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ABSTRACT: We present the new results for the generalised double-logarithmic equation,
obtained from the analytical continuation of the seven-loop anomalous dimension of twist-2
operators in the planar N/ = 4 SYM theory. The double-logarithmic equation is related
to the special asymptotic of the scattering amplitudes, when the large logarithms of the
energy of scattering particles are appeared and should be summed in all order of perturba-
tive theory. These large logarithms correspond to the poles of the analytically continued
anomalous dimension. The generalised double-logarithmic equation includes the sublead-
ing logarithms. We have found, that the expansion of the generalised double-logarithmic
equation can be ressumed in the form of rational functions with simple denominator. The
solution of the generalised double-logarithmic equation provides a lot of information about
the poles of the analytically continued anomalous dimension in all orders of perturbative
theory. We have found also the generalised double-logarithmic equation for the analytically
continued anomalous dimension near the value, which is related with BFKL-equation.
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1 Introduction

Great progress has been made in the study of the composite operators in the maximally
extended N' = 4 Supersymmetric Yang-Mills (SYM) theory and their pairs string states
in AdS space through AdS/CFT-correspondence [1-3]. The most studied operators in the
N = 4 SYM theory consist of scalar fields. The simplest operator is build from one complex
scalar field, usually denoting as Z

Ogzs =trZ2ZZ...Z=tr 2’ (1.1)

and it is protected from the quantum corrections. To construct other operators with
minimal efforts one can either add other fields of N' = 4 SYM theory, for example, a
number of another complex scalar fields, usually denoting as X or )

Oziy = tr2/7Fx 2"
Oziye = tr 27k xx 2",
Oziym = trZ‘]_kXMZk,... (1.2)
either add a number of covariant derivatives D, between the fields. In the last case,

taking only two fields and M covariant derivatives D,, we obtain twist-2 operators with
the Lorentz spin M

Otwist—2 = tr 2Dy, Dy, -+ Dy, 2 = ZDY 2, (1.3)



which are the well-know from the study of a Deep-Inelastic Scattering (DIS), where they are
appeared under an operator product expansion. Starting from M = 2 operators (1.3) are
unprotected and receive the quantum corrections to the canonical dimension of the operator

A = Canonical dimension + = (1.4)

where v is the anomalous dimension, generating by the quantum corrections. There are a
lot of reasons to obtain the result for the anomalous dimension of twist-2 operators (1.3)
with arbitrary Lorentz spin M in N' = 4 SYM theory. Initially, such results were very
interesting for the study of AdS/CFT-correspondence. In principle, such task can be per-
formed by the direct diagrammatic calculations in the first several order of perturbative
theory. In the leading order the computations are rather trivial [4-7] and the general result
for arbitrary Lorentz spin M has the following form [5, 7, 8]:

YD (M) = f: % , y(M) =" g* 420 (M) (1.5)
=1 (=1

During the next-to-leading order calculations it was found [9], that the anomalous dimen-
sions have a lot of remarkable properties in particularly confirming the maximal tran-
scendentality principle [8], which relates the results in Quantum Chromodynamics (QCD)
and in N' = 4 SYM theory and roughly states, that the most complicated part of the
corresponding result in QCD gives a desired result in N'= 4 SYM theory.

Later it was found, that there is a more powerful and more general way to compute
not only the anomalous dimensions of the composite operators, but also the energies of
their pairs string states. This was done through an identification of composite operators
with a spin chain [10], so the calculation of the anomalous dimension was reduced to the
computation of the energy of the spin chain state. The last problem can be solved with
the help of so called integrability, for example, using the Bethe ansatz method [11-13].

In this way, a number of exact results were obtained for the unprotected opera-
tors, among which the Asymptotic Bethe Ansatz (ABA) [14-16] for the operators/strings
with large quantum numbers (large J), Thermodynamic Bethe Ansatz (TBA) [17-19],
Y-system [20, 21] and Quantum Spectral Curve (QSC) [22, 23] for the arbitrary composite
operators, at least in sl(2) sector (see ref. [24] for review).! However, all these results are
concerned the operators with some fixed integer value of M, which is the number of covari-
ant derivatives in twist-2 operator or the number of impurities in the integrable language
and for some limiting cases (the most important is large M limit). For the applicability in
the realistic models such as QCD the most interesting result is related with the so called
small-z physics, which corresponds to the special limit of the general expression for the
splitting function related with the anomalous dimension through a Mellin transformation.
In this limit the large logarithms Inx appear, which, in principle, should be summed in
all order of perturbative theory. Such resummation can be performed in some cases, for
example, with the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [29-32] or with the

'Earlier, similar integrability was discovered in QCD in the Regge limit [25-27] and for some opera-
tors [28].



double-logarithmic equation [33, 34] depending on the process under consideration. Both
these equations originate from the study of the scattering amplitudes in the high-energy
asymptotic, which are expanded over the powers of Inx for the small-z limit. For the
BFKL-equation the QSC-approach allow to compute pomeron eigenvalue [35-37], while
the double-logarithmic equation is not understanded very well from the relation with inte-
grability.

