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1 Introduction

Perhaps the most elementary property of a vacuum solution of string theory, required for
phenomenology, is that the extra dimensions are small enough to hide them from low-energy
observers. In the case of AdS or dS vacua we can define “small enough” with respect to the
Hubble scale. In this paper we focus on AdS vacua, and this condition reads

LKK
LAdS

� 1 , (1.1)

where LKK is the Kaluza-Klein length scale defined through the overall volume V of the
d-dimensional compact internal manifold as V = LdKK and LAdS is the inverse of the Hubble
scale. We use the volume as a proxy for the masses of the tower of Kaluza-Klein modes of
the internal space, which is a good idea if the internal manifold is approximately isotropic.
In general we want the masses of Kaluza-Klein excitations to be high with respect to the
inverse AdS length.

Another crucial property for phenomenology is moduli stabilisation. In case the AdS
vacuum should be suitable for further uplift to a dS vacuum, we also want all squared
masses to be positive, and not just above the BF bound. Such AdS vacua are really hard
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to come by, especially if we want parametric control and parametric scale separation.1
A holographic perspective seems to point to the same difficulty. Scale separation with
positive masses implies dead-end CFTs (that is, CFTs without any relevant or marginal
deformations) with parametric gaps in the operator spectrum. Such CFTs have never been
constructed before, but neither is there a proof against their existence. A recent analysis
of [5] (see also [6]) however supports the intuitive picture that such CFTs potentially cannot
exist and the authors suggest that the first non-trivial spin two operator of a CFT (dual to
a KK mode) cannot have a parametric large dimension, similar in spirit to the conjecture
made earlier for spin zero operators [7].2

We are aware of two classes of flux compactifications which are claimed to nevertheless
achieve the above mentioned properties. Most well-known are the so called DGKT AdS4
vacua [8] (see also [9–12]) from reducing massive IIA supergravity on a CY 3-fold with
intersecting O6 planes down to four dimensions using RR and NSNS fluxes. Preliminary
investigations on finding solutions in IIB, inspired from T-duality, exist [13, 14] but they
are outside of the controlled regime since some cycles become small [3]. However, double-T-
duality brings one back to IIA without Romans mass and then controlled solutions seem
again possible [3, 15]. A second class consists of AdS3 vacua obtained by reducing massive
IIA on a manifold of G2 holonomy [16, 17]. For both classes of examples a certain set of RR
fluxes are unconstrained by tadpole conditions and taking a limit of large flux guarantees
parametric weak coupling, large volumes, and parametric scale separation.

One of our results is a basic investigation of the putative CFT2 dual to the AdS3 vacua,
akin to the one carried out for the DGKT AdS4 vacua in [18, 19]. We will also extend the
analysis of AdS4 vacua in [19] by looking at many different toroidal orbifolds, more general
examples with metric fluxes and a dual type IIB compactification. An important focus in
this paper is whether the AdS3 vacua satisfy some conjectured Swampland criteria. We
focus on three conjectures, relevant to our discussion:

• The Strong AdS distance conjecture [20] ruling out all scale separated SUSY AdS
vacua and its refined version [21] that rules in the DGKT vacua on the account of
specific properties related to the presence of a discrete higher form symmetry, which
we review.

• The non-SUSY AdS conjecture [22] stating that all non-SUSY AdS spaces can at best
be meta-stable.

• The AdS moduli conjecture [7] stating that the lightest scalar mass m should not be
parametrically large in AdS units, i.e., m2L2

AdS is not parametrically large.

The last conjecture is automatically satisfied for the AdS3 vacua of [16] and the AdS4 vacua
of [8]. Therefore we focus on the first two conjectures. We will find the first one is violated

1It has been claimed that orientifolds are necessary for achieving this [1], but recent investigations [2, 3]
might imply this requirement can be dropped. One of course does not have to insist on parametric control
and can have exponentially scale-separated, stable AdS vacua, as was recently shown in [4]. It would be
interesting to check the conformal dimensions in the putative dual CFT3 theories of these AdS4 vacua.

2The AdS moduli conjecture of [7] is still consistent with scale separated vacua of the DGKT kind.
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in the AdS3 compactifications of [16], and that the decay channel required by the second
one cannot be found, within the approximations made.

The reason we check the consistency of the AdS flux vacua with Swampland conjectures
instead of using the vacua to give circumstantial evidence or counterexamples to said
conjectures is that the vacua have not been established at the full string theory level. Their
existence is still shrouded in some mystery due to approximations used in deriving the
vacua. For instance, for the AdS3 vacua the O6 planes are distributed as follows on the
toroidal covering space: 

O6α : × × × × − − −
O6β : × × − − × × −
O6γ : × − × − × − ×
O6αβ : − − × × × × −
O6βγ : − × × − − × ×
O6γα : − × − × × − ×
O6αβγ : × − − × − × ×


. (1.2)

Such a complicated intersection of O6 planes hinders a clear 10-dimensional picture in
which the O6 planes backreact on the G2 holonomy [23, 24]. The only available 10D
picture is one in which the O6 planes are smeared over the G2 space [16], just as for
the DGKT vacua [15, 25, 26]. In the recent years this has been understood better, and
for non-intersecting O6 planes in massive IIA the explicit backreaction was shown to be
consistent with the smeared approximation [27] whereas for the intersecting case reassuring
results were obtained at first-order in a backreaction series [28, 29]. A generalisation of
the DGKT solutions without Romans mass exists, and a preliminary lift to 11d has not
revealed any signs of a troublesome backreaction either [3], despite the claims in [23]. For
the AdS3 vacua of [16] this has not yet been achieved but some first step in generalising
them was taken in [17].

In the next section we review the flux vacua of [16] and elucidate the vector spectrum
which was not known. In section 3 we verify that the refined Strong AdS distance conjecture
of [21] is violated despite the close analogy with the DGKT vacua. We also tried to construct
explicit non-perturbative decay channels for the non-SUSY AdS3 solutions of [16], and found
none, paralleling the analysis carried out for the DGKT vacua in [30] (see however [31],
which achieved recent progress in DGKT). Finally, in section 4 we compute some basic
properties of the dual CFTs for AdS3 and AdS4 vacua and find interesting results for the
dimensions of dual conformal operators. Much of the work in this paper that concerns AdS3
vacua is based on the master’s thesis [32].

2 Review of scale separated AdS3 vacua

We now recall the construction of scale separated AdS3 vacua of [16] and extend the
discussion of the spectrum of light fields to the case of vectors. The procedure of [16] mimics
essentially the construction of the DGKT AdS4 vacua [8] (see also [9, 10, 12]) which were
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obtained from reducing massive IIA supergravity on a CY 3-fold with intersecting3 O6
planes down to four dimensions. To obtain AdS3 vacua we instead reduce on a manifold of
G2 holonomy. A certain set of 4-form RR fluxes are unconstrained by tadpole conditions
and taking a limit of large flux guarantees parametric weak coupling, large volumes, and
parametric scale separation.

To make the construction explicit we will orientifold an orbifolded 7-torus such that we
obtain a singular G2 space. The seven internal coordinates on the torus covering space are
labeled as ym

ym ' ym + 1 , (2.1)

and we take the metric in Einstein frame to be

ds2
Covering T 7 =

∑
m

(rm)2(dym)2. (2.2)

The orbifold group Γ is generated by the following Z2 involutions

Θα :
(
y1, . . . , y7

)
→
(
−y1,−y2,−y3,−y4, y5, y6, y7

)
,

Θβ :
(
y1, . . . , y7

)
→
(
−y1,−y2, y3, y4,−y5,−y6, y7

)
,

Θγ :
(
y1, . . . , y7

)
→
(
−y1, y2,−y3, y4,−y5, y6,−y7

)
,

(2.3)

and then Γ = {Θα,Θβ ,Θγ ,ΘαΘβ ,ΘβΘγ ,ΘγΘα,ΘαΘβΘγ}. The Θ’s commute and preserve
the calibration three-form Φ:

Φ = e127 − e347 − e567 + e136 − e235 + e145 + e246 , (2.4)

where eijk = ei ∧ ej ∧ ek, and we have introduced the seven vielbeins of the torus

em = rmdym . (2.5)

The untwisted sector is described by a compactification over a singular G2 space without 1-
or 6-cycles, and with seven 3-cycles (and seven dual 4-cycles). In general, we would expect
additional fields in the twisted sector; some of these might be interpreted as collapsed 2-
or 5-cycles. In any case, the untwisted sector gives eight scalars (the 7 radii rm and the
dilaton). Reducing C3 over the 2-cycles leads to 3D vectors which we will show below are
all massive, if present. The C1 vector is projected out, so the whole untwisted bosonic
content comprises of eight real scalars. The fluxes stabilise these 8 scalars.

2.1 Fluxes and orientifolds

We add O2 planes through the following involution (together with the usual worldsheet
actions):

σ :
(
y1, . . . , y7

)
→
(
−y1,−y2,−y3,−y4,−y5,−y6,−y7

)
. (2.6)

3Whether the O6 planes intersect depends on the details of the orbifold. In the original example of [8]
they do not intersect.
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This involution σ has 27 fixed points, and thus 27 different O2 sources in the torus covering
space located at the points yi = 0, 1/2. Notice that the calibration is odd under the O2
involution and that Γ commutes with σ. The orbifold images of these O2 planes are O6
planes specified by the involutions:

Θασ : yi →
(
y1, y2, y3, y4,−y5,−y6,−y7

)
,

Θβσ : yi →
(
y1, y2,−y3,−y4, y5, y6,−y7

)
,

Θγσ : yi →
(
y1,−y2, y3,−y4, y5,−y6, y7

)
, (2.7)

and products thereof. This leads to 7 different directions for O6-planes already depicted in
equation (1.2). These intersections are calibrated supersymmetrically and their transversal
spaces are defined by the volume forms

Φi =
(
dy127,−dy347,−dy567, dy136,−dy235, dy145, dy246

)
, i = 1, . . . , 7 , (2.8)

which form a useful basis of 3-forms. The G2 calibration is then Φ = siΦi, where the si are
the metric moduli, related to the radii rm as follows

s1Φ1 = e127 → s1 = r1r2r7 , s2Φ2 = −e347 → s2 = r3r4r7 , etc. (2.9)

A basis of (co-)closed 4-forms, invariant under Γ is

Ψi =
(
dy3456,−dy1256,−dy1234, dy2457,−dy1467, dy2367, dy1357

)
, i = 1, . . . , 7 . (2.10)

The co-associative calibration takes the form

? Φ =
7∑
i=1

VE
si

Ψi , (2.11)

where the volume in Einstein frame is given by VE = r1r2 . . . r7.
We now specify the fluxes; we will have NSNS H3 flux and the RR fluxes F4 and F0.

