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1 Introduction

The study of limits of amplitudes provides a rare glimpse into their all loop behavior. A
particularly rich limit, which has long been the subject of intense study [1–11], is the high
energy (Regge) limit, where the Mandelstam invariants s, t satisfy |t| � s. In this limit,
there are non-trivial two dimensional dynamics in the transverse plane of the scattering;
however, amplitudes and cross sections exhibit many simplifications when compared to
general kinematic limits. Indeed, amplitudes in the Regge limit have been seen to exhibit
a number of remarkable properties: They exhibit integrability [12, 13]; they can be used
to extract high loop data to understand the space of functions appearing in scattering
amplitudes [14–18]; they provide data for bootstrap approaches [19–21]; and they can even
be understood non-perturbatively at finite coupling [22–24].

The simplicity of amplitudes in the Regge limit arises from their factorization into
universal building blocks describing dynamics at disparate rapidities. The absence of a
hard interaction further leads one to expect that the physics of the Regge limit is described
entirely in terms of universal infrared quantities. In N = 4 super-Yang-Mills (N = 4
SYM), this occurs for generic kinematics, due to the amplitude-Wilson loop duality [25–29].
However, the more general relation between the Regge trajectory and properties of Wilson
loops [30, 31] shows that similar phenomena emerge in the Regge limit of QCD amplitudes.
This offers the hope that other properties, such as iterative structures, are not specific to
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N = 4 and may also emerge in QCD. However, despite intensive study, much less is known
about the general structure of amplitudes in the Regge limit beyond the case of N = 4
SYM. Nevertheless, intriguing results such as [32] suggest that much structure remains to
be uncovered.

In this paper we re-examine the Regge limit of the simplest 2→ 2 scattering amplitudes
using the Glauber effective field theory (EFT) [33] built into the soft collinear effective
theory (SCET)) [34–38]. Taking the gg → gg process as a specific example, in the
classic presentation the Regge limit of the amplitude is described up to NLL by a simple
factorization [6]:

Mgg→gg = [gsT caa′Cg(pa, pa′)]
s

t

[(−s
−t

)α(t)
+
(
s

−t

)α(t)
]

[gsT cbb′Cg(pb, pb′)] . (1.1)

This result involves the so-called impact parameters Cg as well as the Regge trajectory, α(t).
Note that the Regge trajectory can be expressed in terms of the anomalous dimensions
of Wilson lines [30, 31, 39–41] while the Cg are, in principle, arbitrary constants. Similar
formulae exist for scattering involving quarks, with the same α(t) and different impact
factors Cq, see for example [42] for a detailed presentation.

In the EFT, the factorized QCD amplitude takes a different form than eq. (1.1), where
it is instead expanded into gauge invariant operators labelled by the number of Glauber
exchanges, each of which can be factorized into soft and collinear constants. We show that
this provides a useful operator-level refactorization of the impact factors Ci = CsC

i
c, which

involves universal constants Cs that are independent of the projectiles (describing radiative
corrections to the Reggeized gluons or the Glauber potential) and collinear constants Cic
(which describe radiative corrections to the projectiles). The Regge trajectory α(t) then
arises as a rapidity anomalous dimension for these soft and collinear functions [33]. The
factorization of the impact factors for the IR divergent contributions, which arises as a
consequence of infrared factorization for scattering amplitudes applied to the Regge limit
has a long history [30, 31, 39, 40, 43, 44]. Here we use the Glauber effective theory of [33]
to also obtain a factorization for the IR finite pieces of the QCD impact factors into soft
and collinear contributions.

To explore this new factorization, we first compute the one-loop soft corrections for
graphs with both one and two Glauber exchanges, denoted S(1)

1 and S(1)
2 respectively. Quite

remarkably, we find that up to O(ε) in the dimensional regularization parameter they are
completely expressed in terms of the two-loop anomalous dimensions of Wilson lines. In
particular, with proper normalization, S(1)

1 to O(ε) and S
(1)
2 to O(ε0) are given by the

two-loop Regge trajectory α(2). Thus we observe a very interesting iterative structure in
the soft sector. This significantly extends an earlier observation that the O(ε0) term in S(1)

1
was exactly given by the two-loop cusp anomalous dimension [33].

This is similar to the relation observed by Del Duca [32], who observed that the
constants appearing in the one-loop quark and gluon impact factors involve the two-loop
Regge trajectory. However, in his observation the impact factors are polluted by additional
constants that are not related to the Regge trajectory. We take a step forward in unraveling
this iterative structure by demonstrating that the same pollution does not occur for the soft
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contributions to the impact factors, which are purely given by the Regge trajectory and
are independent of whether we collide quarks or gluons. In our setup the contamination
is associated purely with the collinear contributions which know about the identity of
the projectiles.

Using the structure of the EFT, we then argue that the iterative structure for the
soft constants arises naturally due to an interplay between crossing symmetry and the soft
and Glauber modes in SCET. Crossing symmetry allows us to connect soft loops, which
predict large logarithms, ln( s

−t), with simpler Glauber loops, which produce factors of iπ.
This effectively drops the relativistic loop order by one. Using these relations allows us to
prove that the two-loop Regge trajectory must appear in S(1)

1 and S(1)
2 , thus providing a

calculation of the two-loop Regge trajectory using simpler Feynman diagrams in the EFT.
Our observations about the iterative structure of terms in the soft sector of the EFT also

enable us to calculate the maximal matter-dependent terms at higher orders in αs, namely
the terms αk+1

s nkf for any k, where nf is the number of light flavors. In particular we predict
these maximal-nf terms in the Regge trajectory α(t) to all orders in ε, providing useful
information about the higher-loop behavior of the full Regge trajectory. We also derive a
simple formula for the maximal-nf terms in α(t) which are most singular ∝ αk+1

s nkf/ε
k+1.

We use these results to obtain the α3
sn

2
f Regge trajectory to O(ε0) and obtain exact

agreement with the recent explicit three-loop calculations of refs. [44, 45]. Finally, as a
novel application of our results we give the α4

sn
3
f{ε−4, . . . , ε0} and α5

sn
4
f{ε−5, . . . , ε0} terms

in the Regge trajectory. We confirm the singular terms in ε with the IR consistency formula
of refs. [30, 31, 39, 40], while our predictions for the O(ε0) terms are, to our knowledge,
new results.

An outline of this paper is as follows. In section 2 we discuss the structure of the
2→ 2 scattering amplitude in the Glauber EFT, emphasizing the difference between our
factorization and the classic factorization into impact factors and a Regge trajectory. We
also provide perturbative results for the soft constants for one and two Glauber exchanges.
Next, in section 3 we show that basic unitarity relations have an interesting interpretation in
the EFT, where they relate amplitudes with different numbers of loops of soft and Glauber
modes. The Glauber loops are simple and effectively constrained by unitarity constraints
on the forward scattering cross section. The relation between Glauber and soft loops thus
effectively enables us to “drop” the loop order of a given diagram by one order. Using
this, we explain some of the iterative structure appearing in the Regge trajectory and soft
contributions to impact factors; and we also provide an extremely simple calculation of
the Regge trajectory to two loops. In section 4 we predict the maximal-nf terms in the
Regge trajectory α(t) to all orders in αs. An overall discussion and conclusion is found in
section 5.

2 The factorized two-to-two forward scattering amplitude

In this section, we investigate the factorized structure of the 2→ 2 scattering amplitude in
the Glauber effective theory, which will allow us to express the scattering amplitude as a
sum of gauge invariant operators. These operators have rapidity anomalous dimensions that
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are related to Regge trajectories. This relationship was demonstrated at leading logarithmic
order for the gluon Regge trajectory in [33]. Our focus here will be on the structure of
the “constants” in the forward scattering amplitudes, which we define to be the terms not
predicted by the renormalization group evolution (rapidity and UV divergences). A key
feature of the Glauber EFT, which will prove helpful in improving the understanding of
the structure of the impact factors, is that the EFT further factorizes the impact factors
into soft and collinear constants, each of which individually arise from different gauge
invariant operators in the EFT. In particular, we will see that the soft constants are
purely associated with the Glauber potential (and therefore the Regge trajectory), while
the collinear constants are associated with the dynamics of the projectiles. This further
factorization will significantly simplify a number of the observations of Del Duca [32].

We begin by discussing the factorization of the 2 → 2 scattering amplitude in sec-
tion 2.1. This section is not meant to provide completely detailed expressions for generic
contributions; instead, it serves to illustrate the nature of the factorization into soft and
collinear components. We then focus in detail on the 8A color channel in sections 2.2 and 2.3.
After factorizing the impact factors into collinear and soft contributions to constants, we
then explicitly calculate the constants appearing in the soft functions.

