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1 Introduction

Many quantum field theories (QFTs) can be thought of as points in a renormalization-group
(RG) flow from one conformal field theory (CFT) in the ultraviolet to another in the infrared.
In principle, these QFTs can be constructed by deforming an ultraviolet CFT using relevant
operators. Schematically, the action of these QFTs in d spacetime dimensions is given by

S = SCFT +
∑
i

V∆i
, (1.1)

where V∆i
is the integral over spacetime of a local operator in the UV conformal field theory

with dimension 0 6 ∆i < d. When the deformations V∆i
are sufficiently weak, we can use
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perturbation theory to compute physical observables. However, outside of this regime the
interpretation of (1.1) is less clear because we lack a general method to compute observables
in theories constructed this way.

Hamiltonian Truncation (HT) promises to provide a general non-perturbative definition
of (1.1) and allow us to compute its spectrum when the deformation is strong. QFTs
constructed as deformations away from a free field CFT are an important special case.
Although mature theoretical tools exist already that are well suited for solving many theories
of this kind (such as lattice Monte Carlo), all these tools come with different limitations
and sources of systematic error, making it helpful to develop a greater variety of theoretical
tools for the analysis of QFTs at strong coupling.

There are already successful demonstrations of HT in the literature for theories in
two spacetime dimensions: in the pioneering work of ref. [1], HT was used to compute the
spectrum of the Lee-Yang two-dimensional CFT perturbed by its only relevant operator
(besides the identity). Soon after, ref. [2] computed the spectrum of the two-dimensional
Ising model perturbed by its most relevant operator, and [3] computed the spectrum of
the two-dimensional Tricritical Ising model perturbed by each of its relevant primaries.1

Hamiltonian Truncation has since been applied in a variety of other contexts, for instance
to QFTs quantised on the light-cone [4–8], to analyse RG flows on the sphere [9], QFTs on
an AdS background [10] and used in combination with the S-matrix bootstrap to analyse
form factors [11, 12]. In [13], the first HT spectrum computation in d > 2 spacetime
dimensions was carried out for the free-boson CFT perturbed by the m2φ2 + λφ4 operators.
Subsequently, refs. [14] and [15] also found consistent Hamiltonian Truncation spectra for
φ4 theory in d = 3 spacetime dimensions.

In this work, we analyse Hamiltonian Truncation in QFTs with d > 2 that are
constructed as deformations away from an ultraviolet CFT. As a preliminary, we describe
the Hamiltonian Truncation approach that we use. To calculate the spectrum, we need to
regulate infrared divergences. To this end, the CFT is placed on the “cylinder” R× Sd−1

R ,
where R is the radius of the d− 1 dimensional sphere. The Hamiltonian of the QFT thus
takes the form

H = HCFT + V , where V = gR∆−d
∫
Sd−1
R

dd−1xφ∆(0, ~x) . (1.2)

Here, g has been converted into a dimensionless coupling by rescaling it with the cylinder
radius R, raised to the appropriate power. For simplicity, we perturb using a single
local operator in this work, but the generalisation to include multiple local operators is
straightforward. Due to the state-operator correspondence, the CFT Hamiltonian on the
cylinder is the dilatation operator

〈Oi|HCFT|Oj〉 = δij∆i/R , (1.3)

i.e. Ei ≡ ∆i/R. We also define the matrix elements Vij ≡ R〈Oi|V |Oj〉. Next, the Hilbert
space spanned by the {|Oi〉} must be truncated. We do this by only including states |Oi〉 in

1The version of HT used there is often called Truncated Conformal Space Approach (TCSA).
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our truncated basis which have a ∆i not exceeding a given Hamiltonian Truncation cutoff
∆T . The approach then proceeds by diagonalizing the finite-dimensional matrix

Hij = ∆iδij + Vij , ∆i 6 ∆T (1.4)

and then extrapolating the spectrum towards the limit where ∆T →∞. This calculation
of the spectrum of H is non-perturbative in g, and can be used to analyse the spectrum
of (1.2) even at strong coupling g & 1.

It would be worthwhile to develop Hamiltonian Truncation into a universal tool that
may be used to efficiently compute the spectrum of any theory defined as in (1.2). To
achieve such an objective, various challenges must be addressed. Perhaps the most serious
one has to do with UV divergences.

When the perturbing operator φ∆(x) has scaling dimension ∆ > d/2, the spectrum
of the truncated Hamiltonian (1.4) fails to converge as ∆T →∞. Such non-convergence
can be explained using perturbation theory; the second order perturbative correction to
each energy level becomes UV divergent if ∆ > d/2. The Hamiltonian Truncation level
∆T regulates UV divergences in the HT formulation of the theory. A quick solution would
be to introduce a counter-term to eliminate the UV sensitivity arising at second order
in perturbation theory. This may generically work for operators with dimension ∆ right
above d/2, but because UV divergences can also appear at higher orders in perturbation
theory, we lack a general theory of counter-terms to be used in Hamiltonian Truncation for
operators with ∆ > d/2.

Our goal in this paper is to extend the Hamiltonian Truncation approach, so that it can
be applied when the deforming operator takes a larger dimension, i.e. when ∆ > d/2. Our
strategy is to understand perturbative physics first, and only after aim at non-perturbative
computations by diagonalizing (1.4).

To that end, we analyse the energy levels of (1.4) in perturbation theory. We will
regulate our perturbative calculations in two different ways: (i) by imposing a sharp cutoff
on the dimension of the QFT Hilbert space, in exactly the same way as in Hamiltonian
Truncation and (ii) by using a local position space regulator. We then check whether a
perturbative Hamiltonian Truncation computation reproduces the spectrum of a locally-
regulated QFT. For simplicity, we focus on the ground state energy. Perturbative corrections
to this quantity are observable — their dependence on the sphere radius R gives rise to a
physical Casimir force.

We show that use of the Hamiltonian Truncation regulator leads to a striking breakdown
of locality: we find a regime ∆ > d/2 + 1/4 where the fourth order correction to the ground
state energy is finite when a local regulator is used, but leads to a UV divergent result
if a HT cutoff is used as a regulator. Due to structural similarities between perturbative
corrections to the ground state and excited state energies, this difference between regulators
affects energy differences as well. Our results suggest that adding a local counter-term
which removes the UV sensitivity at second order in the perturbation theory is sufficient to
make the HT approach well defined, when the deforming operators have scaling dimensions
in the range d/2 6 ∆ < d/2 + 1/4.
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In section 2 we review conformal perturbation theory, which will be used throughout
the paper. In section 3 we analyse, for general d, perturbation theory using both a local
position space regulator and a HT cutoff regulator. In section 4 and 5 we provide explicit
examples to support the claims of section 3. Finally, we conclude in section 6 and highlight
interesting applications and open problems.

2 Perturbation theory

At weak coupling, g � 1, the spectrum of the Hamiltonian (1.2) can be computed in per-
turbation theory. In this approach, the energy levels are each expressed as an expansion in
powers of the weak coupling EiR = ∆i+

∑∞
n=1E

(n)
i . As we are using the Hamiltonian formu-

lation to describe our QFT, we can directly apply Rayleigh-Schrödinger (RS) perturbation
theory to generate this expansion. The first few terms of the RS series are given by

EiR = ∆i + Vii︸︷︷︸
E

(1)
i

+ Vik
1

∆ik
Vki︸ ︷︷ ︸

E
(2)
i

+ Vik
1

∆ik
Vkk′

1
∆ik′

Vk′i − Vii Vik
1

∆2
ik

Vki︸ ︷︷ ︸
E

(3)
i

+ VikVkk′Vk′k′′Vk′′i
∆ik∆ik′∆ik′′

− E(2)
i

VikVki
∆2
ik

− 2Vii
VikVkk′Vk′i

∆2
ik∆ik′

− V 2
ii

VikVki
∆3
ik︸ ︷︷ ︸

E
(4)
i

+O(V 5) (2.1)

where ∆ij = ∆i −∆j , and a sum over intermediate states k, k′, k′′ 6= i is implicit. In the
expansion above, we refer to all the terms entering with a negative sign as subtraction
terms. A useful feature of RS perturbation theory is that it makes applying the TCSA as
a UV regulator to the E(n)

i straightforward; all that is required is to truncate each of the
sums in (2.1) to include only states with ∆k 6 ∆T .

As our Hamiltonian represents a CFT deformed with a local relevant operator, it is also
possible to apply conformal perturbation theory. In this formulation, the ground state (g.s.)
energy E(n)

gs at the nth order is expressed as the integrated connected CFT n-point function
denoted by 〈· · · 〉c. For perturbations around a free theory, this corresponds to the usual sum
over connected vacuum Feynman diagrams with n vertices. More generally, in conformal
perturbation theory, when the deforming operator is primary, it can be expressed as

E(n)
gs = −(−g)nSd−1/n!

∫
Rd

n−1∏
i=1

ddxi|xi|∆−d 〈φ∆(x1) · · ·φ∆(xn−1)φ∆(1)〉c , (2.2)

where Sd−1 = 2π
d
2 /Γ(d/2) and the spacetime coordinate denoted as 1 represents a unit

vector in Rd. The conformal perturbation theory for the ground state energy was derived
earlier for the d = 2 case in [16]. The proof of (2.2) follows from considering the exponential
decay of the partition function at large (euclidean) time: Egs(g) = − limτ→∞

1
τ logTr[e−τH ].

The form for the integral measure |xi|∆−d is obtained after performing a Weyl coordinate
transformation to express the original correlator on the cylinder R × Sd−1 in terms of a
correlator on the plane Rd. We comment now on our notation: we use xi and φ∆(xi) to
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denote coordinates and fields on Rd. Fields on the cylinder φ∆(τ, ~xi) are distinguished by
using (τi, ~xi) coordinates, where ~xi is a vector in Sd−1 and τi is the cylinder time coordinate.

For convenience, we define a set of constants cn which characterise corrections to the
ground state energy. The first three constants are given by

Egs(g) =
[
−c2 g

2/2! + c3 g
3/3!− c4 g

4/4! +O(g5)
]
Sd−1/R . (2.3)

The first two constants are then simply equal to integrals of the two and three-point
functions

c2 =
∫
ddx|x|∆−d〈φ∆(x)φ∆(1)〉, (2.4)

c3 =
∫ 2∏

i=1
ddxi|xi|∆−d〈φ∆(x1)φ∆(x2)φ∆(1)〉 , (2.5)

which are necessarily connected because 〈φ∆(x)〉 = 0. The next constant also receives
disconnected contributions:

c4 =
∫ 3∏

i=1
ddxi |xi|∆−d

[
〈φx1φx2φx3φ1〉 − 〈φx1φx2〉 〈φx3φ1〉

− 〈φx1φx3〉 〈φx2φ1〉 − 〈φx1φ1〉 〈φx2φx3〉
]
, (2.6)

where we have used φx ≡ φ∆(x). This representation of the perturbative coefficients is
better suited for regulating the UV divergences using a local position space regulator than
the sums over states in (2.1).

