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Abstract: In this work we aim to gain qualitative insight on the far-from-equilibrium
behavior of the gluon plasma produced in the early stages of a heavy-ion collision. It was
recently discovered [1] that the distribution functions of quarks and gluons in QCD effective
kinetic theory (EKT) exhibit self-similar “scaling” evolution with time-dependent scaling
exponents long before those exponents reach their pre-hydrodynamic fixed-point values.
In this work we shed light on the origin of this time-dependent scaling phenomenon in
the small-angle approximation to the Boltzmann equation. We first solve the Boltzmann
equation numerically and find that time-dependent scaling is a feature of this kinetic
theory, and that it captures key qualitative features of the scaling of hard gluons in QCD
EKT. We then proceed to study scaling analytically and semi-analytically in this equation.
We find that an appropriate momentum rescaling allows the scaling distribution to be
identified as the instantaneous ground state of the operator describing the evolution of the
distribution function, and the approach to the scaling function is described by the decay of
the excited states. That is to say, there is a frame in which the system evolves adiabatically.
Furthermore, from the conditions for adiabaticity we can derive evolution equations for
the time-dependent scaling exponents. In addition to the known free-streaming and BMSS
fixed points, we identify a new “dilute” fixed point when the number density becomes small
before hydrodynamization. Corrections to the fixed point exponents in the small-angle
approximation agree quantitatively with those found previously in QCD EKT and arise
from the evolution of the ratio between hard and soft scales.
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1 Introduction

Exploring the many-body physics of Quantum Chromodynamics (QCD) is one of the
key frontiers in high-energy nuclear physics. The last decade saw significant progress in
understanding thermal and transport properties of the quark-gluon plasma (QGP) produced
in heavy ion collisions (see e.g. [2–5] for reviews). Recently the far-from-equilibrium behavior
of the QGP and the subsequent process of thermalization have attracted significant interest.
On the theory front, the non-equilibrium dynamics of QCD and QCD-like theories have
been investigated using kinetic theory, classical field simulations, and gauge/gravity duality
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(see [6, 7] for recent reviews). There is a growing appreciation that the off-equilibrium
dynamics in the early stages of heavy ion collisions may be crucial for understanding
the observed collectivity [8–11], especially in smaller collision systems. QCD effective
kinetic theory (EKT) [12] has become a particularly important tool for understanding
far-from-equilibrium dynamics and thermalization in QCD (see e.g. [13–16]).

Studies of far-from-equilibrium QCD have revealed a surprising self-similar “scaling”
behavior of the quark and gluon distribution functions. A distribution function is said
to exhibit scaling behavior if the shape of the (rescaled) distribution function remains
stationary when expressed in terms of a rescaled momentum variable. This self-similar
evolution has been observed in classical field simulations [17, 18], for small-angle scatterings
in kinetic theory [19], and later in simulations of QCD EKT [1]. In addition to showing
that the distribution function reaches the self-similar scaling form, the study of ref. [1]
further demonstrated that the distribution function can take the scaling form with time-
dependent scaling exponents much before the scaling exponents attain their fixed-point
(time-independent) values.1 This interesting and important finding suggests that the
early time evolution of quark-gluon matter created in heavy-ion collisions might be simply
characterized by a scaling function together with the evolution of a handful of scaling
exponents. Time-dependent scaling in Bose gases has also been studied in ref. [20]. However,
it remains unclear what causes the emergence of time-dependent scaling and how general
the resulting exponents are.

In this work we concentrate on the early non-equilibrium stage of a heavy-ion collision
and aim at gaining qualitative lessons on the emergence of time-dependent scaling and the
evolution of the scaling exponents. For this purpose, we shall consider a Bjorken-expanding
gluon plasma and study the kinetic Boltzmann equation with a highly occupied initial
condition. We will employ the small angle approximation to the Boltzmann equation, which
then takes the form of a Fokker-Planck (FP) equation. We will refer to this equation as
“FP equation” throughout. This equation has been studied previously in ref. [19], where
they showed that it featured solutions with time-independent scaling behavior. Our results
further demonstrate that this FP equation exhibits time-dependent scaling for hard gluons,
and that its solutions capture key qualitative features of the scaling seen from QCD EKT
results reported in ref. [1]. This supports our view that the relatively simple FP equation
can be utilized as a qualitatively accurate effective description of time-dependent scaling
behavior of hard gluons.

One of the novel results in this paper is that for the case of the FP equation, we
show explicitly and analytically the equivalence between scaling in the evolution of the
distribution function and the adiabatic evolution of the distribution function by extending
the adiabatic scenario for rapidly expanding gluon plasmas first proposed in ref. [21]. In our
adiabatic picture, the scaling function can be identified as the instantaneous ground state
of a non-Hermitian operator describing the evolution of a rescaled distribution function. In
this framework, the emergence of self-similarity is due to the decay of instantaneous excited
states. Excited states naturally decay over time because the non-Hermitian nature of the

1In ref. [1], this time-dependent scaling is called “prescaling”.
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Figure 1. We illustrate time-dependent scaling behavior and its connection to adiabaticity. On the
top, we show a typical evolution of a distribution function in the present work. Below, we show the
temporal evolution of the characteristic scale C and its associated scaling exponent γ in red and
blue solid curves, respectively. Though the evolution of the distribution function begins at τI , the
scale and exponents are only well-defined after the time τS when the distribution function reaches
its self-similar scaling form. Although the scaling exponent γ will eventually approach its fixed
point value at τFP, the distribution function may take the scaling form at τS < τFP. Within the
present set-up, we find the emergence of scaling behavior around τS is associated with the decay of
excited modes, as will be explained throughout the main text. The ground state mode can then be
associated with the scaling form of the distribution, giving the dominant contribution to the state
of the system during the scaling stage, and hence the distribution function’s self-similar evolution
becomes equivalent to adiabatic evolution. We note that, in this scenario, all of this happens well
before the system becomes hydrodynamic: τFP � τHydro.

time evolution operator considered herein implies that their time evolution factors decay
exponentially over time, like the evolution of states in quantum mechanics under Euclidean
time evolution. The time scale over which this decay happens is determined by the inverse
of the energy gap ∆E between the ground and lowest excited state. If this energy gap is
larger than the rate Γ0→e at which transitions induced by the time-dependence of the time
evolution operator move the system away from the ground state, then one says that the
evolution is adiabatic, and furthermore, it is a good approximation to describe the evolution
of the whole system by that of its ground state. This naturally explains why a wide range
of initial distributions would approach the scaling function, and showcases the generality
of time-dependent scaling (see figure 1 for an illustration). In general, whenever such a
description can be set up, this provides a simple and straightforward way to understand
the emergence of pre-hydrodynamic attractors.

To describe the evolution of the scaling exponents, we derive a set of closed-form
equations by imposing the adiabaticity condition Γ0→e/∆E � 1 for the rescaled distribution
function, which in the case of the FP equation we study can be made exact by demanding
Γ0→e = 0, thus ensuring that the state cannot transition away from the ground state. We
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verify numerically that those equations not only give a reasonable description for scaling
exponents extracted from the FP equation, but also for those from QCD EKT [1]. From
those equations, we obtain non-universal corrections to the scaling exponents near the fixed
point, analogous to anomalous dimension corrections in quantum field theory.

This work is organized as follows: we review the pertinent ingredients of time-dependent
scaling behavior and specify the FP equation we solve throughout this work in section 2.
Then, in section 3, we demonstrate the scaling behavior of the FP equation numerically, and
in section 4 present analytical results for the scaling solution for a simplified case in order to
gain some intuition. Next, in section 5 we establish the connection between adiabaticity and
scaling, demonstrating our claim that describing the distribution function in terms of an
adiabatic evolution of the system makes manifest the underlying phenomena that lead to at-
tractor behavior. In section 6, we formulate and study the evolution equations for the scaling
exponents that define the frame in which adiabaticity is optimized, and compare with avail-
able numerical results to test our formalism. We give our concluding remarks in section 7.

2 Set-up

In this work, we consider the early-time, far-from-equilibrium evolution of gluonic matter
created in a heavy-ion collision undergoing Bjorken expansion. We shall assume that the
initial gluon distribution is given by the saturation scenario (see ref. [22] for a review), i.e.,
the typical gluon momentum is the saturation scale Qs and the occupation number of hard
gluons is much larger than 1. The gluon distribution will subsequently evolve because of the
longitudinal expansion and interactions among gluons. Within the above picture, we will
investigate how a self-similar evolution of the gluon distribution function f(pz, p⊥; τ) (which
depends on transverse and longitudinal momentum p⊥, pz and Bjorken time τ) can emerge.

In this section, we will establish the concepts we will need in our subsequent analysis.
Specifically, we review pertinent ingredients of time-dependent scaling in subsection 2.1 and
specify the collision integral we use in subsection 2.2.

2.1 Time-dependent scaling

Let us begin by writing an arbitrary distribution function f(pz, p⊥; τ) as

f(p⊥, pz; τ) = A(τ)w(ζ, ξ; τ) , (2.1)

where we have introduced the rescaled variables

ζ ≡ p⊥
B(τ) , ξ ≡ pz

C(τ) . (2.2)

Given that the function w is time-dependent at this point, there is no loss of generality as
any function f can be written in this way. For simplicity in the notation, we shall henceforth
keep the time-dependence of A,B,C implicit.

The choice of A,B,C can be viewed as a choice of frame. For a given distribution
function f , there is a family of frames resulting in a family of rescaled distribution functions w.
Though A,B,C at this point are arbitrary, an appropriate frame choice may illuminate the
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underlying physics.2 For convenience, we shall take A,B,C to be order of the characteristic
occupancy number, transverse, and longitudinal momentum respectively, so that w is order
one for ζ, ξ ∼ 1. Furthermore, if one is able to find a frame such that these properties are
preserved under time evolution, then a great reduction in complexity is achieved because
the characteristic scales of the problem are immediately apparent. Finding such a frame is
one of the main tasks that we will undertake throughout the rest of this work.

The evolution of A,B,C can be characterized by their percentage rate of change,

Ȧ ≡ τ∂τA

A
= α(τ) , Ḃ = −β(τ) , Ċ = −γ(τ) . (2.3)

Throughout this work, we will use the “dot” to denote the logarithmic derivative with
respect to log τ , e.g., Ẋ ≡ ∂log τ logX, and keep the time-dependence of α, β, γ implicit
unless otherwise specified.

