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1 Introduction

The most important purpose to study string theory is to formulate a theory of quantum
gravity. Indeed, the traditional world-sheet approach in string theory enables us to calculate
S-matrices in a flat space with stringy quantum corrections. However, it is much harder
to describe string theory on curved spacetimes as the world-sheet theory is not tractable
in general. Moreover, such a world-sheet approach is limited to a weak coupling limit of
quantum gravity. The modern approach based on holography [1, 2] provides remarkable
progresses on this problem. This allows us to investigate anti-de Sitter (AdS) spaces,
the most famous example of curved spacetimes with negative curvature, even for strongly
coupled quantum gravity, based on the AdS/CFT correspondence [3–5].

To understand the real cosmology of the early universe, it is desirable to understand
quantum gravity on de Sitter (dS) spaces, the representative of positive curvature space-
times. This motivates us to study the holographic duality for de Sitter spaces. A possible
holography for de Sitter spaces has been known as the dS/CFT correspondence [6–8].
The dS/CFT argues that (d + 1)-dimensional gravity on a de Sitter space is dual to a d-
dimensional Euclidean conformal field theory (CFT) living on its space-like boundary (i.e.
the future/past infinity), which may be deduced from the matching of the geometrical sym-
metry of de Sitter spaces and that of conformal symmetry. Consider the Hartle-Hawking
wave functional of gravity on a (d + 1)-dimensional de Sitter space, starting from the
Euclidean tunneling region of a hemisphere (radius L):

ds2 = L2
(
dτ2 + cos τ2 dΩ2

d

)
,

(
−π2 ≤ τ ≤ 0

)
, (1.1)

and continuing to the Lorentzian de Sitter spacetime (radius L)

ds2 = L2
(
−dT 2 + cosh2 T dΩ2

d

)
, (T ≥ 0) , (1.2)

by setting τ = iT , where dΩ2
d is the metric of d-dimensional sphere with a unit radius. The

dS/CFT equates this Hartle-Hawking wave functional ΨdS with the partition function of
the dual CFT ZCFT on Sd [8], as depicted in figure 1.

In the dS/CFT, we expect that the dual Euclidean CFT is exotic in some sense because
the standard Euclidean holographic CFT should be dual to gravity on a Euclidean AdS
or equally hyperbolic space. For example, the dS/CFT predicts that dual d-dimensional
CFTs should have imaginary valued central charges when d is even [8]. An analogous result
has been found for the holographic entanglement entropy [9] in the de Sitter spacetime [10–
12], which is due to the fact that there is no space-like geodesic which connects a pair of
points on the space-like boundary. Another way to mention the difference between the
AdS/CFT and the dS/CFT is that the Wick rotation of a dS into its Euclidean space (i.e.,
a sphere) largely changes the asymptotic boundary structure as there is no boundary on
a sphere, while the Wick rotation of an AdS to a hyperbolic space does not change its
asymptotic boundary. This difference is quite important because the holography relates
the bulk gravity to its boundary in general.
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φ(0)

φ

ΨdS
[
φ(0)]

Gravity on dSd+1

CFT on Sd

ZCFT
[
φ(0)]

φ(0)

=

Lorentzian
dSd+1

hemisphere
Bd+1

dS/CFT
duality

Figure 1. A sketch of the dS/CFT correspondence. φ denotes all bulk fields and φ(0) does their
values at the asymptotic boundary (i.e. future infinity).

As opposed to the AdS/CFT, there have been only a few explicit and microscopic
examples of dS/CFT. This is partly because the embedding of de Sitter spaces into string
theory has been known to be a highly complicated problem and partly because the dual
CFT is expected to be unusual as we mentioned. The only known microscopic example of
dS/CFT, as far as we are aware of, was proposed in [13], which states a duality between
higher-spin gravity on dS4 and 3d Sp(N) vector model. This duality may be regarded as
an “analytic continuation” of Klebanov-Polyakov duality [14] between higher-spin gravity
on AdS4 and 3d O(N) vector model. Indeed the Sp(N) vector model is exotic in that it
consists of fermionic scalar fields. Since the dual gravity theory includes the infinite tower
of higher-spin fields in this example, a CFT dual of Einstein gravity on de Sitter spaces
has not been available so far.