2.1 The factorized amplitude from the EFT

The Regge limit is defined by a power-counting parameter λ =
√
−t/s, and can be described

by SCET [34–38] supplemented by operators incorporating Glauber potentials. Since there
is no hard scattering process in the Regge limit, we have

LSCET = L(0)
nn̄s + L(0)

G , (2.1)

where

L(0)
nn̄s = L(0)

n + L(0)
n̄ + L(0)

s , (2.2)

describes the factorized dynamics of soft and collinear degrees of freedom in SCET, and [33]

LII(0)
G = e−ix·P

∑
n,n̄

∑
i,j=q,g

OiBn
1
P2
⊥
OBCs

1
P2
⊥
OjCn̄ + e−ix·P

∑
n

∑
i,j=q,g

OiBn
1
P2
⊥
OjnBs , (2.3)

is the leading power Glauber Lagrangian. Here OiBn , OjCn̄ denote particular collinear
operators, while OBCs and OjnBs denote soft operators. The sums over i, j include quark
and gluon operators. Their explicit form is not required for the current discussion, but can
be found in [33]. The important feature of the Glauber Lagrangian is that it couples the
n and n̄ degrees of freedom (undergoing the scattering in the Regge limit) together with
internal soft degrees of freedom.

As shown in [33] one can derive factorized expressions for the 2→ 2 scattering amplitude
to any logarithmic order by expanding it as a sum over the number of insertions of the
Glauber potential. In perturbation theory, this is a meaningful expansion, since the Glauber
potential loops do not give logarithms, and so the addition of extra Glauber potential
operators reduces the logarithmic order of a perturbative correction. Once the number
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of Glauber operators is fixed, the soft and collinear operators can be factorized to all
orders in αs.

More precisely, starting with the time evolution operator in the EFT

U(a, b;T ) = lim
T→∞(1−i0)

∫ [
Dφ
]
exp

[
i

∫ T

−T
d4x

(
L(0)
nn̄s(x) + LII(0)

G (x)
)]
, (2.4)

one can expand in the number of Glauber potential insertions attaching to the n and n̄
projectiles, given by i and j respectively, so that

exp
[
i

∫ T

−T
d4x

(
LII(0)
G (x)

)]
= 1 +

∞∑
i=1

∞∑
j=1

U(i,j). (2.5)

For any number of Glauber potential insertions, one can then factorize the soft and collinear
operators to give a factorized expression for the amplitude that can be schematically
written as

iM2→2 =
∞∑

i,j=1
Jκn(i)(ν)⊗ S(i,j)(ν)⊗ Jκ′n̄(j)(ν)

=
∞∑

i,j=1
Jκ(i)(ν)⊗ S(i,j)(ν)⊗ Jκ′(j)(ν) , (2.6)

where Jκn(i) is a matrix element of n-collinear fields for the projectile κ to scatter with i
Glauber operators, Jκ′n̄(j) is the analog for the other projectile with n̄-collinear fields, and
S(i,j) encodes all the soft dynamics for this configuration. Here the ⊗ denote integrals
over transverse momenta arguments in the various Jn, Jn̄, S factors that are suppressed
for simplicity, κ, κ′ = q, g for quark or gluon projectiles, and the dimension-1 parameter
ν is known as the rapidity renormalization scale. In the second line we dropped the n,n̄
subscripts, since the symmetry under n↔ n̄ implies Jκn(i) = Jκn̄(i) ≡ J

κ
(i). This factorization

is illustrated in figure 1. The rapidity renormalization group evolution in ν of the different
operators enables a resummation of logarithms of t/s, and gives rise to Reggeization.

While eq. (2.6) is completely general, in this paper we will be interested in understanding
its implications for the Regge trajectory to two loop order for the antisymmetric-octet
(8A) color representation, which is suitable for resummation at next-to-leading logarithmic
(NLL) order. By carrying out a t-channel color decomposition we can project eq. (2.6) onto
the 8A channel. For this analysis we can restrict to exchanges with i, j ≤ 2 Glaubers. In
section 2.3 we demonstrate that the collinear projectile factors are universal for one and
two Glaubers, so that

J
κ(8A)
(1) = J

κ(8A)
(2) ≡ Jκ(8A) . (2.7)

For generic scattering projectiles κ, κ′, we therefore have1

iM(8A)
2→2

∣∣∣
NLL

=
(
s

−t

)α(t)
Jκ(8A) (ν =

√
s
)
Jκ
′(8A) (ν =

√
s
)

×
[
S

(8A)
(1,1)

(
ν =
√
−t
)

+ S
(8A)
(2,2)

(
ν =
√
−t
)]

. (2.8)

1In principle there is also a contribution S
(8A)
(2,1) + S

(8A)
(1,2) to consider which starts at the same order in αs

as S(8A)
(2,2). Both the real and imaginary part of these contributions vanish in the EFT [46]. However, any

non-zero real part does not actually matter for the analysis here, as it could simply be absorbed into a
perturbative correction to S(8A)

(1,1).
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1 2 3 i

1 2 3 j

i j

Jn(i)

Jn(j)

Figure 1. Factorized structure of the 2 → 2 forward scattering amplitude in the Glauber EFT.
The amplitude is expressed as a sum of the number of Glauber exchanges. For a fixed number of
Glaubers, the collinear factors describe the interaction of the projectiles with the Glaubers, while
the soft factor describes radiative corrections to the Glauber potential.

Here the collinear and soft functions are evaluated at the scales ν for which they do not
contain large logarithms of s/t. The

(
s
−t
)α(t) prefactor comes from the renormalization

group evolution. The anomalous dimension here is determined by the gluon Regge trajectory
α(t). For the particular case of the 8A color channel with two-Glauber exchange, the ⊗
factors are no longer present to this order. This is a specific feature of the effective field
theory for forward scattering, and highlights the difference between “Glauber gluons” and
“Reggeons”. To understand this, note that for Reggeons, there is no 8A two-Reggeon state.
This is because it is related by crossing symmetry to the single Reggeon exchange, and
can be absorbed by shifting the argument of the logarithm (see e.g. [47] for a detailed
discussion). It can therefore be viewed as dressing the single Reggeon exchange, which is a
pure pole, with iπ terms. In the effective theory, there is a two-Glauber 8A state. However,
it leads to renormalization group evolution which is fixed by the same pure pole solution as
for single Glauber exchange, which is necessary in order for it to be consistent with the
Reggeon picture. This allows the convolution to be eliminated at this order for this specific
color channel. Note that here, S(8A)

(1,1)(ν =
√
−t) involves a single Glauber exchange and is

purely real, while S(8A)
(2,2)(ν =

√
−t) involves two Glauber exchanges with a single Glauber

potential loop and is purely imaginary. As compared with the standard Regge factorization
formula eq. (1.1), we have factorized the impact factors into contributions from J and S,
each of which have operator definitions in the EFT. While this may seem to be minor, we
will see that it leads to considerable insight into the iterative structure of these functions.

Having presented a new factorized expression for the 2 → 2 scattering amplitude in
the EFT, it is now interesting to understand the structure of the radiative corrections to
the factorized components. In section 2.2 we compute the one loop soft corrections to
the Glauber potential, which we will ultimately show are closely related with the Regge
trajectory itself. The nature of the collinear functions is briefly discussed in section 2.3.
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2.2 One loop soft corrections to the Glauber potential

In this section we consider the one-loop soft corrections to the 1→ 1 and 2→ 2 Glauber
potentials.

2.2.1 Notation and perturbative constants

Our results for the soft corrections to the Glauber potential simplify considerably when
expressed in terms of a variety of commonly used constants. Here we briefly summarize these
constants so that our later presentation of the results can be made as compact as possible.

Since Glauber integrals reduce to effective two dimensional integrals in the transverse
space, we will often encounter the two-dimensional euclidean Glauber box integral, expressed
in terms of a bubble integral∫

d2−2ε~k⊥
(2π)2−2ε

1(~k 2
⊥
)α[(

~q⊥+ ~k⊥
)2 ]β = B(α, β)

(4π)1−ε
(
~q 2
⊥
)1−ε−α−β

, (2.9)

where

B(α, β) ≡ Γ (1− α− ε) Γ (1− β − ε) Γ(α+ β − 1 + ε)
Γ (α) Γ (β) Γ (2− α− β − 2ε) . (2.10)

We will also find it convenient to use a modified coupling α̃s, which is often referred to as
the high energy coupling, see e.g. [32]. It is defined in terms of the standard bare coupling
αs or renormalized coupling αs(µ) as follows:

α̃s = − ε2B(1, 1)
(
~q 2
⊥

4π

)−ε
αs = − ε2B(1, 1)Zα

(
µ2eγE

~q 2
⊥

)ε
αs(µ)

= Zα

(
µ2eγE

~q 2
⊥

)ε Γ (1− ε)2 Γ (1 + ε)
Γ (1− 2ε) αs(µ)

= Zα

(
µ2

~q 2
⊥

)ε(
1− π2

12 ε
2 − 7ζ3

3 ε3 + . . .

