with the exception of certain six-propagator
integrals [11]).
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In the present paper, we compute analytically for the first time a class of three-loop
non-planar ladder type diagrams with one off-shell leg. We also revisit the planar diagrams,
so as to provide all results in a uniform language. We construct differential equations by
following standard procedures [12], leveraging automated frameworks DlogBasis [13],
LiteRed [14], Fire6 [15], and FiniteFlow [16]. We express the analytic solutions of the
integrals in terms of generalised polylogarithms (GPLs) [17, 18] up to transcendental weight
six. We numerically evaluate our solutions with Ginac [19] through PolyLogTools [20],
and validate our results via numerical evaluations by pySecDec [21].

Our analytic results also provide new insights into recent observations on the function
space needed for Feynman integrals and form factors [22, 23]. These references found in all
cases studied in the literature that adjacency conditions hold. At symbol level, this means
that certain symbol letters cannot appear next to each other. Moreover, it was found
that the function alphabet is related to a cluster algebra [23]. The adjacency relations,
as well as parallel developments on integrability [24–26], were instrumental bootstrapping
three-gluon form factors [27] in N = 4 sYM to very high loops orders [22, 28, 29].

Given these results one might expect that the observed properties hold to high loop
orders. Surprisingly, our results show that additional alphabet letters are required for
certain loop integrals. This means that the letters cannot be all described by the C2
cluster algebra. Moreover, by analysing in detail the analytic results for the tennis-court
Feynman integrals, we find a counterexample to the adjacency relations that had not been
noticed previously.

This paper is structured as follows. In section 2, we set our convention for kinematic
configuration and definition of integral families considered in this work. We discuss the
construction and features of differential equations in canonical form for the integral families
in section 3. We solve the differential equations and provide analytic expressions in terms of
generalised polylogarithms up to transcendental weight six in section 4. Our observations
on novel symbol letters and on adjacency conditions are discussed in section 5. Finally, in
section 6, we draw our conclusions and discuss further research directions.

In the submission of the current paper, we include supplementary material containing
information on the computations presented in the next sections. For each integral family, we
provide integral family definition (family_definition.m), set of integrals that satisfy a dif-
ferential equation in canonical form (family_can.m), canonical matrix (family_Atilde.m),
and analytic solution of integrals in terms of generalised polylogarithms up to transcen-
dental weight six (family_sol.m).

2 Planar and non-planar integral families for three-loop four-point inte-
grals with one off-shell leg

In this section, we introduce the kinematic configuration of external momenta as well as
the convention used throughout this paper for the calculation of three-loop planar and
non-planar Feynman integrals displayed in figure 1.
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(b) Integral families B1 and B2.
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(c) Integral families E1 and E2.

Figure 1. The planar and non-planar integral families considered in this paper. Here kij ≡ ki−kj .
Thin lines indicate on-shell momenta, whilst thick ones indicate off-shell ones. The labelling of the
integral families follows the convention of ref. [13].

Kinematics. We consider three on-shell (p2
i = 0 with i = 1, 2, 3) and one off-shell external

(p2
4 6= 0) momenta that satisfy momentum conservation, p1 + p2 + p3 + p4 = 0, and define

the Lorenz invariant scalar products,

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p2 + p3)2 , (2.1)

with the condition, s + t + u = p2
4, so that only three of them are independent. We work

in the Euclidean region,

p2
4 < 0 , s < 0 , t < 0 , u < 0 , (2.2)

which means that all results are real-valued expressions.
To regulate divergences, we consider dimensionally regularised Feynman integrals in

D = 4 − 2ε space-time dimensions. Our expressions for Feynman integrals J are then
normalised as follows,

J
(L)
X;a1,...,a15

= (−rΓ)−L
∫ L∏

i=1

dDki
ıπD/2

1∏15
j=1D

aj
j

, (2.3)
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with X the name of the integral (to be discussed in the next subsection), L = 3 number
of loops, Di’s the Feynman propagators that characterised any Feynman integral, ai’s the
exponent of a respective propagator, and,

rΓ = Γ (1 + ε) Γ2 (1− ε)
Γ (1− 2ε) . (2.4)

Integral families. In this paper we consider the integral families depicted in figure 1.
These families consist of a complete set of planar integrals (families A, E1 and E2) and
two families of non-planar integrals (families B1 and B2).