In this paper we will consider the double-logarithmic equation for the twist-2 opera-
tors in the planar N' = 4 SYM theory and its generalisation to the subleading logarithm
approximations using the results for the seven-loop anomalous dimension of twist-2 op-
erators in planar NV = 4 SYM theory [8, 9, 38-44] and a database for the analytical
continuation for the relevant function [45]. In section 2 we review the alternative rep-
resentation for the anomalous dimension of twist-2 operators and its relations with the
exact results, coming from the generalised double-logarithmic equation. Section 3 gives
a short introduction to the derivation of the double-logaritmic equation from the direct
diagrammatic computations and from the infra-red evolution equation. In section 4 we
introduce the generalised double-logarithmic equation, providing the detailed information
about its origin, its properties and its solution. Moreover, we present the similar generalised
double-logarithmic equation, obtained from the analytical continuation of the anomalous
dimension near different value. In appendix B we show, how the anomalous dimension
can be reconstructed from the information, provided by the generalised double-logarithmic
equation. Appendix A and appendix C contain the expansion of the right-hand side of the
generalised double-logarithmic equation up to seven loops and transcendental number with
weight 12 ((;2 and similar).

2 Analytical properties of anomalous dimension

Twist-2 operators are exceptional among all others as their anomalous dimension has a lot
of remarkable properties. As well known, the anomalous dimension of twist-2 operators is
expressed through the nested harmonic sums defined as (see [46]):

M J M sgnia J
sy =y CEE g on =y B LG e

where M is a positive integer number. In the leading order of perturbative theory, the
result for the anomalous dimension of twist-2 operators (1.3) in A/ = 4 SYM theory is
given by [5, 7, 8]:

YHO(M) = 48, (M). (2:2)

The simplest harmonic sum 57 can be written in the following way for all values of its
argument (analytically continued to the complex plane):

1

- ) 2.3
PN EaT (2.3)

-y

1
=

M1 o =1 1
JZ=:1‘7 JZ=:1] ]:M-‘rl]

.



i.e. it has the simple poles for all negative values of M. Only one meromorphic function
has the simple poles with residues (—1) in all negative integer values of its argument and
this is the polygamma-function W(M):

s =3 (2 ! MEET g (M — 1)+ w(1 2.4
( >—;(j—j+M_1)—vE L s D). (24)
All other nested harmonic sums being produced from the simplest harmonic sum, which is
the polygamma-function, have the same properties: they can be uniquely identified from
the corresponding expressions, which include their residues near the negative integer values.
Such expressions can be extracted from our database [45], which was obtained by means of
the inverse Mellin transformation from the harmonic sums to the harmonic polylogarithms
in z-space [46, 47] and extraction of the small-x logarithms, which correspond to the poles
in the initial M-space. For example, the simplest non-trivial nested harmonic sum with
alternating summation has the following pole structure, being analytically continued from

even integer M near M = —r, r =1,2,3,...
- 1 1 (=1)" - 1
S_271(7’) = E x 0+ ? x 0+ - [S_Q(T — 1) — Cz} , VS. 51(7’) = —;. (2.5)

Replaced w — j + M and r — j we obtain, by analogy with eq. (2.4), the dispersion
(Mittag-Leffler) representation®? for S_o (M)
o A
A (=1
S_91(M) = :
2.1(M) Z] N

j=1

[SaG-1-G]+5%, 5%, =Sl =26, (20

where M is now the arbitrary complex number. For the analytic continuation from odd
integers M we should replace (—1)" to —(—1)" in eq. (2.5) and (—1)7 to —(—1)7 in eq. (2.6).

In fact, the above dispersion representation is related to the expression obtained with
the hep of the usual analytic continuation of the nested harmonic sums [51-54], which in
the case of the considered harmonic sum S_5 1 looks like

S i S AN ((DF 1 (-DF 1 (<11
S-aaM z::z:: k+M J+k7+M_(/€+M)2;_ k2 j+]€+ L2 ; (2.7)
X_:Z_: k+M j+k+M_Sl ;UQ(JFJQ)?‘CL 25‘1, (2.8)

where (1, —2 = —(2/257° + 5/8 (3. Using the decomposition of the first term in the form

1 1 1 1 1
- _ 2.9
(k+M)2j+k+M (k+M) (j—i—k—i—M) j(k+ M)? (2.9)
it can be written as
DE e D e ()
—( — 4 57 —_— 2.10
JZ‘;;] j+k+M 21;1(k:+M) ! l;(k+M)2 (2.10)

2By analogy with the represetation for the Baxter function in ref. [48].
3Similar representation for the analytically continued harmonic sums was used in refs. [32, 49, 50] and
in unpublished work of L. Lipatov and A. Onishchenko (2004).



Then, we change j + k — j for the first term and obtain

S I G VAR S B N G O
where
L o
EI({:@@*:(—IVS_AJ—I). (2.12)
k=1

Substituting eqs. (2.12), (2.11) and (2.10) into eq. (2.8) we obtain

(526 -0~ @) - 26, (213)

5_2,1 (M) — Z
=17

which is the same expression as eq. (2.6). One can check numerically, that both represen-
tations eq. (2.6) and eq. (2.7) give the same result for the arbitrary complex values of M.
Thus, the analytically continued harmonic sum S_5 (M) in eq. (2.8) can be rewritten in
the form of dispersion representation (2.6), which was obtained from the expansion near the
negative integer values (2.5). Similar transformations can be performed for other nested
harmonic sums.