The main aim of this paper is to provide the first example of CFT dual of Einstein
gravity on a de Sitter space. We focus on the gravity on a three-dimensional de Sitter space
(dS3), where the dual Euclidean CFT lives in two dimensions. In this lower dimensional ex-
ample, we have the advantage that the de Sitter gravity is described by a three-dimensional
Chern-Simons gauge theory [15]. Moreover, a Chern-Simons gauge theory is also known to
be equivalent to a two-dimensional CFT [16]. Combining these famous facts with a twist,
we will obtain a class of microscopic CFT duals of gravity on dS3. In this lower dimensional
setup, the symmetry of infinite-dimensional algebra of 2d CFT helps us to solve the theory
exactly. A part of our results has been already reported in the letter version [17]. In this
paper, we will give extensive evidences for our new example of dS3/CFT2 from the view-
points of partition function, two-point functions, entanglement entropy and higher-spin
holography, paying much attention to extension of the Euclidean dS3 (hemisphere B3) to
Lorentzian dS3.

Before we proceed, we would like to mention that there have been other approaches
to study holography in de Sitter spaces. They include the recent progress in the light of
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the dS/dS correspondence [18–21], the use of the surface/state duality [12], and possible
holographic duality for the dS static patches [22, 23]. In all these examples, the dual non-
gravitational theories are expected to be less exotic, such as the T T̄ deformations of CFTs.
One more interesting approach is the holographic duality proposed in [24], where the dual
CFT is localized on a codimension-two space. Even though these other approaches look
different from the original dS/CFT [6–8] in that their CFT dual lives on time-like surfaces,
it is still possible that future progress may connect them, which is beyond the scope of
this paper. In this paper, we study CFT duals of dS3, which fit nicely with the original
dS/CFT proposal.

1.1 Our proposal of dS3/CFT2 correspondence

Here we would like to summarize our new holographic proposal from the beginning for
readers’ convenience. Our proposal of dS3/CFT2 correspondence can be summarized as
follows in general:

Einstein gravity on dS3

with L

GN
� 1

⇐⇒
ŜU(2)k ×MCFT

in k → −2 + i 4GN
L

(' −2)
, (1.3)

where L and GN are the radius of dS3 and the Newton constant, respectively. Moreover,
ŜU(2)k describes the SU(2) Wess-Zumino-Witten (WZW) model at level k and MCFT is a
certain two-dimensional CFT. The product ŜU(2)k ×MCFT allows warped ones, and the
choice of MCFT is dual to that of the matter fields in three-dimensional gravity. Note that
in this k → −2 limit, which is dual to the limit L/GN → ∞, the dominant contributions
to physical quantities such as the free energy is dominated by ŜU(2)k because its central
charge gets divergent

c = 3k
k + 2 ' i 3L

2GN
(≡ i c(g))→ i∞ . (1.4)

Notice also that the central charge takes imaginary value in agreement with general argu-
ment of dS3/CFT2 [8]. Therefore, the contributions from the MCFT part can be negligible
when we compare the physical quantities with the gravity sector in the classical limit. A
primary state in the CFT with the energy ∆ = h+ h̄ (i.e. the conformal dimension of the
corresponding primary operator) is dual to the bulk excitation with energy

∆ = iE(g)L (≡ i ∆(g)) . (1.5)

We can generalize this into a higher-spin version of dS3/CFT2:

Spin s(= 2,3, . . . ,N) gravity on dS3

with L

GN
� 1

⇐⇒
ŜU(N)k×MCFT

in k→−N+i 16ε2NGN
L

('−N)
(1.6)

with
εN = 1

12N(N2 − 1) . (1.7)
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In this duality, the central charge of the two-dimensional CFT again behaves as follows:

c = k(N2 − 1)
k +N

' i 3L
4εNGN

(≡ i c(g))→ i∞ . (1.8)

