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Abstract: In Twin Higgs models the dominant source of fine-tuning is the cancellation
of order v2/f2 required to obtain a Standard Model-like Higgs, where v and f are the
electroweak and new physics scales, respectively. Recently proposed Gegenbauer Goldstone
models naturally realise v2/f2 � 1 and hence remove this source of fine-tuning. By
combining the two into ‘Gegenbauer’s Twin’, we obtain a symmetry-based model for Higgs-
sector naturalness consistent with current collider measurements without fine-tuning of
parameters. Single-Higgs coupling deviations of a few percent and trilinear self-coupling
deviations of order one are irreducible in the natural parameter space. Thus, notably, the
fingerprints of Gegenbauer’s Twin could emerge first through di-Higgs measurements at
the High-Luminosity LHC.
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1 Introduction

It is beyond doubt that the Standard Model (SM) should be replaced by a more funda-
mental description at some high energy scale Λ. If the Higgs mass becomes a physical
quantity calculable in terms of the parameters of that more fundamental theory, as one
would expect for instance if the Higgs arises as a pseudo Nambu-Goldstone boson (pNGB),
then the question of the mh � Λ scale separation arises. In many theories, this separation
can only be achieved by fine-tuning parameters.

By introducing a hidden copy of the SM, related to it by a Z2 exchange symmetry, Twin
Higgs models [1–4] go some way towards alleviating this tension. The new particles that
protect the pNGB Higgs mass from large quantum corrections do not interact through
the gauge and Yukawa forces of the SM, and thus can be rather light. However, these
models naturally predict either a vanishing electroweak scale v, or no separation between
the electroweak and Twin breaking scales, v ∼ f . As such, in all existing realisations an
additional source of exchange symmetry breaking is introduced which allows one to obtain
v � f at the price of a fine-tuning of magnitude 2v2/f2. Since Higgs coupling modifications
scale as v2/(2f2), the increasingly precise LHC Higgs measurements inevitably necessitate
a residual fine-tuning at the 20% level or worse.1

Recently, a new class of explicit symmetry breaking operators for pNGBs have been
introduced, wherein a spurion taking values in an irreducible representation of the global
symmetry gives rise at low energies to a radiatively stable Gegenbauer polynomial po-
tential [7]. Owing to the structural features of these functions, a parametric separation
v � f is naturally obtained. However, application to classic models of composite pNGB
Higgs in [7] showed that the LHC lower bounds on coloured top partner masses entail some
degree of fine-tuning. It is thus tempting to speculate, as in [7], that combining a Twin

1Models with tadpole-induced electroweak symmetry breaking [5] are an interesting exception, but their
compatibility with LHC direct searches and electroweak precision tests is currently unclear [6].

– 1 –



J
H
E
P
0
5
(
2
0
2
2
)
1
4
0

Higgs model with a Gegenbauer potential may lead to fully natural electroweak symmetry
breaking (EWSB). In this paper, we demonstrate that this is indeed the case.

We first generalise the construction of [7] to the explicit symmetry breaking pattern
relevant to the Twin Higgs, namely SO(2N) → SO(N) × SO(N), deriving the structure
of resultant Gegenbauer potentials. Then we focus on a concrete model, inspired by the
composite Twin Higgs of [8], to quantitatively evaluate the fine-tuning and demonstrate
that a fully natural theory is obtained for f ∼ TeV. Finally, we highlight its leading
phenomenological prospects, which include O(1) modifications of the Higgs trilinear self-
coupling, a tantalising prediction that will be tested by the High-Luminosity LHC. In the
appendix, we include a self-contained discussion on the tight connection between radiative
stability and naturalness.

2 Gegenbauer’s Twin

The original Twin Higgs model [1] extended the SM by an exact mirror (“Twin”) copy SMT.
The only interaction between the two sectors was through the Higgs potential, assumed to
take the SO(8)-invariant form

V = λ
(
|H|2 + |HT |2 − f2/2

)2
, (2.1)

and causing the spontaneous SO(8) → SO(7) breaking. Following the spirit of [7], we
focus here on the infrared (IR) structure, leaving open the question of the ultraviolet
(UV) completion, which may be composite [6, 8, 9], contain extra dimensions [10–12], or
involve supersymmetry [13–19]. For the purpose of understanding the IR structure of the
theory, we may package the 8 real scalar degrees of freedom into an 8 of SO(8) denoted
ω = (f + ρ)φ . Here ρ is the radial mode of the spontaneous symmetry breaking and φ
parameterises the vacuum manifold φ · φ = 1,

φ = 1
Π sin Π

f


Π1
...