Moreover, it is easy to see, that the number of the harmonic sums in the expression
for the anomalous dimension of twist-2 operators at f-order of the perturbative theory,
which is equal to ((1 — v/2)F + (1 + v/2)%)/2 for k = 2¢ — 1, is the same, as the number
of the unique pole structures for the expansion near the negative integer value of the
analytically continued harmonic sums. For example, at two-loop order the basis from the
usual harmonic sums contains the following seven sums with transcendentality 3:

{S_g, 53, 5271, 51’2, 5_271, 517_2, 5171’1} , (2.14)
while the two-loop result for positive M is the following [9]:
’)/NLO(M) = 8[2 52,1 + 2 5172 —S3—85_3+2 517,2} . (2.15)

The analytic continuation of the harmonic sums near negative integer values has the fol-
lowing form

{_(—W 1 S—G S S (—1)7(S—2— ()

$-(1)($%+%) (1781 S —Su }

9 9 9 ) P) 3 w (217)

{(—1)7’ 1 S 8 (=175, (=1)7S, 51,1}
w3 )



Other unique pole structures come form the harmonic sums with index (—1), which do not
enter into the expressions for the anomalous dimensions of twist-2 operators:

fsi + % _ Q S,
{5—17—278—1,2;S—27—]_,SQ7_1} — { 2 2 2 1

w w?

)

C(FD)7SL (<1)"Sy Sa+ % L (E)m2—1n2

w? w ’ w w? ’

(—1)"(Ss + 2) L2 (—1)%2}

w w?

(2.18)

with the following unique pole structures

{5_1 (-1)"S_1 S (—1)7"52} (2.19)

w2’ w? w w

and S4q 41,41 — (£1)"S+1 +1/w. The presence in the pole expression for the anomalous di-
mension, for example, (—1)"S_s/w means that the expression for the anomalous dimension
through the usual harmonic sums will contain S_5 1 and so on.

Thus, if we know the pole structure for the anomalous dimension, we can write the
dispersion representation for it. Up to two-loop order we have from our database [45] for
eq. (2.2) and eq. (2.15)

3O(r) = 4[ - i] (2.20)
S (L L P
(1 (~17)¢) + 217 Salr - 1))ﬂ, (2.21)

which is transformed into the following dispersion representation

.
JEC
s

I

|
_|_
n
~8

L ] 59 = Sy (c0) = i L (2.22)

j=1 =17

ANLO() =8 H]—:_(;;)); —2 1‘7’—:‘(;41))2] S1(j —1)

(@4 (=1))E(2) +2(-1)S( — 1)
J+M

+ 243 + Czsfo]a (2.23)

where the last two terms are fixed at M = 0.

The disadvantage of this representation is its numerical values for positive integers M,
where the harmonic sums are rational numbers. However, it provides the simplest way to
study the analytic properties of anomalous dimension, for example, to study the relation
between DGLAP and BFKL equations in A = 4 SYM theory [8]. Having the database for
the discussed representation for the relevant harmonic sums, which is given in a wide range
in ref. [45], we can study the properties of the anomalous dimension, related with the BEKL



and the double-logarithmic equations. Moreover, as we have such representation we can
write the expression for the anomalous dimension of twist-2 operators either through the
harmonic sums with the integer positive argument M either through dispersion represen-
tation, which provide information about residues of these analytically continued functions.
For the last case we will work with the results from the BFKL and the double-logarithmic
equations. The solutions of these equations give the exact results for the certain terms in
expansion for the anomalous dimension over w (similar to egs. (2.22) or (2.23)) in all orders
of perturbative theory.

3 Double-logarithmic equation

There are several ways to obtain the double-logarithmic asymptotic for the scattering
amplitudes and related quantities. For the first time it was obtained in QED in refs. [33, 55],
following Sudakov [56], which we briefly discuss below.

For an arbitrary two particle process with the momentum of the initial and final
particles as p1, po and p), ph correspondingly, the usual invariants can be written as:

s=(p1+p)?, t=¢ =P -p)% u=(p—ph) (3.1)

Following Sudakov [56], the asymptotics of the graphs, when s — oo and ¢ or u ~ 1 can
be computed with the help of expansion of all intermediate integrated four-momentum k
over transverse and longitudinal parts:

kE=pa+pB+k,. (3.2)

s-dependence of the graph is contained in the integration over e and 3. One integration is
spent to the calculation of the residues in accordance with path poles for Feynamn graphs,
while the second integration gives at most one Ins. The remaining integral over d?k
corresponds to a two-dimensional integral and for the scalar particles with the finite mass
this integral is always finite and is some definite function of ¢.

However, in the presence of numerator or if the particle is massless the integral over
d’k, can diverge logarithmically for the large over small k| correspondingly. If the initial
integral does not contain any divergences, this means that the integration over k| is cut-off
by s for large k; and 1/s for small k. The integration over the angle can be performed
immediately, the remaining integration over d’k | gives the second In s, that is, the double-
logarithmic term appears.

As was shown in ref. [55] the ladder graph of 2n + 2 order gives the double-logarithmic
contribution, which is given by the following equation:

= (5) / Zon / Lot / 2o / i dﬁﬁ: 2= (3)

so B > 1,

where fy is the result for the corresponding tree amplitude. Jy can be found as the solution
of the Bethe-Salpeter equation and the following expression for the double-logarithmic
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Figure 1. Equation for the double-logarithmic amplitudes.

asymptotic of amplitude can be written:

2 2
F(lns) = fo—1Ii(x), 22 = "2 n%s (3.4)
x

™

where I (z) is the modified Bessel function of the first kind. The small-z expansion of this
solution looks like

1 22 xt 20 a8 x10

Flp)=2f =+ 4+ 2 ) )
(n) = 2J °<2 * 16 384 " 18432 T 1474560 T 17694720()) (3.5)