To gain intuition for these changes of frames, and what to expect for the values of the
scaling exponents throughout the system’s evolution, we note that for a plasma undergoing
rapid longitudinal expansion, the characteristic longitudinal momentum C should drop
as 1/τ in the free-streaming limit, corresponding to γ = 1. Once interactions become
relevant, one expects that the momentum exchange among gluons would slow the decay of
C, so we expect 0 < γ < 1. On the other hand, the change of the characteristic transverse
momentum B is solely due to interactions and hence is slower than that of C. This implies
that generically during the early stages of the evolution we will have

r ≡ C

B
� 1 , |β|

|γ|
� 1 , (2.4)

(see also ref. [25]). When the collision integral is dominated by momentum diffusion, the
width of the transverse momentum distribution broadens and we expect that β ≤ 0.

A distribution function is said to exhibit scaling if there exists a special (time-dependent)
frame AS , BS , CS in which w becomes time-independent, i.e.,

w(ζ, ξ; τ) = wS(ζ, ξ) , (2.5)

and the distribution function takes the scaling form

f(p⊥, pz; τ) = AS(τ)wS
(

p⊥
BS(τ) ,

pz
CS(τ)

)
. (2.6)

The distribution function f generally changes rapidly in a fast-expanding gluon plasma.
Scaling is the special property that this time-dependence can be absorbed into that of
AS , BS , CS so that the shape of the gluon distribution in rescaled coordinates may evolve
slowly or become stationary (as in (2.6)).

Fixed points of the evolution are characterized by the special case that αS , βS , γS in
eq. (2.3) are time-independent, and therefore

AS ∼ ταS , BS ∼ τ−βS , CS ∼ τ−γS . (2.7)
2See also refs. [23, 24] for examples in the study of self-similar solutions for partial differential equations.
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Because of eq. (2.7), αS , βS , γS are commonly referred to as the scaling exponents. Different
values of αS , βS , γS specify different fixed points. For example, in the bottom-up thermaliza-
tion scenario, the gluon plasma transits from the free-streaming fixed point (αS , βS , γS) =
(0, 0, 1) to the Baier-Mueller-Schiff-Son (BMSS) fixed point (αS , βS , γS) = (−2/3, 0, 1/3)
first found in [25].

It is conceivable that a distribution function could take the scaling form before it evolves
to the fixed point. In this case, w approaches the time-independent scaling function wS while
the scaling exponents αS , βS , γS still change in time. Ref. [1] demonstrated that the gluon
and quark distribution functions exhibit this time-dependent scaling (also called “prescaling”)
in numerical simulations of QCD effective kinetic theory (EKT). This observation suggests
a surprising simplification in the far-from-equilibrium evolution of the distribution function.
The goal of the present work is to gain qualitative insight into this behavior.3

2.2 Kinetic equation and the small angle approximation

We will work in the weak coupling regime g2
sf � 1, with gs the coupling constant. In

this regime the evolution of the distribution function can be described by the Boltzmann
equation [27]

∂τ f −
pz
τ
∂pzf = −C[f ] , (2.8)

where C is the collision integral. As we mentioned in the Introduction, we shall employ the
small angle scattering approximation to the collision integral, which, as the name suggests,
assumes that gluons interact exclusively through small-angle elastic scatterings. Then, the
collision integral is reduced to a Fokker-Planck-like diffusive kernel [28, 29]

CFP[f ] = −λ0lCb[f ]
[
Ia[f ]∇2

pf + Ib[f ]∇p ·
(p
p

(1 + f)f
)]

, (2.9)

where λ0 = g4
s

4πN
2
c . Throughout this work we refer to the Boltzmann equation (2.8) with

the collision integral (2.9) as the Fokker-Planck (FP) equation. The functionals Ia, Ib are
given by

Ia[f ] =
∫

p
f(1 + f), Ib[f ] =

∫
p

2
p
f , (2.10)

where here and throughout we use the shorthand notation
∫

p ≡
∫ d3p

(2π)3 . The integrand of Ia
is proportional to the density of possible scatterers and hence will be enhanced by the Bose
factor when f > 1. Ib is related to the Debye mass mD, the typical momentum exchange
per collision, by (see for example ref. [30])

m2
D = 2Ncg

2
sIb . (2.11)

3The time-dependent scaling of a distribution function bears a certain similarity to the crossover
phenomenon of a critical Ising system. In this case, the critical exponents evolve as a function of temperature
T (and/or magnetic field) from the mean-field values to those of Wilson-Fisher fixed point as T approaches
the critical temperature [26].
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The Coulomb logarithm lCb represents a (perturbatively divergent) integral over the small
scattering angle [28]

lCb[f ] = ln
(
pUV
pIR

)
, (2.12)

where pUV and pIR are UV and IR cutoffs, respectively. This IR divergence originates from
the long range nature of the color force and is regularized by the thermal medium-induced
mass, so we take pIR to be mD. Since the distribution function has finite support in
momentum space, we take pUV to be the characteristic hard momentum of gluons above
which the occupation number starts to decrease. When the typical transverse momentum
scale is much greater than the longitudinal momentum scale, which is the case when the
medium is undergoing rapid longitudinal expansion (see eq. (2.4)), we use

pUV =
√
〈p2
⊥〉 , (2.13)

where the average over the distribution function is defined in a standard way

〈. . .〉 ≡
∫

p (. . .) f∫
p f

. (2.14)

As a result, for our present purposes the expression for the Coulomb logarithm can be
explicitly written as [31]

lCb[f ] = ln


√
〈p2
⊥〉

mD

 . (2.15)

Since both pIR and pUV are functionals of the distribution function, they themselves are
time-dependent, and therefore so is lCb. We will later demonstrate in section 6.2.1 that the
temporal dependence of lCb plays an interesting role in determining the precise behavior of
the scaling exponents near the fixed points.

In the coming section, we will first establish the emergence of time-dependent scaling
in the FP equation in the hard transverse momentum regime ζ ≥ 1 for all ξ. Gluons in
this regime have typical longitudinal momentum much smaller than their typical transverse
momentum, and therefore r = C/B is small (see eq. (2.4)). This allows us to analyze the
scaling behavior order by order in r. To the zeroth order in the small r limit, it is sufficient
to consider only longitudinal momentum diffusion in the collision integral

C[f ] = −λ0lCb[f ]Ia[f ] ∂2
pzf . (2.16)

At finite r we find that setting Ib = 0 in CFP[f ], i.e.

C[f ] = −λ0lCb[f ] Ia[f ]∇2
pf , (2.17)

accurately describes sufficiently hard gluons as long as A > 1 (see appendix B). This
anticipation will be corroborated by the numerical calculations in section 3. We therefore
use eqs. (2.16) and (2.17) for the analytic part of our study of self-similarity and the scaling
behavior of the distribution function.
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Before closing this section, we note that conservation laws can impose important
constraints on the possible values of scaling exponents. For example, a Bjorken-expanding
medium with a collision integral that conserves particle number (such as (2.9)) satisfies

ṅ = −1 (2.18)

where the gluon number density is given by n =
∫

p f . In this case, it is easy to show that
αS , βS , γS must satisfy the relation

αS − 2βS − γS = −1 (2.19)

even if the exponents themselves are time-dependent.

3 Scaling in the Fokker-Planck equation

Scaling around the BMSS fixed point has been observed before in the FP equation [19]. In
this section we will establish that this equation also exhibits scaling with a well-defined set
of time-dependent scaling exponents prior to approaching the fixed point.

To do this, we numerically solve the Boltzmann equation (2.8) with the collision
kernel (2.9) (see appendix A for details on the numerical implementation). Following ref. [1],
we initialize the gluon distribution at the initial time τIQs = 70 as

f(p⊥, pz; τI) = σ0
g2
s

exp
(
−p

2
⊥ + ξ2

0p
2
z

Q2
s

)
, (3.1)

where ξ0 in eq. (3.1) characterizes the initial anisotropy and we take ξ0 = 2. The parameter
σ0 specifies the overoccupancy of hard gluons at the initial time, i.e. g2

sf(p = Qs; τI) ∼ σ0.
For the kinetic description to be valid, we require σ0 < 1.

To explore the scaling behavior, we first follow the proposal of ref. [1] and study the
moments

nm,n(τ) ≡
∫

p
pm⊥ |pz|nf(p⊥, pz; τ) , (3.2)

for non-negative integers m,n. For m,n < 0, the integration (3.2) can potentially be IR
divergent. If the distribution function takes the scaling form (2.6), one can substitute this
distribution into the definition of moments (3.2), and find that the percentage change rate
of the moments is expressible in terms of scaling exponents as

ṅm,n = αS − (m+ 2)βS − (n+ 1)γS . (3.3)

From numerical solutions to the FP equation we can compute the change rate of any
three different moments, and estimate α(τ), β(τ), and γ(τ) from eq. (3.3). Throughout we
use αS , βS , γS to refer to exponents derived by assuming that the distribution has the scaling
form, while we use α, β, γ for exponents extracted from a general distribution function (as
in our numerical results). In the scaling regime, the exponents extracted from any set of
three moments (m,n) via eq. (3.3) will agree with each other. Conversely, if the system
is not in the scaling regime, the exponents extracted from two different sets of moments
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will generally not agree. In practice, we obtain the scaling exponents in eq. (3.3) from
three sets of moments (m,n) ∈ {(0, 0), (1, 0), (0, 1)}; (m,n) ∈ {(0, 0), (2, 0), (0, 2)}; and
(m,n) ∈ {(0, 1), (2, 0), (1, 1)}. We take the agreement of exponents extracted from these
three sets of three moments as an approximate criterion for the emergence of scaling.