Here, as the spin s (= 2, 3, . . . , N) gravity in (1.6), we consider the higher-spin gravity
on S3 described by SU(N) × SU(N) Chern-Simons gauge theory. The Einstein gravity
on S3 corresponds to the case with N = 2 [15]. To describe a gravity theory on S3, the
Chern-Simons coupling should take an imaginary value as kCS = iκ. The semiclassical
limit corresponds to κ→∞ and for N = 2 this gives the Einstein gravity limit (see [25–31]
for various studies of this limit).

A special example of the proposed duality (1.3) and (1.6) with theMCFT part specified,
can be obtained from a two-dimensional WN -minimal model described by

WN,k ≡
SU(N)k × SU(N)1

SU(N)k+1
(1.9)

with the central charge

c = (N − 1)
(

1− N(N + 1)
(N + k)(N + k + 1)

)
. (1.10)

We argue that in the k → −N limit of (1.6), this (analytically continued) WN -minimal
model is dual to a higher-spin gravity on conical defects coupled to a complex scalar field.
We can also regard this as an “analytic continuation” of Gaberdiel-Gopakumar duality [32]
between higher-spin gravity on AdS3 and the WN -minimal model.

As emphasized above, the SU(N)k part of the coset (1.9) dominates at the limit k →
−N . On the other hand, the coset with generic k has been believed to be equivalent
to Toda field theory, which was recently confirmed in [33]. The Toda field theory has a
parameter b and the large central charge is realized at the limit b → 0 (or b → ∞ via the
self-duality). This implies that Toda field theory with b→ 0 is equivalent to SU(N) WZW
model with k → −N at the leading order in 1/c(g). For the simplest case with N = 2,
Liouville field theory with b → 0 is equivalent to SU(2) WZW model with k → −2 at the
leading order in 1/c(g). We sometimes use Liouville/Toda description instead of that of
SU(N) WZW model since the former is more convenient than the latter for some purposes.
See appendix A for details.

According to [8], a formula of dS/CFT correspondence may be expressed as the equality
between the Hartle-Hawking wave functional ΨdS for dS3 and the partition function of the
dual CFT2:

ΨdS
[
φ(0)

]
= ZCFT

[
φ(0)

]
, (1.11)

where φ(0) symbolically describes the values of all bulk fields φ restricted to the future
boundary of dS3. This is also interpreted as the external source in the dual CFT2 (refer to
figure 1). This is a natural extension of the bulk-boundary relation [4, 5] for the AdS/CFT.

To test the new duality proposed above, we will mainly work in a Euclidean version of
the dS/CFT, namely the duality between gravity on S3 and the k → −N limit of the two-
dimensional CFT described in (1.3) and (1.6). This is formally related to the Lorentzian
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B3

dS3
∫
Dg(0)

µν

g(0)
µν

t

τ

=

S3

Figure 2. A sketch of the path integral in the right-hand side of (1.12). The red and blue regions
represent the Euclidean (B3) and Lorentzian (dS3) part of Hartle-Hawking wave functional ΨdS,
respectively. The Lorentzian parts of ΨdS and its dual Ψ∗dS cancel out, leaving only the Euclidean
part ZG

[
S3].

version (1.11) by gluing two copies of de Sitter space or equally taking the inner product
of the Hartle-Hawking wave functional (see figure 2):

ZG
[
S3
]

=
∫
Dg(0)

µν

∣∣∣ΨdS
[
g(0)
µν

]∣∣∣2 , (1.12)

where g(0)
µν is the metric on the future boundary of de Sitter space. Indeed, the contribution

from the Lorentzian dS3 gives only a phase factor to the wave functional:

ΨdS
[
g(0)
µν

]
∼ exp

[
i I(L)