Another, more general approach, based on the infra-red evaluation equation, allows
one to obtain the functional equation for the amplitude, or, to be more precise, for the
partial wave in the space of a complex angular momentum j not only in QED, but also in
QCD [34, 57, 58]. Graphically, this equation can be represented in the form given in figure 1
for the simplest and the most important case for us. The blob denotes the amplitude, which
is infinity ladder with gluons rungs in the case of study the double-logarithmic asymptotic in
QCD. The main idea of this approach is the isolation of the softest intermediate momentum
of quark lines on the rightmost diagram. Performing the Sudakov decomposition for this
softest momentum and substituting the amplitudes by corresponding Sommerfeld-Watson
integral it is possible to perform integration over Sudakov variables [34]. The final equation
for the colour singlet amplitude with positive signature has the following form [34]:

a 2
frw) =2 1 2 (W)’ (3.6)

with the boundary conditions

2 2
aog NZ -1
@), =0 an =" (3.7)

The amplitudes with colour singlet exchange are given by

fof (w) = 47%w (1 — \/1 — %) (3.8)

and f(T has a square root cut starting from

1/2
w=wi = (gQ(Nf—l)> . (3.9)

472N,



This result was used in refs. [59, 60] to find a similar equation for the non-singlet
structure function at small z. For the non-singlet anomalous dimension of twist-2 operators
in QCD the double-logarithmic equation is usually written as [34]

B N2 -1 o g*

’Y(’Y + w) Cpas s CF 2Nc s Ag I 1672 (3 0)

for the expansion of the anomalous dimension at j = 0 + w.

4 Generalised double-logarithmic equation

The study of the analytical properties of the anomalous dimension of twist-2 operators
in ' = 4 SYM theory led to the suggestion about a simple generalisation of the original
double-logarithmic equation [34, 57, 58]

y(Q2w+7)=—164°. (4.1)

The main idea was that in eq. (4.1) the corrections to the leading order equation will
modify only the right-hand side and that such modification admit, besides the expansion
over the coupling constant g2, only the appearance of the regular terms in w and, possibly,
in . Such work was started by L. Lipatov and A. Onishchenko in 2004 for the general
even M = —2, —4, —6, ..., but was not published, then, some improvements of the double-
logarithmic equation (4.1) were proposed by L. Lipatov in [40]. However, it was not clear
how to extend this procedure to higher orders. A simple generalisation of the original
double-logarithmic equation (4.1) was found in ref. [61] for M = —2 case. Substituting
the results for the analytic continuation of the anomalous dimension of twist-2 operators
(which was known at that moment up to five loops in planar N' =4 SYM theory [8, 9, 38—
42]) near M = —2 + w into eq. (4.1), we obtained the following form of the generalised
double-logarithmic equation:

7(2w+’y):ZZ€ﬁlwmg%. (4.2)
k=1m=0

It turned out that the right-hand side of the modified double-logarithmic equation does
not contain poles in w. The coefficients €% can be read directly from the appendix A up
to g™ and up to transcendental numbers ¢; with weight 12. Here we write down the first
four orders up to weight 6:4

vyR2w+y) = 1692[— 1+w+(1+€2)w2+ (1 —Cg)w3
+ (14 oo + (1= G)® + (1 + G
+ gt { — 64+ w(128Co + 96 () + w?(192 (o — 160 (5 — 8 Cy)

+ w3(—256 (3 + 256 ¢ — 224 (3 + 1524 + 360 (5)

4The math-file with full result can be found in the ancillary files of the arXiv version this paper.
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+w4G%KW+M4g—2%Qy+ﬂ6Q—1MQr%3%>]
%—96{128C3ﬁ-256§4ﬁ—a(1152C2Q3+-512C3%—672(4——960@5)

5000
+uw? (38443——2688§§Q3——1056C§—F256C4%—1504§5——:3C6>}

1888
—%98{2560C2Q3+-384(§——128(5%-:3C6 ... (4.3)

In general, we can expect that the right-hand side of this equation (4.2) should contain
all special numbers from 1 to the most possible transcendental number ({; or its generalisa-
tion). Surprisingly, some of such terms are absent in the higher orders of the perturbative
expansion, moreover, there is some regularity in such behaviour. To make this statement
clear, we have arranged the result for the right-hand side of the equation (4.2) in the form
of table 1, where all columns except the last correspond to the order of perturbative theory,
while each row corresponds to the expected structure. The last column presents the struc-
ture of the double-logarithmic term in the expression for analytically continued anomalous
dimension at M = —2 + w, which is generated by the term from the corresponding row
on the right-hand side of eq. (4.2) after it has been solved. The vector {; means, that we
include all (;, iy 45,... and (;; X G, X Gy -+ - inside such vector ¢; with given total transcen-
dentality 4, which is equal to the sums of absolute values of indices |i1| + |ia| + |iz]| + ..
for example, for transcendentality ¢ = 7 we have

C? = {C'?: C5C21 C3C4} . (44)

The transcendentality of w is equal to (—1) as the transcendentality of the most simple
harmonic sum 57 is equal to 1 and

&pa+wy=£+ouy (4.5)

Each cell in the table should respect the maximal transcendentality principle [8], that is,
the total transcendentality of the corresponding expression should not exceed (2¢ — 1+ 1)
for the ¢ order of perturbative theory, where the additional (+1) comes from the left-hand
side yw in equation (4.2).