Π2N−1

Π cot Π
f

 , with Π =
√

Π ·Π , (2.2)

where we have generalised SO(8) to SO(2N). The first N components of ω would comprise
the Higgs multiplet and the latter N the Twin Higgs.

We now construct the traceless symmetric irreps that explicitly break SO(2N) →
SO(N)× SO(N). For the sake of generality we retain the radial mode ρ in the discussion,
although to analyse the vacuum structure we later focus on the effective theory below
its mass. Defining the spurion D̃ = diag (−1N ,+1N ), which has formal transformation
property D̃ → RD̃RT under SO(2N), the desired irreps may be found from the Taylor
expansion

F (tω) ≡
(
1− 2t2ωT D̃ω + t4(ω · ω)2

)(1−N)/2

=
∞∑
n=0

t2nKi1i2...i2n
2n ωi1 . . . ωi2n .

(2.3)
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The tensors K2n, given by

K i1...i2n
2n ≡ 1

(2n)!
∂2nF (φ̂)

∂φ̂i1 . . . ∂φ̂i2n

∣∣∣∣∣
φ̂= 0

, (2.4)

are manifestly symmetric and also traceless, as can be verified by making use of the
properties Tr D̃ = 0 and D̃2 = 12N . Moreover, expressing the first line of eq. (2.3) as(
1 − 2t̂ 2φT D̃φ + t̂ 4)(1−N)/2 with t̂ ≡ t(f + ρ), one recognises the generating function of
Gegenbauer polynomials Gνn with ν = (N − 1)/2. Therefore, by identifying each order in t̂
one finds

K i1...i2n
2n φi1 . . . φi2n = G(N−1)/2

n

(
φT D̃φ

)
, (2.5)

implying that the explicit breaking of SO(2N)→ SO(N)×SO(N) by a traceless symmetric
irrep leads to a potential taking the form of a Gegenbauer polynomial.

Hence, introducing a small dimensionless parameter ε and the radial mode mass mρ =√
2λf , we may identify any pNGB potential of the form

V
(n)

G = εf2m2
ρ(1 + ρ/f)2nG(N−1)/2

n

(
φT D̃φ

)
, (2.6)

as being radiatively stable against UV corrections, at O(ε) and all loop orders. This
is because it arises from an explicit symmetry-breaking UV spurion sitting in an irrep of
SO(2N), which is traceless and symmetric. As a result, UV corrections may multiplicatively
renormalise a V (n)

G potential but will not alter its functional form at O(ε).
The radiative stability can also be seen from a one-loop Coleman-Weinberg (CW)

calculation below the radial mode mass. Assuming the pNGB potential to be a function
V (x) of x ≡ φT D̃φ, the leading, quadratically divergent piece of the CW is found to be

V Λ2
CW = Λ2

8π2f2

[
(1− x2) ∂

2

∂x2 −Nx
∂

∂x

]
V (x). (2.7)

Since G(N−1)/2
n (x) is an eigenfunction of this differential operator, the multiplicative renor-

malisation of V (n)
G at one loop and linear order is confirmed. Both perspectives were

elucidated further in [7], for a slightly different explicit symmetry breaking pattern.

2.1 Vacuum structure

We now turn to a discussion of the vacuum structure of Gegenbauer’s Twin, focussing on
the effective theory for the pNGBs below the radial mode mass. Therefore, the following
analysis applies directly to composite realisations [6, 8–10], where λ is effectively large.
We expect the main qualitative features will also apply to weakly coupled supersymmetric
completions [13–16], but quantitative differences may arise due to the lightness of ρ and
the presence of a second Higgs doublet, as required by holomorphy of the superpotential.

The gauging of the SM and Twin electroweak (EW) groups leads to 6 pNGBs being
eaten by massive gauge bosons, leaving only the Higgs field h as physical scalar degree of
freedom, as manifest in the unitary gauge where Πi = δi4h and φT D̃φ = cos(2h/f). The
explicit SO(8) breakings introduced by the EW gauge and fermion Yukawa interactions

– 3 –
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Figure 1. Full Gegenbauer’s Twin potential V = Vt + V
(n)

G for n = 6, 8 and f = 1TeV. Dashed
lines show the top-sector component Vt. Parameters are fixed so as to reproduce the physical Higgs
mass and vev in the first minimum.

generate a perturbatively estimable potential for h. If the couplings are symmetric under
the Z2 exchange acting as h/f ↔ π/2− h/f , this is dominated by (see e.g. [8, 9, 20])

Vt ≈ βf4

 sin4 h

f
log a

sin2 h
f

+ cos4 h

f
log a

cos2 h
f

 , (2.8)

where β = 3y4
t /(64π2) with yt = yMS

t (mt) ≈ 0.94 and log a is an O(1) quantity. Note that
the a-dependent threshold and UV contributions to the potential which are not logarith-
mically dependent on the Higgs field take precisely the functional form of a Gegenbauer
polynomial G3/2

n (cos 2h/f) with n = 2,2 as is to be expected on general grounds for a
radiatively stable contribution. The potential in eq. (2.8) is characterised by three param-
eter regions with different symmetry-breaking patterns [8], depending on the value of log a
(namely log a below, between, or above 1/2 and 3/2 − log 2). In isolation, none of these
possibilities is however realistic.