In figure 2 we present the evolution of the extracted exponents for different combinations
of the coupling and initial occupancy, (gs, σ0) = (10−3, 0.1), (0.1, 0.6), and (1/3, 0.1), as a
function of the dimensionless time coordinate τ̄ ≡ τ/τI . The scaling exponents extracted
from different sets of moments agree well from τ̄ & 3 for all (gs, σ0) combinations, indicating
emergence of time-dependent scaling at early times.4 The late-time behavior of the scaling
exponents depends on the combination (gs, σ0). For (gs, σ0) = (10−3, 0.1), the late-time
values of the exponents are close to (but with visible difference from) the BMSS values
(αS , βS , γS) = (−2/3, 0, 1/3). This result is also in good agreement with the late-time values
of the exponents in QCD effective kinetic theory calculated for the same values of (gs, σ0) [1].
We will discuss in section 6.2.1 how this deviation from the exact BMSS scaling exponents
can be attributed to an “anomalous dimension” correction.

Remarkably, in addition to the BMSS fixed point we also observe a new late-time fixed
point in the middle and right panel of figure 2, with (up to small corrections)

dilute: (αS , βS , γS) = (−1, 0, 0) (3.4)

We refer to it as the “dilute” fixed point, since we find that the system evolves to it when
the typical occupancy becomes small, A � 1. For (gs, σ0) = (0.1, 0.6), the exponents
tend toward the BMSS values before finally transiting to the dilute fixed point (3.4). For
(gs, σ0) = (1/3, 0.1) the exponents go directly to this new fixed point (3.4). We will further
elaborate on its physical origin in section 6.2.

Though the analysis based on the moment equation (3.3) shows clearly the evolution
of the scaling exponents, the scaling of the distribution is seen more clearly from the full
distribution function. Figures 3 and 4 show the ξ-dependence of the rescaled distribution
function w at fixed ζ = 1 (top panels) and the ζ-dependence at ξ = 0 (lower panels)
for (gs, σ0) = (10−3, 0.1) (figure 3) and (gs, σ0) = (0.1, 0.6) (figure 4). We compare the
scaling of the distribution function around the fixed point (left panels) to the scaling with
time-dependent exponents (right panels). In all panels we take the initial values of A,B,C
to be the characteristic occupation number, transverse, and longitudinal momentum of the
initial distribution (3.1), which gives AI = σ0/g

2
s , BI = Qs/

√
2, CI = Qs/(2

√
2). For the

left panels we fix (time-independent) exponents αS , βS , γS according the late-time fixed
point (BMSS in figure 3 and dilute in figure 4). In the right panels, we instead estimate
the time-dependent scaling exponents α(τ), β(τ), γ(τ) by averaging the extracted scaling
exponents from three sets of moments shown in figure 2.

We observe in figure 3 that, after a short time, the distribution function scales to an
excellent degree with time-dependent exponents (right panel) even though the exponents

4We note that for (gs, σ0) = (0.1, 0.6) we observe that the relation (2.19) between the exponents is
violated by up to 20% while it is satisfied within a few percent for other (gs, σ0) combinations shown here.
This effect has also been observed in several previous works on the FP equation [19, 32] that have suggested
it may be related to the gluon condensate at p = 0.
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Figure 2. Evolution of time-dependent scaling exponents α, β, γ for (gs, σ0) = (10−3, 0.1) (top),
(0.1, 0.6) (middle) and (1/3, 0.1) (bottom) as a function of the rescaled time coordinate τ̄ = τ/τI .
Colored curves show exponents extracted from numerical solutions to the FP equation, with different
dashing styles indicating exponents extracted from different combinations of moments in eq. (3.3).
For comparison, black dashed curves show the exponents extracted from solutions with Ib = 0 in
the collision integral (2.9) (see text in the three final paragraphs of this section). We include dashed
horizontal lines at the values of BMSS and dilute fixed points, and additionally at 1/4 and −3/4 for
visual clarity.
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Figure 3. The rescaled distribution function w (2.1) for the numerical solutions of the Fokker-Planck
equation with (gs, σ0) = (10−3, 0.1). The left panel shows the results with A,B,C determined by the
BMSS exponent while the right panel shows the same but with time-dependent scaling exponents
extracted from figure 2. Colors show the evolution in the rescaled time coordinate τ̄ . Dashed curves
show the analytic scaling solution obtained for Ib = 0, i.e., eq. (4.10), that has no dependence on τ ,
as shown later in this work.

have not yet reached the fixed point.5 In figure 4, scaling appears in the hard regime ζ ≥ 1.
Importantly, we see that in both cases scaling occurs before the system reaches the late-time
fixed point. This agrees with the results shown in figure 2. We note that the absence of
scaling at early times in the soft regime in figures 3 and 4 does not contradict our preceding
analysis based on the evolution of moments. This is because moments with (m,n) > 0 are
mainly determined by the behavior of the distribution in the hard regime ζ, ξ > 1, but are
less sensitive to that in the soft regime.

We note that the ξ-dependence of the scaling distribution is Gaussian, as is the ζ-
dependence in the hard regime. We shall provide analytic insight into this Gaussianity in
sections 4 and 5. Collisions among gluons with typical momentum transfer of the order
of the Debye mass mD (2.11) will rapidly cascade gluons from the hard regime to the
soft regime. The growth of the occupancy in the soft regime will in turn expedite the
thermalization of soft gluons. Therefore, we observe 1/ζ behavior in figure 3, corresponding
to the small momentum limit of Bose-Einstein distribution. For figure 4, the system transits

5To see this from this figure, note that the left and right panels would be equal if the scaling exponents
had reached their fixed point values.
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Figure 4. The same as figure 3 but for (gs, σ0) = (0.1, 0.6). Note in the left figures we use A,B,C
determined not by BMSS but dilute fixed point exponents (6.20).

from the BMSS fixed point to the dilute fixed point (see figure 2 (middle)), meaning the
typical occupancy decreases from A� 1 to A� 1. Accordingly, the distribution at small ζ
first shows 1/ζ behavior and then becomes more similar to a Boltzmann distribution at
later times.

As we demonstrate in appendix B, the Ib term is less important than the Ia term
in the hard regime and when A ≥ 1. To verify this in our numerical approach, we also
compute the scaling exponents for a purely diffusive kernel by setting Ib = 0 in eq. (2.9).
The resulting exponents are shown in dashed black lines in figure 2. We observe good
agreement between the exponents obtained from solving the full FP equation and those
obtained with setting Ib = 0. We also show the scaling function for Ib = 0 in dashed lines
in figures 3 and 4. The scaling distribution with Ib = 0 describes that of the hard gluons
very well, in particular when AS is not too small. We will show in section 4 that the scaling
function wS can also be computed analytically for Ib = 0, see eq. (4.10).

In summary, we have observed time-dependent scaling behavior in the FP equation
for hard gluons ζ = p⊥BS ≥ 1. We find that the FP equation captures the key qualitative
behavior of time-dependent scaling in EKT in this hard regime for (gs, σ0) = (10−3, 0.1), as
was first shown in ref. [1]. In contrast, we do not observe early time scaling for soft gluons,
indicating the importance of inelastic scattering in the soft regime (as was already noticed
in ref. [1]). Nevertheless, our finding suggests that scaling of hard gluons is mainly driven
by the longitudinal expansion and 2↔ 2 small angle scatterings that are present in the FP
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equation. When the system is not too dilute, the solution to the FP equation in the hard
regime is well-described by considering only the diffusive term (proportional to Ia) in the
collision integral. Of course, the Ib term is important in the soft regime where gluons are
in equilibrium, since the equilibrium distribution in this regime is crucially determined by
the balance between Ia and Ib terms.

In the coming sections we will understand the emergence of scaling in an analytically
transparent way for hard gluons, by studying the FP equation with Ib = 0. We will
do so incrementally. First, in section 4 we will study the solutions that exhibit scaling
considering only the longitudinal part of the collision kernel (2.16). Second, in section 5
we will demonstrate the relevance of adiabatic evolution in this problem, and explain why
the self-similar solutions are dynamically preferred. Finally, in section 6 we will derive
the evolution equations for the time-dependent scaling exponents and compare with the
numerical solutions to the FP equation as well as the results from EKT simulations in ref. [1].

4 Analytic scaling solution for longitudinal diffusion

In this section, we shall derive the scaling solution to the FP equation analytically in the
limit that the typical longitudinal momentum is much smaller than the typical transverse
momentum, i.e. C/B � 1. To leading order in small C/B, the collision integral (2.9) is
reduced to eq. (2.16), and we can write the FP equation as

∂yf =
(
pz∂pz + q ∂2

pz

)
f . (4.1)

Here, we have defined the effective momentum diffusive constant

q ≡ λ0lCb Ia[f ] τ , (4.2)

which, for later convenience, is defined with respect to a (dimensionless) logarithmic temporal
variable

y ≡ log(τ/τI) . (4.3)

Though q is a functional of f , for notational brevity we leave this dependence implicit.
Since the simplified collision integral (2.16) does not change transverse momentum, in this
section we shall suppress the p⊥-dependence in the distribution function and set βS = 0.

To look for a self-similar solution, we substitute eq. (2.6) into eq. (4.1) to obtain an
equation for wS :

∂ywS = −αSwS + (1− γS)ξ ∂ξwS + qS
C2
S

∂2
ξwS

= −(1− γS)
[

qS
(1− γS)C2

S

∂2
ξ + ξ ∂ξ −

αS
(1− γS)

]
wS (4.4)

where we have used the definitions of αS , γS from (2.3). Here the scaling variable ξ (2.2) is
evaluated with C = CS and the subscript “S” in qS reminds us that q is evaluated with the
scaling distribution function as its argument.
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Then, by definition, a distribution undergoing scaling satisfies ∂ywS = 0, and conse-
quently eq. (4.4) becomes

wS + ξ ∂ξ wS + qS
(1− γS)C2

S

∂2
ξ wS = 0 , (4.5)

where we have used the relation among scaling exponents (2.19) with βS = 0, namely
αS = −1 + γS . In the analysis above, we have assumed γS 6= 1. In the special case γS = 1,
the condition on the scaling solution can be read from the first line of eq. (4.4): qS ∂2

ξwS = 0,
which has no bounded solution unless qS = 0. The latter corresponds to the free-streaming
(collisionless) limit with scaling exponents given by (αS , βS , γS) = (0, 0, 1).