Energy gaps Ei−Egs can also be expressed in terms of integrals over n-point correlation
functions. For instance, the energy gap δEi ≡ (Ei − Egs)R of the lowest energy state |∆i〉
overlapping with a primary operator Oi is given by

δEi = ∆i + gSd−1C
φ
OO −

g2Sd−1
2

∫
ddx

|x|d−∆

(
〈Oi(∞)φ1φxOi(0)〉c − (CφOO)2|x|−∆

)
+O(g3) ,

(2.7)
where the four point function shown above is connected with respect to all four operators,
and Oi(∞) = lim|s|→∞ |s|2∆iOi(s). By developing perturbation theory for the energy gaps,
rather than for the excited state energies directly, the series coefficients become independent
of any UV divergences that affect the ground and excited state energies equally, in contrast
with alternative approaches [17–19]. The derivation of (2.7) is presented in greater detail in
appendix A.

3 Comparison between UV regulators

Next we analyse the UV divergences arising in perturbation theory. We do so by comparing
two regulators: a local regulator, and a Hamiltonian Truncation cutoff ∆T that truncates
the Hilbert space on the cylinder to states satisfying ∆i 6 ∆T .
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3.1 Local regulator

We refer to a regulator as local if it acts on position space integrals by cutting out infinitesimal
regions of the integration domain where the separation between any pair of operators within
a correlation function becomes small.

As an example, we could locally regulate an integral over an n-point correlation function
in the following way

Iε =
∫ n−1∏

i=1
ddxi |xi|∆−d 〈φ∆(x1)φ∆(x2) . . . φ∆(xn)〉

∏
i<j

θ (|xi − xj | − ε) , (3.1)

where for concreteness (3.1) is computed in the plane. The Heaviside θ functions cut out
balls of infinitesimal radius ε around each point where an operator is inserted. For integrals
of products of correlation functions (e.g. the disconnected terms in (2.6)) each individual
factor is regulated like in (3.1). This type of regulator is often used in conformal perturbation
theory to regulate UV divergencies, see e.g. [20]. In other contexts, IR divergences may
also arise in conformal perturbation theory. However there are no IR divergences for the
QFTs defined on R × Sd−1 that we consider. In our case, the |xi|∆−d factors render the
large |xi − xj | � 1 region finite.

There are detailed properties of the local regulator that we will use that are not essential
for our conclusions in this section. For instance, we could regulate locally by cutting out
infinitesimal box shaped regions from the domain of integration, or by cutting out balls
with sizes that scale with the position coordinates (for instance by replacing ε in (3.1) with
εf(xi) for some smooth function f(x)).2 These regulators break rotational and translational
symmetries respectively, and produce different subleading divergences for the same integral,
requiring different counterterms for renormalization.

Our focus in this section however will be on determining whether coefficients in conformal
perturbation theory are finite, and for this purpose it will not matter which specific local
regulator we use. Determining the finiteness of an integral requires only checking the
superficial degree of divergence of the integral at each singularity in this case.

When the two fields in the integrand of (2.4) approach one another, the short distance
singularity is given by the two point function

φ∆(x)φ∆(1) = 1
|x− 1|2∆ . (3.2)

Therefore, by considering the superficial degree of divergence of (2.4) around the region
x→ 1, we see that the integral is not UV divergent for

d− 2∆ > 0 . (3.3)

Similarly, the three-point function gives the short distance singularities of (2.5)

〈φ∆(x1)φ∆(x2)φ∆(1)〉 = C∆
∆∆

|x1 − x2|∆|x2 − 1|∆|1− x1|∆
. (3.4)

2Regulating integrals over correlation functions on the cylinder R× Sd−1 by cutting out ε-balls on the
cylinder, and then Weyl transforming the integral into Rd, leads to a local regulator of this type with
f(x) = |x| — which is smooth for all finite values of the cylinder time coordinate τ .

– 6 –



J
H
E
P
0
5
(
2
0
2
2
)
1
5
1

The leading divergence in the integral comes from the region where both x1 and x2 come
close to the unit vector represented by 1. It can be seen that (2.5) is finite so long as

2d− 3∆ > 0 . (3.5)

The leading divergence of (2.6) cannot be found the same way, as the functional form of
the connected four-point function cannot be determined purely from conformal symmetry.
Nevertheless, all divergences in this integral come from the regions where separations
between x1, x2, x3 and 1 are taken small, and it suffices to know the singularities of the
four-point function in these regions.

When one of the separations is taken small with the rest remaining fixed, the singularities
of the four-point function are determined by the operator product expansion (OPE). For
example, in the vicinity of the singularity at x1 → 1, we can replace

φ∆(x1)φ∆(1) ∼ 1
|1− x1|2∆1 + Cω∆∆

|1− x1|2∆−ω φω(1) + . . . (3.6)

inside the four-point correlator. Here φω represents any operator appearing in this expansion.
We denote its scaling dimension using ω. Putting (3.6) back inside (2.6), we find that the
singular term proportional to the identity operator cancels with a disconnected term. Next,
by considering the superficial degree of divergence of the integral in this region, we see that
the φω term contributes no UV divergences so long as

d+ ω − 2∆ > 0 (3.7)

for each operator φω appearing in the OPE. For all the explicit examples that we discuss
in section 4, ω > ∆ and the deformations are relevant d > ∆ so there will be no UV
divergences of this type.

The superficial degree of divergence arising from the region of integration where all
coordinate separations are small but hierarchically equal can be determined by considering
how the integrand and measure scale under the following conformal transformation:

x′i = 1 + (xi − 1)δ , 〈φx′1φx′2φx′3φ1〉c = 1
δ4∆ 〈φx1φx2φx3φ1〉c ,

3∏
i=1

ddx′i
|x′i|d−∆ ∼ δ

3d
3∏
i=1

ddxi

(3.8)
From this scaling analysis we deduce the superficial degree of divergence. As a result, there
will be no UV divergence from this region, so long as

3d− 4∆ > 0 . (3.9)

Applying a similar scaling argument, we also confirm that no extra UV divergences arise from
the region where three of the fields are brought close together, so long as φ∆ is relevant ∆ < d.

Using (2.7), we can check whether the gaps between energies of excited states and the
ground state also become UV divergent, up to second order in perturbation theory. The
integrand in (2.7) has singularities whenever two of the fields in the correlation function act
at the same point, which happens for x→ 0, 1 and ∞.
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In the region where x is close to 1, we can determine the singularities using the OPE
shown in (3.6). As a result, there will be no UV divergences from here so long as the
condition (3.7) is satisfied and CωOiOi 6= 0.

There can be other divergences arising from the x→ 0 region of (2.7), but these should
not be interpreted as genuine UV divergences. Instead, they correspond to IR divergences
that appear when the chosen interpolating operator Oi overlaps with another excited state
with energy lower than Ei. More details are provided in appendix A. By analysing the OPE
of φ∆(x) with Oi(0), inserting the result into (2.7) and examining the superficial degree of
divergence of the integral, we find that these IR divergences are absent as long as

ω −∆Oi > 0, (3.10)

for each operator φω appearing in the OPE of φ∆ with Oi. For the case that Oi itself
appears in this OPE, the inequality above is saturated. However, in this case, its term in
the OPE produces no IR divergence, because its singularity is canceled by the second term
in the integral of (2.7). The singularities at x→∞ are in one-to-one correspondence with
those at zero thanks to conformal inversion symmetry, and therefore do not need to be
considered separately.

We have shown that a local regulator leaves (2.4)–(2.6) finite when (3.3)–(3.9) are
satisfied, respectively. In the next section we will show that if the Hamiltonian Truncation
cutoff regulator is used instead, (2.6) diverges in the limit that the cutoff value is taken to
infinity even when (3.9) is satisfied, indicating a breakdown of locality.

3.2 Hamiltonian Truncation regulator

Next we analyse the structure of UV divergences in perturbation theory when the Hamil-
tonian Truncation regularisation is used. We focus first on the second order perturbation
theory correction to the ground state energy. This correction computed using RS perturba-
tion theory is shown in (2.1). It must also be equivalent to the correction computed using
conformal perturbation theory in (2.4).

To show this equivalence between formulations of perturbation theory explicitly, and
to determine how HT regularisation may be applied to (2.4), we rewrite the integrated two
point function by Weyl transforming back to the cylinder R× Sd−1∫ ∞

−∞
dτ

∫
Sd−1

dd−1x 〈φ∆(0, ~n)φ∆(τ, ~x)〉

= 2
∫ 0

−∞
dτ

∫
Sd−1

dd−1x
∑
k

eτ∆k 〈0|φ∆(0, ~n) |k〉 〈k|φ∆(0, ~x) |0〉 , (3.11)

where ~n represents a point in Sd−1. We order the correlation function in the cylinder time τ ,
and insert a complete set of states. The factor of 2 arises because the correlator is invariant
under translations in the cylinder time τ . We extract the τ dependence by using the time
evolution equation φ∆(τ, ~x) = eτHφ∆(0, ~x)e−τH in the interaction picture. Performing the
τ integral yields ∑

k

2
∆k
〈0|φ∆(0, ~n) |k〉

∫
Sd−1

dd−1x 〈k|φ∆(0, ~x) |0〉 . (3.12)
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By using (2.3), and the definition of V in (1.2) it can be seen that this sum representation
for the second order correction to the ground state energy equals the RS perturbation
theory expression V0k∆−1

k Vk0. This tells us that the Hamiltonian Truncation regulator can
be applied to the sum (3.12) by truncating it to include only terms satisfying ∆k 6 ∆T .

The integrated two-point function on Rd can be expressed as the following sum

∫
ddx|x|∆−d〈φ∆(1)φ∆(x)〉 =

∞∑
n=0

un
2n+ ∆ , (3.13)

where

un = 2Sd−2
√
π Γ

(
d−1

2

) Γ(n+ ∆)
Γ(∆)n!

Γ
(
n+ ∆− d−2

2

)
Γ
(
∆− d−2

2

)
Γ
(
n+ d

2

) . (3.14)

The sum representation can be derived by expanding the two-point function in the radial
coordinate |x|. Then by restricting the domain of integration to |x| 6 1, using inversion
symmetry and integrating each term in the expansion separately, the sum shown in (3.13)
is obtained.

The sums (3.12) and (3.13) must match each other term by term: expanding the two
point function on the plane in powers of the radial coordinate |x| is equivalent to expanding
the two point correlator on the cylinder in powers of eτ . Therefore, we should apply the
HT regulator to (3.13) by truncating the sum so that 2n+ ∆ 6 ∆T .

To determine whether the second order energy correction is UV divergent when HT is
used as the UV regulator, we consider the asymptotic behaviour of the sum in (3.13) for
large values of the HT cutoff ∆T . We asymptotically expand the coefficients from (3.14) for
large n to yield

un ∼ 2Sd−2
√
π

Γ(d−1
2 )

Γ(∆)Γ(∆− d−2
2 )

n2∆−d (1 +O(1/n)) . (3.15)

Terms in the sum therefore grow as ∼ n2∆−d−1, and the sum converges provided that
d − 2∆ > 0. This is the same condition for UV finiteness that was found using a local
regulator in (3.3).

By approximating the sum with an integral using the Euler Maclaurin theorem, we
find that for 2∆− d > 0, the sum grows as

2n+∆6∆T∑
n=0

un
2n+ ∆ ∼ Sd−2

√
π

2d−2∆

2∆− d
Γ(d−1

2 )
Γ(∆)Γ(∆− d−2

2 )
∆T

2∆−d + . . . , (3.16)

for large ∆T . This result agrees with the computation of [19]. Alternatively, this asymptotic
behaviour for the divergent sum may be extracted directly from (3.13) using the Hardy-
Littlewood Tauberian theorem, which has been used before in a similar context, proving
OPE convergence [21].