The F4 flux splits into two parts:

F4 = F4A + F4B , (2.12)

with the split determined by its wedge product with H3:

[F4A ∧H3] = 0 , [F4B ∧H3] = −[δO2], (2.13)

where [X] denotes the de Rham cohomology class of the differential form X. The actual
10-dimensional equations require equality of the flux at the level of differential forms;
restricting ourselves to solving them at the level of cohomology classes only is equivalent to
smearing the O-planes. We see that the B-part is designed to cancel the O2 RR tadpole,
while the A-part is unconstrained by any tadpole. This will turn out crucial for achieving
weak coupling, large volume, and scale separation. The O6 tadpole is cancelled by F0 and
H3 flux. The 10D solution (and hence with smeared orientifolds) is given by

H3 = h
∑
i

Φi , F4A =
∑
i

f iΨi , F4B =
∑
i

f̂ iΨi . (2.14)

– 5 –



J
H
E
P
0
5
(
2
0
2
2
)
1
6
7

Tadpole constraints enforce:

hm = µ ,
∑

fi = 0 ,
∑

f̂i = µ′

h
, (2.15)

where F0 = m, µ is the O6-plane charge and µ′ the O2-plane charge. These flux quanta
h,m, fi should be properly quantized and this is discussed in [16]. In the following we will
however take h,m, fi to denote the quantized fluxes.

2.2 Stabilisation of scalars

The 3D supergravity theory has minimal supersymmetry in the form of two real supercharges.
The 3D scalar potential is determined by a real superpotential P via

V (φ) = GIJPIPJ − 4P 2 . (2.16)

PI is shorthand for ∂IP and GIJ is the metric on the scalar manifold. In [16] the general
expression for P for any G2 compactification with fluxes and O2/O6 planes was found. We do
not need it here, and just present the real superpotential P for the simple fluxes given earlier:

P = m

8 e
y
2−
√

7x
2 + h

8 e
y+ x√

7

7∑
i=1

1
s̃i

+ 1
8e

y− x√
7

7∑
i=1

(
f i + f̂ i

)
s̃i , s̃7 =

6∏
a=1

1
s̃a
. (2.17)

We defined orthogonal combinations x, y of the dilaton φ and volume modulus v

x√
7

= −3φ
8 + βv

2 , 2y = −21βv − 1
4φ, (2.18)

where the Einstein frame volume is defined by VE = exp(7βv) in string units and

s̃a = V
3/7
E sa . (2.19)

Canonical normalisation of x, y (or v, φ) requires β = 1
4
√

7 .
A particularly simple solution has the following choices where F4A 6= 0 and F4B = 0:

f̂ i = 0 , f i = (−f,−f,−f,−f,−f,−f,+6f) , f , h ,m > 0 . (2.20)

Since there is no F4B we require space-filling D2-branes to solve the RR tadpole, and these
introduce many additional compact moduli. However, as shown in [16] introducing the right
amount of F4B-flux to cancel the O2 tapdole without D2 branes still leads, parametrically,
to the vacuum described with the above fluxes in the large f limit. This is because the
number of D2 branes one needs to introduce to cancel the tadpole does not scale with f .
Hence the above vacuum in the large f limit serves as some universal solution, good for
understanding the closed string untwisted sector, whose properties we now outline. Later
we use this vacuum as a starting point for studying its putative holographic dual.

In total we need to stabilise 8 scalars; the dilaton φ, the internal volume in 10D Einstein
frame VE , and six fluctuations of radii at fixed volume s̃a with a = 1, . . . , 6. One should
worry about the twisted sector which we ignore. However, one expects that this is not a
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genuine problem since it was explicitly verified that the analogous issue does not arise in
the DGKT vacuum [8], although this issue is currently under investigation [33].

The simplest supersymmetric AdS vacua considered in [16] assumed all s̃a (a = 1 . . . 6)
have the same value σ:

〈s̃a〉 = σ . (2.21)

The resulting SUSY vacuum has:

h

f
V

1/7
E e−3φ/4 = a ,

m

f
eφV

4/7
E = b , (2.22)

〈V 〉 = − 1
64a6b4

(
6σ2 + 36

σ12

)
m4h6

f8 , (2.23)

with
a = 0.515696 . . . , b = 3.43111 . . . , σ = 1.32691 . . . . (2.24)

2.3 Scale separation

The flux f is unconstrained by tadpoles and can be taken arbitrary large. In the large f
limit we find:

gs = eφ ∼ f−3/4 , VE ∼ f49/16 , (2.25)

and we can thus verify that our vacuum corresponds to weak string coupling and to large
volume for large f . The volume in 10D string frame VS scales as VS ∼ f7/4 which also
grows large. The AdS radius scales as L−1

AdS ∼Mp

√
〈V 〉 such that we find arbitrary large

scale separation4
(VS)1/7

LAdS
∼ f−1/2 , (2.26)

at arbitrary small coupling and large volume. In this solution, all of the six s̃a take the
same numerical value, σ, by construction, and the seventh is slightly different. But the
torus remains, as a whole, at large values and no individual directions get small.

2.4 Axion content

Reference [16] did not investigate the axion content of the vacua and so we do this here and
demonstrate that the fluxes also remove all axions. Axions can either come from D-brane
positions, from dualizing vectors on the D-brane worldvolume, from dualizing vectors from
reducing C3 over even two cycles or from reducing B2 over odd 2-cycles. Since we can
cancel RR tadpoles with fluxes, no D-branes are needed.

The only two cycles in our model are potentially in the twisted sector, if any. We will now
show we expect the vectors generated from C3 to be massive and so no axions are being gen-
erated by C3. Whether axions from B2 can generate discrete symmetries is discussed below.

The Chern-Simons term in 10D that can give these vectors a mass upon reduction, is

S10 = −1
2

∫
10
C3 ∧HBG

3 ∧ dC3 . (2.27)

4Mp in 3D is given by g−2
s VS .
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If we insert

HBG
3 =

b3∑
i=1

hiΦi , C3 =
b2∑
a=1

Aaµ dx
µ ∧ ωa . (2.28)

We then find
L3 = −1

2mabA
a ∧ dAb , mab = λabj h

j , (2.29)

where a, b = 1, . . . , b2 (Betti-number for even 2-cycles) and j = 1, . . . , b3 and∫
7
ωa ∧ ωb ∧ Φj = λabj . (2.30)

If we use that the flux vacuum has all hi equal; hi = h, and that we can choose calibrated
representatives for the basis of 2-cycles5 we find

mab ∼ h
∫
?ωa ∧ ωb , (2.31)

which is clearly full rank.

3 Conjectured Swampland criteria

The refined strong AdS distance conjecture [21] allows scale separated AdS vacua on the
condition that there is a large discrete higher form symmetry with some specific properties
and it was shown that the DGKT vacua [8] obey those properties. In here we investigate
whether the same is true for the AdS3 vacua of [16]. We first briefly summarize the findings
of [21] concerning the scale separated AdS4 DGKT vacua.

3.1 Zk weak coupling and refined AdS distance conjecture

Reference [21] considers a Gedanken experiment starting with a black hole that is charged
under a discrete Zk symmetry, when k becomes large. The Zk gauge symmetry does not
involve a long-range field, and therefore the semiclassical space-time solution for the black
hole is blind to the Zk-charge. Following a logic similar to that used to derive the species
bound [34], one arrives at a condition for the masses of the lightest Zk-charged particles to
avoid trouble with remnants when k is large:

m ∼ k−αMp , (3.1)

where α is positive and of order 1. Next, the black hole is assumed to also carry a
continuous U(1) charge next to the discrete Zk charge. In case of a supersymmetric theory
with extremal non-SUSY black holes, the most natural thing the black hole can do in order
to decay consistently is making sure that the emitted Zk-charged particles satisfying (3.1)
are WGC-particles as well;

m ∼ gqMp , (3.2)

where g is the U(1) gauge coupling and q is the U(1) charge. The most natural way this is
consistent is if g ∼ k−α. This is called the Zk Weak Coupling Conjecture (WCC).

5Such that ?ω = ω ∧ Φ.
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It is important to realize that, in the setup considered in [21], the Zk charge is correlated
with the U(1) charge. The Zk charged particles that are emitted in the evaporation process
are neutral under an additional Zm gauge symmetry, where k � m. The U(1) generator is
in fact a linear combination of the Zk and the Zm generators. The Zm charged particles
satisfy the Zm WGC and are thus heavier, in a natural realization of a sublattice WGC [35].
Reference [21] then took the natural next step and contemplated the same conditions
for higher-form gauge symmetries under which extended objects can have both Zk and
U(1)-charges. These ideas were then tested in various circumstances and our interest is
particularly in the situation of the DGKT vacua. Such vacua were shown to have a Zk
3-form symmetry under which domain walls are charged and at the same time they have
the usual charge under a massless 3-form.