To obtain viable EWSB, we introduce a new UV source of explicit symmetry breaking.
We assume the presence of a spurion in the n-index irreducible representation of SO(8),
whose physical expectation value causes an explicit SO(8) → SO(4)× SO(4) breaking. In
a strongly coupled UV completion, this spurion may be thought of as having an origin
within the composite sector. In the unitary gauge, it generates a contribution to the Higgs
potential of the form

V
(n)

G = εm2
ρf

2G3/2
n (cos 2h/f) . (2.9)

For odd n, the Gegenbauer potential V (n)
G is minimised at 〈h〉/f = π/2, resulting in v = f ,

which is experimentally ruled out. For even n, the full potential V = Vt+V (n)
G (see figure 1)

is exactly Z2 symmetric. It results in spontaneous Z2 breaking3 and realistic EWSB, with
a preference for the region log a < 1/2 where Vt alone has minima at h/f = 0, π/2. Given
{f, n} inputs, we determine the {ε, log a} parameters that yield the observed values for
{v,mh}, where v = f sin(〈h〉/f) ≈ 246GeV with 〈h〉 the location of the first, deepest,

2Indeed, sin4 h/f + cos4 h/f and cos2 2h/f are equivalent modulo an SO(8)-invariant constant.
3See e.g. [5, 21–24] for other Twin Higgs models where the Z2 exchange symmetry is not broken explicitly.
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minimum of the potential, and mh = 125GeV. For instance, for f = 1TeV and n = 6, we
find εm2

ρ/f
2 ≈ 1.1×10−5 and log a ≈ 0.27. As long as log a . 0.7 , with mild n dependence,

the first minimum remains the global one. Henceforth, we only discuss parameter space
where this is verified.

As a useful reference, we compare our results to the model of [8], where an explicit
Z2 breaking was introduced by not gauging the Twin hypercharge. This generates the
additional potential VY = αf4 sin2(h/f) on top of Vt, enabling viable EWSB provided
log a takes larger values compared to our setup, log a ≈ 6 − log(f/v). We term that
scenario ‘hypercharge-breaking Twin’ or ‘Y-Twin’ for brevity. We note that an explicit
calculation of log a in a concrete composite model, albeit still logarithmically sensitive to
physics at the cutoff, was provided in appendix C of [6]. The parametric freedom found
there, which allows for a negative UV contribution, illustrates the possibility of obtaining
values of log a much smaller than those considered in [8], so that an embedding of our
model in the composite Twin Higgs context appears plausible. Accordingly, in this work
we simply take log a to be an O(1) parameter, assuming that a natural UV completion
exists.

2.2 Fine-tuning

For fixed symmetry breaking scale f and representation index n, the fine-tuning is calcu-
lated from its log-derivative definition [25]. We construct the matrix

δ =

 ∂ log v2

∂ log ε
∂ log v2

∂ log a
∂ logm2

h
∂ log ε

∂ logm2
h

∂ log a

 , (2.10)

which determines the rate of change of the physical observables v2 and m2
h with respect

to variations in the underlying model parameters. Thus, large entries in this matrix signal
large sensitivities. As a measure of the total tuning, we take

∆ =
(∑

eigenvalues (δT δ)
)−1/2

. (2.11)

Compared to other common definitions based on the inverse of the modulus of the individual
entries of δ, ours turns out to be conservative. For the Vt + VY potential considered in [8]
(with α replacing ε in the matrix δ), it yields the expected ∆ ≈ 2v2/f2 result (see for
example [20]).