)
αs(µ) , (2.11)

where Zα is the coupling renormalization factor in MS. The coupling α̃s absorbs common ε
dependence from the Glauber box integral. We will also find it convenient to normalize
some of our results to the following ratio of bubble integrals

A(ε) = 3
4

B(1, 1)
B(1, 1 + ε) = 1 + 6ζ3ε

3 + · · · . (2.12)

At one loop, where the leading divergences are 1/ε2, this only modifies the O(ε) terms.
Using the modified coupling, we will be able to write our one loop results entirely

in terms of constants appearing in the two-loop Regge trajectory. Expanding the Regge
trajectory perturbatively in terms of the high energy coupling as

α(t) =
∞∑
L=1

(
α̃s
4π

)L
α(L)(ε) , (2.13)
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we have the following expressions up to two-loop order [48–51]:

α(1)(ε) = 2CA
ε

, (2.14)

α(2)(ε) = β0
ε2
CA + 2Γ(1)

cusp
ε

CA + Γ(1)
R . (2.15)

We also expand the β-function and cusp anomalous dimension as

β(αs) = −2αs
∞∑
n=0

βn

(
αs
4π

)n+1
, Γcusp(αs) =

∞∑
n=0

Γ(n)
cusp

(
αs
π

)n+1
, (2.16)

where the one and two-loop cusp anomalous dimensions are [52]

Γ(0)
cusp = 2 , Γ(1)

cusp = −5nf
9 + CA

(
67
18 −

π2

6

)
, (2.17)

β0 = (11CA − 4TFnf )/3 is the one-loop β-function, CA and CF are the quadratic Casimirs
for the adjoint and fundamental representations, respectively, nf is the number of quark
flavors, and TF = 1/2. Finally Γ(1)

R is the O(ε0) term in the two-loop Regge trajectory and
is given by

Γ(1)
R = −56CAnf

27 + C2
A

(404
27 − 2ζ3

)
. (2.18)

In a generic gauge theory, the relation between Γ(1)
R and other anomalous dimensions is not

known. In N = 4 SYM, Γ(1)
R is equivalent to the collinear anomalous dimension [29]. In

QCD an intriguing relation to certain anomalous dimensions of cusped Wilson lines [53] has
been observed to two-loops, but it is unclear if this persists to higher order. For a recent
discussion of relations between anomalous dimensions, see [54].

2.2.2 Single Glauber potential

We begin by considering the radiative corrections to the single Glauber potential at one-
loop. These calculations were first performed in [33] using a mass regulator. Here we use
dimensional regularization for infrared singularities; since the setup for the calculations is
analogous to [33], we provide few details. We will also extend the calculation to determine
the O(ε) terms, inspired by the observations of [32].

We expand the single Glauber potential perturbatively as

S
(8A)
(1,1) ≡ S1 = S

(0)
1

[
1 +

(
α̃s
4π

)
S

(1)
1 +

(
α̃s
4π

)2
S

(2)
1 + · · ·

]
, (2.19)

where the tree level Glauber exchange potential is given by

S
(0)
1 =


n

n

n

n

q

p

p

p

p


(8A)

= −8πiαs
~q 2
⊥

= 8πiαs
t

. (2.20)
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This will be used to normalize our results. In S(i)
1 the subscript 1 denotes that this is the

single Glauber exchange, and the superscript (i) denotes the number of soft loops. More
generally S(i)

j will denote coefficients of the O(αi+js ) term from the sum of graphs with j
Glauber exchanges and i soft loops. Below we will always use the notation t = −~q 2

⊥. Note
that we use a dashed line for the projectiles in Feynman diagrams, which will however always
be transverse gluons for our calculations. We also always strip off a common polarization
dependent prefactor in our Feynman graphs, which is (s~ε⊥2 ·~ε⊥3 ~ε⊥1 ·~ε⊥4 ), where s = n · p1n̄ · p2
to leading order in the |t| � s expansion. Finally, eq. (2.20) defines our normalization
convention for projection onto (8A) as this is the only color channel for this diagram.

At one-loop there are two corrections to the Glauber potential, involving either a soft
quark loop, or a soft gluon loop. Although these look like pure vacuum polarization graphs,
the gluon loop graph involves both vacuum polarization and Wilson line contributions at
this order. Furthermore, since the result is formulated in terms of gauge invariant operators
in the EFT, ghost loops are not required at this order, and the gluon loop also has rapidity
divergences from the presence of Wilson lines in the soft gluon operator. We use the rapidity
regulator η, and expand results in the limit η → 0 to separate the rapidity divergent and
constant terms, see [33, 55]. Performing the calculations, we find that


n

n

n

n

Soft


(8A)

= −2nfTFS
(0)
1
αs(µ)
π

(
µ2eγE

−t

)ε Γ (2− ε)2

Γ (4− 2ε)Γ (ε)

= S
(0)
1 nfTFA(ε)

(
α̃s
4π

)(
− 4

3ε −
20
9 −

112
27 ε+O(ε2)

)
, (2.21)

and
n

n

n

n

Soft


(8A)

= −1
2
αs(µ)
π

CAS
(0)
1

(
µ2eγE

−t

)ε {Γ (2− ε)2

Γ (4− 2ε)Γ (ε)− 2 Γ (1− ε)2

Γ (2− 2ε)Γ (ε)

+
Γ
(η

2
)

Γ
(

1−η
2

)
Γ
(
1 + ε+ η

2
)

Γ
(
−ε− η

2
)

Γ
(
1 + η

2
)

Γ
(

1
2 − ε−

η
2

) 4ε
(
ν2

−t

) η
2 }

, (2.22)

which expanding for η → 0 and setting ν =
√
−t gives the desired constant terms


n

n

n

n

Soft


(8A)

O(η0)
ν=
√
−t

=
(
α̃s
4π

)
CAS

(0)
1 A(ε)

[
− 2
ε2

+ 11
3ε −

π2

3 + 67
9 +

(404
27 −2ζ3

)
ε+O(ε2)

]
.

(2.23)

Here the 1/εk terms are IR divergences, and the soft constant includes both these and
infrared finite terms. The SCET Glauber operator with two gluons generates a number
of terms in eq. (2.22), including standard vacuum polarization contributions as well as

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
0
2
5

terms with eikonal denominators that lead to rapidity divergences, see ref. [33] for details.
The subscripts on the graph in eq. (2.23) remind us that the soft constants are defined as
renormalized quantities in a scheme that minimally subtracts the 1/η rapidity divergences.
The subscript O(η0) indicates that in the definition of the soft constants we cancel the
η divergent terms against the η divergent terms from the collinear sector. Additionally,
we take the rapidity scale ν =

√
−t to eliminate large logarithms in the soft function, as

dictated by eq. (2.8).
Notice also that we have kept terms up to O(ε). At two-loops we will see that these

terms will iterate such that they multiply the 1
ε divergent α(1) in eq. (2.14), and hence

contribute to the constant piece of the two-loop Regge trajectory.
Summing the above two soft graphs then gives us the 1-loop, 1-Glauber soft constant
n

n

n

n

Soft


(8A)

+


n

n

n

n

Soft


(8A)

O(η0)
ν=
√
−t

= S
(0)
1
α̃s
4πA(ε)

[
−2CA

ε2
+ (11CA − 2nf )

3ε − CAπ
2

3 − 10nf
9 + 67CA

9

+
(404CA

27 − 56nf
27 − 2CAζ3

)
ε+O(ε2)

]

=
(
α̃s
4π

)
S

(0)
1 A(ε)

(
− CAΓ(0)

cusp
ε2

+ ε
α(2)(ε)
CA

)
. (2.24)

Quite remarkably, we find that the one loop soft constant at O(ε) is given entirely by the
two loop Regge trajectory α(2)(ε)! In ref. [33] the fact that the one soft loop calculation
at O(ε0) involved the two-loop cusp anomalous dimension, Γ(1)

cusp, was noted. The analysis
done here extends this result to much more intriguing full α(2) from eq. (2.14). This result is
naively quite surprising since it appears that we can obtain two loop anomalous dimensions
by carrying out a one-loop calculation. We will explain the reason why this occurs, and
argue that it is actually quite natural, in section 3. Note that by construction, this soft
region radiative correction is independent of the nature of the projectile, and isolates the
constant radiative correction associated with the Reggeized gluon.