For instance, the planar integral family E1 has propagators,

D1 = −(k1 − k3)2 , D2 = −(k1 + p1)2 , D3 = −(k1 + p1 + p2)2 ,

D4 = −(k2 + p1 + p2)2 , D5 = −(k2 − p3)2 , D6 = −(k2 − k3)2 ,

D7 = −(k1 − k2)2 , D8 = −k2
3 , D9 = −(k3 + p1)2 ,

D10 = −(k3 − p3)2 , D11 = −(k3 + p1 + p2)2 , D12 = −(k2 + p1)2 ,

D13 = −(k1 − p3)2, D14 = −k2
1 , D15 = −k2

2 , (2.5)

and the non-planar family B1 has propagators,

D1 = −k2
1 D2 = −(k1 + p1 + p2)2 , D3 = −k2

2 ,

D4 = −(k2 + p1 + p2)2 , D5 = −k2
3 , D6 = −(k2 − k3 + p1 + p2 + p3)2 ,

D7 = −(k1 + p1)2 , D8 = −(k1 − k2)2 , D9 = −(k2 − k3)2 ,

D10 = −(k3 − p3)2 , D11 = −(k1 − p3)2 , D12 = −(k2 + p1)2 ,

D13 = −(k2 − p3)2 , D14 = −(k3 + p1)2 , D15 = −(k1 − k3)2 . (2.6)

In integral families (2.5) and (2.6), the first ten propagators (Di with i = 1, 2, . . . , 10)
are understood from the loop topology (see, respectively, figures 1(c) and 1(b)), the re-
maining five ones (Di with i = 11, . . . , 15) are auxiliary propagators that allow, together
with the propagators of the loop topology, to express all scalar products (ki · kj and ki · pj)
between loop and external momenta in terms of these propagators.

The definitions of all integral families displayed in figure 1 are provided in the ancillary
Mathematica file family_definition.m (with family: A,B1,B2,E1, and E2).

3 System of canonical differential equations for all master integrals

In the generation of differential equations for the master integrals with respect to the
kinematic invariants (s, t, and p2

4) of the integral families presented in the previous sec-
tion, we rely on the automated codes: LiteRed, Fire6, DlogBasis, and FiniteFlow.
Since it is known that a good choice of master integrals can significantly lessen complex-
ity in their analytic computation, we choose a set of canonical integrals (say ~fX with
X ∈ {A, B1, B2, E1, E2}) that satisfy an ε-factorised form [30],

∂ξ ~fX = εAX;ξ ~fX , (3.1)
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Integral # independent # additional # master integrals # letters
family d log integrals UT integrals in family in family
A 75 8 83 7
B1 124 26 150 9
B2 106 8 114 7
E1 151 15 166 7
E2 116 1 117 7

Table 1. Number of d log, UT, master integrals integrals, and alphabet letters (see section 3)
present in each integral family.

with ∂ξ ≡ ∂
∂ξ
, ξ = s, t, p2

4, and AX;ξ matrices of each integral X containing rational functions
in terms of the kinematic invariants.

We choose our canonical integrals with the help of the Mathematica package Dlog-
Basis. Starting from an ansatz of integrand, supported by power-counting and absence of
ultraviolet singularities, the latter carries out an analysis of iterated residues.

We find the following steps useful in practice. Firstly, depending on the integral
family, it may be useful to try different parametrisations of the loop momenta. Secondly,
to construct the canonical basis, we follow two complementary approaches. For integral
sectors with up to nine propagators, we use DlogBasis to obtain the canonical basis. For
the remaining integral sectors, we construct suitable basis integrals by analysing maximal
cuts. Thirdly, we remark that as already pointed out in ref. [13], to find all independent
d log integrals one may need to include further sectors (effectively enlarging the ansatz).
As in ref. [13], we prefer to complement the d log integrals by certain simple UT integrals
(e.g. bubble integrals with doubled propagators) [31]. We summarise the construction of
canonical basis of each integral family in table 1.

Once the canonical basis for each integral family is found, we construct their ε-
factorised differential equation (3.1). To this end, we generate integration-by-parts (IBP)
identities [32, 33] with the aid of LiteRed and Fire6. Derivatives of the master inte-
grals with respect to kinematic invariants are computed in an in-house Mathematica
implementation.