Next, we discuss the third order correction. The connection between the position space
integral, and the RS series representations for this coefficient can be similarly revealed by
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transforming the integral in (2.5) to the cylinder R × Sd−1, time ordering and inserting
complete sets of states between the operators φ∆

c3 = 3!
2∏
i=1

∫
−∞6τ16τ260

dτi

∫
Sd−1

dd−1xi
∑
k,k′

eτ1∆keτ2(∆k′−∆k)

×
〈
0
∣∣φ(0, ~n)

∣∣k′〉 〈k′∣∣φ(0, ~x2)
∣∣k〉 〈k|φ(0, ~x1) |0〉 . (3.17)

After performing the integrals in τ1,2, we obtain

c3 = 3!
2∏
i=1

∫
Sd−1

dd−1xi
∑
k,k′

〈
0
∣∣φ(0, ~n)

∣∣k′〉 1
∆k′

〈
k′
∣∣φ(0, ~x2)

∣∣k〉 1
∆k
〈k|φ(0, ~x1) |0〉 . (3.18)

Using the definition of V in (1.2), we see that the previous expression matches the third
order energy correction in the RS series, shown in (2.1). Note that V00 = 0, so the third
order subtraction term in the RS series is not present. The terms which arise from the
matrix multiplications in the RS series expression correspond exactly to the individual
terms which appear in the sums over k and k′ in (3.18). This shows that we would HT
regulate the expression by truncating these sums so that ∆k,∆k′ 6 ∆T .

Now we consider the fourth order correction, whose structure is more intricate than the
preceding lower orders. In particular there are disconnected terms. By Weyl transforming
to the cylinder and time ordering the operators in (2.6) we get

c4 = 4!
3∏
i=1

∫
t.o.

dτi

∫
Sd−1

dd−1xi
[
〈φ∆(0, ~n)φ∆(τ3, ~x3)φ∆(τ2, ~x2)φ∆(τ1, ~x1)〉 (3.19a)

− 〈φ∆(0, ~n)φ∆(τ3, ~x3)〉 〈φ∆(τ2, ~x2)φ∆(τ1, ~x1)〉 (3.19b)

− 〈φ∆(0, ~n)φ∆(τ2, ~x2)〉 〈φ∆(τ3, ~x3)φ∆(τ1, ~x1)〉 (3.19c)

− 〈φ∆(0, ~n)φ∆(τ1, ~x1)〉 〈φ∆(τ3, ~x3)φ∆(τ2, ~x2)〉
]

(3.19d)

where the fields and correlators are computed in the cylinder and time ordering (t.o.) means
integrating the τ variables in the domain −∞ 6 τi 6 τi+1 6 0. The last expression for c4
can be matched to the fourth order correction of the RS series

E(4)
gs = −V0kVkk′Vk′k′′Vk′′0

∆k∆k′∆k′′
+ V0kVk0

∆k
· V0kVk0

∆2
k︸ ︷︷ ︸

subtraction terms

, (3.20)

were we have used V00 ∝ 〈φ∆〉 = 0 to simplify (2.1), and ∆0k = −∆k. To perform such
matching we insert the identity representation as a complete set of states 1 =

∑
k |k〉〈k|

between every pair of fields in the correlators of (3.19a)–(3.19d) and then perform the
elementary integrals over the time variables τi.

After accounting for the normalization factor g4Sd−1/(4!R) in (2.3), it can be seen that
the first two terms (3.19a)–(3.19b) are equal to the first term in (3.20) while the last two
disconnected pieces (3.19c)–(3.19d) are equal to the subtraction terms in (3.20). In the
next section we show this equivalence explicitly. This computation will allow us to identify
the correct implementation of the Hamiltonian Truncation regulator.
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3.2.1 Analysis of the fouth-order correction in Hamiltonian Truncation
We begin by taking just the integral of the four point function (3.19a). Inserting complete
sets of states between each operator as before and performing the integrals over the τi, we
are left with the following expression

4!
3∏
i=1

∫
Sd−1

dd−1xi
∑

k,k′,k′′

〈
0
∣∣φ0,~n

∣∣k′′〉 1
∆k′′

〈
k′′
∣∣φ0,~x3

∣∣k′〉 1
∆k′

〈
k′
∣∣φ0,~x2

∣∣k〉 1
∆k

〈
k
∣∣φ0,~x1

∣∣0〉 ,
(3.21)

where we are using the notation φ(0, ~r) ≡ φ0,~r for the fields in the cylinder. Eq. (3.21)
closely resembles the first term appearing in the RS series at fourth order. There is however
one important difference between the first term of the RS series at fourth order in (2.1) and
the HT regulated integral of the four point function in (3.21); contributions having ∆k′ = 0
(which diverge as 1/∆k′) are not counted in the RS series expression, but must be included
in (3.21), as we are inserting a complete set of states labeled by k′, which includes the
vacuum state. It turns out however that subtracting the disconnected contribution (3.19b)
in c4 removes these unwanted divergent terms. We now show how this cancellation happens.

Once more we insert the identity resolution between every pair of fields, this time for
the time ordered correlators in (3.19b):

4!
3∏
i=1

∫
t.o.

dτi

∫
Sd−1

dd−1xi
∑
k,k′′

eτ1∆keτ2(ε−∆k)eτ3(∆k′′−ε)

×
〈
0
∣∣φ0,~n

∣∣k′′〉 〈k′′∣∣φ0,~x3

∣∣0〉 〈0∣∣φ0,~x2

∣∣k〉 〈k∣∣φ0,~x1

∣∣0〉 , (3.22)

where we have set the scaling dimension of the ground state to ε to regulate the integral in
the infrared. After performing the integrals over the τi, we are left with

4!
3∏
i=1

∫
Sd−1

dd−1xi
∑
k,k′′

〈
0
∣∣φ0,~n

∣∣k′′〉 1
∆k′′

〈
k′′
∣∣φ0, ~x3

∣∣0〉 1
ε

〈
0
∣∣φ0, ~x2

∣∣k〉 1
∆k

〈
k
∣∣φ0, ~x1

∣∣0〉 . (3.23)

This expression cancels with the |k′〉 = |0〉 terms in the sum of (3.21) in the limit ε→ 0,
after regulating the formally divergent expression in (3.21) in exactly the same way. We
may therefore identify the first term of the RS series at fourth order with the integral over
the four point function (3.19a) minus the disconnected piece (3.19b).

All in all, by comparing (3.21) and (3.23) with the RS series we learn that by inserting∑
k:∆T>∆k>0

|k〉〈k| (3.24)

between each of the four operators in (3.19a) we recover the first term of the RS series (3.20)
regulated with Hamiltonian truncation.

We now focus on the remaining two disconnected contributions at fourth order. Starting
with (3.19c), we insert a complete set of states between each pair of fields and perform the
τi integrals, leading to

D2 = 4!
3∏
i=1

∫
Sd−1

dd−1xi
∑
k,k′

1
∆k∆k′(∆k + ∆k′)

×
〈
0
∣∣φ0,~n

∣∣k′〉 〈k′∣∣φ0, ~x2

∣∣0〉 〈0∣∣φ0, ~x3

∣∣k〉 〈k∣∣φ0, ~x1

∣∣0〉 . (3.25)
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By the same token, the third disconnected term (3.19d) can be written as

D3 = 4!
3∏
i=1

∫
Sd−1

dd−1xi
∑
k,k′

1
∆2
k′(∆k + ∆k′)

×
〈
0
∣∣φ0,~n

∣∣k′〉 〈k′∣∣φ0, ~x1

∣∣0〉 〈0∣∣φ0, ~x3

∣∣k〉 〈k∣∣φ0, ~x2

∣∣0〉 . (3.26)

We see how to regulate (3.25) and (3.26) using Hamiltonian Truncation by observing that
the sum of those disconnected pieces can be simplified into an expression the same structure
as the subtraction term from (3.20)

D2 +D3 = 4!
3∏
i=1

∫
Sd−1

dd−1xi
∑
k,k′

1
∆k∆2

k′

×
〈
0
∣∣φ0,~n

∣∣k′〉 〈k′∣∣φ0, ~x2

∣∣0〉 〈0∣∣φ0, ~x3

∣∣k〉 〈k∣∣φ0, ~x1

∣∣0〉 . (3.27)

If we truncate both disconnected terms the same way, so that ∆k,∆k′ 6 ∆T , we can
identify (3.27) with the subtraction term from (3.20).

In the RS series, the subtraction term at fourth order has a very similar structure to
the second order term. In particular, it depends only on matrix elements of the form V0k.
Therefore using (3.13), a general formula for the fourth order subtraction term in HT may
be derived, which depends only on the space-time dimensionality d, the scaling dimension
of the deformation ∆ and the HT cutoff ∆T :

SA ≡
4!

g4Sd−1

V0kVk0
∆k

· V0k′Vk′0
∆2
k′

∣∣∣∣∣
HT

= 3!Sd−1

2n1+∆6∆T
2n2+∆6∆T∑
n1,n2=0

un1

(2n1 + ∆)2
un2

(2n2 + ∆) , (3.28)

where the coefficients ui were defined in (3.14).

3.2.2 Analysis of large ∆T behaviour of the fourth order coefficient

We now consider the large ∆T behaviour of the fourth order perturbative correction to
the ground state energy, when HT is used as the UV regulator. Specifically, we derive the
condition for which this coefficient tends to a finite value in the limit ∆T →∞, indicating
that it is UV finite.

The large ∆T behaviour of the subtraction term in (3.20) can be determined using (3.28).
We also need to extract the large ∆T behaviour of the first term of (3.20), which is given
by the four point function (3.19a) minus the disconnected piece in (3.19b).

Regarding the four point function, the strongest singularities come from three regions
where operators approach one another in pairs. These three singular regions are represented
by the diagrams shown in figure 1. In each of these regions, use of the OPE shows that
the leading singularities of the four point function are the same as those of a couple of two
point functions.

The contribution from the singularity which arises when (τ1, x1) → (τ2, x2) and
(τ3, x3) → (0, n) is represented by the diagram in panel A of figure 1. This singular-
ity is exactly canceled when the disconnected piece shown in (3.22) is subtracted.
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A.

τ1

0τ3

τ2

B.

τ1

0

τ3

τ2
C.

τ1 0

τ3τ2

Figure 1. Diagrams representing the three leading singularities of the four point function on the
cylinder. The points are all time ordered but have been given angular coordinates so as to position
them in the different singular regions. The dashed lines are placed on surfaces of constant τ , where
partial resolutions of the identity

∑∆k6∆T

k |k〉 〈k| are inserted when HT regularisation is used. The
red dashed lines are discussed in the text.

The singularity which arises when (τ1, x1)→ (τ3, x3) and (τ2, x2)→ (0, n) is represented
by the diagram in panel B of figure 1. In this case, when HT is used as the regulator, the
singularity of the four point function is no longer canceled when the corresponding integral
over the disconnected piece D2 in (3.25) is subtracted.

The singularity of the four-point function arising from this region (shown in figure 1,
panel B) can be captured by the singularity of

∫
t.o.〈φ(0, ~n)φ(τ2, ~x2)〉〈φ(τ3, ~x3)φ(τ1, ~x1)〉.