For wS determined by eq. (4.5) to be time-independent, we must have

(1− γS)
qS/C2

S

= const . (4.6)

Without loss of generality, we choose the normalization of CS such that
(1− γS)
qS/C2

S

= 1 , (4.7)

and with this choice, we can write the equation for wS (4.5) as

∂2
ξ wS + ξ ∂ξwS + wS = 0 . (4.8)

Note that eq. (4.7) imposes a non-trivial self-consistency condition for CS since qS itself is a
functional of the distribution function. Moreover, because γS = −ĊS , this equation is also
implicitly a differential equation for CS . Therefore, the evolution of CS , and consequently γS ,
can be determined by solving eq. (4.7) (see section 6 for more details). Up to a normalization
constant, the solution to eq. (4.8) is

lim
CS/BS→0

wS(ζ, ξ) = e−
ξ2
2 . (4.9)

The other linearly independent solution to the differential equation (4.8) does not give a
finite number density when integrated over the momentum domain ξ, and hence has to be
discarded.

As we have noted in section 2.2, when the typical occupancy is large the first order
corrections from CS/BS can be accounted for by setting Ib = 0 in the FP collision
integral (2.9), but keeping the derivatives with respect to p⊥ in the Ia term. In this
case, the collision integral is reduced to eq. (2.17). By a straightforward generalization
of the analysis presented in this section, we find that the scaling solution is given (up to
normalization) by

wS(ζ, ξ) = e−
ζ2+ξ2

2 . (4.10)

Eq. (4.9) and its generalization eq. (4.10) are the main results of this section. They tell
us that the momentum dependence is Gaussian in the scaling regime, which is also what
we observed numerically in the previous section. In the next section, we shall explain why
the distribution function is attracted to this scaling form, using the adiabatic theorem of
quantum mechanics as our main guiding principle.
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5 Scaling and adiabaticity

Here we set out to demonstrate the close connection between the emergence of scaling
behavior and adiabaticity in the temporal evolution of the distribution function. Let us
first recall that in a time-dependent quantum mechanical problem where the Hamiltonian
changes with time, a system prepared in its ground state will remain in the instantaneous
ground state as long as the transition rates between the ground and excited states are small
compared to the energy gap between them. This is referred to as adiabatic evolution and
characterizes many real-time dynamical problems in quantum mechanics [33].

In ref. [21], the idea of adiabatic evolution has been employed to describe the far-from-
equilibrium evolution of the Boltzmann equation for a Bjorken-expanding plasma under the
relaxation time approximation (see also ref. [34]). With a natural, yet non-trivial, extension,
we shall see that the scaling evolution obtained in the previous section can be viewed as
an example of adiabatic evolution. In particular, we will show that adiabaticity naturally
explains why the rescaled distribution function w will generically be attracted to and stay
in a time-dependent scaling function wS .

5.1 Adiabatic frame

For definiteness, we shall begin with the simplified collision integral (2.16) and suppress
the p⊥ dependence of the distribution function. In the next subsection we will extend our
analysis to the collision integral defined by (2.17).

To make contact with quantum mechanics, we recast the evolution equation (4.4) for
the rescaled distribution function w into the form

∂yw = −Hw , (5.1)

where the “Hamiltonian” operator reads

H = −(1− γ)
[
q̃ ∂2

ξ + ξ ∂ξ −
α

(1− γ)

]
, (5.2)

and we have defined
q̃ = q

C2(1− γ) . (5.3)

Note that q̃ is a functional of A,C since q (defined in eq. (4.2)) depends on the distribution
function f and hence in general is evolving in time. Eq. (5.1) is analogous to the Schrödinger
equation except that the operator H is non-Hermitian because the system under study is
expanding and involves dissipative processes due to collisions.

Since H is a non-Hermitian operator, its left and right eigenvectors are not necessarily
related to each other by complex conjugate. We have

H(y)φRn (ξ; y) = En(y)φRn (ξ; y) (5.4a)
H†(y)φLn(ξ; y) = En(y)φLn(ξ; y) (5.4b)

where the conjugate of H is given by

H†w = −(1− γ)
[
q̃∂2
ξw − ∂ξ(ξw)− α

1− γw
]
. (5.5)
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The eigenfunctions of H represent a specific form of the distribution function in phase
space, and as such, must have finite support in ξ space. Furthermore, assuming inversion
symmetry about the longitudinal axis pz → −pz, the eigenfunctions should be even in ξ.
Taking these constraints into account, we find

φLn = He2n

(
ξ√
q̃

)
, φRn = 1√

2πq̃(2n)!
He2n

(
ξ√
q̃

)
e
− ξ

2

2q̃ , (5.6)

En = 2n(1− γ) + (α− γ + 1) , (5.7)

for n = 0, 1, . . .. Here He2n denote probabilist’s Hermite polynomials, and we have chosen
the normalization of eigenstates by requiring

∫∞
−∞ dξ φ

L
m(ξ)φRn (ξ) = δmn. For obvious

reasons, we refer to the n = 0 mode as the instantaneous ground state

φR0 (ξ; y) = 1√
2πq̃

e
− ξ

2

2q̃ (5.8)

and to modes with n > 0 as instantaneous excited states.
The defining property of a system undergoing adiabatic evolution is that the contribution

from excited states through transitions is suppressed. To quantify the weight of excited
states in the rescaled distribution w, we write

w(ξ; y) =
∑
n=0

an(y)φRn (ξ; y) . (5.9)

From eqs. (5.1), (5.2), and the orthogonality of the eigenbasis, it can be shown that the
coefficients an(y) follow the evolution equation (see also ref. [21])

∂yan +
∑
m 6=n

Vnm(y)am = −En(y)an , (5.10)

with
Vmn =

∫ ∞
−∞

dξ φLm(ξ; y) ∂yφRn (ξ; y) = ˙̃q m(2m− 1)δm−1,n . (5.11)

Transitions between different eigenstates occur only through Vmn in eq. (5.10). Since the
eigenstates (5.6) depend on time through the time-dependence of q̃, the transition rate (5.11)
is proportional to ∂y q̃. When this transition rate is not small, the ground state can mix
with excited states and adiabaticity will break down.

However, at this point we have the freedom to choose A,C at will, so we will look for
A,C that minimize the transition rate Vmn. This goal can be achieved by imposing the
condition

q̃ = q

C2(1− γ) = 1 , (5.12)

so that Vmn (5.11) vanishes. As in section 4, we shall assume γ < 1, so that the ground
state is gapped from the excited states φn>0 by 2n(1− γ). With Vnm = 0 and an energy
gap between the ground and excited states, the conditions for adiabaticity are satisfied.
With (5.12), the eigenfunctions (5.6) do not depend on time explicitly and become

φRn (ξ) = 1√
2π(2n)!

He2n(ξ) e−
ξ2
2 . (5.13)
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Up to now, we still have the freedom to specify α. A natural choice is to take

α = γ − 1 (5.14)

such that the ground state energy E0 in eq. (5.7) vanishes,

E0 = 0 . (5.15)

We will define the frame satisfying conditions (5.12), (5.14) as the “adiabaticity frame,” and
denote the associated rescalings by Aad, Cad.

Since we have seen that the conditions for adiabaticity are satisfied in the adiabatic
frame, we expect that w will approach the ground state following the decay of excited states,

w → φR0 = 1√
2π

e−
ξ2
2 , (5.16)

and then will remain in the ground state because the evolution is adiabatic. In this case,
∂yw = −E0w = 0 by construction. Therefore, we can identify φ0 with the scaling distribu-
tion wS . This identification can also be confirmed by looking at the explicit expression for
wS (4.9). We also note that the conditions (4.7), (2.19) determining AS , CS are the same as
those specifying the adiabatic frame (5.12), (5.14). We therefore conclude that during the
adiabatic evolution Aad, Cad and AS , CS coincide and that scaling behavior for the collision
integral (2.16) is an example of adiabatic evolution.

We wish to emphasize the similarities and differences between AS , CS and Aad, Cad.
Only in the scaling regime is it possible to identify AS , CS such that the rescaled distribution
w becomes time-independent. On the other hand, the adiabatic frame Aad, Cad is defined
by requiring the evolution of the instantaneous eigenstates of H to be as slow as possible.
Such a frame exists even if w is different from wS . Indeed, for a given q, the corresponding
Cad can be obtained by solving (5.12), without having to require that the system is in the
ground state.

We finally note that one could study the dynamics of the distribution function in
different frames, and still solve the same physical problem. The advantage of using the
adiabatic frame is that this frame reveals the adiabatic nature of the scaling evolution.
Moreover, in this frame we can conveniently describe how a self-similar evolution for the
distribution function arises from a generic initial condition: the ground state, i.e., the
scaling distribution, becomes the dominant contribution to the state of the system through
the decay of excited states. Explicitly, since Vnm = 0 in the adiabatic frame, the evolution
equation for an (5.10) reads

∂yan = −En an = −2n(1− γ) an , (5.17)

from which it is clear that the excited modes decay as ∼ e−2(1−γ)ny, and only the ground
state survives after a transient time. This is why the scaling distribution is an attractor of
the evolution.
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5.2 Time scales for approaching the scaling function and approaching the fixed
point

Time-dependent scaling, such as that observed in ref. [1], occurs when the time scale for the
system to approach the scaling distribution τS is much shorter than that for the exponents
to reach their fixed point values τFP. In this section we wish to understand the condition
under which τS � τFP. In this situation, the evolution of the distribution function is
captured by the evolution of the scaling exponents from τS to τFP.

The analysis in the previous section tells us that the distribution will approach the
scaling form (ground state) after the damping of excited states. Therefore, τS is set by the
inverse of the energy gap between the ground and excited states in the adiabaticity frame.
For illustrative purposes we can estimate τS from eq. (5.17), assuming that we are not very
close to the free-streaming limit so that γ in the adiabatic frame is not very close to 1.
Under this condition, the time scale for the decay of the nth excited state is τI exp( 3

4n). On
the other hand, eq. (6.19) (derived in section 6) tells us that deviations from the BMSS
fixed point value γBMSS = 1/3 will decay as e−2y, meaning that yFP ∼ 1/2 or τFP ∼ τI

√
e.