After having at hand IBPs and canonical basis for each integral family, one is left with
combining both results to get the differential equation (3.1) — in particular, the matrices
AX;ξ. Since this operation can be seen as product of (sparse) matrices, evaluating over finite
fields our expressions (to avoid complexity at intermediate steps) turns out to be a very
efficient approach to obtain our differential equations. In fact, with the aid of FiniteFlow
we analytically reconstruct the various matrices Aξ present in (3.1).

Finally, with the analytic expressions of Aξ, we are ready to express our canonical
differential equations (3.1) in terms of the total differential of our canonical master integrals,

d~fX = ε
8∑
i=0

ÃX;i d logαi ~fX , (3.2)
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where Ã are matrices whose entries are rational numbers, and α correspond to letters of
the alphabet. We find,

~α = {α0, . . . , α8} =
{
p2

4, s, t,−p2
4 + s+ t,−p2

4 + s,−p2
4 + t, s+ t,

−
(
p2

4 − s
)2

+ p2
4t, s

2 − p2
4 (s− t)

}
. (3.3)

In fact, family A, B2, E1 and E2 require only the first seven letters (in agreement with
the previous planar results of [8, 10]), while the full nine-letter alphabet is required for
family B1.

For convenience of the reader, we provide as ancillary files Mathematica formatted
expressions containing canonical basis ( ~f) and canonical matrices (Ã) for each integral
family, respectively, family_can.m and family_Atilde.m, with family: A, B1, B2, E1,
and E2.

A final remark on the construction of differential equations in canonical form. Since
the first letter α0 = p2

4 can be considered as an overall dimension in the normalisation of
Feynman integrals, we can remove it through the change of variables,

z1 = −s
−p2

4
, z2 = −t

−p2
4
. (3.4)

This effectively amounts to setting p2
4 = −1 without loss of generality, which we shall

assume in the remainder of this paper. In this way, we can express the solution of our
canonical basis in terms of dimensionless variables z1 and z2. In these variables, the
Euclidean region (2.2) corresponds to 0 < z1 < 1 and 0 < z2 < 1 − z1 (or 0 < z2 < 1 and
0 < z1 < 1− z2). The alphabet (3.3) in terms of these variables becomes,

{α1, . . . , α8} =
{
z1, z2, 1−z1−z2, 1−z1, 1−z2, z1 +z2, 1−2z1 +z2

1−z2, z1−z2
1−z2

}
. (3.5)

In the next sections, we solve the canonical differential equations for each integral
family in terms of generalised polylogarithms. We study the validity of our results by
considering various numerical checks.

4 Explicit solution up to weight six in terms of generalised polyloga-
rithms

With the canonical differential equation (3.1), we can naturally express our sets of master
integrals as Chen iterated integrals [34],1

~f (z1, z2; ε) = P exp
(
ε

∫
γ
dÃ

)
~f0 (ε) , (4.1)

where P accounts for the path ordering in the matrix exponential along the contour γ in
the space of the dimensionless variables z1 and z2 (see eq. (3.4)), and ~f0 represents the

1For the sake of simplifying notation, we drop the subscript “X”, since this procedure is identically
carried out for all integral families studies here.
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boundary values at the base point of the contour γ. In this representation all integrals ~f
are given as Laurent expansion in the dimensional parameter ε,

~f (z1, z2; ε) =
6∑
i=0

εi ~f (i) (z1, z2) +O
(
ε7
)
, (4.2)

and have universal transcendental (UT) degree zero (by considering the degree in ε−n → n).
For more background material on this topic written in a pedagogical way, see the recent
PhD thesis [35].

Because of the simplicity and linearity of the alphabet in z2, one can easily provide a
representation of the integral families in terms of generalised polylogarithms. This can be
achieved by properly choosing the contour γ or equivalently by integrating one variable at
the time, as in ref. [36].