However, we note that to regulate the four point function in HT, we must insert three
partial resolutions of the identity

∑∆k6∆T
k |k〉 〈k| — one between each φ∆ operator, as

indicated by the dashed lines in panel B of figure 1. Accompanying each partial identity
insertion is a restriction on the maximum scaling dimension of states which may be evolved
across the corresponding line. The strongest condition comes from the middle dashed
line, highlighted in red. The states exchanged between (τ1, x1) and (τ3, x3), and the
states exchanged between (τ2, x2) and (0, n) must both be evolved across the red line
simultaneously, leading to the condition ∆k + ∆k′ 6 ∆T . The total scaling dimensions of
both sets of exchanged states cannot exceed the cutoff. Integrating this singular term using
the HT regulator yields

S2 = 4!
3∏
i=1

∫
Sd−1

dd−1xi

∆k+∆k′6∆T∑
k,k′

1
∆k∆k′(∆k + ∆k′)

×
〈
0
∣∣φ0,~n

∣∣k′〉 〈k′∣∣φ0, ~x2

∣∣0〉 〈0∣∣φ0, ~x3

∣∣k〉 〈k∣∣φ0, ~x1

∣∣0〉 . (3.29)

Note that the partial sum S2 is cut off differently from D2 in (3.25).
Similarly, the singularity which arises when (τ1, x1) → (0, n) and (τ2, x2) → (τ3, x3)

does not cancel with the disconnected piece D3 in (3.26) after integration, when HT is
used as a regulator. This singularity is represented by panel C of figure 1. In this region,
we capture the leading singularity from (3.19a) by taking

∫
t.o.〈φ(0, ~n)φ(τ1, ~x1)〉 〈φ(τ3, ~x3)

φ(τ2, ~x2)〉. Again for each dashed line in the diagram, a partial resolution of the identity
is inserted. Both the set of states exchanged between (τ1, x1) and (0, n) and the states
exchanged between (τ2, x2) and (τ3, x3) must be evolved across the red line, leading to the
condition ∆k + ∆k′ 6 ∆T . After integrating the appropriate pair of two point functions
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and regulating using HT to capture the leading large ∆T behaviour, we are left with the
following expression

S3 = 4!
3∏
i=1

∫
Sd−1

dd−1xi

∆k+∆k′6∆T∑
k,k′

1
∆2
k′(∆k + ∆k′)

×
〈
0
∣∣φ0,~n

∣∣k′〉 〈k′∣∣φ0, ~x1

∣∣0〉 〈0∣∣φ0, ~x3

∣∣k〉 〈k∣∣φ0, ~x2

∣∣0〉 . (3.30)

Individual terms in the partial sum S3 are the same as those of D3 shown in (3.26), but the
cutoff of the sum is different.

We emphasise that we did not deduce the large ∆T behaviour by directly analysing the
sums in the first term of (3.20). Instead we have used the position space representation of
the fourth-order correction to argue that the form of the large ∆T behaviour can be captured
by the integrals of two-point functions that we described. To apply the HT regulator to
these integrals we can compare the denominators 1/[∆k∆k′(∆k + ∆k′)] from (3.29) (and
1/[∆2

k′(∆k + ∆k′)] from (3.30)) with 1/(∆k∆k′∆k′′) from (3.20), and deduce that we should
truncate the states by the condition ∆k + ∆k′ 6 ∆T .

The sum of terms S2 and S3 determines the leading large ∆T behaviour of the first
term of (3.20) (up to the normalisation factors in (2.3)). These terms depend only on
matrix elements of the form V0k, and therefore a general formula for them may be derived
using (3.13)

SB ≡ S2 + S3 = 3!Sd−1

2n1+2n2+2∆6∆T∑
n1,n2=0

un1

(2n1 + ∆)2
un2

(2n2 + ∆) . (3.31)

Next we are ready to evaluate the difference of the two sums SA (i.e. the subtraction
terms in (3.20) using HT regularisation) and SB (captuing the large ∆T behaviour of the
first term in (3.20)). Their difference is not guaranteed to vanish in the large ∆T limit.
Indeed, we demonstrate this by expanding the difference between these sums for large ∆T .

We asymptotically expand the summand for large ni using (3.15) and approximate the
sums with integrals using the Euler-Maclaurin theorem to extract the leading term for large
∆T . We obtain

SA − SB =
3!Sd−1 22d−4∆ S2

d−2πΓ2(d−1
2 )

Γ2(∆)Γ2(∆− d−2
2 )(2∆− d− 1)

{
Γ2(2∆− d)
Γ(4∆− 2d) −

1
2∆− d

}
∆T

4∆−2d−1 + . . .

(3.32)
Therefore we find that for

∆− d/2− 1/4 > 0 , (3.33)

the difference between the two sums diverges in the ∆T → ∞ limit. As the large ∆T

behaviour of the full fourth order correction in HT is captured by this difference between
sums, we conclude that the entire Hamiltonian Truncation regulated coefficient will diverge
as ∆T →∞ above the threshold (3.33).

The threshold in eq. (3.33) also corresponds to the threshold at which subleading
divergences arise for the integrals over disconnected parts of the four-point function, such
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Figure 2. In gray, the values of ∆(d) for which the integrals of the two, three and four-point
functions in (2.4)–(2.6) diverge at short distances. In red, the values for which we expect the
four-point function to diverge when using a Hamiltonian Truncation cutoff: ∆ = d/2 + 1/4. This
threshold can be probed by, for example: minimal models Mp, with p = 4, 5, perturbed by the
primary operator φ13, whose dimension is ∆ = 6/5, 4/3 respectively (black dots), and the free boson
perturbed by φ4, which has dimension 2d− 4 (black line).

as (3.19c). A subleading divergence appears if the total superficial degree of divergence of the
integral exceeds one. We determine the superficial degree of divergence of the disconnected
pieces by separately calculating the superficial degrees of divergence coming from the two
regions of the integral where there are singularities. Using the second term of (2.6) as an
example, we find that these two regions are when x1 ∼ x2 and when x3 ∼ 1. Each region
has a superficial degree of divergence of 2∆− d. The total superficial degree of divergence
is therefore double this quantity and it exceeds one when threshold (3.33) is crossed. For
local regulators, subleading divergences are guaranteed to cancel between the integral over
the full four-point function and the integrals over disconnected pieces. For the Hamiltonian
Truncation regulator, this cancellation no longer happens.

We summarise the analysis of this section in figure 2. For perturbing operators with
dimension below each gray line, the corresponding (locally regulated and connected) n-point
function is finite. In particular, for perturbing operators with dimension ∆ 6 3d/4 the
fourth order corrections to the Casimir energy is well defined, in the local regularisation
scheme. For perturbing operators with dimension above the red line the integral of the
corresponding connected four-point function diverges when the Hamiltonian Truncation
regulator is used.

This extra divergence in Hamiltonian Truncation that we discussed was found earlier
in the context of φ4 in three spacetime dimensions [14]. There the HT computations were
based on perturbing the free massive scalar by the φ4 operator. The HT regulator of this
theory spoils an important cancelation between disconnected Feynman diagrams entering in
the perturbative calculation of the vacuum energy (see in particular eq. (5.10) of ref. [14]).
This finding is consistent with our bound because ∆φ4 = 2(d− 2) > d/2 + 1/4 for d = 3.3

3The mass gap of this theory is only logarithmically divergent, which means that there are no sub-leading
divergences. Therefore it is possible to get nice data for the mass gap at strong coupling using HT.
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In the following sections we show the effect of this new threshold (red line) in two
more example theories. In particular, we will calculate the fourth order coefficient c4
in theories sitting on either side of the red line using both a local and the Hamiltonian
Truncation regulator. We show that the coefficient is finite for the theory below the red line
if either regulator is used. We also show that for the theory above the line, the Hamiltonian
Truncation regulated coefficient diverges as ∆T → ∞, whereas the locally regulated one
does not. The two example theories that we will use to test our condition (3.33) are the
diagonal minimal models [22]Mp, for p = 4, 5. We perturb these two-dimensional CFTs
using the φ13 operator, whose scaling dimensions are ∆ = 6/5, 4/3, respectively.

4 Conformal perturbation theory examples

In this section, we examine conformal perturbation theory for the minimal model CFTs
M4 andM5 perturbed with a relevant operator. The central charge of the Mp CFT is
cp = 1 − 6/(p(p + 1)), where p = 2, 3, 4, . . . . These CFTs describe the critical points of
the Landau-Ginzburg theory S[ϕ] ∼

∫
(∂ϕ)2 + ϕ2(p−1), and for instance p = 3 describes

the critical point of the Ising model. We consider the vacuum energy of the theory on the
cylinder defined by the euclidean action

S = SMp + gR∆−2
∫
φ13(z, z̄) d2z , (4.1)

where g is dimensionless and the dimension of the operator φ13 is ∆ = 2−4/(p+1). Primary
operators in minimal models may be organised into a Kac table and labeled using a pair
of integers corresponding to their position in the table. The subindex (1, 3) refers here
to the choice made for the relevant perturbing operator. A more detailed introduction to
minimal models is provided, for example, in [20]. We have used the holomorphic coordinate
z = x1 + ix2 in (4.1), with its complex conjugate given by z̄. Subsequently, we shall use
{xµj } to denote cartesian, and {zj} to denote holomorphic coordinates.4

In order to compute perturbative corrections to the ground state energy using (2.4)–
(2.6), we first calculate the two, three, and four point functions of φ13 in the two minimal
models. Conformal symmetry constrains the two and three point functions to take the
forms below:

〈φ13(z1)φ13(z2)〉 = 1
|z1 − z2|2∆ ,

〈φ13(z1)φ13(z2)φ13(z3)〉 = C

|z1 − z2|∆|z2 − z3|∆|z3 − z2|∆
. (4.2)

The structure constant is given by [25]

C ≡ C(1,3)
(1,3)(1,3) =


2
3

√
Γ( 4

5)Γ( 2
5)3

Γ( 1
5)Γ( 3

5)3 if p = 4

√
8
9 if p = 5 .

(4.3)

4The φ13 perturbation of minimal models preserves the integrability of the CFT [23, 24]. This feature
will not play an essential role in our discussion.
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The four point functions for these theories can be computed exactly, using the coulomb gas
formalism [26]. They take the general form

〈φ13(z1) · · ·φ13(z4)〉 = |z13z24|−4−4∆

|z12z23z34z41|−2−∆

(
α1|J1(η)|2 + α2|J2(η)|2 + α3|J3(η)|2

)
, (4.4)

where zij = zi − zj , and the quantity η = (z12z34)/(z13z24) is the conformal cross ratio.
For p = 4, the functions Ji are

Ji = 1 + η(η − 1)
(η(1− η))5/2

[
ui P

3/5
−1/5(−1 + 2η) + viQ

3/5
−1/5(−1 + 2η)

]
, (4.5)

where P and Q are the Legendre functions, and {αi, ui, vi} are constants which we give in
appendix B. While for p = 5, one has

J1 =
3
(
(1− η)2/3 − 1

)
+ η

(
−2(1− η)2/3 +

(
3(1− η)2/3 − 4

)
η + 4

)
η3(η − 1)3 ,

J2 = (4− 3η)η − 4
(η − 1)3η7/3 ,

J3 =

(
3(1− η)2/3 + 4

)
η2 − 2

(
(1− η)2/3 + 2

)
η + 3

(
(1− η)2/3 + 1

)
η3(η − 1)3 . (4.6)

We review the formalism we used to derive (4.4)–(4.6) in greater detail in section 4.1. To
our knowledge these four-point functions have not been computed explicitly before in the
literature.