A very intriguing observation was then made concerning scale separation. Recall that
the Strong AdS Distance Conjecture (SADC) [20] states that for supersymmetric AdS vacua

Λ ∼M2
cutoff . (3.3)

Often Mcutoff means MKK, and then the SADC clearly forbids scale separation. If this is
correct, the DGKT vacua must either be inconsistent, or the cutoff scale is unexpectedly low.

The relation between scale separation and the Zk WGC comes about as follows; the
fluxes taken large in DGKT with quantum k indeed lead to a discrete Zk symmetry on
top of a continuous one. The WGC domain walls are charged both under this discrete and
continuous symmetry, and are unstable against nucleation of strings. Using the interplay of
these U(1) and discrete symmetries, the authors of [21] could derive how the internal volume
and the dilaton, and hence also MKK, depend on k. Furthermore, there are stable domain
walls, not charged under any discrete symmetry, that separate vacua with a different flux
number k. Their tension directly relates to the vacuum energy through a relation of the
kind d

√
|Λ|/dk ∼ TDW , in Planck units, with the tension scaling in a certain way with k.

This equation essentially comes from the junction condition for domain walls that make k
jump one unit. As a consequence one can argue for the relation, similar to the black hole
case (3.1) with α = 1:

Λ ∼ M2
KK
k

. (3.4)

For large k there is indeed scale separation. This is how [21] came to the refined SADC,
which essentially states that in a SUSY AdSd × X vacuum, with domain walls charged
under a continuous and a discrete Zk (d− 1)-form symmetry, (3.4) has to hold, implying
scale separation is possible at large k. Note that the heuristic derivation is rather loose and
one should regard (3.4) mainly as an observation for the IIA scale separated AdS4 vacua
that looks very much like the domain wall extension of (3.1).

We now review how the Zk 3-form symmetry arises in the DGKT vacua and then show
that the analogous Zk 2-form symmetry is unfortunately absent for the AdS3 vacua of [16].
This shows that the refined SADC, at least in the form proposed in [21], is not applicable
in 3 dimensions.
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Vacuum 1
<latexit sha1_base64="T5JJaDVSS3hryIhvjUU0nNtQLOg=">AAACB3icbVDLTgJBEJzFF+KDVY9eJhITT2TXmOiR6MUjJvJIYENmhwYmzD4y02MkGz7Ab/CqZ2/Gq5/h0T9xwD0IWKfqrup0d4WpFBo978sprK1vbG4Vt0s7u3v7ZffgsKkTozg0eCIT1Q6ZBiliaKBACe1UAYtCCa1wfDPTWw+gtEjie5ykEERsGIuB4Axtq+eWuwiPmDUZNyai/rTnVryqNwddJX5OKiRHved+d/sJNxHEyCXTuuN7KQYZUyi4hGmpazSkjI/ZEDqWxiwCHWTzw6f0dJAoiiOg8/qvN2OR1pMotJ6I4Ugva7Pmf1rH4OAqyEScGoSYW4vVBkZSTOjsf9oXCjjKiSWMK2GvpHzEFONoU1rYou07I+hPSzYTfzmBVdI8r/pe1b+7qNSu83SK5JickDPik0tSI7ekThqEE0OeyQt5dZ6cN+fd+fi1Fpx85ogswPn8AaMymYo=</latexit><latexit sha1_base64="T5JJaDVSS3hryIhvjUU0nNtQLOg=">AAACB3icbVDLTgJBEJzFF+KDVY9eJhITT2TXmOiR6MUjJvJIYENmhwYmzD4y02MkGz7Ab/CqZ2/Gq5/h0T9xwD0IWKfqrup0d4WpFBo978sprK1vbG4Vt0s7u3v7ZffgsKkTozg0eCIT1Q6ZBiliaKBACe1UAYtCCa1wfDPTWw+gtEjie5ykEERsGIuB4Axtq+eWuwiPmDUZNyai/rTnVryqNwddJX5OKiRHved+d/sJNxHEyCXTuuN7KQYZUyi4hGmpazSkjI/ZEDqWxiwCHWTzw6f0dJAoiiOg8/qvN2OR1pMotJ6I4Ugva7Pmf1rH4OAqyEScGoSYW4vVBkZSTOjsf9oXCjjKiSWMK2GvpHzEFONoU1rYou07I+hPSzYTfzmBVdI8r/pe1b+7qNSu83SK5JickDPik0tSI7ekThqEE0OeyQt5dZ6cN+fd+fi1Fpx85ogswPn8AaMymYo=</latexit><latexit sha1_base64="T5JJaDVSS3hryIhvjUU0nNtQLOg=">AAACB3icbVDLTgJBEJzFF+KDVY9eJhITT2TXmOiR6MUjJvJIYENmhwYmzD4y02MkGz7Ab/CqZ2/Gq5/h0T9xwD0IWKfqrup0d4WpFBo978sprK1vbG4Vt0s7u3v7ZffgsKkTozg0eCIT1Q6ZBiliaKBACe1UAYtCCa1wfDPTWw+gtEjie5ykEERsGIuB4Axtq+eWuwiPmDUZNyai/rTnVryqNwddJX5OKiRHved+d/sJNxHEyCXTuuN7KQYZUyi4hGmpazSkjI/ZEDqWxiwCHWTzw6f0dJAoiiOg8/qvN2OR1pMotJ6I4Ugva7Pmf1rH4OAqyEScGoSYW4vVBkZSTOjsf9oXCjjKiSWMK2GvpHzEFONoU1rYou07I+hPSzYTfzmBVdI8r/pe1b+7qNSu83SK5JickDPik0tSI7ekThqEE0OeyQt5dZ6cN+fd+fi1Fpx85ogswPn8AaMymYo=</latexit><latexit sha1_base64="T5JJaDVSS3hryIhvjUU0nNtQLOg=">AAACB3icbVDLTgJBEJzFF+KDVY9eJhITT2TXmOiR6MUjJvJIYENmhwYmzD4y02MkGz7Ab/CqZ2/Gq5/h0T9xwD0IWKfqrup0d4WpFBo978sprK1vbG4Vt0s7u3v7ZffgsKkTozg0eCIT1Q6ZBiliaKBACe1UAYtCCa1wfDPTWw+gtEjie5ykEERsGIuB4Axtq+eWuwiPmDUZNyai/rTnVryqNwddJX5OKiRHved+d/sJNxHEyCXTuuN7KQYZUyi4hGmpazSkjI/ZEDqWxiwCHWTzw6f0dJAoiiOg8/qvN2OR1pMotJ6I4Ugva7Pmf1rH4OAqyEScGoSYW4vVBkZSTOjsf9oXCjjKiSWMK2GvpHzEFONoU1rYou07I+hPSzYTfzmBVdI8r/pe1b+7qNSu83SK5JickDPik0tSI7ekThqEE0OeyQt5dZ6cN+fd+fi1Fpx85ogswPn8AaMymYo=</latexit>

Vacuum 2
<latexit sha1_base64="awcUClvQYMGc2xcc95U1tMFjUok=">AAACB3icbVDLTgJBEJz1ifgA9ehlIjHxRHaJiR6JXjxiIo8ECJkdemHC7CMzPUay2Q/wG7zq2Zvx6md49E8ccA8C1qm6qzrdXX4ihUbX/XLW1jc2t7YLO8Xdvf2DUvnwqKVjozg0eSxj1fGZBikiaKJACZ1EAQt9CW1/cjPT2w+gtIije5wm0A/ZKBKB4Axta1Au9RAeMW0xbkxIa9mgXHGr7hx0lXg5qZAcjUH5uzeMuQkhQi6Z1l3PTbCfMoWCS8iKPaMhYXzCRtC1NGIh6H46PzyjZ0GsKI6Bzuu/3pSFWk9D33pChmO9rM2a/2ldg8FVPxVRYhAibi1WC4ykGNPZ/3QoFHCUU0sYV8JeSfmYKcbRprSwRdt3xjDMijYTbzmBVdKqVT236t1dVOrXeToFckJOyTnxyCWpk1vSIE3CiSHP5IW8Ok/Om/PufPxa15x85pgswPn8AaTGmYs=</latexit><latexit sha1_base64="awcUClvQYMGc2xcc95U1tMFjUok=">AAACB3icbVDLTgJBEJz1ifgA9ehlIjHxRHaJiR6JXjxiIo8ECJkdemHC7CMzPUay2Q/wG7zq2Zvx6md49E8ccA8C1qm6qzrdXX4ihUbX/XLW1jc2t7YLO8Xdvf2DUvnwqKVjozg0eSxj1fGZBikiaKJACZ1EAQt9CW1/cjPT2w+gtIije5wm0A/ZKBKB4Axta1Au9RAeMW0xbkxIa9mgXHGr7hx0lXg5qZAcjUH5uzeMuQkhQi6Z1l3PTbCfMoWCS8iKPaMhYXzCRtC1NGIh6H46PzyjZ0GsKI6Bzuu/3pSFWk9D33pChmO9rM2a/2ldg8FVPxVRYhAibi1WC4ykGNPZ/3QoFHCUU0sYV8JeSfmYKcbRprSwRdt3xjDMijYTbzmBVdKqVT236t1dVOrXeToFckJOyTnxyCWpk1vSIE3CiSHP5IW8Ok/Om/PufPxa15x85pgswPn8AaTGmYs=</latexit><latexit sha1_base64="awcUClvQYMGc2xcc95U1tMFjUok=">AAACB3icbVDLTgJBEJz1ifgA9ehlIjHxRHaJiR6JXjxiIo8ECJkdemHC7CMzPUay2Q/wG7zq2Zvx6md49E8ccA8C1qm6qzrdXX4ihUbX/XLW1jc2t7YLO8Xdvf2DUvnwqKVjozg0eSxj1fGZBikiaKJACZ1EAQt9CW1/cjPT2w+gtIije5wm0A/ZKBKB4Axta1Au9RAeMW0xbkxIa9mgXHGr7hx0lXg5qZAcjUH5uzeMuQkhQi6Z1l3PTbCfMoWCS8iKPaMhYXzCRtC1NGIh6H46PzyjZ0GsKI6Bzuu/3pSFWk9D33pChmO9rM2a/2ldg8FVPxVRYhAibi1WC4ykGNPZ/3QoFHCUU0sYV8JeSfmYKcbRprSwRdt3xjDMijYTbzmBVdKqVT236t1dVOrXeToFckJOyTnxyCWpk1vSIE3CiSHP5IW8Ok/Om/PufPxa15x85pgswPn8AaTGmYs=</latexit><latexit sha1_base64="awcUClvQYMGc2xcc95U1tMFjUok=">AAACB3icbVDLTgJBEJz1ifgA9ehlIjHxRHaJiR6JXjxiIo8ECJkdemHC7CMzPUay2Q/wG7zq2Zvx6md49E8ccA8C1qm6qzrdXX4ihUbX/XLW1jc2t7YLO8Xdvf2DUvnwqKVjozg0eSxj1fGZBikiaKJACZ1EAQt9CW1/cjPT2w+gtIije5wm0A/ZKBKB4Axta1Au9RAeMW0xbkxIa9mgXHGr7hx0lXg5qZAcjUH5uzeMuQkhQi6Z1l3PTbCfMoWCS8iKPaMhYXzCRtC1NGIh6H46PzyjZ0GsKI6Bzuu/3pSFWk9D33pChmO9rM2a/2ldg8FVPxVRYhAibi1WC4ykGNPZ/3QoFHCUU0sYV8JeSfmYKcbRprSwRdt3xjDMijYTbzmBVdKqVT236t1dVOrXeToFckJOyTnxyCWpk1vSIE3CiSHP5IW8Ok/Om/PufPxa15x85pgswPn8AaTGmYs=</latexit>Z