We iteratively solve eq. (3.2) in terms of the series expansion (4.2),

∂z1
~f (n) (z1, z2) = Az1

~f (n−1) (z1, z2) ,

∂z2
~f (n) (z1, z2) = Az2

~f (n−1) (z1, z2) , (4.3)

with Aξ = ∂ξÃ for ξ = z1, z2.
Thus, by first integrating over z2, we find the solution up to a function of z1,

~f (n) (z1, z2) = ~g(n) (z1) +
∫ z2

0
dz̄2Az2 (z1, z̄2) ~f (n−1) (z1, z̄2) , (4.4)

that, because of the way how the integration kernel Az2 is expressed in terms of the letters
that display dependence on z2 (dz̄2/ (z̄2 − b)), one can systematically integrate over z̄2 by
means of generalised polylogarithms (GPLs) [37],

G (~an; z) ≡ G (~a1,~an−1; z) ≡
∫ z

0

dt

t− a1
G (~an−1; t) ,

G
(
~0n; z

)
≡ 1
n! logn (z) . (4.5)

Then, with this solution at hand, we plug it back in the differential equation for z1,

∂z1~g
(n) (z1) = Bz1~g

(n−1) (z1) , (4.6)

with Bz1 a matrix whose entries are of the form 1/ (z1 − b) with b independent of z2. By
explicitly working out this expression, one finds,

~g(n) (z1) = ~f
(n)
0 +

∫ z1

0
dz̄1

[
Az1 (z̄1, z2)~g(n−1) (z̄1)− ∂z̄1

∫ z2

0
dz̄2Az2 (z̄1, z̄2) ~f (n−1) (z̄1, z̄2)

]
,

(4.7)

where the integrand inside the squared bracket is independent of the variable z2. Since this
operation involves taking derivatives on GPLs in which the differentiation variable appears
in indices as well as in their arguments, we profit from PolyLogTools built-in functions.
This solution is finally expressed up to an integration constant ~f (n)

0 . We remark that this
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procedure effectively amounts to choosing a particular path γ in eq. (4.1), namely as the
sum of two segments, first along the horizontal axis, connecting (0, 0) to (z1, 0), and second
along the vertical axis, connecting (z1, 0) to (z1, z2). The reason we chose this contour of
integration for family B1 is that in this way at each step only linear alphabet letters need
to be considered. For families A, B2, E1, E2, we chose a different contour, first integrating
along the vertical axis, and then along the horizontal axis.

Thus, our expressions for integrals in terms of unknown constants can be expressed as,

~f (0) = ~f
(0)
0

~f (1) (z1, z2) = M (1)
z1z2

~f
(0)
0 + ~f

(1)
0

~f (2) (z1, z2) = M (2)
z1z2

~f
(0)
0 +M (1)

z1z2
~f

(1)
0 + ~f

(2)
0

...
~f (6) (z1, z2) = M (6)

z1z2
~f

(0)
0 +M (5)

z1z2
~f

(1)
0 + . . .+M (1)

z1z2
~f

(5)
0 + ~f

(6)
0 , (4.8)

in which M (n)
z1z2 correspond to matrices containing GPLs of transcendental weight n, after

taking into account (order-by-order in ε) eqs. (4.4) and (4.7). The constants ~f
(n)
0 are

boundary values that are expected to have transcendental weight n. We find that they can
be expressed in terms of multiple zeta values (ζn with n > 1).

In order to fix the boundary values, we follow the procedure of ref. [13], where we look
at all possible (physical and unphysical) threshold singularities that may appear in the
analytic solution of the integrals. This is carried out by investigating all singular limits
displayed in figure 2, which are given by the letters αi → 0 of alphabet (3.3),

lim
αi→0

~f = αεÃii
~f(αi = 0) , (4.9)

with ~f(αi = 0) a vector of boundary constants per each singular limit.
To extract information from these limits, we bear in mind that our canonical bases

can be chosen to be free from ultraviolet singularities. Since solutions (4.9) (with arbitrary
boundary vectors) may introduce the latter divergences when the eigenvalues associated to
the matrices Ãi are positive, we demand that these contributions have to vanish.