The vacuum energy. Now that the correlation functions (4.2) and (4.4) are known, we
compute perturbative corrections to the ground state energy using (2.4)–(2.6). We first
consider the Tricritial Ising Model M4 perturbed by φ13. The second order correction
is not finite because (3.3) is not satisfied for ∆ = 6/5. The higher order corrections are
finite though. The third order correction can be computed by analytically performing the
integral (2.5) of the three-point function in (4.2)

c3
(2π)3 = C

4π2

Γ
(

∆
4

)2

Γ
(
1− ∆

4

)2
Γ(−∆

2 )
Γ(1− ∆

2 )
Γ(∆

2 )
Γ(∆

2 + 1)

Γ
(

∆
4 + 1

)
Γ
(
−∆

4

) Γ
(
1− 3∆

4

)
Γ
(

3∆
4

) ' 1.32 , (4.7)

where we introduced a convenient 1/(2π)3 normalisation. We estimate the fourth order
correction by computing the integral of the four-point function numerically, using (4.4)
and (4.2). We find

c4
4!(2π)3 ' −0.18± 0.02 (p = 4) (4.8)

As we shall see in section 5, finding the numerical integral to this level of precision is sufficient
for checking agreement between the results of local and Hamiltonian Truncation regular-
isation. The connected four-point function has integrable singularities within the domain
of integration, which make significantly increasing the precision of our estimate nontrivial.
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Next, we consider the ground state energy of theM5 minimal model perturbed by φ13.
We note that the two and three point functions are UV divergent. To obtain the fourth
order correction, we perform the integral in (2.6) using (4.6) and find

c4
4!(2π)3 ' 1.0± 0.1 (p = 5) (4.9)

In section 5, we will compare the results in (4.7)–(4.9) to the corresponding values for these
quantities regulated using the Hamiltonian Truncation.

4.1 Four-point function particulars

In this section we describe the derivation of the equations (4.4)–(4.6) for the correlator
〈φ13φ13φ13φ13〉 in greater depth. We start with a brief review of the parts of the coulomb
gas formalism that we will need, and then guide the reader through the computation of the
four-point function of interest.

The Dotsenko and Fateev [26] coulomb gas formalism can be used to provide an integral
representation for the n-point correlation functions of the minimal models. The starting
point is the action of a free boson coupled to the scalar curvature R(g),

S = 1
8π

∫
d2x
√
g
[
∂µϕ∂

µϕ+ i2
√

2α0ϕR(g)
]
. (4.10)

The coupling α0ϕR(g) reduces the central charge of the free theory from one to 1− 24α2
0.

The action (4.10) is not real, but it leads to a unitary conformal theory for values of the
central charge cp = 1− 24α2

0 which coincide with the central charges of the unitary minimal
modelsMp, namely for α2

0 = 1/[4p(p+ 1)]. The vertex operators of this theory

Vα(z, z̄) = ei
√

2αϕ(z,z̄) , (4.11)

are conformal primaries with U(1) charge
√

2α and scaling dimension ∆α = 2α(α− 2α0),
which is invariant under the exchange α→ 2α0−α. Correlation functions of vertex operators
are given by

〈Vα1 · · ·Vαn〉 =
∏
i<j

|zi − zj |4αiαj . (4.12)

In the free theory α0 = 0, the conservation of the U(1) charge associated with the Noether
current J (z) = i∂ϕ imposes the neutrality condition

∑
i αi = 0, which must be satisfied

otherwise (4.12) vanishes. However, the coupling of the scalar to the topological term
R(g), changes the Ward identity of the U(1) symmetry with the net effect of imposing the
modified condition

∑
i αi = 2α0 on (4.12).

In the coulomb gas formalism, the conformal fields φr,s’s of the minimal models are
identified with vertex operators Vαrs having the same conformal dimensions. Here the labels
{r, s} refer to coordinates specifying the position of the operator within the Kac table.
In the correlation functions, the conformal field φr,s can be represented by either Vαrs or
V2α0−αrs due to the invariance of the scaling dimension under the exchange αrs → 2α0−αrs.
However, because the non-vanishing correlation functions 〈Vα1 · · ·Vαn〉 must satisfy the
selection rule

∑
i αi = 2α0, it is not possible to write down a four-point function using only
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Vα and V2α−α0 such that the total charge adds up to 2α0. This poses a problem if we are to
identify 〈φr1,s2 · · ·φrn,sn〉 with non-vanishing correlation functions of vertex operators. As
shown by Dotsenko and Fateev [26], this problem can be solved by introducing screening
charge operators

Q± =
∮
Vα±(z)dz (4.13)

with U(1) charge α± ≡ α0 ±
√
α2

0 + 1. Here, we have used the holomorphic notation so
that Vr,s(z) should be understood as Vr,s(z, z̄) ≡ Vr,s(z)⊗ V̄r,s(z̄). The conformal dimension
of Vα± is α±(α± − 2α0) = 1, and therefore Q± have zero conformal dimension because
Vα±(z)dz is a singlet under conformal transformations.

To get the correlation functions of φ13, we compute correlators of the form
〈Vα1 · · ·Vα1Q

n
+Q

m
− 〉, where the vertex operators Vαi are either Vα1,3 or V2α0−α1,3 . The

integers {m,n} are fixed in order to set the total charge of the n-point function to 2α0,
so that the correlator does not vanish. Typically, the fewer the screening charges present,
the simpler it is to compute the correlator. The simplest representation of the four-point
function is given by

〈φ13(0)φ13(z)φ13(1)φ13(∞)〉 = 〈Vα13(0)Vα13(z)Vα13(1)V2α0−α13(∞)Q−Q−〉

= z2α2
13(1− z)2α2

13J(z) (4.14)

where

J(z) =
∮
C1
dt1

∮
C2
dt2

(t1 − t2)2α2
13

[t1(t1 − 1)(t1 − z)]2α2
13 [t2(t2 − 1)(t2 − z)]2α2

13
(4.15)

where we used α− = −α13, and note that α2
13 = p/(1 + p). In (4.14) we have used

conformal symmetry to set three of the points to {0, 1,∞}. In (4.15) we need to specify the
closed contours C1 × C2 encircling the branch-points at t1, t2 = 0, 1, z,∞. There are three
independent contours, and therefore (4.14) is given by a particular linear combination of these
three closed contours. The three independent contours, are in one-to-one correspondence
with the three solutions of the third order differential equation satisfied by J(z):

z2(z − 1)2J ′′′(z) + q2(z) J ′′(z) + q1(z) J ′(z) + q0(z) J(z) = 0 (4.16)

where q2(z) = 10α2
13(z − 1)z(2z − 1), q1(z) = 2α2

13[12α2
13 + (62α2

13 − 7)(z − 1)z − 2], and
q0(z) = 4α2

13(5α2
13−1)(6α2

13−1)(2z−1). The three solutions of (4.16) are identified with Ji
in (4.4). The final step is to determine the coefficients αi in (4.4), which is done as follows.
The correlation function 〈φ13(0) · · ·φ13(z, z̄)φ13(1)φ13(∞)〉 is single valued, which implies
that there are no non-trivial monodromies as z encircles 0 and 1. Requiring the absence of
such monodromies determines the linear combination

∑3
i=1 αi|Ji(z)|2 of the three solutions

of (4.16) (up to an overall normalisation factor), and corresponds to selecting integration
contours in (4.15) and in their anti-holomorphic 〈φ13(z̄) . . . 〉 counterparts. Finally, the
normalisation factor can be fixed by taking the z → 0 of the correlator and comparing with
the OPE.
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5 Perturbation theory with Hamiltonian Truncation regulator

Next we explain in detail how the third and fourth order perturbation theory corrections to
the ground state energy are calculated when Hamiltonian Truncation is used instead as the
regulator. This computation will serve as an example of the breakdown of locality that we
argued for in section 3.

5.1 Third order correction

We start by computing (4.7), the coefficient for the Tricritical Ising model Mp=4 using
Hamiltonian Truncation. This coefficient can be expressed as the product of matrices shown
in (2.1), however it is more convenient to calculate it starting from the integral (2.5). To
do this, we radially order the integral of the three-point function in (4.2):

3!C
∫

06|z1|6|z2|61

d2z1
|z1|2−∆

d2z2
|z2|2−∆

1
(z1 − z2)

∆
2 (1− z2)

∆
2 (1− z1)

∆
2
× c.c., (5.1)

where c.c. means multiplying the function by its complex conjugate. Next we expand the
integral in the variables z1/z2 and z2, using the series expansion (1− ε)−∆/2 =

∑∞
k=0 r

∆/2
k εk,

where
rPk ≡

Γ(P + k)
Γ(P )k! . (5.2)

Integrating each term in the series leads to the following result

3!(2π)2C
∞∑
K=0

∞∑
Q=0

(AK,Q)2

(∆ + 2K)(∆ + 2Q) (5.3)

where the coefficients are given by the finite sums AK,Q =
∑min{K,Q}
k=0 r

∆/2
k r

∆/2
Q−kr

∆/2
K−k. Then,

a Hamiltonian Truncation regularisation of (5.3) proceeds by truncating the sums so that
neither of the two denominator factors may exceed ∆T . We compare the Hamiltonian
Truncation result in the ∆T → ∞ limit with (4.7). Taking this limit as a numerical
extrapolation we find convergence to the analytical result. The convergence is slow because
finite ∆T corrections decouple as ∆T

3∆−2d = ∆T
−2/5 at large values of the cutoff.

5.2 Fourth order corrections

Next we compute the fourth order corrections. Again, these corrections can be expressed as
products of matrices as shown in (2.1), but we find it more convenient to do the calculation
starting from the integrals (4.8) and (4.9). For the Tricritical Ising caseMp=4, the coefficient
α1 in (4.4) is zero, and thus we have

〈φ13(x1)φ13(x2)φ13(x3)φ13(1)〉c = α2|t2(zi)|+ α3|t3(zi)| − disconnected (5.4)

where the disconnected terms are written explicitly in (2.6). Next we consider the radially
ordered (r.o.) integral of each term in (5.4)

4!
∫

r.o.

3∏
i=1

d2zi
|zi|2−∆ |tm(zi)|= 4!

∫
r.o.

3∏
i=1

d2zi
|zi|4/5

z
−22/5
13 (z2−1)−22/5

[z12z23(z3−1)(1−z1)]−8/5 Jm(η)×c.c., (5.5)
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for m = 2, 3. The functions Jm in (4.5) admit the following representation J2(η) =
η−11/5∑∞

j=0 b̂jη
j , and J3(η) = η−14/5∑∞

j=0 ĉjη
j . The b̂j ’s and ĉj ’s can be obtained by either

taking the series expansion of (4.5), or alternatively by deriving a recursion relation for the
coefficients by inserting these series into the ODE discussed in 4.1. See appendix B for
further details.

Next we perform a series expansion in the quantities zi/zi+1 and z3 for all the terms
in (5.5). This type of expansion was used to analyse perturbations to the d = 2 critical Ising
model in [27]. After performing such an expansion for |t2| we are left with the following
radially ordered integral

4!
∞∑

j,j̄,ki,k̄i=0

b̂j b̂j̄ RR̄
∫

r.o.