F6 = N
<latexit sha1_base64="V9AdqeRdEbvjMHq8pCX5bjyEu6o=">AAACAHicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1EYICmIlEcwHJkfY28wlS/b2jt09IRxp/A22WtuJrf/E0n/iJqYw0Ve9mfeGmXlBIrg2rvvp5BYWl5ZX8quFtfWNza3i9k5dx6liWGOxiFUzoBoFl1gz3AhsJgppFAhsBIPLsd54QKV5LO/MMEE/oj3JQ86osa37NpeGXHVOzm86xZJbdicgf4k3JSWYotopfrW7MUsjlIYJqnXLcxPjZ1QZzgSOCu1UY0LZgPawZamkEWo/m1w8IgdhrIjpI5nUv70ZjbQeRoH1RNT09bw2bv6ntVITnvkZl0lqUDJrsVqYCmJiMn6cdLlCZsTQEsoUt1cS1qeKMmPjmdmi7Tt97I4KNhNvPoG/pH5U9tyyd3tcqlxM08nDHuzDIXhwChW4hirUgIGEJ3iGF+fReXXenPcfa86ZzuzCDJyPbxzdlnk=</latexit><latexit sha1_base64="V9AdqeRdEbvjMHq8pCX5bjyEu6o=">AAACAHicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1EYICmIlEcwHJkfY28wlS/b2jt09IRxp/A22WtuJrf/E0n/iJqYw0Ve9mfeGmXlBIrg2rvvp5BYWl5ZX8quFtfWNza3i9k5dx6liWGOxiFUzoBoFl1gz3AhsJgppFAhsBIPLsd54QKV5LO/MMEE/oj3JQ86osa37NpeGXHVOzm86xZJbdicgf4k3JSWYotopfrW7MUsjlIYJqnXLcxPjZ1QZzgSOCu1UY0LZgPawZamkEWo/m1w8IgdhrIjpI5nUv70ZjbQeRoH1RNT09bw2bv6ntVITnvkZl0lqUDJrsVqYCmJiMn6cdLlCZsTQEsoUt1cS1qeKMmPjmdmi7Tt97I4KNhNvPoG/pH5U9tyyd3tcqlxM08nDHuzDIXhwChW4hirUgIGEJ3iGF+fReXXenPcfa86ZzuzCDJyPbxzdlnk=</latexit><latexit sha1_base64="V9AdqeRdEbvjMHq8pCX5bjyEu6o=">AAACAHicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1EYICmIlEcwHJkfY28wlS/b2jt09IRxp/A22WtuJrf/E0n/iJqYw0Ve9mfeGmXlBIrg2rvvp5BYWl5ZX8quFtfWNza3i9k5dx6liWGOxiFUzoBoFl1gz3AhsJgppFAhsBIPLsd54QKV5LO/MMEE/oj3JQ86osa37NpeGXHVOzm86xZJbdicgf4k3JSWYotopfrW7MUsjlIYJqnXLcxPjZ1QZzgSOCu1UY0LZgPawZamkEWo/m1w8IgdhrIjpI5nUv70ZjbQeRoH1RNT09bw2bv6ntVITnvkZl0lqUDJrsVqYCmJiMn6cdLlCZsTQEsoUt1cS1qeKMmPjmdmi7Tt97I4KNhNvPoG/pH5U9tyyd3tcqlxM08nDHuzDIXhwChW4hirUgIGEJ3iGF+fReXXenPcfa86ZzuzCDJyPbxzdlnk=</latexit><latexit sha1_base64="V9AdqeRdEbvjMHq8pCX5bjyEu6o=">AAACAHicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1EYICmIlEcwHJkfY28wlS/b2jt09IRxp/A22WtuJrf/E0n/iJqYw0Ve9mfeGmXlBIrg2rvvp5BYWl5ZX8quFtfWNza3i9k5dx6liWGOxiFUzoBoFl1gz3AhsJgppFAhsBIPLsd54QKV5LO/MMEE/oj3JQ86osa37NpeGXHVOzm86xZJbdicgf4k3JSWYotopfrW7MUsjlIYJqnXLcxPjZ1QZzgSOCu1UY0LZgPawZamkEWo/m1w8IgdhrIjpI5nUv70ZjbQeRoH1RNT09bw2bv6ntVITnvkZl0lqUDJrsVqYCmJiMn6cdLlCZsTQEsoUt1cS1qeKMmPjmdmi7Tt97I4KNhNvPoG/pH5U9tyyd3tcqlxM08nDHuzDIXhwChW4hirUgIGEJ3iGF+fReXXenPcfa86ZzuzCDJyPbxzdlnk=</latexit>

Z
F6 = N + k

<latexit sha1_base64="ah6btcLYx8AM/JQQbXYxo9D9Flo=">AAACAnicbVDLSgNBEJz1GeMr6tHLYBAEIeyKqBchKIgniWAekF3C7KQ3GTL7YKZXCEtufoNXPXsTr/6IR//ESdyDSaxTdVc13V1+IoVG2/6yFhaXlldWC2vF9Y3Nre3Szm5Dx6niUOexjFXLZxqkiKCOAiW0EgUs9CU0/cH1WG8+gtIijh5wmIAXsl4kAsEZmpbrigjpTefs8u540CmV7Yo9AZ0nTk7KJEetU/p2uzFPQ4iQS6Z127ET9DKmUHAJo6KbakgYH7AetA2NWAjayyY3j+hhECuKfaCT+q83Y6HWw9A3npBhX89q4+Z/WjvF4MLLRJSkCBE3FqMFqaQY0/HrtCsUcJRDQxhXwlxJeZ8pxtEENLVFm3f60B0VTSbObALzpHFSceyKc39arl7l6RTIPjkgR8Qh56RKbkmN1AknCXkmL+TVerLerHfr49e6YOUze2QK1ucPWZ+XIw==</latexit><latexit sha1_base64="ah6btcLYx8AM/JQQbXYxo9D9Flo=">AAACAnicbVDLSgNBEJz1GeMr6tHLYBAEIeyKqBchKIgniWAekF3C7KQ3GTL7YKZXCEtufoNXPXsTr/6IR//ESdyDSaxTdVc13V1+IoVG2/6yFhaXlldWC2vF9Y3Nre3Szm5Dx6niUOexjFXLZxqkiKCOAiW0EgUs9CU0/cH1WG8+gtIijh5wmIAXsl4kAsEZmpbrigjpTefs8u540CmV7Yo9AZ0nTk7KJEetU/p2uzFPQ4iQS6Z127ET9DKmUHAJo6KbakgYH7AetA2NWAjayyY3j+hhECuKfaCT+q83Y6HWw9A3npBhX89q4+Z/WjvF4MLLRJSkCBE3FqMFqaQY0/HrtCsUcJRDQxhXwlxJeZ8pxtEENLVFm3f60B0VTSbObALzpHFSceyKc39arl7l6RTIPjkgR8Qh56RKbkmN1AknCXkmL+TVerLerHfr49e6YOUze2QK1ucPWZ+XIw==</latexit><latexit sha1_base64="ah6btcLYx8AM/JQQbXYxo9D9Flo=">AAACAnicbVDLSgNBEJz1GeMr6tHLYBAEIeyKqBchKIgniWAekF3C7KQ3GTL7YKZXCEtufoNXPXsTr/6IR//ESdyDSaxTdVc13V1+IoVG2/6yFhaXlldWC2vF9Y3Nre3Szm5Dx6niUOexjFXLZxqkiKCOAiW0EgUs9CU0/cH1WG8+gtIijh5wmIAXsl4kAsEZmpbrigjpTefs8u540CmV7Yo9AZ0nTk7KJEetU/p2uzFPQ4iQS6Z127ET9DKmUHAJo6KbakgYH7AetA2NWAjayyY3j+hhECuKfaCT+q83Y6HWw9A3npBhX89q4+Z/WjvF4MLLRJSkCBE3FqMFqaQY0/HrtCsUcJRDQxhXwlxJeZ8pxtEENLVFm3f60B0VTSbObALzpHFSceyKc39arl7l6RTIPjkgR8Qh56RKbkmN1AknCXkmL+TVerLerHfr49e6YOUze2QK1ucPWZ+XIw==</latexit><latexit sha1_base64="ah6btcLYx8AM/JQQbXYxo9D9Flo=">AAACAnicbVDLSgNBEJz1GeMr6tHLYBAEIeyKqBchKIgniWAekF3C7KQ3GTL7YKZXCEtufoNXPXsTr/6IR//ESdyDSaxTdVc13V1+IoVG2/6yFhaXlldWC2vF9Y3Nre3Szm5Dx6niUOexjFXLZxqkiKCOAiW0EgUs9CU0/cH1WG8+gtIijh5wmIAXsl4kAsEZmpbrigjpTefs8u540CmV7Yo9AZ0nTk7KJEetU/p2uzFPQ4iQS6Z127ET9DKmUHAJo6KbakgYH7AetA2NWAjayyY3j+hhECuKfaCT+q83Y6HWw9A3npBhX89q4+Z/WjvF4MLLRJSkCBE3FqMFqaQY0/HrtCsUcJRDQxhXwlxJeZ8pxtEENLVFm3f60B0VTSbObALzpHFSceyKc39arl7l6RTIPjkgR8Qh56RKbkmN1AknCXkmL+TVerLerHfr49e6YOUze2QK1ucPWZ+XIw==</latexit>