From this table or directly from eq. (4.2) one can see, that some of the terms marked by
box drop out from the expected places, which allow us to extend all-loop results, obtained
in our previous paper [61]. Thus, all terms that do not depend on any special numbers (;
are contained in the first column, that is they appear only in the first order of perturbative
expansion on the right-hand side of eq. (4.2). Therefore, only this term will generate all
poles in the anomalous dimension of twist-2 operators, which do not contain any special
numbers ;. For this case, we suppose that the equation (4.2) has the following ezact form

a 1
=164 n_1q :162(—2>. 4.6
Rational g <nz::1 v ) g 1—w ( )

Surprisingly, the series in w was resummed into a simple form.

¥(2w+7)

,10,



k
2 4 6 10 12 g
9 g g g g -] x
w
1 0 0 0 w
w 0 0 0 w?
w? 0 0 0 w3
¢ow? 0 0 0 ¢ow?
w3 0 0 0 wt
Cow 0 0 0 Cow
¢z w? 0 0 0 Cyw
wt . 0 0 w®
Co wt 0 0 ¢o w®
(gw <3 0 0 ¢zw®
Caw [ 0 0 Cqw
w® 0 0 w6
¢gw® (gw 0 0 ¢zt
Caw Caw 0 0 Cqw®
¢s w® (5w 0 0 ¢s w8
w6 0 0 w”
2
¢pwt Cow 0 0 G’
¢z ¢z w? 0 0 G’
Caw Cqw? 0 0 Caw”
5wl ¢ w? 0 0 ¢’
[ w8 Co w2 0 0 [ W7
w’ 0 0 w8
Caw ¢ w® 0 0 ¢ w®
Gz’ Czw® 0 0 ¢y w®
Caw” ¢quw? 0 0 Caw®
G’ s w® 0 0 ¢G5 w®
[ w? [ w3 0 0 [ w8
¢re” ¢re® 0 0 ¢rw®
8 4 9
4
¢aw® Cow 0 ¢ w?
¢y wh ¢y wt 0 ¢z w?
¢yt Caw 0 ¢4w®
¢sw® Csw? 0 ¢sw?
Cow® Cow? 0 ¢ w?
Cr wz ¢ Wj S 0 <7 Wz
Cgw Cgw Cg 0 Cgw
w w w w
¢pe? ¢rw® Cow 0 Cawt?
3
[ w® C3 Wb (3w Caw 0 <3 w0
3
¢qw? Cqu® Cqw Cqw 0 Cqw'?
C5w9 C5w5 ¢s w3 Csw 0 ¢s w10
¢ow? Cow” ¢ow® ¢ow? Cow 0 Cew'?
(32) wZ Cg w: C% wf C?’ wi ng 0 C?’ wig
<7 wl ¢ @ C?w; <7 w Crw 0 <7 “o
Cgw Cgw Cgw Cgw Cgw 0 Cgw
[ w® Co w7 [ w? Co w3 Cow 0 <9 wt0

Table 1. The contributions to the generalised double-logarithmic equation (4.3) and (A.2).
The terms marked by box drop out from the expected places in (4.3) and (A.2).
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The same is correct for other contributions. Thus, all poles of anomalous dimension
with only the first transcendental number (2 can be obtained from the solution of the
following equation:

1 (1-4w+2w?)
16¢° —— —2 2) — 644"
G g (1—w +C2w> 9 ¢ (1-w)?

v (2w +7)

::1692<1;{w-—2%—@uﬂ> —64g4C2(2——(1j?02), (4.7)
where the first two terms in the first bracket are the same as in eq. (4.6), because we need
to write it here (and in all examples below) to obtain the correct solution, which matches
with the expression for the analytically continued seven-loop anomalous dimension.

Then, all poles of the anomalous dimension only with (3 can be obtained from the
solution of the next equation:

1
=16¢* —— -2 - Gu?
N g (1—w C3w)

3 — 11w + 6w? 1+ w — 6w?
*3294<3<(l_w>2°” 492(1_@3>

1 1 2
_ 20~ 9_ + .3 4 o o
— 16¢ (1 — -2 Csw)+329 G (6- 1 (1_@2)

v (2w +7)

6 11 4

128¢% ¢ | — - : 4.8

* 9<3< —w w2 (1—w)3> (48)

Using the seven-loop result for the planar anomalous dimension in N = 4 SYM the-

ory [8,9, 38—44], which is analytically continued at double-logs value up to weight 12 (A.2),

we have found, using MATHEMATICA function FindGeneratingFunction, the following re-
summed expression (w =1 —w):
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where all terms with transcedentality 10 and more or denoting by (- - - ) cannot be resummed
with the available data. The above equation again has some regularity, which can be seen
from table 2. As the most interesting property, the maximal negative power of w is equal
to ¢ for g2 contribution.

In the general case, the result for the right-hand side of the resummed generalised
double-logarithmic equation can be written as:

'y@uw+7):]692<1—2>

1—w
l £+3
15 i+l Czk I ok
2(i+1) 02 + 2| &3] Ce ]
g
Wl 2 Lo Z A-u)
A == 1+2J i+l Cz,ké etsts WJ C?&
+<3C€ g 2(i+1) E 2 3Ge +g2 === 3Ge + o (410)
g & T-uF L Tour

where (g is one of {, Giyiig,..s 2i1C2in+1, ---} With total weight equal to ¢ (see eq. (4.4)
and text around that equation), while o is one of {C2it1s Citiors €201 Cig41s - -} -

To find other interesting properties of the resummed generalised double-logarithmic
equation (4.9), we give its expansion in powers of ¢* and @, which looks like:
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Table 2. The contribution on the right-hand side of the resummed generalised double-logarithmic
equation (4.9). Nonempty cells, labeled with “x”, are presented in eq. (4.9). The cells of the last
five colomns for contributions higher than ¢® are expected according to our assumption.
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The most singular term in @, proportional to g%/, has a rather simple form, at least for
the first three orders. The term proportional to g*/& can be generated with the following
expression:

S U ) G (4.12)

n
n=1 2

The other terms are much more complicated and we did not find any generated expressions
for them with the available data.