G [dS3]− I(E)
G

[
B3
]]
, (1.13)

where I(L)
G and I(E)

G are Lorentzian and Euclidean gravity actions, respectively. Hence, the
Lorentzian part cancels out in the square of the wave functional and the Euclidean part
leads to the gravity partition function on S3 as in (1.12) (see figure 2). In the semiclassical
limit L/GN � 1, a saddle point solution dominates in the path integral over the boundary
metric g(0)

µν in the right hand side of (1.12). For the Hartle-Hawking wave functional,
the saddle solution for the boundary metric is S2. Then it follows from the dS/CFT
dictionary (1.11) that the gravity partition function is given by the square of the dual CFT
partition function in the semiclassical limit:

ZG
[
S3
]
'
∣∣∣ΨdS

[
S2
]∣∣∣2 =

∣∣∣ZCFT
[
S2
]∣∣∣2 . (1.14)

In our proposal, the CFT on the right-hand side of (1.14) is the non-chiral ŜU(2)k
WZW model. Both the holomorphic and anti-holomorphic parts of the WZW model are
equivalent to SU(2) Chern-Simons theories of level k and −k respectively on a manifold
with boundary S2 [16, 34, 35]:

ZSU(2)k WZW
[
S2
]

= ZSU(2)k×SU(2)−k CS
[
B3
]
. (1.15)

– 6 –
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Squaring both sides and gluing two copies of B3 along the boundaries S2 for the Chern-
Simons theory, (1.15) yields∣∣∣ZSU(2)k WZW

[
S2
]∣∣∣2 = ZSU(2)k×SU(2)−k CS

[
S3
]

=
∣∣∣ZSU(2)k CS

[
S3
]∣∣∣2 . (1.16)

Substituting into (1.14), we find the relation:

ZG
[
S3
]
'
∣∣∣ZSU(2)k CS

[
S3
]∣∣∣2 =

∣∣∣S0
0
∣∣∣2 , (1.17)

where S0
0 is the identity component of the modular S-matrix of the character of the

SU(N)k WZW model. This relation provides the simplest consequence of our dS/CFT
proposal. As we will see in this paper, we can generalize (1.17) to excited states by taking
into account Wilson lines.

In this way, the proposed dS/CFT duality allows us to calculate various physical
quantities in the semiclassical gravity on S3 from those in the WZW model in the diverging
central charge limit c → i∞. To promote this Euclidean setup to the dS/CFT for the
Lorentzian de Sitter space, we need to perform a Wick rotation. We will discuss this issue
in the context of calculations of partition function, two-point function, and entanglement
entropy later. Notice that this new duality is highly nontrivial in that it cannot be obtained
by simply combining the well-known results of [15] and [16]. While the relation (1.17)
takes exactly the same form, the semiclassical limit |kCS| = κ → ∞ of the Chern-Simons
formulation of Einstein gravity only leads to a finite central charge c ' N2 − 1 and does
not fit with the general expectation of the dS/CFT that we should have c→ i∞.

1.2 Organization of this paper

The paper is organized as follows. In the next section, we start with the detailed statement
of our proposal of dS/CFT for three-dimensional Einstein gravity, summarized as (1.3).
We will calculate the gravity partition functions in the presence of various excitations in
both the CFT and gravity sides. Then we confirm that both calculations match perfectly
in the Einstein gravity limit. In passing, we will comment on the relation between the
topological entanglement entropy and the de Sitter entropy.

In section 3, we present a higher-spin generalization of the three-dimensional dS/CFT,
summarized as (1.6). We explicitly evaluate the partition functions in three-dimensional
higher-spin gravity for various classical solutions based on two different approaches and
show that they perfectly agree with the CFT results computed from the S-matrices.