D2 branes
<latexit sha1_base64="J2XrssSXWOeJEh+/kzhMxYWAQ7k=">AAACCnicbZC7TgJBFIZn8YZ4W7G0mUhMLAzZJSZaErWwxEQuCUvI7HCACbOXzJw1kA1v4DPYam1nbH0JS9/EAbcQ8K/+Of8/mTOfH0uh0XG+rNza+sbmVn67sLO7t39gHxYbOkoUhzqPZKRaPtMgRQh1FCihFStggS+h6Y9uZnnzEZQWUfiAkxg6ARuEoi84QzPq2sXbindOPYQxpr5iIehp1y45ZWcuumrczJRIplrX/vZ6EU8CCJFLpnXbdWLspEyh4BKmBS/REDM+YgNoGxuyAHQnne8+paf9SFEcAp2f/3ZTFmg9CXzTCRgO9XI2G/6XtRPsX3VSEcYJQshNxWT9RFKM6AwB7QkFHOXEGMaVMFtSPmSKcTSgFl7R5jtD6E0Lhom7TGDVNCpl1ym79xel6nVGJ0+OyQk5Iy65JFVyR2qkTjgZk2fyQl6tJ+vNerc+fqs5K7tzRBZkff4AbECafw==</latexit><latexit sha1_base64="J2XrssSXWOeJEh+/kzhMxYWAQ7k=">AAACCnicbZC7TgJBFIZn8YZ4W7G0mUhMLAzZJSZaErWwxEQuCUvI7HCACbOXzJw1kA1v4DPYam1nbH0JS9/EAbcQ8K/+Of8/mTOfH0uh0XG+rNza+sbmVn67sLO7t39gHxYbOkoUhzqPZKRaPtMgRQh1FCihFStggS+h6Y9uZnnzEZQWUfiAkxg6ARuEoi84QzPq2sXbindOPYQxpr5iIehp1y45ZWcuumrczJRIplrX/vZ6EU8CCJFLpnXbdWLspEyh4BKmBS/REDM+YgNoGxuyAHQnne8+paf9SFEcAp2f/3ZTFmg9CXzTCRgO9XI2G/6XtRPsX3VSEcYJQshNxWT9RFKM6AwB7QkFHOXEGMaVMFtSPmSKcTSgFl7R5jtD6E0Lhom7TGDVNCpl1ym79xel6nVGJ0+OyQk5Iy65JFVyR2qkTjgZk2fyQl6tJ+vNerc+fqs5K7tzRBZkff4AbECafw==</latexit><latexit sha1_base64="J2XrssSXWOeJEh+/kzhMxYWAQ7k=">AAACCnicbZC7TgJBFIZn8YZ4W7G0mUhMLAzZJSZaErWwxEQuCUvI7HCACbOXzJw1kA1v4DPYam1nbH0JS9/EAbcQ8K/+Of8/mTOfH0uh0XG+rNza+sbmVn67sLO7t39gHxYbOkoUhzqPZKRaPtMgRQh1FCihFStggS+h6Y9uZnnzEZQWUfiAkxg6ARuEoi84QzPq2sXbindOPYQxpr5iIehp1y45ZWcuumrczJRIplrX/vZ6EU8CCJFLpnXbdWLspEyh4BKmBS/REDM+YgNoGxuyAHQnne8+paf9SFEcAp2f/3ZTFmg9CXzTCRgO9XI2G/6XtRPsX3VSEcYJQshNxWT9RFKM6AwB7QkFHOXEGMaVMFtSPmSKcTSgFl7R5jtD6E0Lhom7TGDVNCpl1ym79xel6nVGJ0+OyQk5Iy65JFVyR2qkTjgZk2fyQl6tJ+vNerc+fqs5K7tzRBZkff4AbECafw==</latexit><latexit sha1_base64="J2XrssSXWOeJEh+/kzhMxYWAQ7k=">AAACCnicbZC7TgJBFIZn8YZ4W7G0mUhMLAzZJSZaErWwxEQuCUvI7HCACbOXzJw1kA1v4DPYam1nbH0JS9/EAbcQ8K/+Of8/mTOfH0uh0XG+rNza+sbmVn67sLO7t39gHxYbOkoUhzqPZKRaPtMgRQh1FCihFStggS+h6Y9uZnnzEZQWUfiAkxg6ARuEoi84QzPq2sXbindOPYQxpr5iIehp1y45ZWcuumrczJRIplrX/vZ6EU8CCJFLpnXbdWLspEyh4BKmBS/REDM+YgNoGxuyAHQnne8+paf9SFEcAp2f/3ZTFmg9CXzTCRgO9XI2G/6XtRPsX3VSEcYJQshNxWT9RFKM6AwB7QkFHOXEGMaVMFtSPmSKcTSgFl7R5jtD6E0Lhom7TGDVNCpl1ym79xel6nVGJ0+OyQk5Iy65JFVyR2qkTjgZk2fyQl6tJ+vNerc+fqs5K7tzRBZkff4AbECafw==</latexit>

NS5 brane
<latexit sha1_base64="kPx0AAVtQiYCbc/8EZ8tCs2R2Q8=">AAACCnicbZC7TgJBFIZnvSLeVixtJhITC0N2jUZLoo2VwSiXhN2Q2eEAE2YvmTlrIBvewGew1drO2PoSlr6JA1II+Ff/nP+fzJkvSKTQ6Dhf1tLyyuraem4jv7m1vbNr7xVqOk4VhyqPZawaAdMgRQRVFCihkShgYSChHvSvx3n9EZQWcfSAwwT8kHUj0RGcoRm17MLt/bl3Qj2EAWaBYhGMWnbRKTkT0UXjTk2RTFVp2d9eO+ZpCBFyybRuuk6CfsYUCi5hlPdSDQnjfdaFprERC0H72WT3ET3qxIpiD+jk/LebsVDrYRiYTsiwp+ez8fC/rJli59LPRJSkCBE3FZN1UkkxpmMEtC0UcJRDYxhXwmxJeY8pxtGAmnlFm+/0oD3KGybuPIFFUzstuU7JvTsrlq+mdHLkgBySY+KSC1ImN6RCqoSTAXkmL+TVerLerHfr47e6ZE3v7JMZWZ8/Tm2abA==</latexit><latexit sha1_base64="kPx0AAVtQiYCbc/8EZ8tCs2R2Q8=">AAACCnicbZC7TgJBFIZnvSLeVixtJhITC0N2jUZLoo2VwSiXhN2Q2eEAE2YvmTlrIBvewGew1drO2PoSlr6JA1II+Ff/nP+fzJkvSKTQ6Dhf1tLyyuraem4jv7m1vbNr7xVqOk4VhyqPZawaAdMgRQRVFCihkShgYSChHvSvx3n9EZQWcfSAwwT8kHUj0RGcoRm17MLt/bl3Qj2EAWaBYhGMWnbRKTkT0UXjTk2RTFVp2d9eO+ZpCBFyybRuuk6CfsYUCi5hlPdSDQnjfdaFprERC0H72WT3ET3qxIpiD+jk/LebsVDrYRiYTsiwp+ez8fC/rJli59LPRJSkCBE3FZN1UkkxpmMEtC0UcJRDYxhXwmxJeY8pxtGAmnlFm+/0oD3KGybuPIFFUzstuU7JvTsrlq+mdHLkgBySY+KSC1ImN6RCqoSTAXkmL+TVerLerHfr47e6ZE3v7JMZWZ8/Tm2abA==</latexit><latexit sha1_base64="kPx0AAVtQiYCbc/8EZ8tCs2R2Q8=">AAACCnicbZC7TgJBFIZnvSLeVixtJhITC0N2jUZLoo2VwSiXhN2Q2eEAE2YvmTlrIBvewGew1drO2PoSlr6JA1II+Ff/nP+fzJkvSKTQ6Dhf1tLyyuraem4jv7m1vbNr7xVqOk4VhyqPZawaAdMgRQRVFCihkShgYSChHvSvx3n9EZQWcfSAwwT8kHUj0RGcoRm17MLt/bl3Qj2EAWaBYhGMWnbRKTkT0UXjTk2RTFVp2d9eO+ZpCBFyybRuuk6CfsYUCi5hlPdSDQnjfdaFprERC0H72WT3ET3qxIpiD+jk/LebsVDrYRiYTsiwp+ez8fC/rJli59LPRJSkCBE3FZN1UkkxpmMEtC0UcJRDYxhXwmxJeY8pxtGAmnlFm+/0oD3KGybuPIFFUzstuU7JvTsrlq+mdHLkgBySY+KSC1ImN6RCqoSTAXkmL+TVerLerHfr47e6ZE3v7JMZWZ8/Tm2abA==</latexit><latexit sha1_base64="kPx0AAVtQiYCbc/8EZ8tCs2R2Q8=">AAACCnicbZC7TgJBFIZnvSLeVixtJhITC0N2jUZLoo2VwSiXhN2Q2eEAE2YvmTlrIBvewGew1drO2PoSlr6JA1II+Ff/nP+fzJkvSKTQ6Dhf1tLyyuraem4jv7m1vbNr7xVqOk4VhyqPZawaAdMgRQRVFCihkShgYSChHvSvx3n9EZQWcfSAwwT8kHUj0RGcoRm17MLt/bl3Qj2EAWaBYhGMWnbRKTkT0UXjTk2RTFVp2d9eO+ZpCBFyybRuuk6CfsYUCi5hlPdSDQnjfdaFprERC0H72WT3ET3qxIpiD+jk/LebsVDrYRiYTsiwp+ez8fC/rJli59LPRJSkCBE3FZN1UkkxpmMEtC0UcJRDYxhXwmxJeY8pxtGAmnlFm+/0oD3KGybuPIFFUzstuU7JvTsrlq+mdHLkgBySY+KSC1ImN6RCqoSTAXkmL+TVerLerHfr47e6ZE3v7JMZWZ8/Tm2abA==</latexit>