From the constraints imposed on positive eigenvalues, we find linear relations between
boundary values for the various integrals. This procedure has been implemented and
automated in Mathematica order-by-order in ε. In details, we construct the matrix αεÃii ,
identify the positive eigenvalues of this matrix, and evaluate our solutions (4.8) at the
singular limits αi = 0 (see figure 2). We generate, in this way, a set of constraints between
boundary constants. Once this procedure is performed for all singular limits, we find that
all boundary constants are related to a single one, which sets an overall scale. The latter
is computed by direct evaluation. In effect, for the calculation of integral families B1 and
E1, respectively, we only need to consider the analytic expression of the trivial integrals,

f1
B1 = ε3 p2

4 JB1;020000022100000 ,

f1
E1 = ε3 p2

4 JE1;002002200100000 , (4.10)
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Figure 2. Singular configurations present in the analytic evaluation of our integral families. The
shaded region corresponds to the Euclidean region, where all integrals are real-valued. The same
is also true for all GPLs without dependence on letters α7 and α8, which is the case for integral
families A, B2, E1, and E2. Our GPL representation for family B1 is manifestly real-valued in
region I only (but can be analytically continued to other regions).

whose analytic expression up to O(ε6) is,

f1
B1 = f1

E1 = −1 + 22ε3ζ3 + 11π4ε4

30 + 234ε5ζ5 + ε6
(

106π6

189 − 242ζ2
3

)
+O

(
ε7
)
. (4.11)

With all boundary vectors fixed, we can proceed to evaluate our expressions. This can
be easily done through dedicated routines that numerically evaluate generalised polyloga-
rithms. For the purpose of presenting results and keeping track of numerical precision, we
employed Ginac through the interface provided by PolyLogTools.

We numerically evaluate the analytic expressions of our integrals (with precision goal
of 30 digits) in different kinematic points in the Euclidean region, and validate our results
by comparing against the numerical evaluation of the Feynman integrals with pySecDec.
We focus mainly on top sector integrals with simple rank one numerators or without nu-
merators, since these integrals are easier to evaluate for pySecDec. We do this for all
integral families. Additionally, we perform dedicated checks for certain integrals in fam-
ilies B1 and E1 that exhibit new features (as will be discussed in section 5). We set in
pySecDec the precision as relative accuracy 10−6 for the integrals. We summarise this
comparison in tables 2 and 3.

Additionally, we use the recent program feyntrop [38, 39], which is based on tropical
geometry methods. Using this, we validate all integrals that are expected (from our cal-
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Integral Evaluation
point

ε3 ε4 ε5 ε6

Analytic pySecDec Analytic pySecDec Analytic pySecDec Analytic pySecDec

f110
E1

Point 1 0.5045296644 0.504529665(7) 0.7526795133 0.7526794(5) −0.3064066881 −0.30640(1) 13.8815873594 13.8815(1)
Point 2 1.3157306457 1.3157308(7) 7.0089030292 7.00891(7) 28.4928977317 28.4928(1) 127.7153686313 127.715(1)

f127
E1

Point 1 0.8331985711 0.8331985(1) 3.3361497492 3.33615(1) 11.4545146178 11.45451(6) 55.7475245548 55.7475(4)
Point 2 0.6776332972 0.6776332972(4) 1.2334658424 1.23346584(7) −1.2713476537 −1.2713475(4) 11.3414720818 11.3414720(9)

Table 2. Numerical check of integrals f110
E1 and f127

E1 against pySecDec at the kinematic points:
point 1: {s, t, p2

4} = {−0.11,−0.73,−1.00}, and point 2: {s, t, p2
4} = {−0.18,−0.013,−0.25}.

Integral Evaluation
point

ε3 ε4 ε5 ε6

Analytic pySecDec Analytic pySecDec Analytic pySecDec Analytic pySecDec

f41
B1

Point 1 0.3768713705 0.37687137(8) 0.2595847621 0.259585(2) −24.1653497052 −24.1653(2) −255.4746048147 −255.474(2)
Point 2 0.0882252953 0.08822531(6) 0.1851070156 0.185107(1) −3.5650885140 −3.56509(1) −45.4350139041 −45.4350(2)

f67
B1

Point 1 −6.1800769944 −6.1800771(7) −37.5823284468 −37.58232(7) −38.4079844011 −38.4080(4) 897.7904682990 897.790(7)
Point 2 0.3592309958 0.35923099(3) −1.1083670295 −1.108367(1) −38.2406764190 −38.2407(1) −367.9705607540 −367.970(1)

Table 3. Numerical check of integrals f41
B1 and f67

B1 against pySecDec at the kinematic points:
point 1: {s, t, p2

4} = {−0.11,−0.73,−1.00}, and point 2: {s, t, p2
4} = {−0.18,−0.013,−0.25}.

culation) to be finite (which means equivalently that their expansion starts at O(ε6)). We
find perfect agreement with our GPL results.