In section 4, we study the effects of Lorentzian dS3 on our dS/CFT duality by examin-
ing partition functions, two-point functions, and entanglement entropies. We first compute
the classical partition function of Liouville CFT, which is found to be consistent with pre-
vious result. We then show that an appropriate analytical continuation gives two-point
functions in the dual CFTs if we take into account an exotic UV cutoff prescription. This
shows a way how we extend our original Euclidean proposal to the Lorentzian dS/CFT.
We will also give the holographic entanglement entropy in our dS/CFT and confirm our
prediction in the light of brane-world holography.

– 7 –
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In subsection 5, we consider a special version of dS/CFT given in terms of the WN -
minimal model CFT. We interpret our dS/CFT as an analytical continuation of Gaberdiel-
Gopakumar duality. We also show that the duality relation known as the triality in the
WN -minimal model gives us further evidence of our dS/CFT.

In section 6, we discuss the possible spectrum of WZW model and its geometrical
interpretation. In section 7, we work out CFT predictions about quantum corrections in the
gravity theory on dS3 at the one-loop order. In section 8, we summarize our conclusions and
discuss future problems. In appendix A, we give an interpretation of our results in terms of
the Liouville/Toda CFT. In appendix B, we presents calculations of the expectation values
of Wilson loops and their connection to geodesic distances.

2 Einstein gravity on S3 and dS3/CFT2

In this and next sections, we compute the gravity partition functions (1.12) both from
the large central charge limit of the WZW model and from the classical (higher-spin)
gravity. We then compare them and find perfect matches. In this section, we start from
the simplest case with N = 2, where the CFT is given by the SU(2) WZW model and the
classical gravity is defined by the Einstein-Hilbert action. The goal in this section is to
confirm the proposed duality relation (1.3).

2.1 CFT description

Consider the SU(2) WZW model at level k and the Hilbert space created from the (2j+1)-
dimensional representation denoted by Rj . Its character in the representation Rj is defined
as

χj(τ) = TrRj
[
e2πiτ(L0− c

24)] , (2.1)

where L0 is the zero mode of energy momentum tensor. Under the modular transformation
τ → −1/τ , the characters transform as

χj(−1/τ) =
∑
l

Sj l χl(τ) , (2.2)

where the S-matrix for the SU(2) WZW model is given by1

Sj l =
√

2
k + 2 sin

[
π

k + 2 (2j + 1) (2l + 1)
]
. (2.3)

Following the well-known result [16], we find that the CFT counterpart of the vacuum
partition function of the dual SU(2) Chern-Simons gauge theory on S3 is given by

ZSU(2)
[
S3, R0

]
= S0

0 , (2.4)

1The modular S-matrix is computed for integer k and performed an analytic continuation for complex k.
This procedure usually works well as in [30] but may require more justification. The same is true for higher
rank expression in (3.8) below. Supporting arguments are given in appendix A by utilizing Liouville/Toda
description as discussed in the introduction.
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∑
i

Sij
Ri

Rj

=
τ −1

τ

Ri

=
Ri

· = S0
i

Ri

Rj
=

Ri

Rj

· = Sij

M′ M′′ =
M′ × M′′

S3

Ri Rj

=
Ri
× Rj

= S0
i S0

j

S0
0

Figure 3. Sketches of the computations of partition functions in Chern-Simons theory on S3.

in terms of the S-matrix. We can insert a Wilson loop in the representation Rj on S3, and
the Chern-Simons partition function is computed as

ZSU(2)
[
S3, Rj

]
= S0

j . (2.5)

Refer to figure 3 for a brief sketch of the derivation via surgery method. We can consider
a more complicated setup with two Wilson loops in Rj and Rl representations. When the
two Wilson loops are linked, the partition function is given by

ZSU(2)
[
S3, L(Rj , Rl)

]
= Slj . (2.6)

When two Wilson lines are not linked (see figure 3 again), we have

ZSU(2)
[
S3, Rj , Rl

]
= S0

j S0
l

S0
0 . (2.7)