Figure 1. The unstable D2 membrane nucleates holes in it whose boundaries are wrapped NS5
branes looking like closed strings in 4D.

3.2 Discrete symmetries and AdS4 vacua

The discrete 3-form symmetries of DGKT vacua follow from reduction of the F4F4B2
CS-term in 10D. When reduced to 4D, the internal F4 integral provides the factor of k and
the B2 integral over internal dual 2-cycles gives a linear combination of axions χi. One
then arrives at the following term in the 4D action:

k
(∑

χi
)
F4 . (3.5)

Through the Kaloper-Sorbo-Dvali mechanism [36, 37] this gives the 3-form a mass by
eating the two-form dual to ∑χi. This mass means there is effectively a discrete 3-form Zk
symmetry. Reducing also the F0B2F8 makes the story somewhat more complicated since the
F8 reduced over 4-cycles gives extra 4-form field strengths coupling to the axions. But the
overall factor goes like F0 = m and does not scale up with the F4 flux. This mixing implies
there is a massless and a massive combination of 3-forms and accordingly a continuous
and a discrete 3-form symmetry. Relatedly, we have stable and unstable domain walls; a
certain combination of space-filling D2 branes and D6 branes wrapping 4-cycles are unstable,
whereas D4 branes wrapping holomorphic 2-cycles are SUSY and stable. Reference [21]
verified that their couplings and tensions obey the discrete WGC and WCC. The D4 brane
tension relates to the vacuum energy and reproduces the rSADC (3.4).

The instability of the D2 and D6 branes occurs through the nucleation of holes inside
of the walls, as depicted in figure 1. The boundaries of these holes are formed by closed
strings in 4D, which descend from NS5 branes wrapped over 4-cycles. These are exactly the
branes that couple to the axions obtained from reducing B2 over the dual 2-cycles. One way
to think of this process is through Freed-Witten anomalies [38]: the RR flux through these
4-cycles causes the anomalies implying the NS5 branes “emit” the D2 and D6 branes. From
a 4D viewpoint this process is really the appearance of holes in the non-BPS combination
of these domain walls, whose instability follows from the mass-term induced by the above
coupling (3.5).
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10d field point 2-cycle 3-cycle 4-cycle 5-cycle Total space
H3 – Axion Flux – – –
H7 – – – 2-form Vector –
F0 Flux – – – – –
F10 – – – – – 2-form
F2 – Flux – – – –
F8 – – – – 2-form –
F4 – Vector Axion Flux – –
F6 – – 2-form Vector Axion –

Table 1. Possible reductions of 10d fields.

3.3 Discrete symmetries and AdS3 vacua

Here we search for discrete 2-form symmetries and stable and unstable domain walls in 3D
(which are 1+1 dimensional objects in this case). The flux-parameter taken large in the AdS3
solutions is F4 flux, which we denote as f before. It is integer quantized, and by analogy
with the case above, we will search for a discrete Zf symmetry, possibly correlated with a
continuous 2-form symmetry. To do that, we first go through the 3-form field strengths
systematically, taking into account orientifold projections.6 The fields they yield in three
dimensions after dimensional reduction are summarized in table 1. Entries corresponding
to 2-cycles and 5-cycles can only arise from twisted sector fields. There are no (non-torsion)
1-cycles or 6-cycles in a G2 manifold, and for the two-, three- and four-cycle entries one
must choose even or odd representatives under the orientifold actions as dictated by the
parity of the 10d fields. In 3d, vectors may be dualized to scalars if they are not appearing
in Chern-Simons terms. Note that the table overcounts the field content because of Hodge
duality in 10D, which translates to Hodge duality in 3D;7 for instance a 2-form in 3D is
flux, etc. Hence, it suffices to analyse the fields generated by H7, F6, F8 and F10. We first
investigate the possible 2-forms needed for Davli-Kaloper-Sorbo (DKS) couplings:

• The space-filling H3 fieldstrength is projected out by the orientifold planes. H7
reduced on even 4 cycles gives 3-form fieldstrengths. There is no H7C3 CS term (or
B6F4 term), hence the associated 2-forms are massless.

• We can reduce F6 over odd 3-cycles. The CS terms that could give a mass are F6F2B2.
But there is no F2 flux, nor axions from C1. So the corresponding 2-forms are massless.

• We can reduce F8 over even 5 cycles (if any) to obtain a 3-form fieldstrength. A
relevant CS term could be B2F8F0. With the axions from B2 over odd 2-cycles this
gives a mass of order m, and so a Zm discrete symmetry; but there is no discrete
symmetry whose order grows with f .

6Under the O2/O6 projection we have that H3, F2, F6 are odd while F0, F4, F8 are even.
7Since the Hodge duality in 3D can be involved because of Stückelberg couplings.
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• The RR potential C9 for Roman’s mass can be integrated over the whole internal
space. This is clearly a massless 2-form. The charged objects are D8 branes wrapped
on the internal manifold, and they automatically satisfy the WGC.

So, unlike in the previous case, we do not see any 2-form field (with 3-form strength) that
could get a mass of order f .

Alternatively we could look for the axions needed in the DKS couplings. Vectors coming
from C3 receive a Chern-Simons mass, so we will remove their would-be dual axions from
the count. Let us discuss for instance axions from C3 reduced over even 3-cycles, or B2 over
odd 2-cycles. C3 axions can only arise for even 3-cycles coming from twisted sectors, and
those axions could only couple via the C3F4H3 coupling to H3 with all three legs in AdS3,
which is projected out. B2 axions can only arise from 2-cycles in twisted sectors, and can
couple to 3-form fieldstrengths arising from periods of F8 on even 5-cycles, via the F0B2F8
Chern-Simons term. We recover the Zm discrete symmetry we found above, but none of
order f . All in all, it seems we neither find massive 2-forms with masses of order f nor the
right kind of axions for the DKS couplings.

For consistency we also verify whether we can see this as well from the brane structure
and the possible Freed-Witten effects. These can be [39]

1. A NS5 brane threaded by Fp flux emits D(6− p) branes.

2. A Dp brane threaded by H3 flux emits D(p− 2)’s.

3. A Dp brane threaded by Fp flux emits fundamental strings.

Domain walls (strings in 2+1 dimensions) which are charged under a discrete Zn symmetry
are unstable in the sense that n such strings should end in a particle. What can those
particles, emitting unstable strings, be?

• In analogy with [21] the natural particle candidate here is an NS5 brane wrapping an
even 5-cycle, which emits D6 branes wrapped on 5-cycles when threaded by F0 = m

units of flux. This is the string associated to the Zm discrete symmetry uncovered
above.

• D4 branes wrapping 4-cycles threaded by F4 flux can emit fundamental strings, but
these are projected out. Relatedly, one can verify that stable D4 cycles would be odd
but then there is no Freed-Witten effect since F4-flux is even.

• A D2 brane wrapping a 2-cycle threaded by F2 flux; but there is no F2 flux in the
model (and no 2-cycles in the particular incarnation discussed in [16]).

A similar conclusion is reached by a systematic analysis of the strings. We conclude
that there is no Zf 2-form symmetry, regardless of the content of the twisted sector. If the
twisted sector contains even 5-cycles, there could be a discrete 2-form symmetry of order m.
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3.4 Non-SUSY AdS conjecture and fake supersymmetry

The SUSY AdS3 vacua have almost identical non-SUSY sisters by flipping the sign of the
four-form flux, which does not affect the mass spectrum and hence their perturbative stabil-
ity [16].8 A natural question is then whether the non-SUSY AdS Swampland conjecture [22]
holds. In other words, can we find a decay channel? Note that also the DGKT vacua have
non-SUSY sisters, and the decay channels cannot be found in the thin-wall approximation
at tree level, without including any quantum corrections for the tension, as shown in [30]
(see [31] however for recent progress in instabilities of DGKT vacua). We now summarize
those arguments when applied to the AdS3 vacua.

In three dimensions the BPS lower bound on domain wall tensions is given by

TL = 2|∇P |, (3.6)

with ∆P the jump in the real 3D superpotential through the wall, see [40]. The upper
bound for decay to occur [41] is given by

TU =
√
|V−| −

√
|V+| , (3.7)

with V− the potential of the true vacuum and V+ the potential of the false vacuum.
For the SUSY AdS3 vacua we have TU = TL. We can show this also happens for the

non-SUSY vacua using fake supersymmetry [42, 43]: if we take our expression for P and
flip the sign of the last term (containing F4 flux) then this ‘fake’ P -function also solves
the equation (2.16), although it is not the true P -function seen in the SUSY variation
of the gravitino. For this fake P the non-SUSY AdS vacuum is in fact a critical point!
And the domain wall solutions found from the gradient flow equations using the fake P
are therefore marginally stable [42] and their tension is then given by (3.6) for the fake P .
However, on-shell the fake P is identical to the on-shell real P of the SUSY AdS vacuum
since the sign flip in the P-function is compensated by them having opposite F4 fluxes so
both domain walls of the SUSY and the non-SUSY AdS vacuum have identical tensions!
This is why, within the approximations made, the non-SUSY AdS vacua are marginally
stable with respect to bubble nucleation.