Therefore, the excited states with sufficiently large n decay at a scale much shorter than
τFP. However, low lying excited states decay on a similar time scale to the approach to the
fixed point and therefore may defer the emergence of scaling and shorten, or even remove
altogether the time-dependent scaling regime. A long duration of time-dependent scaling
requires a clean separation τS � τFP, which requires that the contribution from the low-lying
excited states in the initial distribution be sufficiently small. This is consistent with our
numerical observation in section 3 that with a Gaussian initial condition, scaling starts at
early times. Gaussian initial conditions were also used for solving QCD EKT in ref. [1].

5.2.1 Contribution from the first excited state

Our previous observation notwithstanding, even when the contribution from the first excited
state is significant, one can still show that a time-dependent scaling phase exists prior to
reaching the fixed point values. Consider a distribution function given by

w = a0φ
R
0 + a1φ

R
1 = a0√

2π
e−

ξ2
2

[
1 + δ

ξ2 − 1
2

]
, (5.18)

where we have introduced δ ≡ a1/a0, representing the relative contribution of the first
excited state to the full distribution function.

When δ > 1, there is no reason to expect that any kind of self-similarity will appear in
the distribution function. However, if δ < 1, one can manipulate the previous expression into

w = a0√
2π(1 + δ)

e
− ξ2

2(1+δ) +O(δ2) , (5.19)

from which it is apparent that the full distribution function f(pz; τ) = Aw(pz/C; τ) has a
scaling form (at least when δ is perturbatively small), albeit with a different set of rescaling

– 18 –



J
H
E
P
0
5
(
2
0
2
2
)
1
4
5

functions:

A→ Aδ = A√
1 + δ

, (5.20)

C → Cδ = C
√

1 + δ . (5.21)

Then, by using that ∂yδ = ∂ya1/a0 = −2(1−γ)δ, one immediately infers that the distribution
function f will exhibit scaling, with exponents given by

αδ = α+ δ(1− γ) +O(δ2) , (5.22)
γδ = γ + δ(1− γ) +O(δ2) . (5.23)

What is perhaps most remarkable about this is that a precise notion of scaling survives
up to linear order in δ, which expands the domain of time-dependent scaling phenomena
even further. This result guarantees that, at the very least, there will always be a short
time-dependent scaling phase once δ becomes sufficiently small before reaching the attractor.

5.3 Generalization to isotropic diffusive kernel

To complete our discussion on adiabaticity for the FP equation, in this section we will
extend the adiabatic analysis in section 5.1 to the collision integral (2.17), which includes
transverse momentum diffusion. The evolution equation for f is now

∂yf =
(
pz∂pz + q∇2

p

)
f . (5.24)

Since this equation describes diffusion in transverse momentum, we shall reinstate the
pT -dependence of the distribution function. From the definition of the scaled distribution
function w (2.1), eq. (5.24) can be rewritten as ∂yw = −Hw, with

H = α− (1− γ)
[
q̃ ∂2

ξ + ξ ∂ξ
]

+ β

[
− q

B2β

(
∂2
ζ + 1

ζ
∂ζ

)
+ ζ ∂ζ

]
, (5.25)

where q̃ is defined in eq. (5.3).
Analogously to our analysis in section 5.1, we choose A,B,C to ensure the adiabatic

evolution of the states in this system. It is straightforward to show that the appropriate
choice is

q̃ = q

C2(1− γ) = 1 , q̃B ≡ −
q

B2β
= 1 . (5.26)

Furthermore, imposing the condition

α = γ + 2β − 1 , (5.27)

we can make the ground state energy zero (note that when the distribution is in the scaling
regime, this is implied by number conservation). In this adiabatic frame the eigenvalues of
H are

En,m = 2n(1− γ)− 2mβ n,m = 0, 1, 2, . . . , (5.28)
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which can be verified explicitly by solving for the eigenfunctions of each operator in the
square brackets of (5.25). For the longitudinal part, they are Hermite functions as before,
whereas for the transverse part they are given by confluent Hypergeometric functions:

φLn,m = He2n

(
ξ√
q̃

)
1F1

(
−2m, 1, ζ

2

2q̃B

)
, (5.29)

φRn,m = 1√
2πq̃(2n)!

1
q̃B

He2n

(
ξ√
q̃

)
1F1

(
−2m, 1, ζ

2

2q̃B

)
e
− ξ

2

2q̃
− ζ2

2q̃B . (5.30)

One can verify that these Hypergeometric functions are actually polynomials and that the
states are normalized under the inner product∫ ∞

−∞
dξ

∫ ∞
0
dζ ζ φLnL,mL(ξ, ζ)φRnR,mR(ξ, ζ) = δnL,nRδmL,mR . (5.31)

For the reasons listed below eq. (2.4), and in consistency with (5.26), we have assumed
β ≤ 0. With the choice q̃ = q̃B = 1, the ground state (n,m) = (0, 0) is given exactly by

φR0,0 = 1√
2π
e−

ξ2+ζ2
2 , (5.32)

which coincides with the scaling solution (4.10) of the same collision integral. This again
illustrates the connection between adiabaticity and scaling evolution.

Since β is assumed to be small, we note that the energy gap −2mβ between the ground
state φR0,0 and “transverse” excited states φR0,m is not particularly large. This means that
in general, the longitudinal profile approaches the Gaussian form much earlier than the
transverse profile does. Physically, this difference means that the longitudinal expansion
changes the longitudinal momentum distribution rather rapidly. Applying the argument
presented in section 5.2, we conclude that for the transverse profile to exhibit scaling with
a universal distribution form wS prior to approaching the fixed point, the initial transverse
distribution should be close to a Gaussian, because deviations from Gaussianity (i.e., from
excited states) would typically be long-lived.

6 The evolution of scaling exponents

An important implication of scaling is that it simplifies the description of the gluon plasma
evolution far from equilibrium. Once the scaling function is given, the evolution in the
scaling regime can be described by that of time-dependent scaling exponents αS , βS , γS . In
this section we derive evolution equations for scaling exponents from the same conditions
that ensure adiabaticity for the collision kernel (2.17). As shown below, the resulting
equations lead to various fixed points, and provide a precise description of the flow between
those fixed points.

6.1 Deriving evolution equations

In the previous section, we have demonstrated that one can choose A,B,C (and consequently
α, β, γ) such that the scaling distribution wS is the ground state of the Hamiltonian H
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that describes the evolution of w with zero eigenvalue. This leads to the self-consistency
conditions (5.26), (5.27), which in the scaling regime become

αS = −2βS − γS − 1 (6.1)

−βS = qS
B2
S

, (6.2)

−γS = −1 + qS
C2
S

. (6.3)

Alternatively, these consistency conditions can be obtained by inspecting (5.25) for the
requirements on β, γ such that w can be time-independent.

Before continuing, let us pause to develop some physical intuition for eqs. (6.2) and (6.3).
Following ref. [28], we consider the following phenomenological equation describing the
temporal evolution of the average longitudinal momentum for a system undergoing Bjorken
expansion

∂y〈p2
z〉 = −2〈p2

z〉+ 2D . (6.4)

The average over the phase space weighted by the distribution 〈. . .〉 is defined in eq. (2.14).
The first and second terms on the right hand side of eq. (6.4) account for the effects of
the longitudinal expansion and diffusion in momentum space with diffusive constant D,
respectively. In the scaling regime, we further have 〈p2

z〉 = c0C
2
S where c0 is a constant of

order one. Using the definition of γ in eq. (2.3), eq. (6.4) becomes

−γS = −1 + D

c0C2
S

, (6.5)

which is equivalent to eq. (6.3) with D ∝ qS .
The physical interpretation of eq. (6.3) is now quite clear. Recalling γ is the rate of

change of the characteristic longitudinal momentum C, eq. (6.5) indicates that it is given
by the combined effects of longitudinal expansion and momentum diffusion. Eq. (6.2) can
be interpreted similarly in term of transverse momentum diffusion.

We can write down evolution equations for the scaling exponents by differentiating
eqs. (6.2) and (6.3) with respect to y:

∂yβS = (q̇S + 2βS)βS , (6.6a)
∂yγS = −(q̇S + 2γS)(1− γS) . (6.6b)

The evolution of αS is determined from that of βS , γS by eq. (6.1).
To close the system of equations (6.6), we need to express q̇S in terms of βS , γS .

Substituting the scaling form (2.6) for the distribution function into the definition of q (4.2)
yields

qS = λ0 lCb
(
caτA

2
SB

2
SCS + τn

)
, (6.7)

where the time-independent constant ca is given by

ca =
∫ ∞

0

dζ

2π ζ
∫ ∞
−∞

dξ

2π w
2
S(ξ, ζ) . (6.8)
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Using the fact that τn is constant from eq. (2.18) along with eq. (6.1), we find

∂y
(
τn+ τcaA

2
SB

2
SCS

)(
τn+ τcaA2

SB
2
SCS

) = (−1 + 2βS + γS)τcaA2
SB

2
SCS(

τInI + τcaA2
SB

2
SCS

) . (6.9)

As a result, the rate of change of qS from eq. (6.7) can be written as

q̇S = (−1 + 2βS + γS)τcaA2
SB

2
SCS(

τInI + τcaA2
SB

2
SCS

) + l̇Cb . (6.10)

In section 6.2.1, we shall derive an explicit expression for l̇Cb (see eq. (6.28)). Since both q̇S
and l̇Cb depend explicitly on y and AS , BS , CS , eqs. (6.6), (6.10), and (6.28) (together with
the relation eq. (2.3)) form a set of closed equations that can be solved for the evolution of
the scaling exponents. The solution to these equations (shown in section 6.3) is the main
result of this section.

However, we find it instructive to first consider two limiting cases where the evolution
equations (6.6) are simplified. In the first limit, we shall assume the distribution is highly-
occupied, AS � 1. Since n ∝ ASB

2
SCS we can neglect the second term in eq. (6.7) to

obtain

qS ≈ λ0 lCb caτA
2
SB

2
SCS . (6.11)

Then q̇S in eq. (6.10) reduces to

q̇S = −1 + 2βS + γS + l̇Cb (6.12)

and the evolution equation (6.6) takes the form

over-occupied (AS � 1): ∂yβS =
(
γS + 4βS − 1 + l̇Cb

)
βS , (6.13a)

∂yγS =
(
3γS + 2βS − 1 + l̇Cb

)
(γS − 1) . (6.13b)

In the opposite regime, we consider a very dilute distribution AS � 1. In this case, the
dominant contribution to qS is from the second term in eq. (6.7),

qS ≈ λ0lCbτn , (6.14)

meaning q̇S = l̇Cb since τn is time-independent. Then, we can write eq. (6.6) as

dilute (AS � 1): ∂yβS =
(
2βS + l̇Cb

)
βS . (6.15a)

∂yγS = (2γS + l̇Cb)(γS − 1) . (6.15b)

These simplified evolution equations (6.13) and (6.15) will be used in the next section to
discuss the fixed points of the scaling evolution.