For future applications, where these one loop corrections will be iterated, it is useful to
split the one loop result into its contributions that came from rapidity divergent contributions,
and those that are free of rapidity divergences. We therefore take the calculations in
eqs. (2.21) and (2.22) and organize them as

S
(1)
1 =

(
2α(1)(ε)

η
+ f(ε) +O(η)

)(
ν2

−t

) η
2

+ g(ε) , (2.25)

where

f(ε) = A(ε)
(
− 2CA

ε2
− CAπ

2

3 − 2CAζ3 ε+O(ε2)
)
, (2.26)

g(ε) = A(ε)
((11CA − 2nf )

3ε − 10nf
9 + 67CA

9 +
(404CA

27 − 56nf
27

)
ε+O(ε2)

)
. (2.27)
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Here we see that the rapidity divergent induced contribution f(ε) is of uniform transcendental
weight (where the weight of ζn is n and weight of ε is −1) and independent of the matter
content of the theory, since it arises only from Wilson line diagrams. The non-rapidity
divergent contribution g(ε) contains the matter dependent contributions, and is not of
uniform weight.

2.2.3 2 → 2 Glauber potential

We now consider the one-loop soft corrections to the 2→ 2 Glauber potential. We expand
the 2→ 2 Glauber potential perturbatively as

S
(8A)
(2,2) ≡ iπ S2 = iπ S

(0)
1

[(
α̃s
4π

)
S

(0)
2 +

(
α̃s
4π

)2
S

(1)
2 + · · ·

]
. (2.28)

Since the presence of a Glauber potential loop always leads to a factor of iπ, it is convenient
to make this explicit so that the remaining S(k)

2 factors are real. Here the base amplitude is
given by


n

n

n

n

qk

pk 

pk 

k


(8A)

= (iπ)
(
αs
4π

)
S

(0)
1

(−t
4π

)−ε B(1, 1)
2 CA

= (iπ)
(
α̃s
4π

)
S

(0)
1

(
−CA

ε

)
, (2.29)

so that we can identify

S
(0)
2 = −CA

ε
= −α

(1)(ε)
2 . (2.30)

Here the subscript emphasizes that this is two Glauber exchange, and the superscript
denotes the number of soft loops. We thus see why the modified coupling α̃s is natural —
it arises precisely from the Glauber box integral. The expression for the one-loop Regge
trajectory when expanded in α̃s then becomes especially simple.

Note that the existence of the two Glauber exchange graph in eq. (2.30) also highlights
a difference that the Glauber based expansion has from the Reggeon expansion. In the
Glauber case it is needed for the effective field theory to be unitary. In the Reggeon case
an 8A contribution from an analogous box graph does not exist, and is subsumed by the
expansion in objects with definite signature [56].

The three graphs contributing to the one-loop correction to the 2→ 2 Glauber potential
are shown in figure 2. Two of the three graphs are iterations of the one loop graph, and the
third is the so called H-graph, which is uniform weight. It is therefore convenient to write

S
(1)
2 = S

(1)
2,iterative + S

(1)
2,H (2.31)
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n
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S

n

n

n
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S

n

n
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n

S

Figure 2. Using crossing symmetry, the two loop Regge trajectory can be computed from three
simple graphs. The trivial left-right flipped versions of the first two graphs are present but not shown.

The results for the iterative graphs follow in a straightforward manner from their one
loop counterparts since the extra Glauber loop simply adds a Glauber box integral

2×


n

n

n

n

S


(8A)

+ 2×


n

n

n

n

S


(8A)

(2.32)

= iπS
(0)
1

(
α̃s
4π

)2
CA

{
2
(2α(1)(ε)

η
+f(ε)+O(η)

)(
ν2

−t

) η
2 B(1,1+ε+η/2)

(−ε)B(1,1) +2g(ε) B(1,1+ε)
(−ε)B(1,1)

}
.

Here the factor of two multiplying each iterated graph accounts for the fact that each soft loop
could have appeared on either Glauber. We see that the non-rapidity divergent contributions
from g(ε) iterate trivially, since they are just multiplied by the bubble B(1, 1 + ε). The
rapidity dependent terms also iterate, albeit in a slightly more non-trivial manner due to the
appearance of η in the argument of the Glauber box integral B(1, 1 + ε+ η/2). Expanding
eq. (2.32) we can read off the desired constant terms

2×


n

n

n

n

S


(8A)

O(η0)
ν=
√
−t

+ 2×


n

n

n

n

S


(8A)

= (iπ)
(
α̃s
4π

)2
S

(0)
1 A(ε)

( 7
2ε3C

2
A −

3
2α

(2)(ε) +O(ε)
)
, (2.33)

which corresponds to

S
(1)
2,iterative = A(ε)

[ 7
2ε3C

2
A −

3
2α

(2)(ε) +O(ε)
]
. (2.34)

The A(ε) is defined in eq. (2.12) and has an expansion A(ε) = 1 + O(ε3). We choose to
normalize using A(ε) to simplify the structure of eq. (2.34). In the end when we add various
contributions together, the use of A(ε) in the normalization will not have any impact on our
final results for the matter dependent contributions, since they only start at 1/ε2 in α(2)(ε).

This result relies strongly on a modified η regulator for Glauber operators, which is
explained in more detail in appendix A. In section 3 we will use this result, combined
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with relations derived from crossing symmetry and unitarity to compute the two-loop
Regge trajectory.

For the H-graph, we find
n

n

n

n

S


(8A)

= −α
3
s(µ)C2

A

4 ~q 2
⊥

Γ
(η

2
)

Γ
(

1−η
2

)
2−η

√
π

(
µ2eγE

~q 2
⊥

)2ε(
ν2

~q 2
⊥

) η
2

×
[
I1e
−2γEε − 2B(1, 1)B

(
1 + η

2 , 1 + ε

)]
. (2.35)

Here I1 is a two-loop Glauber box integral whose expansion in ε is given by

I1 =
( 4
ε2
− 4ζ2 +O(ε)

)
+ η

2

(
− 1
ε3

+ ζ2
ε
− 76

3 ζ3 +O(ε)
)

+O(η2) . (2.36)

The integral I1 is known to all orders in ε [57, 58], although we will not need higher orders
in ε for this paper. The desired constant terms are

n

n

n

n

S


(8A)

O(η0)
ν=
√
−t

= (iπ)
(
α̃s
4π

)2
S

(0)
1 A(ε)C2

A

(
− 3

2 ε3 +O(ε)
)
, (2.37)

which yields

S
(1)
2,H = A(ε)

[
−3C2

A

2 ε3 +O(ε)
]
. (2.38)

Therefore we see that, as expected, the H-graph is uniform weight, and in fact is a pure
1/ε3 pole in our normalization.

Combining the iterated graphs with the H-graph then gives us the 2-loop, 2-Glauber
soft constant,

S
(1)
2 = S

(1)
2,iterative + S

(1)
2,H = A(ε)

[2C2
A

ε3
− 3

2α
(2)(ε) +O(ε)

]
. (2.39)

2.3 Collinear impact factors and Glauber collapse

We have seen in the previous section that the soft constants are independent of the collinear
projectiles, and purely associated with the dynamics of the Glauber gluons. We therefore
expect them to have a direct connection with the Regge trajectory. This has already
been made clear by the values of the soft constants, and will be further explained in
section 3. As discussed earlier, the EFT provides a factorization of the standard impact
factors, Ci = CsC

i
c, into the soft factors, Cs and the “collinear impact factors” Cic. Here

we will argue that for the results considered in this work (or more generally under certain
approximations), the collinear impact factors are independent of the Glaubers, and depend
only on the projectile. Our discussion here will be somewhat brief, including only ingredients
necessary for this paper, and leaving a more detailed discussion to ref. [59].
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a) b) c) d) e)

Figure 3. Two-loop mixed Glauber-collinear graphs. The non-planar graph in (a) has a vanishing
contribution to the octet channel. The modified η′ regulator introduced in this paper guarantees
an exact factorization to all orders in the regulator of the Glauber and collinear loops in (b), (c)
including for the constant terms, as well as enforces the collapse rule to make (d) and (e) vanish.