The fine-tuning of Gegenbauer’s Twin is dominated by the sensitivity of v and mh to
log a. For the vacuum expectation value (vev), we find(

∂ log v2

∂ log a

)−1

= 8π2m2
h

3y4
t f

2
(
1− 3v2

f2 + 2v4

f4

) , (2.12)

a result that does not depend on n (and applies to the Y-Twin, as well). If this is the
dominant source, as it is the case for values of n minimising the tuning, then

∆
2v2/f2 ≈

4π2m2
h

3y4
t v

2 ≈ 4 (2.13)
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Figure 2. (Left) Total fine-tuning of Gegenbauer’s Twin for different spurion index n, as a function
of the symmetry breaking scale f . For comparison, we also show the composite Twin Higgs model
of [8] (denoted Y-Twin), where the Z2 breaking arises from not gauging the Twin hypercharge. The
dashed line shows the n-independent (∂ log v2/∂ log a)−1 contribution that dominates the tuning of
Gegenbauer’s Twin. (Right) Ratio of the tuning of Gegenbauer’s Twin and Y-Twin models to the
naive 2v2/f2 estimate expected for the latter.

up to about 25% corrections. For f = 1TeV, n = 6 or 8 are optimal and ∆ ≈ 0.5, namely
no tuning. These features are illustrated in figure 2.

2.3 Phenomenology

In addition to the universal rescaling of single-Higgs couplings by
√

1− v2/f2 , Gegen-
bauer’s Twin exhibits significant corrections to the Higgs trilinear self-coupling. These are
shown in the left panel of figure 3, normalised to the SM prediction, accounting for the
leading one-loop correction arising from top triangle diagrams [26] included in Vt. The de-
viations from the SM are much larger than for standard Twin Higgs models: for f = 1TeV,
we find chhh/cSM

hhh ≈ + 0.32 (− 0.31) for n = 6 (8), to be compared with + 0.91 for the Y-
Twin. Such large deviations may be visible at the High-Luminosity LHC [27]. As can be
seen in the right panel of figure 3, O(1) deviations in chhh are present in all the natural
parameter space. Furthermore, it is conceivable that chhh would be the first Higgs coupling
to show a departure from the SM at colliders.

The quadrilinear self-coupling also displays large deviations: for f = 1TeV, one finds
chhhh/c

SM
hhhh ≈ − 3.1 (− 4.9) for n = 6 (8). The correlation between chhh and chhhh may

allow future colliders to test the Gegenbauer nature of the Higgs potential (see [28–30] for
recent studies).

In our analysis of the EWSB, we have assumed an exact exchange symmetry in the
gauge and matter sectors, so that the potential arising from gauge and fermion loops is
dominated by eq. (2.8). Exactly Z2 symmetric gauge couplings, including for the SM and
Twin hypercharge groups, imply the presence of a massless dark photon in the spectrum.
If the exchange symmetry is not broken explicitly, a mirror Twin Higgs scenario is realised,
which is known to conflict with observations because of a large contribution to the effective
number of neutrino species, ∆Neff ≈ 6 from the Twin photon and neutrinos [31]. This can

– 6 –
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Figure 3. (Left) Ratio of the Higgs trilinear self-coupling to its SM expectation. (Right) Contours
indicating the total fine-tuning ∆ and the chhh/c

SM
hhh coupling deviation in the plane of input pa-

rameters {f, n}. We do not consider the region in the upper-left corner where the first minimum is
not the global one.

be resolved by an asymmetric reheating process [31, 32], with interesting predictions for
cosmological observables [33].4

In addition to the already discussed Z2 exchanging the SM and Twin sectors, our
potentials exactly preserve a second Z2 acting as h/f ↔ π−h/f . As a result, the minimum
near h = 0 is exactly degenerate with three other minima in the interval 0 ≤ h/f ≤ π.
In the early Universe thermal corrections lift the two minima near h/f = π/2, but the
degeneracy with the minimum near h/f = π remains, leading to the appearance of domain
walls which may dominate the cosmological energy density. This issue can however be
avoided by introducing a tiny breaking that raises the h/f ∼ π minimum [37].

3 Conclusions

Through the ‘Gegenbauer’s Twin’ model proposed here, we have demonstrated that the
commonly accepted 2v2/f2 fine-tuning of Twin Higgs models is the result of a minimality
assumption imposed on sources of explicit symmetry breaking, rather than an irreducible
effective field theory constraint. Some explicit SO(8) breaking source is a requirement for
any Twin Higgs model. However, if it comes in the form of a higher dimensional irrep,
rather than the usual one- or two-index irreps, the ‘v/f ’ tuning may be eliminated given
current collider constraints.