3∏
i=1

d2zi
|zi|4/5

(
z1
z2

)k1+k3+k5 (z2
z3

)k1+k2+k5+k6+j− 3
5
z
k1+k4+k6− 3

5
3 × c.c. ,

(5.6)
where R =

∏2
i=1 r

− 8
5

ki
r

3
5−j
ki+2

r
11
5 +j
ki+4

, and R̄ is obtained by replacing {ki, j} → {k̄i, j̄} on the
indices in R. Recall that the quantity rPk is defined in (5.2).5 After performing few
elementary integrals we are led to

4!(2π)3
∞∑

P,Q,R=0

(BP,Q,R)2

(6/5 + 2P )(6/5 + 2Q)(6/5 + 2R) , (5.7)

where BP,Q,R =
∑
qi,j=0 b̂jr

− 8
5

q1 r
− 8

5
Q−q1−q2−q3−j r

3
5−j
P−q1−q2r

3
5−j
R−q1−q3 r

11
5 +j
q2 r

11
5 +j
q3 , and the lower

indices on the r’s are required to be positive, which ensures that for any value of {P,Q,R}
there are a finite number of terms in the sum. This representation of the t2 integral in (5.5)
is very convenient for implementing the Hamiltonian Truncation cutoff. The denominators
(6/5 + 2n), n ∈ N, in (5.7) are interpreted as the energy of the states in the channel
[φ13]× [φ13] ∼ [φ13]. The channel [φ13][φ13] ∼ [1] is accounted for in the t3 term as we
show next.

The integral (5.5) over |t3| proceeds through analogous steps. We expand in the
quantities zi/zi+1 and z3, which have magnitude less than 1 in the radially ordered integral,
and then integrate. At this point we notice an important difference with respect to the
previous calculation. The radially ordered integral of t3 formally gives

4!(2π)3
∞∑

P,Q,R=0

(CP,Q,R)2

(6/5 + 2P )(2Q+ ε)(6/5 + 2R) , (5.8)

with CP,Q,R =
∑
qi,j ĉjr

− 8
5

q1 r
− 8

5
Q−q1−q2−q3−j r

6
5−j
P−q1−q2r

6
5−j
R−q1−q3 r

8
5 +j
q2 r

8
5 +j
q3 , where the lower in-

dices on the r’s are again required to be positive. Equation (5.7) possesses an IR divergence
due to the presence of a zero mode at Q = 0, which we regulate with ε. The integral of (5.4),
is finite and therefore we expect this singularity to be canceled by the disconnected terms.

Next we must evaluate the disconnected pieces. Two of them were computed already in
section 3.2, and we only need to compute the integral of 〈φ13(x1)φ13(x2)〉 〈φ13(x3)φ13(1)〉

5We are left with an integral of the form
∫

r.o. d
2zi z

a
1z
b
2z
c
3 × c.c. The integrals over

∫ |z2|
0 d2z1,

∫ |z3|
0 d2z2

and
∫ 1

0 d
2z3 are zero unless c = c̄, a+ b = ā+ b̄ and a+ b+ c = ā+ b̄+ c̄, respectively.
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here. Radially ordering the integral and performing the series expansion of the integrand
for |zi| � |zi+1| � 1 yields.

4!
∞∑

ki,k̄i=0

2∏
j=1

r
6/5
kj
r

6/5
k̄j

∫
r.o.

d2z1
|z1|4/5

d2z2
|z2|4/5

d2z3
|z3|4/5

(
z1
z2

)k1

z
− 6

5 +ε
2 zk2

3 × c.c. (5.9)

where we have introduced a small infrared regulator ε. The integral simplifies to

1
ε
× 4!(2π)3 ∑

k1,k2

(
r

6/5
k1

)2

6/5 + 2k1

(
r

6/5
k2

)2

6/5 + 2k2
(5.10)

which cancels against the zero mode Q = 0 in (5.7), because α3 ĉ
2
0 = 1. This is expected

from the limiting behaviour of the four-point function in the x1 → x2 limit.

After collecting the various terms, we are left with the following expression for the
fourth order correction to the ground state energy in the Tricritical Ising model

c4
4!(2π)3 = −

∞∑
P,Q,R=0

α2
(BP,Q,R)2

(6
5 + 2P ) (6

5 + 2Q) (6
5 + 2R)

−
∞∑

P,R=0
Q=1

α3
(CP,Q,R)2

(6
5 + 2P ) 2Q (6

5 + 2R)

+
∞∑

P,Q=0

1
6
5 + 2P

(DP,Q)2

12
5 + 2P + 2Q

1
6
5 + 2Q

+
∞∑

P,Q=0

(DP,Q)2(
6
5 + 2P

)2 (12
5 + 2P + 2Q

) ,
(5.11)

where BP,Q,R and CP,Q,R are defined right after (5.7) and (5.8), respectively, and
DP,Q = r

6/5
P r

6/5
Q . The last two sums in (5.11) arise from the integrals of the discon-

nected terms 〈φ13(z1)φ13(z3)〉 〈φ13(z2)φ13(1)〉 and 〈φ13(z2)φ13(z3)〉〈φ13(z1)φ13(1)〉, respec-
tively. At this point it is tempting to combine the terms in (5.11) right away into∑
P,QD

2
P,Q

(
6
5 + 2P

)−2 (6
5 + 2Q

)−1
, and identify them with the subtraction terms in (3.20).

While c4 is a finite quantity in this theory, each individual sum in (5.11) is divergent
because the disconnected correlators diverge for ∆ > d/2. In general caution is required
when performing formal manipulations that add and subtract these sums. We regulate the
sums using the Hamiltonian Truncation regulator, which simply consists in cutting off each
sum independently in (5.11).

Next we quote the result for the φ13 perturbation of the p = 5 diagonal minimal model.
This computation proceeds through the same steps: in order to get an expression that we
can regulate with the Hamiltonian Truncation cutoff, we radially order the integral, and
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perform all the series expansions and then integrate. Here we quote the final result

c4
4!(2π)3 = −α1

∞∑
P,Q,R=0

1
4
3 + 2P

(AP,Q,R)2

6 + 2Q
1

4
3 + 2R

− α2

∞∑
P,Q,R=0

1
4
3 + 2P

(BP,Q,R)2

4
3 + 2Q

1
4
3 + 2R

− α3

∞∑
P,R=0
Q=1

1
4
3 + 2P

(CP,Q,R)2

2Q
1

4
3 + 2R

+
∞∑

P,Q=0

1
4
3 + 2P

(DPQ)2

8
3 + 2P + 2Q

1
4
3 + 2Q

+
∞∑

P,Q=0

(DPQ)2(
4
3 + 2P

)2 (8
3 + 2P + 2Q

) .
(5.12)

The coefficients A, B and C are given in the appendix B.3, while now DPQ = r
4/3
P r

4/3
Q . To

simplify the notation, we have carried out the p = 4 and p = 5 computations individually,
even though the parallelisms are evident because we are perturbing by φ13 each model.
One difference between (5.12) and (5.11) is that [φ13]× [φ13] = [1] + [φ13] + [φ15] has three
blocks in its own OPE for p = 5. This reflects in a non-zero contribution for the α1 6= 0
piece that corresponds to the exchange of φ15, which has dimension 6.

5.3 Discussion

Starting with the Tricritial Ising Model Mp=4, we regulate the fourth order correction
using Hamiltonian Truncation by comparing (5.11) with the fourth order term of the RS
series given in (3.20). Focusing on the first three terms of (5.11) we note that each of
them has three denominator factors. They should be identified with the ∆k denominator
factors appearing in the first term of the RS expression of (3.20). Therefore we identify
the first three terms of (5.11) with the first term in (3.20). This identification implies that
regulating using HT is a matter of truncating the sums of (5.11) so that each denominator
factor is less than ∆T . Continuing with the last two terms of (5.11), we combine them and
identify it with the subtraction terms in (3.20). All in all, we get the following Hamiltonian
Truncation regulated expression

c4
4!(2π)3

∣∣∣∣
HT

= −
6
5 +2Pi6∆T∑

Pi=0
α2

(BP1,P2,P3)2

(6
5 + 2P1) (6

5 + 2P2)(6
5 + 2P3)

−

6
5 +2Pi6∆T

2Q6∆T∑
Pi=0
Q=1

α3
(CP1,Q,P2)2

(6
5 + 2P1) 2Q (6

5 + 2P2)

+
6
5 +2P6∆T∑

P=0

(
r

6/5
P

)2

(6
5 + 2P )2

6
5 +2Q6∆T∑

Q=0

(
r

6/5
Q

)2

6
5 + 2Q

. (5.13)

We confirmed this identification of the various terms of (5.13) with (3.20) by direct compu-
tation of the matrix elements V , and performing the matrix product multiplication.

– 23 –



J
H
E
P
0
5
(
2
0
2
2
)
1
5
1

� �� �� �� ��

-���

-���

-���

-���

-���

-���

���

���

Δ�

��

� ! (� π)�

�=�

� �� �� �� ��

���

���

���

Δ�

��

� ! (� π)�

�=�

Figure 3. Plotted in black and red are the results for the HT and alternative truncation (a.t.)
regulation of the c4 coefficients respectively. The numerical integral of the connected four-point
function is shown in gray. Plotted in blue are the HT regulated calculations plus the expressions
in (5.15) (left plot) and (5.16) (right).

Next we would like to introduce an alternative truncation (a.t.) of the sums in c4,

c4
4!(2π)3

∣∣∣∣
a.t.

= c4
4!(2π)3

∣∣∣∣
HT

+


12
5 +2P+2Q6∆T∑

P,Q=0
−

6
5 +2P6∆T ,
6
5 +2P6∆T∑
P,Q=0


(
r

6/5
P

)2

(6
5 + 2P )2

(
r

6/5
Q

)2

6
5 + 2Q

︸ ︷︷ ︸
(SB−SA)/4!(2π3)

. (5.14)

The a.t. differs from HT in the subtraction terms: instead of truncating these terms as in
the last line of (5.13), the a.t. imposes the condition 12

5 + 2P + 2Q 6 ∆T in the sums. We
motivate this truncation of the fourth order correction by our discussion of the divergences of
the integrated four point function in section 3.2. There we argued that UV divergences from

the first term in (3.20) behave as
∑ 12

5 +2P+2Q6∆T

P,Q=0
(r6/5
P )2

( 6
5 +2P )2

(r6/5
Q )2

6
5 +2Q . Then, the a.t. ensures that

this divergence from the integrated four-point is cancelled by modifying the subtraction term.
In the left panel of figure 3 we plot c4/[4!(2π)3] as a function of ∆T for the HT regulated

expression (5.13) in black, and for the alternative regulator expression (5.14) in red. We
also show in gray the result of numerical integration of the position space correlator in (4.8).
The red line nicely converges to the value of the numerical integral. Instead, the HT
computation in black rises slowly towards the gray value, consistent with slow convergence.
The difference between HT (5.13) and the alternative regulator (5.14) was calculated in
section 3.2 along with its asymptotic behaviour for large ∆T in (3.32). In the case of p = 4,
the difference between these two sums vanishes because ∆ = 6/5 is lower than the threshold
in (3.33) for d = 2. The blue line is obtained by taking the HT result (5.13) and adding to it

5 Γ
(

2
5

)2
/Γ
(

4
5

)
− 25/2

12 24/5Γ
(

6
5

)4 ∆T
−1/5 ≈ 0.58 ∆T

−1/5 , (5.15)

which is obtained from (3.32). This additional term vanishes in the ∆T → ∞ limit, and
therefore the blue and black line converge to the same point. The blue line tracks the red
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line closely and seems to converge to the numerical value in gray.6 Therefore we understand
the slow convergence of the black line as a consequence of the small power for ∆T of
−1/5 = 4(∆− d/2− 1), for d = 2 and ∆ = 6/5, in the ∆T →∞ limit.