In this paper we focus on the octet contribution at two-loops, governed by the two-loop
gluon Regge trajectory. Because of this, for simplicity, in this section we can restrict
ourselves to the planar limit, which suffices for the octet channel at two-loops, as well as in
the large nf limit considered in section 4. This is the case because the non-planar two-loop
graph in figure 3a does not give a contribution to the 8A color channel. For planar graphs
the collinear constants have a simple interpretation, manifestly independent of the number
of Glauber operators.

In [33] a collapse rule was derived, showing that graphs with multiple Glauber exchanges
are non-vanishing only if all Glauber exchanges can collapse towards each other to the
same spacetime point, allowing one to reproduce the shockwave picture. In this analysis a
common η regulator was used for both the soft, collinear and Glauber sectors. At higher
loop orders, the picture becomes more intricate, because we encounter diagrams with both
Glauber and collinear (or soft) loops, which both require the η regulator. The Glauber
loops never diverge, ie. never give 1/η factors that are connected to large logarithms, but
they do give O(η) terms, which at two-loops and beyond can interfere with divergent 1/η
contributions from soft and collinear loops. This results in the presence of η/η terms that
can give finite contributions. For example, in graphs such as figure 3b,e, we will get an η/η
term that entangles the results from the 1/η-divergent collinear loop and O(η) terms from
the Glauber loop. While the soft and collinear regulators are tied by consistency of the
rapidity renormalization group, we explain here that the Glauber loops must have a distinct
regulator η′, and that it is important to take η′ → 0 first in order to correctly reproduce the
IR divergences in QCD and also preserve key properties of the EFT at higher loop orders.
Further details are provided in appendix A. Thus we have extended the regulator of [33], by
introducing a distinct regulator η′ for the Glauber sector, keeping the same η regulator for
the soft/collinear sectors. By taking η′ → 0 prior to expanding in the limit η → 0, terms
proportional to η′/η → 0. This modification to the regulator ensures that the collapse rules
of SCET with Glauber operators remain true even in the presence of rapidity divergent
subdiagrams, yielding a simpler structure of factorization of soft, collinear and Glauber
dynamics at higher loop orders. In particular, with this modification figure 3e vanishes, for
the same reason that figure 3d vanishes from the collapse rule.

Returning to the example of the two loop mixed collinear and Glauber loop graphs
in figure 3, the modified regulator completely factorizes the calculation of the collinear
and Glauber dynamics in planar graphs like figure 3b,c. By first computing the plus and
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minus Glauber loop integrals, then taking the limit η′ → 0 with finite η, we collapse the
Glauber exchanges together [33]. This completely eliminates the collinear propagators that
are between the two Glauber exchanges, so the double Glauber exchange appears to the
remaining parts of the diagram in an identical manner to as if we started with a single
Glauber exchange rather than two exchanges. The result for the remaining collinear loop
integral is therefore identical to the one at one lower order, ie. the same for both the single
and double Glauber exchange. For the octet channel this implies the equality of collinear
factors given in eq. (2.7).

This equality for the collinear loop results extends to planar graphs with even more
than two Glauber exchanges on the same collinear line. This implies that the collinear part
of the impact factors, Cic are independent of the number of Glaubers in the planar limit,
and are a feature only of the projectiles, whereas all dependence on the Glauber dynamics is
in the soft factors. This required modification to the regulator also trivializes the all orders
proof of Reggeization in the planar limit, which will be discussed in more detail in [59].
We believe it is an important step towards an all orders understanding of the structure of
the Glauber EFT. Below in section 3 we will use unitarity relations to derive the two-loop
Regge trajectory. This derivation tests the constants of two loop mixed soft-Glauber and
collinear-Glauber diagrams, and provides an additional extremely strong confirmation of
the correctness of our modified regulator, as it tests both O(η0) and O(η′/η)→ 0 terms.

3 Soft-Glauber relations and the two-loop Regge trajectory

In this section we describe the origin of the iterative structure of the soft function. We
will show that this arises from an interesting interplay between crossing symmetry and the
modal factorization (soft, collinear, Glauber) in the EFT. This will also make clear why
the collinear dynamics plays no role in this structure.

The interplay between crossing symmetry and the Regge limit has a long history, and
is encapsulated in the notion of “signature” in Regge theory. This has played an important
role in many recent perturbative studies of the Regge limit. In particular, it implies that
high energy logarithms appear in the particular combination log(|s|/|t|)− iπ/2 [47]. This
simple statement turns out to be extremely powerful in the EFT approach to the Regge
limit due to the fact that logarithms are reproduced by soft or collinear loops, whereas
factors of iπ are reproduced by Glauber loops. Crossing symmetry therefore has the effect of
relating EFT graphs of completely different structures. Most importantly, because Glauber
loops are significantly simpler to compute, it allows the exchange of one soft loop for a
Glauber loop, effectively dropping the loop order of the calculation.

Although crossing symmetry can be studied directly within the EFT, at the order
we work it is conveniently encapsulated into the crossing symmetric expression for the
antisymmetric octet exchange for generic projectiles [6]

iM(8A)
2→2

∣∣∣
NLL

= ig2
s

(
s

t

)
Ci(p2, p3)

[(
s+ i0
−t

)α(t)
+
(−s− i0
−t

)α(t)
]
Cj(p1, p4)

= ig2
s

(
s

t

)
Ci(p2, p3)

(
s

−t

)α(t) [
1 + e−iπα(t)

]
Cj(p1, p4) . (3.1)
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This formula holds to NLL for a general number of colors [42], and to all orders in the
planar limit. Expanding this formula to NLL (i.e. up to two loops in the Regge trajectory),
and comparing with our result, we find(

s

−t

)α(t)
JiJj [S1 + iπS2] = g2

s

(
s

t

)
CiCj [2− iπα(t)]

(
s

−t

)α(t)
, (3.2)

from which we derive that to NLL, we have

α(t) = −2S2
S1

. (3.3)

Expanding this expression perturbatively using eqs. (2.13), (2.19), (2.28), we have

α(1)(ε) = −2S(0)
2 , (3.4a)

α(2)(ε) = −2
(
S

(1)
2 − S(1)

1 S
(0)
2

)
. (3.4b)

This makes clear that the Regge trajectory can be computed in terms of diagrams with one
less soft loop. Beyond NLL, one must incorporate triple Glauber exchange, which we leave
to future work.

Using our perturbative data

S
(0)
2 = −CA

ε
= −α

(1)(ε)
2 , (3.5)

S
(1)
1 = A(ε)

(
− 2CA

ε2
+ ε

α(2)(ε)
CA

+O(ε2)
)
,

S
(1)
2 = A(ε)

( 2
ε3
C2
A −

3
2α

(2)(ε) +O(ε)
)
,

we see that the relations in eq. (3.4) are manifestly true, since we have expressed all our
perturbative data in terms of the Regge trajectory. For α(2)(ε) the 1/ε3 terms cancel
between the S(1)

2 and −S(1)
1 S

(0)
2 terms. After this cancellation we can use A(ε) = 1 +O(ε3)

and drop the O(ε3) terms, which would enter α(2)(ε) only at O(ε). Thus our results in
eq. (3.5) give

α(2)(ε) = β0
ε2
CA + 2Γ(1)

cusp
ε

CA −
56CAnf

27 + C2
A

(404
27 − 2ζ3

)
, (3.6)

which reproduces the well known result for the two-loop gluon Regge trajectory [42, 48–51].
We believe that our EFT calculation of the two-loop Regge trajectory is interesting

for a number of reasons. First, it provides an extremely simple calculation of the two-loop
Regge trajectory, involving only the calculation of the three graphs shown in figure 2. This
should be compared with the naive soft loop graphs that would be required to calculate the
two-loop Regge trajectory in the EFT, which are shown in figure 4. The classic calculations
of the Regge trajectory are also based on two-loop graphs from this soft region of phase
space. Essentially crossing symmetry allows us to relate one soft loop to a Glauber loop,
significantly simplifying the calculation, both in terms of the number, and complexity, of
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Figure 4. Graphs required to directly compute the two-loop Regge trajectory in the EFT (Graphs
obtained by left-right or up-down reflections are not shown). Using unitarity and crossing symmetry,
this can be reduced to the three graphs shown in figure 2.

the diagrams involved. This also provides a strong check on the structure of the EFT at
the two-loop level. In particular, our derivation provides a strong test that the rapidity
regulators (see appendix A) in the EFT preserve unitarity. In section 4, we will illustrate
that this simplification persists at higher perturbative orders by deriving the leading matter
contributions to the Regge trajectory at three and four loops. Furthermore, our approach
should also allow simple calculations of the Regge trajectory for the quark using the quark
Glauber operators derived in [60].