Finally, we emphasize that the evolution equations are derived by assuming the simplified
collision integral (2.17). As we have argued in appendix B, this simplification describes well
the scaling evolution of hard gluons with A ≥ 1. In this sense, we should be cautious when
applying those equations to a dilute system with A ≤ 1. Nevertheless, we notice numerically
in section 3 that scaling exponents extracted using eq. (2.17) agree well with those from
solving the full FP equation even near the dilute fixed point. We therefore expect that the
evolution equations shown here be able to describe scaling in the dilute regime, at least
qualitatively.
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6.2 Fixed points

Before solving the evolution equations (6.6), let us first identify the possible (non-thermal)
fixed points, which correspond to the values of exponents βS , γS such that the right hand
side of eq. (6.6) vanishes. These fixed points play an important role in characterizing the
scaling evolution. We will first assume that l̇Cb = 0, and later in this section illustrate the
qualitative implications of a non-zero but constant l̇Cb. In subsections 6.2.1 and 6.3 we will
derive and then use self-consistent equations for l̇Cb.

We begin our discussion by considering perhaps the simplest possibility

Free streaming: (αS , βS , γS) = (0, 0, 1) . (6.16)

These exponents automatically make the right hand side of eq. (6.6) vanish and characterize
the free streaming fixed point. Indeed,

fF.S.(p⊥, pz; τ) = fI

(
p⊥,

(
τ

τI

)
pz

)
(6.17)

solves the Boltzmann equation (2.8) in the collisionless limit for a generic initial condition
f(p⊥, pz; τ = τI) = fI(p⊥, pz). From the free-streaming solution (6.17), we can read the
corresponding exponents (6.16) directly.

Next, we consider the case with γS < 1, βS = 0. We note from (6.2) that since qS is
finite, when we say βS = 0 we mean qS � B2

S . When the typical occupancy is large AS � 1,
we can use eq. (6.13), which reproduces the BMSS fixed point [25] in the absence of l̇Cb

BMSS: (αS , βS , γS) = (−2/3, 0, 1/3) . (6.18)

In fact, for γS(y = 0) = γI and βS = 0, l̇Cb = 0, we can solve eq. (6.13) analytically

γS = (γI − 1) + e−2y(1− 3γI)
3(γI − 1) + e−2y(1− 3γI)

. (6.19)

For sufficiently large y, γS will flow from γI to the BMSS fixed point value 1/3. The only
exception to this would be if γS starts at the unstable fixed point γI = 1, in which case the
solution would stay there forever. Dynamically, however, the original evolution equation for
γS (4.7) sets γS < 1 always, and therefore the system always flows to the BMSS fixed point
in the regime f � 1.

Finally, we turn to the situation where the system becomes dilute during its expansion,
AS � 1. We then read the third fixed point from eq. (6.15):

Dilute: γS = βS = 0 . (6.20)

In this limit, the solution to eq. (6.15) reads

βS = − 1
2y − β−1

I

, γS = 1
1 +

(
γ−1
I − 1

)
e2y

, (6.21)

which approaches (βS , γS) = (0, 0) at late times.
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The careful reader might ask if imposing the condition 2βS = −q̇S leads to additional
fixed points, but it does not, provided l̇Cb = 0. In the limit AS � 1 with constant lCb,
both −1 + γS and βS are negative by virtue of the consistency conditions (6.2), (6.3) while
eq. (6.12) implies that q̇S < 0, meaning there is no solution to 2βS = −q̇S . In the dilute
regime q̇S ∼ 0, and so 2βS + q̇S = 0 reduces to βS = 0.

From the possible fixed points discussed above, we anticipate three possible scenarios
during the far-from-equilibrium stage of the evolution:

1. Scenario I: the expanding plasma evolves from the free streaming fixed point to the
BMSS fixed point. After that, thermalization occurs. This scenario has been discussed
extensively in the literature.

However, because of the presence of the dilute fixed point (6.20), there are two
additional possibilities.

2. Scenario II: scaling exponents first approach the BMSS fixed point, and then move to
the dilute fixed point.

3. Scenario III: the exponents are not attracted to the BMSS fixed point, but transit
directly to the dilute fixed point.

These scenarios are consistent with what we observed in the numerical solutions to the
FP equation in section 3.

The key new finding in this section is the identification of the dilute fixed point (6.20).
The presence of this new fixed point leads to two additional scenarios in the far-from-
equilibrium evolution, namely Scenarios II and III described above. To appreciate the
underlying physics, we inspect the relation between βS , γS and momentum diffusion rate
qS (6.2), (6.3). The vanishing of γS around this fixed point means the characteristic
longitudinal momentum CS approaches a constant value, implying that the change of the
typical longitudinal momentum due to the expansion is balanced by the momentum diffusion
qS . On the other hand, the diffusion of transverse momentum is still small compared with
its typical value BS so that βS → 0.

For the dilute fixed point to be realized, the typical occupancy number should become
small before thermalization. Since the occupancy number is characterized by AS , we
estimate the time scale at which the system becomes dilute by AS(τdi) ∼ 1. Using the
relation between AS and αS in eq. (2.3) and estimating αS ∼ −1 gives

τdi ∼ τIAI , (6.22)

indicating that τdi becomes shorter with smaller occupancy. Parametrically, we can take
τIQs to be of order one and consequently Qsτdi ∼ AI = σ0/g

2
s . The thermalization time

in the FP equation is parametrically Qsτth ∼ exp(1/g2
s) [35]. Comparing the two, we

anticipate that there is a range of gs for which τdi < τth so that Scenario II and III would
occur. This expectation has been confirmed numerically in figure 2. For (gs, σ0) = (0.1, 0.6)
as in the middle panel of figure 2, τdi ∼ 60τI is in good correspondence to the time scale
when the exponents turn toward the dilute fixed point. For (gs, σ0) = (1/3, 0.1), as in the
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right panel of figure 2, τdi ∼ τI and there is no approach to the BMSS fixed point. We note,
however, that the dominant thermalization processes in the FP equation and QCD EKT
are different, and the thermalization time in the latter theory is parametrically shorter.
Therefore, it would be interesting to examine if Scenario II and III are relevant for QCD
EKT. We leave this as an open question for future investigation.

We now turn to discussing the effect of l̇Cb on the fixed points. We shall first discuss
the modifications to the BMSS fixed point. For this discussion, it is sufficient to set βS = 0
and use eq. (6.13) to find that

γS = 1
3
(
1− l̇Cb

)
, (6.23)

which clearly indicates that the scaling exponent γS differs from the BMSS value 1/3 due
to l̇Cb. We interpret the contribution from l̇Cb as an “anomalous dimension” correction to
BMSS scaling exponents, in analogy with the fact that the renormalization group flow in
field theories can generate an “anomalous” correction to the scaling exponents of correlation
functions. Remarkably, we will see in the coming section (see eq. (6.34)) that this anomalous
dimension does depend on the initial values of A,B,C, in contrast to the BMSS fixed point
exponents which are independent of the initial conditions.6

Following similar steps, we obtain the effects of l̇Cb on scaling exponents near the dilute
fixed point. In this case, we see from (6.15) that the presence of l̇Cb also introduces an
anomalous dimension correction to the dilute fixed point

γS = βS = −1
2 l̇Cb. (6.24)

The fixed point with (βS , γS) = (0,−l̇Cb/2) is also possible, but is unstable under time
evolution.

To summarize this section, we show in figure 5 the fixed points and flow of exponents
in the (βS , γS) plane. Though l̇Cb is generally time-dependent, for illustrative purposes we
take it to be constant, here fixed to l̇Cb = 0.4 for visual clarity. For comparison, we show
the fixed points with l̇Cb = 0 in open circles. The left panel shows the overoccupied case,
where f � 1. Here, at early times (earlier in the time evolution flow), the free-streaming
fixed point with the “anomalous” correction is preferred over the “non-anomalous” one
(which has no l̇Cb-dependent corrections), in the sense that flow lines between them go from
the “non-anomalous” fixed point towards the “anomalous” fixed point. At late times, the
exponents flow to the BMSS fixed point, which also includes an anomalous correction due to
l̇Cb (albeit that this fixed point has no “non-anomalous” counterpart). On the other hand,
the right panel shows the dilute case, with f � 1. In this situation, at early times, the
free-streaming fixed point with the “anomalous” correction is again dynamically preferred

6According to the general theory of self-similar evolution developed by Barenblatt, the situation that
scaling exponents are not fully fixed by dimensional analysis but depend on initial conditions is referred to
as self-similarity of the second kind [36]. The anomalous dimension correction observed in this work fits
into this classification. See also ref. [37] for an example of the emergence of an anomalous dimension in
non-linear diffusive processes.
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Figure 5. Stream flow of the scaling exponents. Blue arrows represent the flow of the scaling
exponents βS , γS under time evolution. (left) f � 1, (right) f � 1. For illustrative purposes,
we set l̇Cb = 0.4 and show the corresponding fixed points in filled circles. Fixed points of the
evolution equations with l̇Cb = 0 are shown as open circles. Red and purple markers show the
free-streaming fixed point with the “anomalous” correction and the one without the “anomalous”
correction, respectively. Green markers show the BMSS fixed point. The orange and pink markers
show the dilute fixed point with the anomalous correction in both βS and γS and the one with only
the “anomalous” correction in γS , respectively.

over the “non-anomalous” one. At late times, the exponents flow to the dilute fixed point
that includes the anomalous correction due to l̇Cb for both β and γ.

Therefore, we see that the effects of l̇Cb 6= 0 are qualitatively relevant to properly
understand the exponents near the stable, attractive fixed points. Hence, a more detailed
investigation into the consequences of having a nonzero l̇Cb is warranted.