Next, we take the k → −2 limit

k = −2 + i 6
c(g) +O

( 1
(c(g))2

)
, (2.8)

with large c(g)(∈ R) in order to compare with classical gravity such that the central charge
is related to the radius L of S3 via [25]

c(g) = 3L
2GN

. (2.9)

This indeed corresponds to the large central charge of the SU(2) WZW model as in (1.4).
Moreover, the (chiral) conformal weight of a primary state in the representation Rj becomes

hj = j(j + 1)
k + 2 ' −i c

(g)j(j + 1)
6 ≡ ih(g)

j , (2.10)
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with h(g)
j ∈ R at the limit. We also call the total conformal weight as ∆j = 2hj = i ∆(g).

As usual in the AdS/CFT correspondence, the energy Ej of the object dual to a primary
state (or Wilson loop) in the representation Rj is related to conformal dimension ∆(g)

j as

LEj = ∆(g)
j = 2h(g)

j . (2.11)

It is useful to note the relation

(2j + 1)2 ' 1− 8GNEj = 1−
24h(g)

j

c(g) . (2.12)

Now let us work out the behavior of partition functions in our limit k → −2. The
SU(2) WZW (non-chiral) CFT can be regarded as a double copy of the SU(2) Chern-
Simons gauge theories as in (1.15) and (1.16). Thus, in our limit k → −2, the vacuum
partition function is evaluated as follows:

ZCFT[R0] =
∣∣∣ZSU(2)[S3, R0]

∣∣∣2 = c(g)

3 sinh2
(
πc(g)

6

)
' c(g)

12 exp
[
πc(g)

3

]
. (2.13)

With the insertion of a Wilson loop in the representation Rj , the partition function becomes

ZCFT[Rj ] =
∣∣∣ZSU(2)[S3, Rj ]

∣∣∣2 ' c(g)

12 exp
[
πc(g)

3

√
1− 8GNEj

]
, (2.14)

where we have used the relation (2.12). Similarly, the partition function on S3 correspond-
ing to the one with two linked Wilson loops can be evaluated as follows:

ZCFT [L(Rj , Rl)] =
∣∣∣ZSU(2)

[
S3, L(Rj , Rl)

]∣∣∣2
' c(g)

12 exp
[
πc(g)

3

√
1− 8GNEj

√
1− 8GNEl

]
.

(2.15)

When the two Wilson lines are not linked we find

ZCFT[Rj , Rl] = c(g)

3
sinh2

[
πc(g)

6
√

1− 8GNEj
]

sinh2
[
πc(g)

6
√

1− 8GNEl
]

sinh2
[
πc(g)

6

]
' c(g)

12 exp
[
πc(g)

3
(√

1− 8GNEj +
√

1− 8GNEl − 1
)]

.

(2.16)

2.2 Gravity calculation

Here we perform gravity calculations and reproduce the CFT results obtained in the pre-
vious subsection. We define the gravity partition function by

ZG = e−IG , IG = − 1
16πGN

∫
d3x
√
g (R− 2Λ) , (2.17)

where the cosmological constant is related to the S3 radius L as Λ = L−2. On S3, the Ricci
curvature is given by R = 6Λ. The solution to the Einstein equation in three dimensions
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with the positive cosmological constant is locally the same as S3. Thus, the action can be
written as

IG = − 1
4πL2GN

∫
d3x
√
g . (2.18)

We begin with the partition function on S3 without any excitation. The geometry can
be described by a hypersurface

X2
1 +X2

2 +X2
3 +X2

4 = L2 , (2.19)

in R4 with the metric ds2 =
∑4
j=1 dX2

j . A convenient parametrization is given by

X1 = L cos θ cos τ , X2 = L cos θ sin τ ,
X3 = L sin θ cosφ , X4 = L sin θ sinφ ,

(2.20)

which leads to the metric

ds2 = L2
[
dθ2 + cos2 θ dτ2 + sin2 θ dφ2

]
. (2.21)

Here we take 0 ≤ θ ≤ π/2 and identify τ ∼ τ + 2π, φ ∼ φ+ 2π. Then, we can evaluate the
action as

IG = − πL

2GN
= −πc

(g)

3 . (2.22)

Thus, the gravity partition function ZG = exp(−IG) reproduces (2.13) in the large c(g) limit
as expected. Note that −IG describes the entropy of three-dimensional de Sitter space.