Secondly, this expression for the Regge trajectory also sheds significant light on the
observation of Del Duca [32] that the two-loop Regge trajectory appears in the one-loop
impact factors. First, we are able to refine his observation. Del Duca observed that the
two-loop Regge trajectory could be found in the quark or gluon impact factors although
in both cases there was contamination, and in particular, there was significant additional
contamination for the case of quarks. In our approach, the two-loop Regge trajectory
is found in the constants of the soft function, which are manifestly independent of the
scattered projectiles, and so there is no contamination. Due to the unitarity relations and
the simple structure of the Glauber graphs in the EFT, we can begin to understand why
such an iterative structure is plausible, and why it is in the soft and not the collinear sector.

First, in section 2, we emphasized that in the EFT the impact factors are further
factorized into a soft constant associated with the Glauber potential, and a collinear
constant associated with the projectiles. It is clear that this factorization is convenient from
the perspective of universality; namely, the soft constant is independent of the projectiles.
We also believe that there is an important physical distinction, associated with the way that
the soft and collinear corrections iterate into higher Glauber graphs. It would be interesting
to explore whether it also provides simplifications in theories like N = 4 super Yang-Mills.
In the unitarity relation used above where we have related the two-loop Regge trajectory to
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the soft constant for two-Glauber exchange, the collinear corrections did not enter, since
they are independent of the number of Glaubers, and so factor out. On the other hand, the
soft constants feed into higher Glauber loops, leading to an iterative relation. Indeed, in
the absence of the H-graph, the relation

α(2)(ε) = −2
(
S

(1)
2 − S(1)

1 S
(0)
2

)
, (3.7)

would immediately give an iterative relation between the two-loop Regge trajectory, and
the one-loop soft constants. In particular, since the H-graph is matter independent, it
immediately proves the relation of Del Duca for the matter dependent terms. In section 4 we
will extend this to the leading matter terms at all loops. Furthermore, since the H-graph is
maximal weight, it also explains why Del Duca’s relation holds for the non-maximal weight
terms. The intriguing observation is that the only role of the H-graph is to remove the 1/ε3

pole that is present in the iterated graphs, so that it does not appear in the two-loop Regge
trajectory. We are unable to prove why this must be the case, however, we can see why
there is an iterative structure up to the H-graph. We believe that it would be interesting
to explore this at higher loops in the soft sector of the EFT, to understand whether the
constants continue to be related to soft anomalous dimensions. We believe this is intriguing,
since our arguments constrain the non-maximal weight terms, while the maximal weight
terms are constrained to have an iterative form [61] due to the BDS ansatz [62].

4 Leading matter dependence at higher loops

The basic argument leading to the relation between soft and Glauber loops is due to
unitarity and crossing symmetry, which continue to hold at arbitrary loop order. It is
therefore interesting to explore the consequences of our relation beyond two loop order.
However, at this order, one encounters the issue that one has both contributions from single
Glauber and triple (or higher) Glauber exchange. The definition of the Regge trajectory
at this order requires disentangling these contributions, for which there has recently seen
significant progress [44, 47, 63, 64]. While this has a natural resolution in the EFT, where
the single and triple Glauber exchanges are described by separate gauge invariant operators,
it is beyond the scope of the current discussion, and will be left for a future publication.

To illustrate the iterative structure at higher loops, we instead choose to focus on
the simplest possible example of deriving the leading matter dependence. This has the
advantage that one does not have to consider triple (or higher) Glauber exchange, since such
contributions have additional gluons, and therefore do not have maximal matter dependence.
Further, it implies that we do not have to consider the H-graph, and therefore we have a
perfect iterative structure. For these terms we find that the relation

α(t) = −2S2
S1

, (4.1)

holds to all loop orders. This result allows us to derive the maximal matter dependence of
the Regge trajectory at any loop order from the one-loop result. It is crucial to emphasize
that this result only holds for all terms associated to the leading matter dependence, due
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Figure 5. Graphs needed for the calculation of the leading nf dependence of the Regge trajectory
to all orders in αs.

to the fact that only the class of EFT diagrams in figure 5 contribute. For all other color
structures, diagrams with additional Glauber gluons, or with gluons connecting the different
Glaubers in figure 5 (generalized H-graphs), would contribute, and break this relation. By
restricting to the leading matter contribution, we are able to extend the use of the relation
between one- and two-loop graphs, to an all orders relation. While this is of course the
simplest piece of the Regge trajectory, we still find the simplicity with which we are able to
derive it quite remarkable.

We can actually write down an explicit description of the maximal matter-dependent
pieces of S2 and S1 to all loop orders. For S1, we notice that S1 can be expressed iteratively
in terms of the maximal-nf one-loop graph. We recall that


n

n

n

n

Soft


(8A)

= −2nfTFS
(0)
1
αs(µ)
π

(
µ2eγE

−t

)ε Γ (2− ε)2

Γ (4− 2ε)Γ (ε)

≡ S(0)
1 A(t), (4.2)

where we define

A(t) = −2nfTF
αs(µ)
π

(
µ2eγE

−t

)ε Γ (2− ε)2

Γ (4− 2ε)Γ (ε) = −nfTf
ε

α̃s
π

1− ε
(3− 2ε)(1− 2ε) . (4.3)

Then the sum of the n-loop maximal-nf one-Glauber graphs, obtained by replacing the soft
quark bubble by a string of soft bubbles connected by soft gluons, is given by

S1
∣∣∣
αk+1
s nk

f

= S
(0)
1

1−A(t) = 8πiαs
t

1
1 + nfTf

ε
α̃s
π

1−ε
(3−2ε)(1−2ε)

. (4.4)

We can similarly calculate the leading nf piece of the two-Glauber exchange by simply
adding an arbitrary number of soft quark bubbles in between each of the Glauber attachments
as shown in figure 5. Note that a direct calculation of this contribution from purely soft
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loops would require dressing the nf dependent graphs in figure 4 by further quark bubbles,
which is a significantly more difficult analysis. Our result again depends on A(t):

S2
∣∣∣
αk+2
s nk

f

= S
(0)
1
αsCA

8π

(4π
−t

)ε ∑
k,m≥0

Γ(−(k+1)ε)Γ(−(m+1)ε)Γ(1+(k+m+1)ε)
Γ(1+kε)Γ(1+mε)Γ(−(k+m+2)ε) A(t)k+m .

(4.5)

For the terms contributing to the most IR divergent terms, proportional to αk+2
s nkf/ε

k+1

for any k, this sum can be simplified to

S2
∣∣∣
αk+2
s nk

f
/εk+1

= S
(0)
1
αsCA

8π

(4π
−t

)ε 1
ε

2 log
[
1−A(t)

]
A(t)(1−A(t)) . (4.6)

Using these results we can compute the maximal nf -dependent piece of the Regge trajectory:

α(t)
∣∣∣
αk+1
s nk

f

=−2
S2
∣∣
αk+2
s nk

f

S1
∣∣
αk+1
s nk

f

(4.7)

=−αsCA4π

(4π
−t

)ε [
1−A(t)

] ∑
k,m≥0

Γ
(
−(k+1)ε

)
Γ
(
−(m+1)ε

)
Γ
(
1+(k+m+1)ε

)
Γ
(
1+kε)Γ

(
1+mε)Γ

(
−(k+m+2)ε

) A(t)k+m

=− α̃sCA4π

[
1−A(t)

]
(−ε/2)B(1,1)

∑
k,m≥0

Γ
(
−(k+1)ε

)
Γ
(
−(m+1)ε

)
Γ
(
1+(k+m+1)ε

)
Γ
(
1+kε)Γ

(
1+mε)Γ

(
−(k+m+2)ε

) A(t)k+m ,

where B(1, 1) is given by eq. (2.10). This is one of our main results, giving the αk+1
s nkf

terms in Regge trajectory in a form that is valid to all orders in ε and for any k. For
the most singular 1/ε poles, the terms proportional to αk+1

s /εk+1 for any k, this can be
simplified to

α(t)
∣∣∣
αk+1
s nk

f
/εk+1

= −αsCA2π

(4π
−t

)ε 1
ε

log
[
1−A(t)

]
A(t)

= − α̃sCA2π
1
ε

log
[
1−A(t)

]
A(t) . (4.8)

While our formula in eq. (4.7) allows us to derive the result for the maximal matter
dependent terms of the Regge trajectory at any order, here as an application we explicitly
give the results for the infrared divergent 1/εk terms and the O(ε0) terms at order α3

sn
2
f ,

α4
sn

3
f , and α5

sn
4
f :