Next we repeat the same exercise for the φ13 perturbation of the p = 5 minimal model.
The essential points are the same, and the full expression is relegated to appendix B.4. The
first three terms of (5.12) are given by the same expression regardless of whether we use
the HT or the a.t. regulator. The only difference between regulators arises in the last two
terms of (5.12). The difference between HT and a.t. diverges as ∆T →∞ because ∆ = 4/3
is above the threshold in (3.33) for d = 2. This effect is shown in the right panel of figure 3.
There we plot in black and red the HT and the a.t. calculation, respectively. The blue line
is obtained by adding to the black line HT computation the following piece

6 Γ
(

2
3

)2
− 3 Γ

(
1
3

)
16 21/3Γ

(
4
3

)5 ∆T
1/3 ≈ 0.26 ∆T

1/3 , (5.16)

which is obtained from (3.32). The blue and the red line show a nice convergence towards
the gray numerical integral. For this example, the difference between the a.t. (red) and
HT (black) regulators does not vanish in the limit ∆T →∞. This was anticipated in the
general discussion of figure 2.

In this section we have developed conformal perturbation theory for two minimal models
that sit at either site of the bound ∆ > d/2 + 1/4. We have calculated the ground state
energy up to fourth order in the coupling and we have confirmed our expectation that
convergence is lost when the HT regulator is used for perturbations above the bound. We
attribute the loss of convergence to a non-cancellation between divergences of the integral
of the n-point function and the divergences of its disconnected pieces. This cancellation
is guaranteed when using a local regulator, but it can be lost when a non-local regulator,
such as HT, is employed. Because this cancellation also appears in conformal perturbation
theory for the energy gaps, the energy gaps will also be affected.

An earlier computation of the spectrum of the Tricritial Ising perturbed by φ13 using
HT was done in [18]. There the authors obtained precise results for the energy levels on
the cylinder. For the Tricritical Ising Model, we have not found any difference between the
local and HT regulators in the ∆T →∞ limit. Therefore the results of [18] are consistent
with our analysis.

6 Conclusions

In this work, we further develop the theory of Hamiltonian Truncation (HT) for relevant
perturbations that are UV divergent (d/2 6 ∆ < d). Since HT acts as an unconventional,
non-local UV regulator, our aim is to clarify the conditions necessary for ensuring that the

6In figure 3 we only plot even values for the truncation level. We find oscillations between even and odd
truncation levels, which can be ameliorated by a judicious choice of the cutoff, e.g.

∑2∆+2P+2Q6∆T −→∑3∆+2P+2Q6∆T in (5.14).
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HT procedure yields UV finite results. To that end, we analyse conformal perturbation
theory on the cylinder up to fourth order in the coupling.

We have shown that the finiteness of the integrated connected correlation functions,
appearing in conformal perturbation theory can depend on whether a local or HT regulator
is used. The reason for this is the presence of delicate cancellations between singularities of
the correlation function and singularities of its disconnected parts. When these connected
correlators are integrated using a local regulator, such cancellations are preserved leaving
a finite integral, but this fails when a non-local regulator such as HT is used. We have
demonstrated this effect with explicit calculations of the ground state energy, but excited
state energies will be similarly affected because they are also expressible in terms of integrals
over connected correlation functions.

This leads us to introduce a four-point test of HT consistency. It is applied by computing
the fourth order perturbative correction to the energy of a state E(4)

i using HT and a local
regularisation and constructing the following quantity

δi(∆T ) ≡
[
E

(4)
i

]
HT
−
[
E

(4)
i

]
local

. (6.1)

In a consistent Hamiltonian Truncation formulation this difference must vanish when the
∆T cutoff is sent to infinity. We showed that the finiteness of δi(∆T ) critically depends on
the dimension ∆ of the perturbing operator. When δi(∆T ) diverges as ∆T →∞, this signals
a breakdown of locality. This happens first at the fourth order in the Rayleigh-Schrödinger
series. In this study, we evaluate (6.1) in the ground state, and find δg.s.(∆T ) ∼ ∆T

4∆−2d−1.
The exact coefficient of the four-point test δg.s.(∆T ) asymptotic behaviour at large ∆T can be
found in (3.32). In particular, this calculation implies the need for non-local counter-terms
in Hamiltonian Truncation. After incorporating such counter-terms in HT the four-point
test should be satisfied. Counter-terms of this type have been worked out in the context of
the φ4 theory in d = 3 [14, 15], and more recently a theory to compute all the HT counter-
terms was proposed in [28]. In light of our results, it would be interesting to formulate a
Hamiltonian Truncation theory including all the necessary UV divergent counter-terms for
perturbations with an arbitrary dimension in the range d/2 + 1/4 6 ∆ < d.

We provided an example showing the mismatch in (6.1) between HT and local regu-
larisation. We calculate the ground state energy of two CFTs deformed by an operator
with dimension on either side of the threshold d/2 + 1/4 implied by the four-point test.
Specifically, we considered the diagonal minimal modelsMp, with p = 4 and 5, deformed
by the operator φ13 with dimension ∆p = 2− 4/(p+ 1). Both models have a well defined
fourth order correction to the ground state energy, when a local regulator is employed. Yet,
when regulating with HT, the fourth order ground state energy of the p = 5 case diverges
in the ∆T →∞ limit.

Although this work has been primarily focused on conformal perturbation theory, it
would be very worthwhile to apply HT non-perturbatively to analyse a greater variety
of QFTs, especially those in higher dimensions. Our results suggest that Hamiltonian
Truncation can be applied in the range d/2 6 ∆ < d/2 + 1/4 with minimal modifications,
namely by using only the second order counter-term computed in (3.13)–(3.16). As more
conformal data relating to higher dimensional CFTs become available, it will become possible
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to analyse more QFTs using HT. The conformal bootstrap programme [29, 30] promises to
deliver such data. For example, precise CFT data is already known for the 3D Ising [31–33]
and 3D O(2) model [34, 35]. The latter model features a single relevant operator with
dimension in the range d/2 6 ∆s < d/2 + 1/4, falling precisely within the window where
the four-point test (6.1) is satisfied.

Another worthwhile goal for research is to improve the efficiency of Hamiltonian
Truncation. One strategy for achieving improvements is to derive an effective truncated
Hamiltonian whose spectrum converges faster in the ∆T →∞ limit [13, 18, 28, 36–40]. So
far this approach has been applied only for perturbations with dimension ∆ < d/2 — with
the exception of [18]. We did not develop the theory of effective truncated Hamiltonians for
∆ > d/2 here. Nevertheless, the four-point test provides a consistency check for candidate
effective truncated Hamiltonians when the perturbing operator has dimension ∆ > d/2.
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A Energy gaps

In this appendix we give details on the derivation of (2.7). On general grounds we have

Ei − E0 = − lim
τ→∞

1
τ

log
[
〈Oi(τ/2)Oi(−τ/2)〉g − 〈Oi(0)〉2g

]
(A.1)

and 〈Oi(x) · · · 〉g ≡ 〈Oi(x) · · · e−g
∫
Lint〉/〈e−g

∫
Lint〉, where the correlations 〈· · · 〉 without

subscript are computed in the unperturbed g = 0 vacuum. Formula (A.1) follows from the
large τ limit of

〈Oi(τ/2)Oi(−τ/2)〉g =
∑
n

〈0|Oi(τ/2)|n〉〈n|Oi(−τ/2)|0〉g

= 〈Oi(0)〉2g + e−(Ei−Egs)τ |〈0|Oi|1〉g|2 + · · ·

where the dots denote exponentially suppressed terms. Then, we get (A.1) by taking the
logarithm and the large τ limit of the last formula.

Next we evaluate (A.1) two second order in perturbation theory. We will do so for the
perturbation Lint =

∫
cyl φ∆ of a CFT on a cylinder limτ→∞[−τ/2, τ/2]× Sd−1

R . Expanding
log

[
〈Oi(τ/2)Oi(−τ/2)〉g − 〈Oi(0)〉2g

]
to second order gives

log〈Oi(τ/2)Oi(−τ/2)〉 − g
∫

cyl
ddξ
〈Oi(τ/2)φ∆(ξ)Oi(−τ/2)〉
〈Oi(τ/2)Oi(−τ/2)〉

+ g2

2

∫
cyl
ddξ1d

dξ2
〈Oi(τ/2)φ∆(ξ1)φ∆(ξ2)Oi(−τ/2)〉c

〈Oi(τ/2)Oi(−τ/2)〉

− g2

2

{∫
cyl
ddξ
〈Oi(τ/2)φ∆(ξ)Oi(−τ/2)〉c
〈Oi(τ/2)Oi(−τ/2)〉

}2
(A.2)
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where as usual the connected correlator is given by

〈Oτ/2φξ1φξ2 O−τ/2〉c = 〈Oτ/2φξ1φξ2 O−τ/2〉 − 〈Oτ/2φξ1〉 〈φξ2 O−τ/2〉
− 〈φξ1φξ2〉 〈Oτ/2O−τ/2〉
− 〈Oτ/2φξ2〉 〈φξ1 O−τ/2〉 , (A.3)

with the notation φ∆(ξ) ≡ φξ and Oi(x) = Ox. Next we take the limit limτ→∞
−1
τ (A.2).

The first term is given by

lim
τ→∞

−1
τ

log〈Oi(τ/2)Oi(−τ/2)〉 = lim
τ→∞

2∆i

τ
log |e

τ
2R − e−

τ
2R | = ∆i/R , (A.4)

as expected in the unperturbed theory Ei − E0 = ∆i/R+O(g).
To compute the second term of (A.2) we perform a Weyl transformation to map the

correlators of the cylinder into the plane,∫
cyl
ddξ
〈Oi(τ/2)φ∆(ξ)Oi(−τ/2)〉
〈Oi(τ/2)Oi(−τ/2)〉 =

∫
Rd
ddx

∣∣∣∣ xR
∣∣∣∣∆−d 〈Oi(τ/2)φ∆(x)Oi(−τ/2)〉

〈Oi(τ/2)Oi(−τ/2)〉 , (A.5)

where the correlators on the l.h.s. are evaluated on the cylinder while those on the right are
evaluated on Rd. We take the large τ limit

lim
τ→∞

g

τ
(A.5) = lim

τ→∞
g

τ

∫
ddx

∣∣∣∣ xR
∣∣∣∣∆−d |e

τ
2R − e−

τ
2R |2∆i CφOO

|e
τ

2R − x|∆|x− e−
τ

2R |∆|e
τ

2R − e−
τ

2R |2∆i−∆

and note that the region of the integrand x ∼ e
τ

2R does not contribute.7 Therefore we are
left with

lim
τ→∞

g

τ

∫
ddx

∣∣∣∣ xR
∣∣∣∣∆−d CφOO|x|∆ = CφOO lim

τ→∞
g

τ

1
R∆−d

∫ r=Re+
τ

2R

r=Re−
τ

2R

dr

r

∫
dSd−1 = CφOO

gSd−1
R∆−d+1 .