Interestingly, a recent investigation [31] of the non-SUSY AdS4 vacua has revealed that
the domain walls corresponding to wrapped D8 branes can induce the required instabilities,
but this is only visible beyond the smeared approximation. What really happens is that the
thin wall approximation used in [30] is not entirely valid since the moduli are light enough
to invalidate it. Then any correction to the theory can make the marginal decay tip over
to one side or another. Marchesano et al. showed [31] that this indeed happens exactly as
predicted by the Swampland conjecture [22]. The details require going beyond the smeared
approximation and regarding the wrapped D8 properly as a D8-D6 boundstate as predicted
by the Freed-Witten anomalies discussed earlier.

One would expect the same to be happening here since the wrapped D8 branes are
equally present in our setup. To analyse this, the backreaction of the orientifolds in our

8Note that this is different from the DGKT model [8] where non-SUSY solutions obtained by a sign flip
of the F4-flux quanta can have a different mass-spectrum, see subsection 4.2.
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model should be computed. We leave that for the future but expect that the difference
between SUSY and fake SUSY is something that has consequences for stability only when
going beyond the leading lower-dimensional SUGRA approximation.

4 Holography

A way to check the consistency of the scale-separated AdS4 and AdS3 vacua, and therefore
the Strong AdS Distance Conjecture [20], is to rule in or out the would-be dual CFTs. These
CFTs should have a parametric large central charge c and a sparse spectrum of low-lying
single-trace operators which is separated from heavier operators by a large gap. Moreover,
if the AdS vacua are to be used for uplifting to de Sitter vacua, the dual CFTs should be
‘dead-end’, meaning that there are no marginal or relevant deformations. There are no
CFTs known with these properties. In fact, there is even only one dead-end CFT known:
the 2D Monster CFT at c = 24 [44]. CFTs with a sparse spectrum as described above
are also difficult to bootstrap, because the standard crossing symmetry requirements are
trivially satisfied at large c: such CFTs have a large N parameter and there is a one-to-one
correspondence between EFTs in AdS and CFT data in a 1/N expansion [45]. For 2D CFTs,
the enhanced symmetry algebra and the modular bootstrap (f.e. [46–48]) might play to
one’s advantage. However, with all current modular bootstrap bounds scaling with the
central charge c, it is still a challenge to put this to use on the scale-separated spectra.

Finally, we notice that for CFT’s above dimension two, the recent work [5] shows that
in a large class of flux compactifications arising from branes probing singularities of internal
manifolds there is a lower bound in the diameter of the internal space in AdS units, which
itself translates to an upper bound in the gap of massive spin 2 operators, corresponding to
graviton KK modes in the present context. If such a bound is true generally, scale-separated
AdS vacua are ruled out.

4.1 CFT duals for AdS3 vacua

Below, we present some basic properties of the would-be CFT2 duals to the scale-separated
AdS3 vacua of [16].

Symmetry algebra. Let us start by giving the symmetry algebra of the dual 2-dimensional
conformal field theory. Since the supergravity theory has 2 real supercharges, the CFT must
have N = (1, 0) or N = (0, 1) supersymmetry, depending on whether O6- or O6-planes were
used in the compactification. If the G2-space has b2 6= 0, there are additionally vector fields
arising from the reduction of the RR 3-form along the 2-cycles, which have a Chern-Simons
mass. Following [49], these are dual to (anti-)holomorphic currents Ja(z) = ∑

n j
a
nz

(−n+1)

for a positive Chern-Simons mass.

Central charge. The central charge is related to the AdS scale L by

c = 3L
2G3

, (4.1)

with gravitational constant G3 = (16π)−1lp,9 and where lp is the 3-dimensional Planck scale.
9We use the Brown-Henneaux convention S = 1

16πGN

∫
(R− 2Λ), and Λ = −1/L2.
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The AdS scale is given by
L = |V0/2|−1/2lp, (4.2)

where the vev of the potential is [16]

|V0| = 0.070565 · m
4h6

f8 , (4.3)

so that
c = 7.9809 · (16π) f4

m2h3 . (4.4)

Operator spectrum. To compute the conformal dimensions of the operators dual to
the 8 scalars originating from 7 metric fluctuations and the dilaton, we need to be careful
with normalizations and conventions. We will follow [16] and then the relevant part of the
Lagrangian is given by:

e−1L = 1
2R−

1
4δab∂φ

a∂φb + 1
L2 −

1
4
∑
a

m2
aφ

2
a , (4.5)

where a, b runs from 1, . . . , 8. We only displayed the potential to quadratic order and in a
basis that diagonalizes the mass matrix and kinetic terms. In these conventions the operator
dimensions in the CFT are:

∆a = 1 +
√

1 +m2
aL

2. (4.6)

The kinetic terms in the Lagrangian are almost of the canonical form (4.5), but not quite:

e−1Lkin = −1
4(∂x)2 − 1

4(∂y)2 − 1
4

(∂s̃i)2

(s̃i)2 . (4.7)

To go to canonically normalised moduli (4.5), we define Si ≡ log s̃i. The cosmological
constant −1/L2 equals the value −4P 2 for the extremum of the real (or fake) P for the
(fake) SUSY vacuum. The masses in the Lagrangian above are obtained from diagonalizing
the Hessian of 8(δabPaPb − P 2), where again the indices are related to the canonically
normalised scalars defined above. We then find:

m2
aL

2 = 2 · (53.99, 5.54, 3.53, 1.69, 1.69, 1.69, 1.69, 1.69), (4.8)

such that:
∆a = (11.44, 4.48, 3.84, 3.09, 3.09, 3.09, 3.09, 3.09). (4.9)

These are the light single trace operators in the CFT and our main observation is that they
are not integer, unlike the operators in the CFT dual to the DGKT vacua [19].

The Kaluza-Klein modes will correspond to heavy operators. The vev of the volume in
string frame is given by

VS = 1.300079 ·m−3/4h−1f7/4, (4.10)

and with this the masses of the Kaluza-Klein modes are

mKK = V
−1/7
S l−1

s = V
−1/7
S

(
lp · VS/e2φ

)−1
= 5.160344m5/14h22/7f−7/2l−1

p (4.11)
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Central charge c ∼ f4

Operator dimensions
light
graviton, gravitino, moduli ∆ ∼ O(1)
medium
KK modes ∆KK ∼ f1/2

wrapped D2 branes ∆D2 ∼ f2

heavy
BTZ black hole ∆BH & f4

Table 2. The spectrum.

where ls is the string scale, and thus

∆KK ∼ f1/2. (4.12)

Other states in the CFT can come from wrapping D-branes on p-cycles in AdS. The only
options that are not projected out by the orientifold are D2-branes wrapped on 2-cycles, if
the twisted sector contains such cycles. Their mass is given by

mD2 ∼ e−φl−1
s V

2/7
S ∼ f−2h12/7m2/7l−1

p , (4.13)

and so the dimension of the dual operator scales with the F4-flux like

∆D2 ∼ f2. (4.14)

A summary of the spectrum is shown in table 2.

Sign of anomalous dimensions? Conlon and Revello [50] suggested that certain anoma-
lous dimensions of double trace operators should be negative for having a consistent CFT
dual, along the lines of ideas presented in [51, 52]. Especially for double trace operators
made from an operator dual to an axion and a saxion this seemed almost identical to having
an axion decay constant that does not become trans Planckian. But for operators that are
different one can actually violate this [19]. In our 3D model we have no axions and hence
this suggestion cannot be tested.

4.2 Scaling dimensions for CFT duals of AdS4 vacua

Given that we do not find integer dimensions for the dual operators of the AdS3 vacua
in the previous subsection, we revisit here the status of AdS4 vacua. In [19] the authors
showed that for the specific compactification of massive type IIA on T 6/Z3 × Z3, with four
complex light fields, all dual operators have integer dimensions. In particular, there are
three 2-cycle volume moduli vi, with overall volume vol6 ∝ v1v2v3, and the dilaton, as well
as three B2-axions and one C3-axion. Given the highly symmetric setting with a rather
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simple relation between the 2-cycle volumina vi and the overall volume vol6 and an actual
exchange symmetry between three of the four complex moduli, one might wonder whether
this example is special. Hence this motivates us to study a broader class of massive type
IIA flux compactifications and calculate the operator dimensions for the putative CFT3
duals. Another simplification arose for T 6/Z3×Z3 since it has no complex structure moduli
because h2,1 = 0. The models we will study will also include complex structure moduli and
we will explicitly verify their expected dual operator dimensions discussed in [19], based on
results previously obtained in [53].

The class of models we will discuss first are abelian toroidal orbifolds and in particular
we will study the examples listed in table 5 of [54]. We will, following [54], restrict to bulk
moduli only and hence there are 11 different classes of models (some of which are subclasses
of others and one class contains T 6/Z3 × Z3). We studied massive type IIA in the presence
of O6-planes, H-flux and RR-fluxes and found the supersymmetric AdS4 vacua for each of
these models. We then calculated the masses for the light fields, which are

1. h1,1
− 2-cycle volumes and their axionic partners from B2,

2. the dilaton and its axionic partner from C3,

3. h2,1 complex structure moduli and their axionic partners from C3.