6.2.1 The Coulomb logarithm

We will now obtain an explicit expression for l̇Cb. We assume the scaling function wS takes
the Gaussian form (4.10) and find

m2
D = 4Ncg

2cb(rS)ASBSCS , 〈p2
⊥〉 = 2B2

S , (6.25)

where rS = CS
BS

, and

cb(rS) =
∫ ∞

0

dζ

2π ζ
∫ ∞
−∞

dξ

2π
1√

ζ2 + r2
Sξ

2
wS(ζ, ξ) = 1

2π2
arccos(rS)√

1− r2
S

. (6.26)

Using the definition (2.15), we now have

lCb = log


√
〈p2
⊥〉

mD

 = 1
2 log

[
BS

2Ncg2
scb(rS)ASCS

]
(6.27)
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which in turn gives

l̇Cb = 1
2lCb

[
1− 3βS −

c′b(rS)rS
cb(rS) (βS − γS)

]
. (6.28)

To obtain a more explicit expression for eq. (6.23), we use that τASB2
SCS = τIAIB

2
ICI

is time-independent due to eq. (2.19), and we take B ≈ BI to be approximately constant.
This is arbitrarily accurate near the BMSS fixed point, since βS = 0 there, and is a
reasonable approximation near the dilute fixed point, up to lCb-dependent corrections
(because there we have βS = −l̇Cb/2). We get

BS
ASCS

= ey

AI

BI
CI

. (6.29)

The argument of the log in eq. (6.27) now becomes

BS
2Ncg2cb(rS)ASCS

≈ 1
2Ncg2

scb(rS)
ey

AI

BI
CI

, (6.30)

so that eq. (6.27) gives

lCb ≈
1
2

[
y + log

(
BI

2Ncg2
scb(rS)AICI

)]
≈ 1

2y + lICb , (6.31)

where lICb is the value of lCb at y = 0,

lICb ≈
1
2 log

( 2π
g2
sNcAI

BI
CI

)
. (6.32)

We have assumed rS → 0 so that cb ≈ cb(0) = 1/(4π) does not evolve in time. Therefore

l̇Cb = 1
2lCb

(6.33)

and the correction to the BMSS value now reads

γS −
1
3 = −1

3 l̇Cb ≈ −
1

3
(
y + 2lICb

) . (6.34)

As noted above, it is remarkable that, unlike the BMSS fixed point exponents, the anomalous
dimension in eq. (6.34) depends on the initial values of A,B,C through its dependence on lICb.

6.3 Solutions

In this section, we shall showcase the solutions to eq. (6.6), with q̇S and l̇Cb given by
eqs. (6.10) and (6.28), respectively. Our goal is to illustrate the three different scenarios for
the temporal behavior of the scaling exponents described in section 6.2 and the impact of
the time evolution of lCb on the fixed points.

To solve eq. (6.6), we specify initial conditions by matching the scaling form of the
distribution eq. (2.1) with the initial condition (3.1) for ξ0 = 2 by choosing AI = σ0/g

2
s ,

BI = Qs/
√

2, CI = Qs/(2
√

2). The initial values of the exponents γI , βI are fixed by the
consistency conditions (6.3) and (6.2), with qS evaluated using (6.7). With σ0 fixed, the
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typical occupation number is controlled entirely by the coupling constant gs. Therefore, we
anticipate that the transition from Scenario I to Scenario III through Scenario II occurs by
increasing gs.

In figure 6, we show the evolution of the scaling exponents as a function of time for
σ0 = 0.1 (left) and σ0 = 0.6 (right), for a range of couplings gs (indicated by solid colored
curves). In the left panel we show the evolution of γS from eq. (6.6) with l̇Cb given by
eq. (6.28) and σ0 = 0.1. We show only γS since |βS | . 10−3 and αS is given by eq. (2.19).
For this very small coupling gs = 10−3, the scaling exponents approach the BMSS fixed
point as in Scenario I. For an intermediate value of the coupling gs = 0.03, γS spends
a short time near the BMSS fixed point before transiting to the dilute fixed point as in
Scenario II. For larger couplings gs = 0.1, γS goes directly to the dilute fixed point as
expected from Scenario III. Therefore we confirm the three scenarios anticipated in the
previous qualitative analysis.

It is noteworthy that the late-time values of the exponents at the fixed points are
visibly different from the values anticipated in eqs. (6.18) and (6.20), which are derived by
assuming a constant Coulomb logarithm. To understand the origin of this deviation, we
also show solutions to eq. (6.6) with l̇Cb = 0 in dotted colored curves. When l̇Cb = 0 we see
that the asymptotic values of the exponents agree exactly with eqs. (6.18) and (6.20), thus
confirming that the deviation arises from the time evolution of lCb. Indeed, the modification
of the asymptotic values of γS is quantitatively well-described by eq. (6.34), which is shown
in thin dashed lines.

In the right panel of figure 6 we show the evolution of βS and γS for σ0 = 0.6. The
evolution of γS is again shown in solid colored lines and the evolution of βS is shown in
dashed colored lines. In this case, βS can be a few percent, but this non-zero value of βS
has a small impact on the evolution of γS . We note that we show a larger time interval in
the right panel than we did in the left. On this longer timescale, we see that gs = 10−3

eventually transits from the BMSS fixed point to the dilute fixed point, as expected since
τdi ∼ (σ0/g

2
s)τI ∼ 105τI . In addition to the modification of the fixed point for γS discussed

in the previous paragraph, we also see that the fixed point for βS is modified from 0. The
fixed points for γS are quantitatively described by eq. (6.34) in both the left and right
panels of figure 6. For gs = 0.1, the late-time fixed point for βS in the right panel agrees
quantitatively with eq. (6.24). Since βS is close to zero, we note that it can take a long
time for the fixed point to be reached. We anticipate that at later times, γS = βS would
also be realized for the smaller couplings in the right panel of figure 6.

6.4 Comparison to solutions of kinetic theory

Finally, we compare the evolution of scaling exponents obtained from eq. (6.6) to those
extracted from full solutions to kinetic theory. In figure 7 we compare to solutions of the
FP equations with two different combinations of (σ0, gs) =

(
10−3, 0.1

)
, (0.1, 0.6). These FP

results have already been presented in figure 2 (left) and (middle), and are reproduced in
figure 7. We first note that the solutions to eq. (6.6) are indistinguishable from the curves
for Ib = 0 in figure 2 with the same initial conditions for the distribution function, so these
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Figure 6. Evolution of scaling exponents for solutions to eq. (6.6) for γS with representative values
of the coupling constant gs = 10−3 (orange), 0.03 (blue), and 0.1 (purple) are shown in solid lines, for
σ0 = 0.1 (top) and σ0 = 0.6 (bottom). The evolution of βS is shown by colored dashed lines in the
bottom panel (βS = 0 in the top panel). In the top panel, colored dotted lines show solutions with
l̇Cb = 0 for the same set of gs. Thin dashed black lines show results for the fixed points including
anomalous dimension corrections from eqs. (6.24) and (6.34).

are not shown. We emphasize that the evolution equations (6.6) only apply to the evolution
in the scaling regime.

For (gs, σ0) = (10−3, 0.1), we see from figure 2 (left) that the distribution function is
approximately scaling from τI . In this case we can compute initial conditions for eq. (6.6)
at τI directly from the initial distribution (3.1). The results are shown in figure 7 (left).
We observe remarkable agreement between the results from solving eq. (6.6) and from
numerically solving the FP equation. However, for a distribution function that is not initially
scaling, in general we should specify initial conditions for eq. (6.6) after the distribution
function has taken the scaling form. This is the case for (gs, σ0) = (0.1, 0.6) where we see
substantial deviations from scaling at early times in figure 2 (middle). We estimate the time
to reach the scaling form to be τS/τI ≈ 3.1. Then we can estimate AS , BS , CS from the
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Figure 7. We compare the evolution of the scaling exponents from eq. (6.6) (solid curves) with
results from the FP equation (dashed). In the top panel we take the same initial distribution
function for both the evolution equations and the FP equation at τI . In the bottom panel we specify
initial conditions for eq. (6.6) at τ̄S = 3.1 (see text for details), corresponding to the approximate
time for scaling (see the middle panel of figure 2). For clarity of presentation, in both panels
the dashed curves are the average of exponents computed from different sets of moments of the
distribution function.

distribution function at τS using n = ASB
2
SCS/(2π)3/2, 〈p2

T 〉 = 2B2
S , and 〈p2

z〉 = C2
S , and

calculate γS , βS at τS from the consistency conditions (6.2), (6.3). These results are shown
in figure 7 (right) and show good agreement with numerical solutions to the FP equation
in the scaling regime. These results illustrate that in the scaling regime, the evolution of
the gluon plasma can be reduced to describing the evolution of scaling exponents, in the
manner we have done here.

As we explained earlier, we expect that the small-angle scatterings included in the
FP equation play the dominant role for the evolution of hard gluons in QCD EKT. We
have shown that the collision integral (2.17) captures the main features of scaling evolution
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Figure 8. The comparison between the evolution of the scaling exponents from eq. (6.6) (solid curves)
with results from QCD effective kinetic theory (EKT) from ref. [1] (dashed curves). We take the
same initial distribution function as the EKT results at τI . For clarity of presentation, EKT results
are the average of exponents computed from different sets of moments of the distribution function.

in the FP equation. We therefore wish to compare the evolution equations (6.6) we have
derived based on collision integral (2.17) to the evolution of scaling exponents in QCD
EKT as presented in ref. [1]. In figure 8 we show this comparison for the same initial
distribution function (3.1) and (gs, σ0) = (10−3, 0.1), and observe not only qualitative but
also semi-quantitative agreement.

Perhaps the most striking observation that one can draw from figure 8 is that the values
of γS and βS from eq. (6.6) agree even quantitatively with the exponents from EKT around
the BMSS fixed point. This is highly non-trivial since those asymptotic values are different
from their BMSS values. In ref. [1], the authors obtain (αS , βS , γS) ≈ (0.73,−0.01, 0.29) for
(gs, σ0) = (10−3, 0.1).7 The underlying reason for this deviation from the BMSS value has
been the subject of some speculation [1]. As we explained in detail in the previous section,
the time evolution of lCb gives rise to an anomalous dimension correction to the scaling
exponents (cf. eq. (6.34)) in the FP equation. We therefore propose that the deviation from
the BMSS value in QCD EKT may also arise from the time evolution of the ratio between
the typical hard scale and typical momentum exchange per collision.