The implications of this work go beyond Twin Higgs models. The apparent failure of
symmetry-based approaches to naturally accommodate the observed separation between
the electroweak and UV completion scales has led to speculations about a ‘naturalness
crisis’ in particle physics. As a strictly symmetry-based approach, Gegenbauer’s Twin
contradicts this hypothesis, suggesting that the crisis may not be with symmetry or effective
field theory, but instead with more æsthetic ‘minimality’ criteria regarding the nature of
symmetry-breaking parameters, specifically with regard to pNGB Higgs models. On the

4Other possibilities include Z2 breaking in the neutrino sector [34] or in the Twin Yukawas [35, 36]. The
latter scenario also generates a one-loop µ2|H|2 term, which is not included in our analysis of the potential.
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other hand, the IR theory described here offers no explanation as to why the leading
explicit symmetry breaking parameters would arise in higher dimensional irreps of global
symmetries. Unless some motivation for this can be found, the overall status of symmetry-
based approaches to Higgs naturalness remains unclear.
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A Why radiative stability?

Radiative stability and fine-tuning are two sides of the same coin. As applied to the Higgs
field, a natural theory is one in which the expectation value and mass are calculable and
radiatively stable across scales. To see how this feeds into a requirement on the nature of
the potential, we may use a perturbative Twin toy example. Since irrep spurions form a
complete set, any UV contribution to the pNGB potential preserving SO(4)× SO(4) may
be written as the tower of higher dimension operators

V = εf2m2
ρ

∞∑
n=0

anf
−2nKi1...in

2n ωi1 . . . ωi2n

= εf2m2
ρ

∞∑
n=0

an(1 + ρ/f)2nG3/2
n (cos 2h/f) ,

(A.1)

where the traceless symmetric tensors K2n were defined in eq. (2.4), and ρ is the radial
mode from eq. (2.1).

Note, however, that the symmetric part of the potential

V = λ

4
(
ω · ω − f2

)2
, (A.2)

also contributes to the renormalisation of the higher dimension operators. As a result, above
the scale of the radial mode the coefficients an all run multiplicatively and differently at
O(ε), with βan ∝ anλn

2/4π2 at the leading order in n and λ. Since the β-function con-
tribution from the quartic interaction is positive, the higher-n Wilson coefficients decrease
more rapidly in running from the UV towards mρ. As a consequence, in the UV theory,
neither the relative magnitudes of the an nor any particularly special linear combination
of them are renormalisation-group (RG) invariant.

We may illustrate the essence of this point further with an explicit example. Suppose
that, by hand, we were to postulate a specific form of IR scalar potential mimicking the
usual U(1) case for which a small vev and mass appear plausible within the IR theory

V = εf2m2
ρ cos (2kh/f) , (A.3)

– 8 –
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where k ∈ 2Z+. There is a minimum at h/f = π/(2k), hence for large k and small ε the vev
and mass may be arbitrarily small. However, in the perturbative linear UV completion,
above the scale of the radial mode, this same theory is written as in eq. (A.1) with

a0 = 9
k4 − 10k2 + 9 , a1 = 0 ,

an+2
an

= (2n+ 7)(k2 − n2)
(2n+ 3)(k2 − (n+ 5)2) , an>k = 0 .

(A.4)

Thus, while it appears that in the IR theory the model parameters of eq. (A.3) are ε and
k, this does not at all reflect reality in the UV, where a specific tower of higher dimension
operators must be generated in order to realise the IR potential of eq. (A.3). As a result,
we see that the true UV model parameters are not simply ε and k, but actually the various
an since they correspond to the Wilson coefficients of the generated higher dimension
operators.

Let us consider fine-tuning in terms of these parameters in qualitative terms. The
degeneracy of the minimum at h/f = π/(2k) with the other minima is a consequence of
the specific values of the coefficients in eq. (A.4). A tiny change in one of these parameters
can take the true vacuum to the minimum near h/f = π(1 − 1/k)/2. Thus we see that a
small variation in a model parameter can give rise to a large variation in the vev. Hence
the theory is fine-tuned.

Furthermore, the different RG evolution of the an’s is inevitable. Even if the specific
pattern of eq. (A.4) is generated in some UV completion of the model, the running due
to the radial mode will spoil this particular pattern, giving prominence to the lower n
contributions and rendering the global minimum at large field values. Or, to put it another
way, to realise the potential eq. (A.3) at the matching scale requires somehow realising a
different, fine-tuned set of Wilson coefficients at the deeper UV scale such that they would
know to RG-evolve specifically to eq. (A.4) at the radial mode mass.

As a result, one perhaps sees most clearly through this simple perturbative model
that the only radiatively stable situation in the UV is if one irrep/Gegenbauer polynomial
dominates at all scales. Only in this case can the form of the IR potential be stable
against UV corrections. While this example is perturbative and employs a linearly realised
symmetry in the UV, in strongly coupled UV completions the running effects will only be
enhanced, exacerbating the pertinence of these aspects.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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