α(t)
∣∣∣
α3
sn

2
f

=−αsCA4π

(
4πe−γE
−t

)ε(
α̃snfTf

π

)2 [
− 2

27
1
ε3
− 20

81
1
ε2

+
(
π2

162−
2
3

)
1
ε

+
(
−1216

729 + 5π2

243 + 434ζ3
81

)]

=− α̃sCA4π

(
α̃snfTf

π

)2 [
− 2

27
1
ε3
− 20

81
1
ε2
− 2

3
1
ε

+
(140ζ3

27 − 1216
729

)]
, (4.9)
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α(t)
∣∣∣
α4
sn

3
f

=−αsCA4π

(
4πe−γE
−t

)ε(
α̃snfTf

π

)3 [ 1
54

1
ε4

+ 5
54

1
ε3

+
(
− π2

648 + 53
162

)
1
ε2

+
(
−529ζ3

162 −
5π2

648 + 1457
1458

)
1
ε

+
(
−4223π4

77760 −
2645ζ3

162 − 53π2

1944 + 2050
729

)]

=− α̃sCA4π

(
α̃snfTf

π

)3 [ 1
54

1
ε4

+ 5
54

1
ε3

+ 53
162

1
ε2

+
(
−29ζ3

9 + 1457
1458

) 1
ε

+
(
−29π4

540 −
145ζ3

9 + 2050
729

)]
, (4.10)

α(t)
∣∣∣
α5
sn

4
f

=−αsCA4π

(
4πe−γE
−t

)ε(
α̃snfTf

π

)4 [
− 2

405
1
ε5
− 8

243
1
ε4

+
(

π2

2430−
524
3645

)
1
ε3

+
(

2102ζ3
1215 + 2π2

729−
5672
10935

)
1
ε2

+
(

8399π4

291600 + 8408ζ3
729 + 131π2

10935−
54946
32805

)
1
ε

+
(

4426ζ5
75 + 8399π4

43470 + 550724ζ3
10935 − 1051π2ζ3

7290 + 1418π2

32805 −
494528
98415

)]

=− α̃sCA4π

(
α̃snfTf

π

)4 [
− 2

405
1
ε5
− 8

243
1
ε4
− 524

3645
1
ε3

+
(232ζ3

135 −
5672
10935

) 1
ε2

+
(

58π4

2025 + 928ζ3
81 − 54946

32805

)
1
ε

+
(

23888ζ5
405 + 232π4

1215 + 60784ζ3
1215 − 494528

98415

)]
.

(4.11)
There are a number of cross checks on these results. First, our result for the leading-nf

piece of the three-loop Regge trajectory α|
α3
sn

2
f

nf , including the O(ε0) terms, agrees with the
recent explicit calculations [44, 45] (see also [65] for an earlier calculation of the planar pure
Yang-Mills contributions). Note that our conventions differ from those used in [45]; their
three-loop Regge trajectory includes the order-α3

s contributions from the running coupling
αs, while our expression is written in terms of the bare coupling αs or α̃s. In addition, the
singular terms (containing 1/ε or higher poles) in our expressions for the leading-nf Regge

trajectory α|
α4
sn

3
f

nf and α|
α5
sn

4
f

nf agree at four- and five-loop order with the prediction from
infrared factorization [30, 31, 39–41, 43]:

K(αs) = −1
4

∫ µ2

0

dλ2

λ2 γ̂K
(
αs(λ)

)
. (4.12)

Here K(αs) denotes the ε-divergent terms in the Regge trajectory, and the formula above
relates K(αs) to the cusp anomalous dimension γ̂K . Here and below we use the notation
γ̂K = Γcusp and γ̂(i)

K = Γ(i)
cusp to facilitate the comparison to the literature [40, 43]. Explicit

expressions for K(αs) are known to four loops [52, 66–68]. The maximally matter dependent
terms of γ̂K are also known [69]. Writing

γ̂K =
∑
i≥1

γ̂
(i)
K

(
αs(λ)
π

)i
=
∑
i≥1

γ̂
(i)
K

[
Zα(αs(µ), ε)
Zα(αs(λ), ε)

(
µ2

λ2

)ε
αs(µ)
π

]i
, (4.13)

K(αs) =
∑
i≥1

K(i)
(
αs
π

)i
,
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we find the following expressions for K(4) and K(5):

K(4) = − β0γ̂
(1)
K

1024ε4 + β0β1γ̂
(1)
K

128ε3 + β2
0 γ̂

(2)
K

256ε3 −
β2γ

(1)
K

64ε2 −
β1γ̂

(2)
K

64ε2 −
β0γ̂

(3)
K

64ε2 + γ̂
(4)
K

16ε , (4.14)

K(5) = β4
0 γ̂

(1)
K

5120ε5 −
3β2

0β1γ̂
(1)
K

1280ε4 − β3
0 γ̂

(2)
K

1280ε4 + β2
1 γ̂

(2)
K

320ε2 + β0β2γ̂
(1)
K

160ε3 + β0β1γ̂
(2)
K

160ε3

+ β2
0 γ̂

(3)
K

320ε3 −
β3γ̂

(1)
K

80ε2 −
β2γ̂

(1)
K

80ε2 −
β1γ̂

(3)
K

80ε2 −
β0γ̂

(4)
K

80ε2 + γ̂
(5)
K

20ε .

Using the all-orders leading-nf cusp anomalous dimension in [69], which we re-express in
terms of the bare coupling, we find perfect agreement between the K(i) and the singular
pieces, 1/εk for k ≥ 1, of our leading-nf Regge trajectory up to five-loop order in eq. (4.9).
This provides further evidence in support of the conjecture in [41].

To the best of our knowledge, the constant O(ε0) terms of the leading-nf Regge
trajectory at four- and five-loop order in eq. (4.9) are new. Our more general result in
eq. (4.7) can be used to make analogous predictions for leading nf terms at higher orders
in αs, as well as higher orders in ε.

5 Conclusions

In this paper we have reconsidered the 2→ 2 scattering amplitude in the Regge limit from
the perspective of the Glauber EFT [33]. While various forms of factorization in the high
energy limit have of course long been appreciated, in this paper we have argued that the
standard factorization into impact factors, obscures some of the underlying simplicity of
the constants appearing in these functions.

Using the Glauber EFT, we factorized the amplitude into separate gauge invariant
soft and collinear functions. The soft functions are universal (i.e. independent of the
projectiles) and describe radiative corrections to the Reggeized gluons. We computed these
universal functions at one loop to O(ε) in dimensional regularization. We found, quite
remarkably, that they are expressed in terms of two loop anomalous dimensions of Wilson
line configurations, without any contamination.

We then argued that this iterative structure follows from the action of crossing symmetry
on graphs in the EFT. Since the EFT factorizes loops into soft, collinear and Glauber
modes, crossing symmetry acts non-trivially and relates contributions from different modes.
In particular, we find that it can be used to eliminate a soft loop in exchange for a much
simpler Glauber loop. Using this, we were able to provide a simple calculation of the
two-loop Regge trajectory, and also explain some of the iterative structures observed in [32].

We also explored the structure of the iterations at higher orders. In particular, as a
simple application, we were able to derive the maximal-nf terms in the Regge trajectory to
all orders in αs. We checked our result against the recent α3

s calculation of [44, 65, 70] finding
perfect agreement. We also provided explicit results for the α4

sn
3
f and α5

sn
4
f terms in the

Regge trajectory. We find it quite interesting that this relation allows us to show iterative
properties of the maximal-nf terms, while iteration of the maximally transcendental pieces
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follows from their relation to N = 4 SYM. We hope that further understanding may enable
some iterative properties of QCD amplitudes to emerge in the Regge limit.

There are many directions for future study. Using an identical approach combined with
the Glauber quark operators [60] (see [71] for a verification of these operators at one-loop
order), one should be able to give a simple direct calculation of the two-loop quark Regge
trajectory in QCD/QED, which has so far only be derived from direct expansion of the
two loop amplitudes [72]. Also at the two-loop level, it would be interesting to understand
possible iterative structures in other color channels, for example the pomeron.

More non-trivially, it will be extremely interesting to understand the structure of the
iterative relations at the three-loop level. This requires an understanding of the interplay
between one- and three-Glauber exchange in the EFT, but we are hopeful that the clean
factorization of the EFT may also allow interesting patterns to be unravelled at this order.
There has recently been significant progress in understanding the structure of multiple
Reggeon exchanges from a variety of different approaches [44, 47, 64], which resulted in
the direct determination of [44, 65, 70]. An independent calculation of this result using the
EFT would be quite interesting.