To further test our speculation, we substitute AI = σ0/g
2
s and BI/CI = 2 into eq. (6.34)

to estimate the deviation of γS from BMSS expectation

δγ ≡ γS −
1
3 = − 1

3
(
y + log

(
4π
Ncσ0

)) . (6.35)

In ref. [1], the evolution of kinetic theory starts at QsτI = 70 and ends at Qsτ = 7000,
meaning we should replace y in eq. (6.35) with log(100) ≈ 4.6. For σ0 = 0.1, we obtain the

7In the classical field simulation of refs. [17, 18], the authors found γS = 0.335 ± 0.035.
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correction from lCb to γS at the BMSS fixed point:

δγ = −0.040 , or γS ≈ 0.29 (6.36)

which is in remarkable agreement with the asymptotic value of γS in EKT.

7 Summary and outlook

In this work we have studied scaling in a Bjorken expanding gluon plasma described by
the Boltzmann transport equation under the small-angle approximation, which takes the
form of a Fokker-Planck (FP) equation. For hard gluons, we showed that the FP equation
features time-dependent scaling behavior that is qualitatively similar to that observed by
solving QCD EKT [1].

We then showed that scaling can be interpreted as arising from adiabatic evolution.
With the simplified collision integral (2.17), the kinetic equation can be recast into the form
of a Schrödinger-like equation. Adiabaticity, understood as the property that the eigenstates
of the corresponding Hamiltonian do not transition into each other, may be attained to a
lesser or greater degree depending on the choice of frame. For the particular case we study
here, we find that one can choose a rescaling of the momentum coordinates (frame) such
that there are no transitions between eigenstates of the corresponding Hamiltonian. This
means that after some transient time, the excited states have decayed and the distribution
function follows the evolution of the instantaneous ground state.

It is only in this frame that the scaling distribution we observed in the numerical
solutions is the ground state. Without identifying the adiabatic frame, one can still observe
scaling phenomena, but the adiabatic nature of the scaling evolution would be obscured. In
this sense, we have generalized the notion of the abiabaticity with respect to a fixed set of
coordinates (τ ; pz, p⊥) to the situation where there exists a “frame” (τ ; pz/C(τ), p⊥/B(τ)) in
which the transition rate from the instantaneous ground state to excited states is suppressed
(in this case, zero). We believe that this generalization of adiabaticity may find applications
in a broader context.8

From the condition for adiabaticity, we further derived evolution equations for the time
dependence of the scaling exponents. Our equations can be used to estimate the evolution
of typical occupancy and momentum of far-from-equilibrium QGP during the early stages
of heavy-ion collisions. In addition to the well-known free-streaming and BMSS fixed points,
we found a new “dilute” fixed point (6.20) that occurs when the typical gluon occupation
number becomes small before thermalization. We also find that the fixed point scaling expo-
nents receive “anomalous dimension” corrections, arising from the temporal evolution of the
Coulomb logarithm, which is determined by the ratio of the hard and soft momentum scales.
We compared our results with QCD EKT simulations from ref. [1], and found a striking
quantitative agreement on the correction to the BMSS exponent in the two theories. In our

8For example, consider a time-dependent Hamiltonian in quantum mechanics, and suppose there exists a
unitary transformation under which the transformed Hamiltonian evolves slowly. In that case, we can still
say that the system described by the original Hamiltonian evolves adiabatically even though this Hamiltonian
may change rapidly in time. See ref. [38] for a similar discussion.
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analysis, this is precisely due to the time evolution of the Coulomb logarithm. In the view
that the FP equation we solve here gives an effective description of time-dependent scaling,
in qualitative and semi-quantitative agreement with more sophisticated first-principles QCD
EKT simulations, our findings suggest that understanding time evolution in terms of an adia-
batic evolution may be a valuable approach for describing far-from-equilibrium QCD plasmas.

The relation between adiabaticity and the non-equilibrium attractor had previously been
tested in the simpler single relaxation time approximation [21]. Together with the results of
ref. [21], our finding that the non-thermal scaling evolution of a far-from-equilibrium gluon
plasma can be characterized by adiabatic evolution gives compelling support for the claim
that the reduction of relevant degrees of freedom in a class of expanding QCD plasmas is
due to adiabaticity. Since we have here shown that this class is larger than it was previously
known, we anticipate that a similar study of more general kinetic equations will reveal
more connections to adiabaticity. More general collision kernels as well as more realistic
heavy-ion collision scenarios including radial expansion in the kinetic description of the
plasma should be fertile ground for such an investigation.

We hope some of our qualitative lessons, such as the relation between adiabaticity
and scaling, and the emergence of anomalous dimension corrections to scaling exponents,
might be instructive when studying other dynamical problems. Examples could include the
evolution near a critical point based on the Kibble-Zurek framework [39–44], and turbulent
cascades [45] driven by quantum anomalies [46, 47]. We defer the investigation of these
interesting topics to future work.

We note that an analysis of time-dependent scaling exponents in Fokker-Planck kinetic
theory was performed independently by Aleksandr Mikheev, Aleksas Mazeliauskas, and
Jürgen Berges and made public simultaneously to the present manuscript.
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A Numerical implementation

Here we discuss the numerical procedure to solve the FP equation. We follow ref. [19] and
write the FP equation (2.8) in terms of variables p =

√
p2
T + p2

z and κ = pz/p. We shall use

∇2
pf = ∂2f

∂p2 + 1− κ2

p2
∂2f

∂κ2 + 2
p

∂f

∂p
− 2κ
p2
∂f

∂κ
, (A.1a)

∇p ·
(p
p

(1 + f)f
)

= 1
p2

∂

∂p
p2f(1 + f) , (A.1b)

∂f

∂pz
= κ

∂f

∂p
+ 1− κ2

p

∂f

∂κ
. (A.1c)

To ease the numerical implementation, we additionally consider lp ≡ log p and evolve the
quantity log f . The FP equation then becomes

∂ log f
∂τ

+ κ

τ

[
(κ2 − 1)∂ log f

∂κ
− κ∂ log f

∂lp

]

= λ0lCb[f ]

e−lpIb[f ]
[
∂ log f
∂lp

+ 2 + 2elog f
(

1 + ∂ log f
∂lp

)]

+e−2lpIa[f ]

− 2κ∂ log f
∂κ

− (κ2 − 1)
(
∂2 log f
∂κ2 +

(
∂ log f
∂κ

)2)

+ ∂ log f
∂lp

+ ∂2 log f
∂l2p

+
(
∂ log f
∂lp

)2


Ia, Ib, and lCb are integrals that depend on f , with Ia and Ib defined through eq. (2.10)
and lCb through eq. (2.15). In these coordinates, we note that κ = cos θ = pz/p and
sin θ = pT /p, which give pz = elpκ and pT = elp

√
1− κ2. The spherical volume element is

d3p = 2πp2dpdκ = 2πe3lpdlpdκ. The moments (3.2) can therefore be written

nm,n(τ) = 1
(2π)2

∫
dlp dκ e

(3+m+n)lp(1− κ2)m/2|κ|nf(p⊥, pz, τ) . (A.2)

The initial condition for the distribution function (3.1) in these coordinates is

log f(p⊥, pz; τ = τI) = log σ0
g2
s

− e2lp(1− (1− ξ2
0)κ2)

Q2
s

. (A.3)

We use the finite element method in Mathematica’s NDSolve to solve the resulting equations
in the range p ∈ [5 · 10−3, 4], κ ∈ [0, 1] (assuming inversion symmetry in pz) and a maximum
cell size of 10−3.
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B The simplification of collision integral

In this appendix, we discuss the simplification of the collision integral (2.9) in the situation
that the ratio of the typical longitudinal momentum to that of transverse momentum,
r = C/B, is small. In addition to that, we shall justify dropping the Ib term for hard gluons
under the condition that the typical occupancy is large, i.e. A� 1.

We begin by substituting eq. (2.1) into the FP equation (2.8) with eq. (2.9), with which
we obtain the equation for the rescaled distribution function w explicitly as

∂yw=−αw+(1−γ)ξwξ−βζwζ

+ q

C2

[(
wξξ+r2

(1
ζ
wζ+wζζ

))
+ 2cbr2

(caA+da)
1√

ζ2+r2ξ2 (2+ξ∂ξ+ζ∂ζ)
(
w+Aw2

)]
,

(B.1)

where we have used the relation
Ib
Ia

= 2ABCcb
(caA+ da) AB2C

= 2cb
B(caA+ da)

. (B.2)

Here, we have defined

ca ≡
∫
ξ,ζ

w2 , da ≡
∫
ξ,ζ

w , cb ≡
∫
ξ,ζ

w√
ζ2 + r2ξ2 , (B.3)

and have introduced short-hand notation for the integration over scaling variables∫
ξ,ζ
≡
∫ ∞
−∞

dξ

2π

∫ ∞
0

dζ

2π ζ. (B.4)

We shall assume ca, da, cb to be order one.
Now, we consider eq. (B.1) in the small r limit. By looking at eq. (5.26), we can count

β to be of the order r2. Therefore at leading order in the small r expansion, we obtain
eq. (5.2), which is equivalent to using the collision integral (2.16). The correction due to
finite r corresponds to terms proportional to r2 in eq. (B.1).

Next, we consider the limit A� 1. In the regime where Aw � 1 is satisfied, eq. (B.1)
is reduced to

∂yw = −αw + (1− γ)wξ + q

C2wξξ

− βζwζ + q

B2

[(1
ζ
wζ + wζζ

)
+ 2cb

ca

1
ζ

(2 + ξ∂ξ + ζ∂ζ) w2
]
. (B.5)

For the tail of the distribution, ζ, ξ � 1, we have w � 1, and then the last term in the
bracket of (B.5) is small compared with the first term in the bracket and can be dropped.
This corresponds to setting Ib = 0, i.e., to using the collision kernel given by eq. (2.17).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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