The solution of eq. (4.2) has a very simple form

7_—w+\/w+22@nwmg% (4.13)

k=1m=0

and provides the results for the definite contributions into analytically continued anomalous
dimension of twist-2 operators in all orders of perturbative theory after expansion over g2.
For example, for the contribution that does not contain any (;, we have from eq. (4.6)

2 1 2,3 4 1 2 1 2 3
v=89" | ——F+ltwtw w4329 | -5+ 5+ - —w—2w 3w+
w W’ we o w
1 3 2 3
+25696<—5—|—4—2——3—2w+3w3+---> o (4.14)
w? Wt wf w

Note that we can predict not only the poles, but also the regular part of w-expansion.®

Similar expansions can be easily obtained for other (; contributions.

4.1 Analytical continuation from odd values of M

Having in hand the analytical continuation for all harmonic sums up to weight (transcen-
dentality level) 12 not only from even values of M, but also from the odd values of M [45], we
studied the properties of the analytical continuation of anomalous dimension from the odd
positive values M. Actually, the anomalous dimension of all multiplicatively-renormalised
twist-2 operators in A/ = 4 SYM theory is expressed through one universal anomalous
dimension with the shifted arguments, which has only even argument. This can be seen
from the explicit results at one [8] and two [9] loops and was shown in the general case in
ref. [62], smilar to quasi-partonic operators in QCD [63]. However, if we take the expression
for the planar seven-loop anomalous dimension of twist-2 operators and perform the ana-
lytical continuation not from even, but from odd values of M near M = —1 4 w, we obtain

SHowever, the results for the regular part don’t give any new information for the reconstruction of the
anomalous dimension from the constraints, coming from the generalised double-logarithmic equation, see
appendix B.
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the equation, which is very close to the generalised double-logarithmic equation (4.3):
YQ2w+7) = 1607 — 1+ Gu? = G’ + G’ = Gw® + G’ — (o)

—i—g4 { — 64+ w(4+96(3) + w2(—8 C4) + w3(—256 C2C3 + 360 (5)

4aﬁ<m4g+£?@>+w%3mgg5%0@@+7m¢ﬂ

5000
4—g6{256<4+-u41152c2g3-960<5)+-uﬂ (—105643-— :3<5>

1888
%—98{384§§«+-igCﬁ«+—16u1(—1296CéC5%—45244Q3%—553§7)}, (4.15)

where we write the right-hand side only up to the fourth order and up to transcedentality 7,
while the full results up to seven loops and up to transcedentality 12 can be found in
appendix C. In fact, the differences come only with the terms, which are proportional to
the product of the special numbers ¢(; and harmonic sums with the corresponding argument:
for the usual double-logarithmic equation (4.3) the argument of harmonic sums is equal
to 1 and its contribution to the result is the same (up to sign) for all harmonic sums as
Sitia,....ix (1) = £1, while for the analytical continuation from odd positive values of M to
negative M = —1 + w all harmonic sums are equal to 0 as S;, i, ..., (0) = 0.

Note that M = —1 + w is the value related with the BFKL equation. The difference
between analytical continuation from the even and from the odd positive integer values
comes from the sign, which appear in some terms for the analytical continuation of the
harmonic sums with negative indices (see eq. (2.6)). With plus sign we obtain the BFKL
single-logarithms, while for minus sign we obtain the double-logarithms, which combine in
the form of eq. (4.15).

5 Conclusion

We studied the properties of the generalised double-logarithmic equation [61] for the seven-
loop planar anomalous dimension of twist-2 operators in N' = 4 SYM theory, analytically
continued into M = —2 4 w up to transcedental numbers with weight 12 ({12 and simi-
lar), proposed in ref. [61] and found that it can be resummed into the inverse powers of
w = (1 — w). The resummed expression (4.10) provides much more information about w-
expansion of anomalous dimension in any-loop order. Moreover, we have found the similar
generalised double-logarithmic equation, but for the anomalous dimension of twist-2 oper-
ators in the planar N/ = 4 SYM theory, analytically continued from odd positive integers
values to M = —1+w, assuming that the anomalous dimension has the same form for even
and for odd positive integer values of argument. Both equations provide much more infor-
mation about the anomalous dimension of twist-2 operators compared to the information

5The math-file with full result can be found in the ancillary files of the arXiv version of this paper.
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obtained from the BFKL equation.” In principle, such information is sufficient to recon-
struct the anomalous dimension of twist-2 operators at any order (see appendix B) using
LLL-algorithm [64] from the number theory (see refs. [61, 65]), if the analytical continuation
for the relevant harmonic sums is known. However, in practice there is a limitation related
with the applicability of the current realisation of LLL-algorithm® for huge matrices.

The generalised double-logarithmic equation is one of the few results, which has been
obtained in N/ = 4 SYM theory, but it works perfectly in realistic QCD for the non-singlet
anomalous dimension of twist-2 operators if we add S-function as [67]:°

INS (w + NS — 5/045) =0 (wo) + poles terms, (5.1)

where the poles terms appear for the first time in three-loop order and are proportional
to (2 only, moreover, they disappear completely in the planar limit of QCD, when the
Casimir operators for the fundamental and adjoint representations of SU(n.) gauge group
are reduced to Cr = n./2 and Cy = n,.