In ancillary files, we provide Mathematica formatted expressions with the analytic
solutions of integrals for each family, family_sol.m, with family: A, B1, B2, E1, and E2.

5 New symbol letters and observations on adjacency conditions

5.1 Novel symbol letters in family B1

Let us now turn our attention to the new feature of integral family B1, namely the two new
alphabet letters (α7 and α8). We find that the appearance of new letters are only related
to the following integrals (see figure 3),

f41
B1 = ε6

[(
p2

4 − s
)2
− p2

4t

]
JB1;011011111100000 ,

f67
B1 = ε6

[
−s2 + p2

4 (s− t)
]
JB1;100111111100000 . (5.1)

This can be noted by inspecting matrices ÃB1;7 and ÃB1;8, since their matrix rank is one.
Therefore, a rotation of our complete set of integrals can be performed to only display

dependence on new letters in integrals (5.1). Let us illustrate further this statement by
considering the integral in top sector (see figure 1(b)),

f148
B1 = ε6s

(
p2

4 − s
)2
JB1;11111111110−1000 . (5.2)

From our automatic generation of integrals in canonical form and inspecting ÃB1;7 and
ÃB1;8, we realise that this integral is expected to have an explicit dependence on both new
letters that, however, can be removed from a rotation, i.e.,

f148
B1 → g148

B1 = f148
B1 + 1

3f
41
B1 −

1
3f

67
B1 , (5.3)
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p3 p1

p2 p4

p3

Figure 3. Integrals f41
B1 and f67

B1 that depend on the letters α7 and α8 of alphabet (3.3), respec-
tively. The two integrals are related by the symmetry p1 ↔ p2.

with gB1 a new basis in which only two integrals explicitly manifest dependence on the two
new letters.

Finally, let us note that the new letters appear for the first time at transcendental
weight four. For example,

S
(
f41

B1

) ∣∣∣
ε4

= 6
[
α1 ⊗ α1 ⊗

α2
α4
⊗ α7 − α1 ⊗ α1 ⊗ α4 ⊗ α7 + α1 ⊗

α4
α2
⊗ α3
α1α4

⊗ α7 (5.4)

+ α2 ⊗ α1 ⊗
α1α4
α3
⊗ α7 + α2 ⊗ α5 ⊗

α3
α1
⊗ α7 −

1
2α2 ⊗ α5 ⊗ α2 ⊗ α7 + . . .

]
,

with ellipses corresponding to terms without the letter α7, and where we set p2
4 = −1

without loss of generality.

5.2 Counterexample to adjacency conditions in family E1

Recently, it was found that certain Feynman integrals in dimensional regularisation can
be understood in terms of cluster algebras [23, 40–45]. In particular, ref. [23] points out
that the alphabet (3.5) can be understood from the C2 cluster algebra. To make the paper
self-consistent, we presently recall definition and main properties of the C2 cluster algebra.

Roughly speaking, cluster algebra is an algebraic structure that is generated by a set
of cluster variables that obey certain rules, referred to as mutations. These rules allow to
obtain new cluster variables from old ones by a series of algebraic operations. In this way,
encoding information about combinatorial and geometric objects.

The particular C2 cluster algebra is characterised by a set of two cluster variables,
a = {a1, a2}, and the mutation operation can easily be encoded in an integer 2×2 exchange
matrix, say B (with components bij for i, j ≤ 2),

B =
(

0 1
−2 0

)
. (5.5)

Mutating a cluster (a, B) along the k-th variable (with k ≤ 2), one gets a new cluster
(a′, B′), with B′ related to the previous one,

b′ij =

−bij if i = k or j = k ,

bij + [−bik]+ bkj + bik [bkj ]+ otherwise ,
(5.6)
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where [x]+ = max (0, x). Likewise, the cluster coordinates are mutated as follows,

a′k = a−1
k

( 2∏
i=1

a
[bik]+
i +

2∏
i=1

a
[−bik]+
i

)
. (5.7)

By mutating B, according to (5.6), B′ differs by a sign. Hence, the corresponding cluster
transformation (5.7) reduces to,

am+1am−1 =

1 + am if m is odd ,
1 + a2

m if m is even .
(5.8)

Notice that after mutating six times exactly takes back where one started, ai+6 = ai. This
feature can appreciated in figure 1 of [23].