We then move to the case with an extra insertion of Wilson loop in the representation
Rj . In the dual gravity side, it corresponds to the geometry with excitation energy Ej given
in (2.11). The geometry is the Euclidean de Sitter black hole solution with the metric

ds2 = L2
[
(1− 8GNEj − r2) dτ2 + dr2

1− 8GNEj − r2 + r2dφ2
]
. (2.23)

In higher dimensions, there are two horizons corresponding to the black hole horizon and
cosmological horizon. However, in three dimensions, there is only one horizon at r =√

1− 8GNEj . If we assume that the geometry is smooth at the horizon, then the periodicity
of Euclidean time direction τ is fixed as

τ ∼ τ + 2π√
1− 8GNEj

. (2.24)

The angular coordinate φ satisfies the periodicity condition φ ∼ φ + 2π and there is a
conical singularity at r = 0 with the deficit angle δ = 2π(1−

√
1− 8GNEj). From the area

of the horizon, we can read off the entropy as

SdS BH =
2π
√

1− 8GNEj
4GN

= π

3 c
(g)
√

1− 8GNEj . (2.25)

We may perform a coordinate transformation as

r =
√

1− 8GNEj sin θ , τ ′ =
√

1− 8GNEj τ (2.26)

– 11 –
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θ = 0

θ = π/2

X1

X2

X3

0 ≤ φ < π

θ = 0

θ = π/2

π ≤ φ < 2π

paste

Figure 4. The North (left) and South (right) hemisphere with two linked Wilson lines (orange
and blue).

with 0 ≤ θ ≤ π/2 and the periodicity τ ′ ∼ τ ′ + 2π. The metric becomes

ds2 = L2
[
dθ2 + cos2 θ dτ ′2 + (1− 8GNEj) sin2 θ dφ2

]
. (2.27)

Then we can evaluate the action for this solution and obtain

IG = −π3 c
(g)
√

1− 8GNEj . (2.28)

The gravity partition function ZG = exp(−IG) perfectly agrees with the previous re-
sult (2.14).

We then move to a more complicated example of geometry, which corresponds to the
insertion of two Wilson loops in the representations Rj and Rl. Recall that the geometry
with the metric (2.27) corresponds to the one with the conical defect at θ = 0 with deficit
angle δj = 2π(1 −

√
1− 8GNEj). We can also include another conical defect at θ = π/2

by changing the periodicity as τ ′′ ∼ τ ′′ + 2π
√

1− 8GNEl or equivalently performing a
coordinate transformation

τ ′′ =
√

1− 8GNEl τ ′ , τ ′ ∼ τ ′ + 2π . (2.29)

The deficit angle at θ = π/2 is δl = 2π
(
1−
√

1− 8GNEl
)
and the metric now reads

ds2 = L2
[
dθ2 + (1− 8GNEl) cos2 θ dτ ′2 + (1− 8GNEj) sin2 θ dφ2

]
. (2.30)

The second conical singularity corresponds to the second Wilson loop at θ = π/2, which is
linked to the first one, see figure 4. The gravity action for this geometry can be found as

IG = −π3 c
(g)
√

1− 8GNEj
√

1− 8GNEl . (2.31)

This again agrees with the previous result in (2.15).
Finally, we examine the geometry corresponding to the insertion of two unlinked Wil-

son lines in the representations Rj , Rl. Let us recall that the energy and the label of
representation are related as √

1− 8GNEi = 2i+ 1 (2.32)
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as in (2.12). This relation implies that

√
1− 8GNEj+l = 2(j+ l) + 1 = (2j+ 1) + (2l+ 1)− 1 =

√
1− 8GNEj +

√
1− 8GNEl− 1 .