Note also, that there is the general expression for the non-planar contribution to the
four-loop universal anomalous dimension in N’ = 4 SYM theory [68], which was recon-
structed for arbitrary M from the result for the fixed values [69-72] (see also ref. [73]).
The double-logarithmic limit M = —2 + w for this result can be written as [68]:

48 [192¢, 384¢, 48 288
V(=2 +w) = Yplanar + N2 l 5 1 s (402 15Ca) + 5 (46Gs + 5G)
4
+= (14442 —1728CaCs — 24¢3% — 540¢, + 60C5 — 1367§6) (5.2)

+4 (964‘2 — 288(a(3 + 722(2Cs + 36(3% — 814(3(s + 799¢6 — 56(7) - (’)(w)}

and it violates our generalised double-logarithmic equation (4.2).

At this moment it is not clear how to obtain the corrections to the double-logarithmic
equation (4.1) directly from the diagrammatic calculations or by means of QCS-approach.
However, its simplicity and informativeness are very attractive.

Acknowledgments

I would like to thank L. Lipatov, A. Onishchenko, M. Ryskin and A. Shuvaev for useful
discussions. This research was supported by RFBR grants 19-02-00983-a and 16-02-00943-a
and a Marie Curie International Incoming Fellowship within the 7th European Community
Framework Programme, grant number PIIF-GA-2012-331484.

"The study of the relation between BFKL and DGLAP equations performed in ref. [8] provides much
more information from the BFKL equation for the anomalous dimension of twist-2 operators, but it is not
clear how to generalised this approach to higher orders and, to our knowledge, the corresponding results
were not used for the reconstructions of the anomalous dimension of twist-2 operators.

$We use fplll-labriry [66] for these purposes.

9There is a difference between the normalisation of the anomalous dimension in A" = 4 SYM theory and
in QCD, which produces the difference in the left-hand sides of eqgs. (A.2) and (5.1).
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A Full generalised double-logarithmic equation near M = —2 4+ w

In this appendix we write down the generalised double-logarithmic equation (4.3) from all
available data. We obtain this equation from the planar seven-loop anomalous dimension |8,
9, 38-44] with our database [45] for the analytical continuation of the harmonic sums with
maximal weight 13 up to (j2 and similar multiple zeta values (MZV) with weight 12.
The database for the relations between MZV from [74], which we used for the analytical
continuation, contains the basis of MZV consisting of (; and h,;, for which

iyigis.. = (—1)F Lisy iy is.. (=01, 02,73, - - .) (A.1)

where i,, > 0, k is the length of list {41, 42,3, ...} and Liz (&) is the multiple polylogarithms
as defined in ref. [75]. However, we have found, that all h;; are combined in the single-
valued MZV’s, as given in ref. [76] (see also ref. [77]), that is in terms of (;, (5.3, (7,3, (35,3,
Co,3 and (44,22. The final result is the following:lo

Y(2w+7)=16¢%| —1+w+w?(1+C)+w3(1—G)+wi(1+G) +w’(1-C)

+wWS(1+¢)+w (1) +WB(1+G) +w(1-G)

+ w1+ o)+ (1= Ci1) +w' (1 + o)
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A 5 58
+wh( 3200, — 288 (3 +144 (2 +216 (4 — 144 (5 + gcﬁ
4w <384 (o —352(3+280Cs — 2803 s — 208 (5 — 384 (o (5 + 138 (g + 707c7>
6 144
+wO( 448 ¢y — 416 (3 +344 (4 — 272 (5 + 2723 (5 +202 (6 — 134G — ?g}),g
1183

+ 30C8> +w’ (512 Co— 480 (344084 — 336 (5 — 408 (4 (5 + 266 (g

263
— 2663 (s —198Cr —512(o 7+ 1185Cy+ 2@) +u® (576@ —544(s

141 391
44724 — 4005+ 330 (g — 262 (74262 (3 (7 — 1309 — ?C773 + 7{@;
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519 1033 28677
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C11

10The math-file with this result can be found in the ancillary files of the arXiv version of this paper.
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B Reconstructon of anomalous dimenson from GDLE

The generalised double-logarithmic equation provides information, which can be used for
the reconstruction of the anomalous dimension of twist-2 operators. If we know the anoma-
lous dimension at f-loop order, we can use the generalised double-logarithmic equation to
obtain the constraints for the w-expansion of the anomalous dimension at (¢ + 1)-loop
orders. Each harmonic sum can be uniquely identified through its pole structure (see sec-
tion 2), but since we are restricted only with value M = —2 4w, we lose some information.
To reconstruct the anomalous dimension of twist-2 operators in second (or two-loop) or-
der, we should, following the maximal-transcedentality principle [8], take the basis from all
harmonic sums with weight 3:

B2 1oop = {5-3,53,5-21,52.1,51,-2,51,2, 51,11} - (B.1)
The analytical continuations for these harmonic sums in M = —2 4+ w look like:
1 21 9 45
5_3(—2 —l—w) = —E —14+w (—3 — 8<4) +w (—6+ 8C5> s
1
Sa(—2+w) = 1 - — +wB+30) + w*(6 — 6¢5),

6
3 83
o (<4420 -G - 566+ 106,

S-21(=2+w) = %(—1 —() -2+ G+w (—3+§2 - i’?’g4>

So1(—2+w) =2+ %(1 — )+ +w (3—C2+i44)