(A.6)
Finally, the third term of (A.2). We use translation invariance to shift the first field

into the origin φ∆(ξ1)→ φ∆(0), then the first integral trivializes
∫
ddξ1 =∫ τ/2

−τ/2 dτ1
∫
dSd−1R

d−1 = τRd−1Sd−1. Next we Weyl-map from the cylinder to the plane
∫

cyl
ddξ2
〈Oi(τ/2)φ∆(0)φ∆(ξ2)Oi(−τ/2)〉c

〈Oi(τ/2)Oi(−τ/2)〉

=
∫
Rd
ddx

∣∣∣∣ xR
∣∣∣∣∆−d 〈Oi(τ/2)φ∆(R~u)φ∆(x)Oi(−τ/2)〉c

|e
τ

2R − e−
τ

2R |2∆i
(A.7)

where ~u is a unit vector. Finally we take the limit

lim
τ→∞

−g
2

2 R
d−1Sd−1 (A.7) = −g

2

2 R
d−1Sd−1

∫
Rd
ddx

∣∣∣∣ xR
∣∣∣∣∆−d 〈Oi(∞)φ∆(R~n)φ∆(x)Oi(0)〉c ,

(A.8)
where Oi(∞) ≡ limx→∞ x

2∆iOi(x).
7We have used a simplified notation so that |x−e− τ

2R | means |~x−e− τ
2R ~n|, where ~n is a unit d-dimensional

vector. At large τ , |~x− e− τ
2R ~n| ∼ |~x| ≡ |x|.
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B Four-point functions

B.1 Constants

For the minimal models Mp perturbed by the φ13(x) operator, the general form of the
four-point function for φ13 is shown in (4.4). In the case of the Tricritical Ising modelM4,
the constants {αi} appearing in the four-point function take the values

α1 = 0 , α2 = Γ
(

2
5

)2
, α3 = Γ

(
2
5

)2
. (B.1)

We also need the constants {ui, vi} to specify the Ji functions for the Tricritical Ising model,
defined in (4.5). For the case of the J2 function, the relevant constants are

u2 =

√
2 +
√

5
2 , v2 = 51/4

π
. (B.2)

For the case of the J3 function, the required constants are

u3 = 1−
√

5
4 , v3 = 51/4

π

√
1 +
√

5
2 . (B.3)

Similarly, in the case of the p = 5 minimal model, the constants {αi} needed to specify
the four-point function shown in (4.4) take the values

α1 = 1
36 , α2 = 1

18 , α3 = 1
36 . (B.4)

B.2 Recursion relations

In section 4, we derived a set of functions Ji(η), which enter our results for four-point
functions, as shown in eq. (4.4). The Ji(η) functions can be expanded as a power series in η.
We use the coefficients of these expansions in formulae such as (5.13) for calculating fourth
order corrections to the ground state energy c4 in our minimal model example theories.
The coefficients can be found by directly expanding the Ji(η) functions. However, finding
coefficients of the expansion at very high orders using this method is inefficient. Instead,
we find it useful to derive recursion relations, which enable more efficient computation of
the higher order expansion coefficients.

For the case of theM4 Tricritical Ising model, the relevant Ji(η) functions are shown
explicitly in (4.5). We begin by considering the series expansion for J2(η). It has the
following form

J2(η) = η−11/5
∞∑
n=0

b̂nη
n. (B.5)

To derive a recursion relation for the coefficients b̂n, we can plug the expansion (B.5) directly
into the ODE which determines J2, shown in (4.16). Equating coefficients of ηn yields the
following result

0 = (760 + 2360(n− 1) + 1175(n− 1)(n− 2) + 125(n− 1)(n− 2)(n− 3)) b̂n−1

+ (456− 600n− 1350n(n− 1)− 250n(n− 1)(n− 2)) b̂n
+ (−240(n+ 1) + 175n(n+ 1) + 125n(n+ 1)(n− 1)) b̂n+1. (B.6)
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We apply this equation recursively to find each b̂n for large n. To do this, we must first
set b̂−1 = 0 and then input b̂0 = −2π/

[
51/4Γ(−2/5)Γ(1/5)Γ(8/5)

]
, obtained by direct

expansion of (4.5).
The four-point function of the Tricritical Ising model also contains a second function

J3(η). It admits a similar series expansion:

J3(η) = η−14/5
∞∑
n=0

ĉnη
n. (B.7)

Again, a recursion relation for the ĉn can be derived by plugging the expansion above into
the ODE in (4.16). We find

0 = (160 + 1310(n− 1) + 950(n− 1)(n− 2) + 125(n− 1)(n− 2)(n− 3)) ĉn−1

+ (144 + 300n− 900n(n− 1)− 250n(n− 1)(n− 2)) ĉn
+ (−90(n+ 1)− 50n(n+ 1) + 125n(n+ 1)(n− 1)) ĉn+1. (B.8)

To apply this formula, we first set ĉ−1 = 0 and ĉ0 = −1/Γ(2/5), obtained by direct expansion
of (4.5). Then all subsequent ĉn may be determined recursively.

Similar logic can be applied to the corresponding four-point function in the case of the
M5 minimal model. For this model, the four-point function is made up of three new Ji
functions shown in (4.6). They admit the series representations below

J1(η) =
∞∑
j=0

âjη
j , (B.9)

J2(η) = η−7/3
∞∑
j=0

b̂jη
j , (B.10)

J3(η) = η−3
∞∑
j=0

ĉjη
j . (B.11)

To derive recursion relations for the hatted coefficients, we input the expansions above into
the defining ODE in (4.16) as before. Starting with J1, we find

0 = (760 + 670(n− 1) + 150(n− 1)(n− 2) + 9(n− 1)(n− 2)(n− 3)) ân−1

+ (−380− 670n− 225n(n− 1)− 18n(n− 1)(n− 2)) ân
+ (120(n+ 1) + 75n(n+ 1) + 9n(n+ 1)(n− 1)) ân+1 (B.12)

This can be used to determine the subsequent ân recursively by first inputting â−1 = 0 and
â0 = 52/27.

For the J2 case, we find

0 = (60 + 180(n− 1) + 87(n− 1)(n− 2) + 9(n− 1)(n− 2)(n− 3)) b̂n−1

+ (40− 40n− 99n(n− 1)− 18n(n− 1)(n− 2)) b̂n
+ (−20(n+ 1) + 12n(n+ 1) + 9n(n+ 1)(n− 1)) b̂n+1. (B.13)

Again, we determine the subsequent b̂]n by first inputting b̂−1 = 0 and b̂0 = 4.
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For the J3 case, we obtain

0 = (10 + 94(n− 1) + 69(n− 1)(n− 2) + 9(n− 1)(n− 2)(n− 3)) ĉn−1

+ (10 + 32n− 63n(n− 1)− 18n(n− 1)(n− 2)) ĉn
+ (−6(n+ 1)− 6n(n+ 1) + 9n(n+ 1)(n− 1)) ĉn+1. (B.14)

To determine the subsequent ĉn, we first input ĉ−1 = 0 and ĉ0 = −6. A new subtlety
is encountered when performing this calculation, because for n = 2 (B.14) provides no
constraint on ĉ3. The inability of this procedure to fix ĉ3 should be expected because of
the similarity between the series expansions for J1 in (B.9) and J3 in (B.11). Specifically
it is possible to take linear combinations of J1 and J3 type series solutions to the ODE
in (4.16) to form new independent solutions of the J3 type. We eliminate this ambiguity
by also inputting the value ĉ3 = −920/27. This value may be derived by directly ex-
panding J3 in (4.6). The remaining ĉn coefficients may now be derived by applying the
recursion relation.

B.3 Hamiltonian Truncation coefficients

In this appendix, we give the AP,Q,R, BP,Q,R, and CP,Q,R coefficients of (5.12), which
characterise the fourth order correction to the ground state energy in the deformed M5
minimal model:

AP,Q,R =
∑
qi,j=0

âjr
− 5

3
q1 r

− 5
3

Q−q1−q2−q3−j r
− 5

3−j
P−q1−q2r

− 5
3−j

R−q1−q3 r
14
3 +j
q2 r

14
3 +j
q3 , (B.15)

BP,Q,R =
∑
qi,j=0

b̂jr
− 5

3
q1 r

− 5
3

Q−q1−q2−q3−j r
2
3−j
P−q1−q2r

2
3−j
R−q1−q3 r

7
3 +j
q2 r

7
3 +j
q3 , (B.16)

CP,Q,R =
∑
qi,j=0

ĉjr
− 5

3
q1 r

− 5
3

Q−q1−q2−q3−j r
4
3−j
P−q1−q2r

4
3−j
R−q1−q3 r

5
3 +j
q2 r

5
3 +j
q3 . (B.17)

The r∆
j factors are defined in (5.2). In the sums above, the ranges of the indices being

summed over are restricted, so that the lower indices j of the r∆
j factors cannot be negative.

This ensures that all the above are finite sums.

The âj , b̂j and ĉj are coefficients appearing in series expansions for the Ji(η) functions
shown in (4.6). The four-point function of theM5 minimal model is constructed in (4.4)
using these functions. The coefficients above can be determined by directly expanding
the functions shown in (4.6), or alternatively by using recursion relations, as explained in
appendix B.2.
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B.4 Regulation of c4 for the φ13 perturbation of Mp=5

In this appendix we provide the regularization of (5.12). Using a Hamiltonian Truncaiton
cutoff leads to

c4
4!(2π)3

∣∣∣∣
HT

= −α1

4
3 +2Pi6∆T

6+2Q6∆T∑
Pi,Q=0

1
4
3 + 2P1

(AP1,Q,P2)2

6 + 2Q
1

4
3 + 2P2

− α2

4
3 +2Pi6∆T∑

Pi=0

1
4
3 + 2P1

(BP1,P2,P3)2

4
3 + 2P2

1
4
3 + 2P3

− α3

4
3 +2Pi6∆T

2Q6∆T∑
Pi=0
Q=1

1
4
3 + 2P1

(CP,Q,R)2

2Q
1

4
3 + 2P2

+
4
3 +2P6∆T∑

P=0

(
r

4/3
P

)2

(4
3 + 2P )2

4
3 +2Q6∆T∑

Q=0

(
r

4/3
Q

)2

4
3 + 2Q

. (B.18)

In the main text we have also introduced an alternative truncation (a.t.) of the fourth order
calculation given by

c4
4!(2π)3

∣∣∣∣
a.t.

= c4
4!(2π)3

∣∣∣∣
HT
−

4
3 +2P6∆T∑

P=0

(
r

4/3
P

)2

(4
3 + 2P )2

4
3 +2Q6∆T∑

Q=0

(
r

4/3
Q

)2

4
3 + 2Q

(B.19)

+
8
3 +2P+2Q6∆T∑

P=0

(
r

4/3
P

)2

(4
3 + 2P )2

(
r

4/3
Q

)2

4
3 + 2Q

. (B.20)

The coefficients A, B and C are given in the appendix B.3, while DPQ = r
4/3
P r

4/3
Q and r∆

K

is defined in (5.2).
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