We are optimistic that the organization of the EFT for forward scattering can provide
new insights into the Regge limit, and that despite many years of intensive study there are
still interesting surprises hinting at much more structure yet to be discovered.
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A Rapidity regulators for Glauber potentials and soft operators

For calculations in SCET with Glauber operators, rapidity regulators are required, both
for Glauber loops which lead to iπ factors, and for soft and collinear loops where they are
associated with the rapidity logarithms. We follow the regulators of ref. [33] for this purpose,
which are based on the rapidity regulator η of ref. [55]. However, we have found that
some modifications and additions are needed to fully and consistently regulate diagrams at
two-loop order and beyond in the Glauber EFT. Those changes are summarized here.

The first change we make is to decouple the regulator used for Glauber loops from that
used for soft and collinear loops. Usually in an EFT it is important to consistently use the
same regulator for the EFT loops, since the regulator can act to separate contributions
in different regions, and must do so consistently. Indeed this is the case for rapidity
divergences in soft and collinear loops that are associated with Reggeization, where these
loops individually have 1/η divergences that cancel in their sum, see [33]. We observe
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however that the regulator for Glauber loops acts in a different manner, it leads to finite
results as η → 0, and these results are exactly the terms necessary to preserve unitarity
for forward scattering in the EFT. Therefore it is reasonable that a different regulators
η′ can be used for the Glauber loops. However we argue that it is not only reasonable,
but necessary to the consistency of the EFT to separate these regulators, and to take
η′ → 0 prior to taking η → 0. To see this one can examine the diagram in figure 3e. The
collinear sub-loop in this diagram has a 1/η divergence. However, by the arguments of
ref. [33] this diagram should have a Glauber loop that causes the diagram to vanish, since
the Glauber potentials are interrupted by the collinear gluon vertex from collapsing onto
the same longitudinal position, leading to terms ∝ η′/η. Consistency of the EFT requires
that the collapse rule, at the heart of the (t, z) instantaneity for the Glauber potential, be
maintained, and therefore that we take η′ → 0 prior to expanding about η → 0. Further
details of this discussion are left to ref. [59]. To utilize independent Glauber regulators
we write

∫
d4xLII(0)

G =
∑
n,n̄

∑
i,j=q,g

∫
[dx±]

∑
k+
r ,k
−
r

∫
d2q⊥
q2
⊥

d2q′⊥
q′ 2⊥
OAB
s,−k±r

(q⊥, q′⊥) (A.1)

×

OiA
n,k−r

(q⊥)w′ 2
∣∣∣∣∣ in ·

←
∂ +in̄ ·~∂
ν ′

∣∣∣∣∣
−η′

OjB
n̄,k+

r
(−q′⊥)


+
∑
n

∑
i,j=q,g

∫
[dx±]

∑
k−r

∫
d2q⊥
q2
⊥
OiA
n,−k−r

(q⊥)w′
∣∣∣∣∣−βns k−r − in̄·

←
∂ −in · ~∂

ν ′

∣∣∣∣∣
−η′/2

OjnA
s,k−r

(−q⊥) .

Here the rapidity scale ν ′ and book-keeping parameter w′ (whose renormalized value is
1) will be irrelevant to the result for Glauber loop graphs, which are all finite as η′ → 0.
In addition we have used a regulator for the soft-collinear part of the Glauber potential
with a power −η′/2. This ensures that graphs like those in figure 2a,b involve the same
regulating factor for their Glauber loops as the base box diagram in eq. (2.30). While this
does not have a direct impact on the calculations carried out here, it does ensure that the
exponentiation associated to the eikonal phase works out properly in the presence of soft
fluctuations of the Glauber potentials.

Next we discuss an extension of the regulating factors η for soft and collinear Wilson
lines used in [33], which we find are necessary beyond one-loop order. At two loop order
there are rapidity divergences in diagrams that do not involve Wilson line Feynman rules in
our operator basis. Also certain cancellations associated to the equations of motion can be
blocked when regulators only appear in Wilson lines. This requires additional regulating
factors for both collinear and soft operators. In particular, we find that it is important for
the overall regulator to appear homogeneously in the one-gluon Bnµ

s⊥ Feynman rule, and in
the soft gluon regulator for the Lipatov vertex. Again the detailed arguments for this are
left to ref. [59], and we simply summarize the modified regulators here. A list of operators
with additional regulators is given in table 1. These regulators modify the Feynman rules
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OgBn =
i

2
fBCDBCn⊥µ

n̄

2
· (P+P†)w−2

∣∣∣∣
n̄

2
· (P+P†)

ν

∣∣∣∣
η

BDµn⊥

OBCs = 8παs

{
Pµ⊥STn Sn̄P⊥µ − P⊥µ gB̃

nµ
S⊥STn Sn̄ − STn Sn̄gB̃

n̄µ
S⊥P⊥µ

− gB̃nµS⊥STn Sn̄gB̃n̄S⊥µ − w
∣∣∣∣
2Pz
ν

∣∣∣∣
−η/2

nµn̄ν
2
STn igG̃µνs Sn̄

}BC

OgnBs = 8παs

( i
2
fBCDBnCS⊥µ

n

2
· (P+P†)w

∣∣∣∣
2Pz+2P†z

ν

∣∣∣∣
η/2

BnDµS⊥

)

Wn =
∑

perms

exp

{ −g
n̄ · P

[
w2|n̄ · P|−η

ν−η
n̄ ·An

]}
, Sn =

∑

perms

exp

{ −g
n · P

[
w

∣∣∣∣
2Pz
ν

∣∣∣∣
−η/2

n ·As
]}

Bµn⊥ =

(
Aµn⊥w

∣∣∣∣
n̄ · P
ν

∣∣∣∣
−η/2

− kµ⊥
n̄ · k n̄ ·An,kw

2

∣∣∣∣
n̄ · P
ν

∣∣∣∣
−η)

+ . . .

Bnµs⊥ =
1

g

1

n · Pw
∣∣∣∣
2Pz
ν

∣∣∣∣
−η/2

nνiG
Bνµ
s SBAn TA = w

∣∣∣∣
2Pz
ν

∣∣∣∣
−η/2(

Aµs⊥ −
kµ⊥
n · kn ·As,k

)
+ . . .

Table 1. Summary of regulators within the operators appearing in the leading power Glauber
exchange Lagrangian. For all operators except OBCs there exists an analagous n↔ n̄ operator.

involving soft gluons listed in ref. [33] so that they are now (setting η′ = 0 for simplicity)

n

s

n

s
k

μ,B ν,C

A

' '
= −8παsfABC

(~̀′⊥ − ~k′⊥)2

[
ūn
n̄/

2T
Aun

] [
n·k′ gµν⊥ − n

µ`′ν⊥ − nνk
′µ
⊥ + `′⊥ · k′⊥nµnν

n · k′
]

× w
∣∣∣∣n · k′ − n̄ · l′ν

∣∣∣∣−η/2 ∣∣∣∣n · k′ − n̄ · k′ν

∣∣∣∣−η/2 ∣∣∣∣2n · k′ − n̄ · (k′ + `′)
ν

∣∣∣∣+η/2 ,
(A.2)

where we note that the soft n · `′ = n · k′, and for the Lipatov vertex we have

n

n

n

n

S

μ,Cq

q'
= i

[
ūn
n̄/

2 T
Aun

][
8παs
~q 2
⊥ ~q
′2
⊥
igfABC

(
qµ⊥+q′µ⊥ −n ·q

′ n̄
µ

2 − n̄ ·q
nµ

2 −
nµ~q 2
⊥

n ·q′
− n̄

µ~q ′2⊥
n̄ ·q

)]

×
[
v̄n̄
n/

2 T̄
Bvn̄

]
w

∣∣∣∣ n̄ ·q−n ·q′ν

∣∣∣∣−η/2 . (A.3)

For completeness, we also list the new Feynman rule for the collinear sector (again setting
η′ = 0 for simplicity),

n

n

n

n
k

μ,B ν,C

A

' '
= −8παsfABC

(~̀′⊥−~k′⊥)2

[
ūn
n̄/

2 T
Aun

]
(A.4)

×
[
n·k′ gµν⊥ −

(
nµ`′ν⊥+nνk′µ⊥

)
w

∣∣∣∣n ·k′ν
∣∣∣∣−η/2 + `′⊥ ·k′⊥nµnν

n ·k′
w2
∣∣∣∣n ·k′ν

∣∣∣∣−η ].
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For n̄-collinear gluons scattering with n-collinear quarks we have a similar Feynman rule,
just with n↔ n̄. Also for a n-collinear gluon scattering with an n̄-collinear gluon, the same
combinations of regulating factors appear in each of the two-gluon parts of the Feynman rule.
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