In practice the Kähler moduli arise from integrating Jc = B2 + iJ over the h1,1
− 2-cycles

that are odd under the O6-plane involution. The complex structure moduli arise from
integrating Ωc = C3 + ie−φRe(Ω) over the 1+h2,1 even 3-cycles. The superpotential involves
viaW ⊃

∫
H∧Ωc only one linear combination of the complexified complex structure moduli,

hence the split above into 2 and 3. The C3 axions do not appear in the Kähler potential
and this means that only one linear combination of the C3-axions appears in the scalar
potential at all, namely

∫
H ∧ C3. All the other linear combinations of C3 axions are flat

directions with m2 = 0. This then fixes the masses of the corresponding saxionic complex
structure moduli to m2 = −2/3Vmin = −2/R2

AdS, where Vmin is the value of the scalar
potential in the minimum and RAdS is the corresponding radius of the AdS space [19, 53].
The corresponding dual operator dimension ∆(∆− 3) = m2R2

AdS is then ∆ = 1 or ∆ = 2.
We find for all the supersymmetric AdS4 vacua in our eleven classes of models that

there is one universal complex direction that involves the complexified dilaton and the
overall volume. This complex directions has masses squared such that the dual integer
operator dimensions ∆ = 1/2

(
3 +

√
9 + 4m2R2

AdS

)
are 10 and 11 for the saxion and axion,

respectively. We will refer to it as the dilaton direction 2 but we stress that it is actually
also involving the Kähler moduli in 1 above via the overall volume. We can then summarize
the six different dual operator dimensions corresponding to light fields in all the 11 classes
of models as shown in table 3.

Note that there is an expected degeneracy among the h2,1 complex structure moduli
that all have massless axionic partners [53]. However, it is highly surprising that there is
a similar degeneracy among all the h1,1

− Kähler moduli. The original model in DGKT [8]
had an exchange symmetry among these moduli and therefore it was more natural to
find the same masses and dual conformal operator dimensions. However, we have now
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Modulus Operator dimension ∆
1. h1,1

− saxionic Kähler moduli from J 6
1. h1,1

− axionic Kähler moduli from B2 5
2. The dilaton direction 10

2. The C3-axion appearing in W 11
3. h2,1 saxionic complex structure moduli from Re(Ω) 1 or 2

3. h2,1 massless C3-axions 3

Table 3. Summary of integer operator dimension of a putative CFT3 dual for generic supersymmetric
DGKT type AdS4 vacua.

Modulus Operator dimension ∆
1. h1,1

− saxionic Kähler moduli from J 6
1. h1,1

− axionic Kähler moduli from B2 8
2. The dilaton direction 10

2. The C3-axion appearing in W 1 or 2
3. h2,1 saxionic complex structure moduli from Re(Ω) 1 or 2

3. h2,1 massless C3-axions 3

Table 4. Summary of integer operator dimension of a putative CFT3 dual for non-supersymmetric
DGKT type AdS4 vacua obtained by flipping the signs of F4-flux quanta. Note that all non-flat
axionic directions have different masses now.

studied also models, like T 6/Z6−I , with for example four Kähler moduli and a volume
vol6 ∝ v1v2v3 − v1v4v4.10 These models have no such exchange symmetry but the resulting
masses are nevertheless all degenerate. This hints at a general deeper reason and it would
be interesting to try to prove this in full generality.

The supersymmetric DGKT AdS vacua have closely related non-supersymmetric AdS
vacua that are related to the supersymmetric vacua by sign flips of F4 flux quanta [8]. The
original T 6/Z3×Z3 model had three F4 flux quanta and corresponding non-supersymmetric
vacua that were obtained by flipping the sign of any one, two or all three of these quanta.
Whenever one would flip the sign of one or three F4- flux quanta, the masses of the axionic
directions would change so that the conformal scaling dimensions of their dual operators
are 8 for the B2 axions and 1 or 2 for the C3-axion. We find that, while more complicated
models do not have non-supersymmetric vacua for a sign flip of any choice of F4-flux quanta,
they have non-supersymmetric vacua that can be obtained by flipping the sign of all F4-flux
quanta. In that case we find in all the abelian toroidal orbifold models the following dual
operator dimensions shown in table 4.

10We also studied the way more complicated model T 6/Z3 model with six Kähler moduli and vol6 ∝
v1(v2v3 − v2

4) + v2v
2
5 + v3v

2
6 + 2v4v5v6.
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We studied a few more non-supersymmetric AdS vacua and found that the dual operator
dimension were always given by either the dimensions listed in the supersymmetric table 3
or the non-supersymmetric table 4. For example, for the T 6/Z6−I case mentioned above,
there are four F4 flux quanta. Non-supersymmetric AdS vacua exist for a sign flip of the
first one (or all of them) with the dimensions given in table 4. However, there are also
non-supersymmetric AdS vacua obtained by a sign flip of the second, third and fourth flux
quanta with the dimensions given in table 3. Again it would be interesting to understand
this better and in full generality.

Given that the DGKT setup with Ricci flat Calabi-Yau manifolds is a special subclass
within the compactifications on more general SU(3)× SU(3) manifolds, it is naturally to
ask whether the above generalizes. There is a somewhat trivial class of non-Ricci-flat
compactifications that is related to the DGKT setup by two T-dualities [3, 23]. Given the
relation via T-duality to the original DGKT setup or the models we studied above in this
subsection, all these cases trivially give rise to integer conformal dimension for the putative
CFT3 duals. Note however, that these models can be potentially strongly coupled and
therefore could arise from M-theory compactifications [3, 23], which might or might not
make the search for a CFT dual more tractable.

Next we looked at models that contain metric fluxes, i.e. have non-trivial curvature,
and are not T-dual to models that are Ricci flat. For example, one interesting models is
discussed in [55] (see also [12]). In the model discussed in subsection 2.1 in [55] the authors
find, for a model with metric fluxes but without mass parameters, masses squared that are
(see their equation (2.14))

m2R2
AdS = {18, 22/9,−2, 10,−8/9, 0} . (4.15)

While these are not integers as was the case before, it seems equally surprising that they
are rational numbers and so are the dual operator dimensions

∆ = {6, 11/3, 1 or 2, 5, 8/3, 3} . (4.16)

So, it seems there might be a larger class of models that has potentially rational dual operator
dimensions and the Calabi-Yau compactifications are a subclass with integer dimensions.11
Interestingly this vacuum is not scale separated [55] and so one can wonder whether in 4D
the integer nature of the dual conformal dimensions is related to scale separation.

Recently type IIA flux compactifications, including RR, NSNS and geometric as well as
non-geometric fluxes, were systematically analyzed in [56]. It would be interesting to check
whether one can use these results to prove that the dual operators have integer dimensions
in a large class of compactifications.

Lastly, there are in the literature geometric type IIB compactifications that allow for
full moduli stabilization at tree-level with fluxes and O5/O7-planes [13, 14]. These examples
are related by a single T-duality to type IIA flux compactifications with geometric and
non-geometric fluxes and have unconstrained flux parameters. However, all existing models

11The paper [55] discusses one further model in subsection 2.2 that has irrational dimensions for the dual
operators (cf. their equation (2.20).
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have no limit in which all cycle volumes become large and the string coupling weak, as was
recently clarified in [3]. In this class of compactifications we studied the supersymmetric
AdS4 vacuum that is given in subsection 4.1 of [13]. We found that the mass matrix is an
extremely complicated expression with square-roots and the dual operator dimensions are
not integers (and are most likely also not rational numbers).

5 Conclusion

In this note we have verified that the scale separated AdS3 vacua of [16] do not pass the
refined AdS Distance Conjecture of [21] because the required discrete higher form symmetries
are absent, despite the very close analogy with the DGKT vacua [8] that do have them.
We furthermore verified that the single trace operators dual to the light scalars do not have
integer dimensions, also in contrast with the DGKT vacua [19]. Given these observation
we revisited different types of AdS4 vacua of DGKT type, as well as generalization thereof.
The goal was to get an understanding of whether the particular example of T 6/Z3 × Z3,
studied in [8, 19], is special or whether integer dimensions for dual operators arise more
broadly. We find indeed that for all orbifold models we checked that feature scale separation,
the conformal dimensions are always integers. Therefore we studied a few more general
compactifications involving metric fluxes, i.e. non-flat geometries, and find that this feature
does generically not persist but then also scale separation was absent. This suggest that
there might be a link between integer operator dimensions, discrete higher form symmetries
and scale separation that deserves further study.

We furthermore verified that the stability arguments of [30] for non-SUSY DGKT vacua
can be readily extended to the 3D case, indicating that one does not find an instability at
tree level for the non-SUSY vacua.

Our observations related to AdS3 vacua might need to be refined if one goes beyond
the approximations made. In particular, one would expect the D8 branes to induce non-
perturbative instabilities for the non-SUSY vacua once backreaction is taken into account as
in [31]. The absence of discrete symmetries and integer dimensions for AdS3 could potentially
be affected if we study regular instead of singular G2 manifolds. This could be achieved
by extending our orbifold symmetries with the appropriate shifts such that they are part
of the Joyce class that allows a desingularization, which introduces an extra twisted sector.
One could wonder whether mass mixing with the twisted sector could make the operator
dimensions integer, but we believe this is unlikely, simply from analogy with the twisted
sector in DGKT. The scalars in the untwisted sector really provide the universal sector that
is most sensitive to the large flux limit and all effects of a twisted subsector seem subleading.
The same applies to the analysis of the discrete symmetries. It would nonetheless be
interesting to construct AdS3 vacua on regular G2 spaces and verify this explicitly.

It also seems worthwhile to study AdS4 vacua in more detail. Can we prove in full
generality that all CY3 flux compactifications of massive type IIA with smeared O6-planes
have light moduli masses that lead to dual operators with only integer dimensions? Is it
possible to understand when exactly and why AdS4 vacua give rise to such dual CFT3 with
integer operator dimensions? We leave these enticing questions for the future.
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