Interestingly, it was observed in ref. [23] that once the mapping from cluster variables
{a1, a2} onto our dimensionless variables {z1, z2},

z1 = − a2
2

1 + a1
, z2 = −1 + a1 + a2

2
a1 (1 + a1) , (5.9)

is performed cluster relations that initially are only noted on the cluster variables are now
inherited to letters of the alphabet, as shall be illustrated below.

Based on available explicit results for planar and non-planar one- and two-loop Feyn-
man integrals, and the three-loop ladder integral (integral family A of figure 1(a)), it was
noticed in refs. [22, 23] (and conjectured for higher loop Feynman integrals) that the letters
1−zi and 1−zj for i 6= j never appear next to each other in a symbol. Analytic results for
families E1 and E2 had already been obtained in ref. [10], albeit in a form in which check-
ing the adjacency conditions is not straightforward. In fact, only the adjacency condition
Ã4 · Ã6 = 0 was successfully checked in ref. [10].

It is easy to analyse adjacency conditions in the canonical differential equations ap-
proach, as we discuss presently. In our alphabet (3.5), these letters correspond to α4, α5,
and α6. The adjacency relations can readily be formulated in terms of the matrices that
accompany these letters in the differential equations (3.2), i.e.,

Ãi · Ãj = 0 for i, j ∈ {4, 5, 6} with i 6= j . (5.10)

For this integral family E1, we confirm that Ã4 · Ã6 = Ã6 · Ã4 = Ã5 · Ã6 = Ã6 · Ã5 = 0, as
expected. However, we also find that,

Ã4 · Ã5 6= 0 , Ã5 · Ã4 6= 0 . (5.11)

This provides a counterexample to the adjacency relations observed in refs. [22, 23].
Analysing eqs. (5.11), we find that the violation of the adjacency relations is connected

to the following two integrals,

f110
E1 = ε6

(
p2

4 − s
) (
p2

4 − t
)
JE1;111110110100000 ,

f127
E1 = ε6

(
p2

4 − s
) (
p2

4 − t
)
JE1;111111010100000 . (5.12)

The two integrals are related by the symmetry p2 ↔ p3, see figure 4.
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p1

p2 p4

p3 p1

p2 p4

p3

Figure 4. Integrals f110
E1 and f127

E1 that violate the adjacency conditions Ã4 · Ã5 = Ã5 · Ã4 = 0. The
two integrals are related by the symmetry p2 ↔ p3.

The symbol of the solutions is easily obtained from eq. (4.1), together with the leading
order in ε boundary values. We find that adjacency-violating symbols in the expressions
of f110

E1 and f127
E1 start appearing at weight five.

6 Conclusion and outlook

In this paper, we calculated all planar, and two non-planar three-loop Feynman integral
families with one off-shell leg. These integrals are relevant, for example, for Higgs plus
jet production in the heavy top-quark mass limit of QCD. We provided analytic results
up to transcendental weight six in terms of generalised polylogarithms, and numerically
validated them against pySecDec.

We found that the non-planar integrals we calculated depend on two new alphabet let-
ters that appear for the first time at transcendental weight four. Moreover, we studied adja-
cency relations that had been observed in the literature. We found two counterexamples to
these relations, given by the scalar eight-propagator integrals shown in figure 4. We showed
that violation of the adjacency conditions starts at transcendental weight five and six.

There are several interesting directions for further research:

1. In view of phenomenological applications (e.g. Higgs plus jet production at NNNLO),
it would be interesting to compute the remaining non-planar integral families. We
expect that obtaining the necessary integral reductions could be a bottleneck. How-
ever, as we have demonstrated, the ability of predicting a canonical integral basis
may streamline this procedure, as significantly reduces the required number of finite
fields evaluations.

2. It is interesting to further investigate the function space and adjacency properties.
What is the reason that form factors in N = 4 sYM depend on fewer symbol letters
and satisfy adjacency relations? Likewise, one may wonder what can be said about
analogous form factors and scattering amplitudes in QCD. It could well be that
violation of adjacency relations we observed at the level of master integrals is not
present at the level of full amplitudes. Also, does restricting to four-dimensional
finite parts of amplitudes lead to a reduced alphabet, as has been observed in the
context of five-particle amplitudes [23]?
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