+ w? (4 — 22 + (3 + 2¢2(3 — ZCE)) ;
1 1

3 3 67
Si—2(—2+w) = 2, Tttt <—1 5% 16(4)

3 21 83
2
-1 — = . —
+w ( 2§3+ 8c4+16<5),

11 17
Si2(—24w) = i 1-23+w (—1+2<3+ " 4‘4)

+ w? (—1 + 203 —3Cs — g%) )
S1aa(-24w) = <G = Gt w (<G + 2+ 501
+ w? <—C2 + 2(3 + 2¢2(3 — 4C5 — iC4> . (B.2)

From one-loop result (2.2) and (2.22) we know, according to table 1, the information
about all terms in w-expansion, which don’t contain any transcendental numbers (;. From
eq. (B.2) we see that S, _2 and S 2 have exactly the same rational part of w-expansion,
S_21 and S21 have the opposite sign for the rational part of w-expansion and S_3 and S3
have the opposite sign for the regular part of w-expansion without transcendental numbers
(i, while S1 1,1 does not contain such expansion at all. This allows us to fix four coefficients
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from seven in the ansatz from basis (B.1), that is three pole terms and one regular term work
here, while the coefficient in the front of 57 11 remains completely unfixed.'! Nevertheless,
the system of four Diophantine equation for seven variables can be solved with the number
theory, applied LLL-algorithm [64] to the matrix constructed from these equations (see
refs. [65, 78] for details).!?

Note, that the basis (B.1) can be reduced with the help of Gribov-Lipatov reci-
procity [79-81], especially in higher orders. The reciprocity-respecting function P(M) [79-
81] is defined as

V(M) =P (M + ;v(M)> (B.3)

and is related to the reciprocity-respecting splitting function P(z) [79, 80] through the
Mellin transformation. In all orders of perturbation theory, P(z) should satisfy the Gribov-
Lipatov relation [82]

P(z) = —x73<1> . (B.4)

x
The advantage of such consideration is that P(M) can only be expressed in terms of the
binomial sums with positive indices (see [46])

N .
St (N) = (CD)N S (C1)) <ij ) (N ;”) Sivin ()., (B.5)
j=1

which are the special combinations of the usual harmonic sums [80, 83]. The basis con-
structed from the binomial sums consists of 221 at f-loop order instead of ((1 — v/2)¥ +
(14 v/2)¥)/2 with k& = 2¢ — 1 for the usual harmonic sums (for example, at seven loops
we have 4096 vs. 47321). At the second order the basis from the binomial harmonic sums

contains four terms
Ba_100p = {S3 =25_3—45 91, Sp1 =853, S12 =253 —451 2,
8171,1 =253 — 451,2 — 45271 + 85171,1} . (B.G)

Their analytical continuations near M = —2 + w have the following form:
2 4
S3 = ——5+ —(14+6) +6 46 +w(6 - 46 +3G)
tw? (4= 8C + 46 460203 — G5 )
2 4 4 23
S0 =~ g+ gt o+ 26+ w (-2 466+ 5G]
w w w 2

21 19
4t (=8 +66- T - 5'6).

2
S21 = == +2+w(6+6G) + w?(12 — 12¢5),

2 4 4
S111=——=+—5+ -0 —2—-80 —4@G +w(—2—4¢ + 8(3 — 4¢4)
w3 w? w

+w? (4¢3 + 8Cals + 2C4 — 8C5) - (B.7)

"However, it does not satisfy large M asymptotics.
12We use fplll-labriry [66] for this purpose.
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Now all terms without (; are different for the different Sy, but when we fix all poles we
automatically fix the regular part, so we have only three equations for four variables, which
can be solved with LLL-algorithm.

At third order we should include, according to table 1, some terms with (» and (3.
This gives nine equations for sixteen variables (really for fourteen variables, as two of them
don’t satisfy the large M limit).

Proceed in the same way, we can reconstruct the f-loop anomalous dimension from
the result at (¢ — 1) loops using the generalised double-logarithmic equation. However,
in practice, at least for the moment, there are problems when solving the system of the
Diophantine equation with the help of LLL-algorithm for huge matrices (with dimension
about one thousand and more).

C Full generalised double-logarithmic equation near M = —1 + w

The full result for the analytically continued seven-loop anomalous dimension from odd
values into M = —1 + w up to weight 12 reads as: ™3

YRw+7)=16¢*| -1+ G- G+w - W G+wi —w G

+w® s — w’ G+ w'® G0 — w't ¢i1 + w'? Cu]

+ gt —64C + 96w — 8wy +w( — 256 (2 (3 + 360¢5)

w4<pm<§+mg58)
—i—w —280(3(y — 84(2(5 +707C7)

272G G5~ 1o Goy 1183<8>

+u( 408@45—266@46—512@<¢+4185@)
141 977 12097
(262<3<7 Ml Ty Cm)
28677
+w9< 394C5C6—536C4C7—640C2€9— 2 C3C8 Cll)
46 1161445
10 (9 9 _ 40 >
+w (98c5<7+ 58030 — Do+ SOt
5000
01256 (4 + w(1152 (2 ¢3 — 960 () + w? ( 105643-g6>

+ w3 (= 1072 (3 4 + 6880 (2 (5 — 6412 (7)

(3552 Co €2 — 6080 Cs Cs + 384 Co 5 — 9170@)

13The math-file with this result can be found in the ancillary files of the arXiv version of this paper.
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