(2.33)
Therefore, the corresponding geometry is the Euclidean de Sitter black hole with the met-
ric (2.23) but the energy is now Ej+l defined by (2.32) with i = j+ l. The gravity action is

IG = −π3 c
(g)
√

1− 8GNEj+l = −π3 c
(g)
(√

1− 8GNEj +
√

1− 8GNEl − 1
)
, (2.34)

which reproduces the previous result in (2.16).

2.3 De Sitter entropy as topological entanglement entropy

It is intriguing to pose here to study entanglement entropy in the gravity theory on S3 and
its CFT dual. We choose a subsystem disk A on the boundary S2 of a three-dimensional
ball B3, on which the wave functional of 3d gravity is defined. We write the boundary
of A as ΓA, which is a circle. In the replica calculation of entanglement entropy, we
introduce a cut along ΓA on S3 and take its n-folds to obtain Tr[(ρA)n], where ρA is a
reduced density matrix obtained by tracing out the complement of A. The topological
entanglement entropy [36, 37] takes the following form in the presence of an Wilson line
dual to a massive excitation with energy E

SA = log |S0
j |2 = π

3 c
(g)√1− 8GNE , (2.35)

which coincides with the BH entropy (2.25). Note that in the replica partition function
does not depend on the parameter n as the n-fold cover of S3 is topologically S3. Refer
to [38] for an analogous relation in black holes in AdS3/CFT2.

Alternatively, we may regard the conical deficit along ΓA as a Wilson loop W (ΓA).
Given the Chern-Simons/WZW correspondence, this loop is seen as the worldline of the
twist operator in the dual CFT of the energy

En L = c

12

(
n− 1

n

)
. (2.36)

If there is a Wilson line excitation of energy E which links ΓA, the entanglement entropy
can also be calculated by employing the formula (2.31) for the two linked Wilson loops:

SA = − ∂

∂n
log 〈W (ΓA) 〉

∣∣∣∣
n=1

= π

3 c
(g)√1− 8GNE , (2.37)

reproducing the same value as (2.35).
We expect that we can extend the above relation to topological pseudo entropy [39, 40],

which generalizes the entanglement entropy such that the entropy depends on both the
initial and final states.
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3 Higher-spin generalization

In this section, we extend the analysis in the previous section by considering the duality
for generic N , summarized as (1.6). There is not much difference in the CFT computation
except that expressions become more group theoretical. In the gravity side, we use the
Chern-Simons formulation of higher-spin gravity, which gives alternative viewpoints on the
pure gravity case with N = 2.

3.1 CFT description

In this subsection, we obtain the partition functions on S3 in the presence of Wilson loops
from the S-matrix for the modular transformation of characters of SU(N) current algebra.
We consider the SU(N) WZW model with the central charge given in (1.8), and we are
interested in the k → −N limit:

k = −N + i N(N2 − 1)
c(g) +O

( 1
(c(g))2

)
, (3.1)

where c(g) is related to the radius of S3 as in (1.8) and thus the classical higher-spin limit
is c(g) →∞.

It will be convenient to introduce a Lie-algebraic notation for the comparison with
computations in higher-spin gravity. We introduce N -dimensional basis ei (i = 1, 2, . . . , N)
associated with the inner product (ei, ej) = δi,j . The simple roots of SU(N) are given by
αi = ei − ei+1 with i = 1, 2, . . . , N − 1 and the fundamental weights are

ωj =
j∑
l=1

el −
j

N

N∑
l=1

el , (3.2)

with j = 1, 2, . . . , N − 1. The Weyl vector is then defined as

ρ =
N−1∑
j=1

ωj =
N∑
j=1

(
N + 1

2 − j
)
ej . (3.3)

The highest weight state can be labeled by a Young diagram µ, which may be expressed
as

µ =
N−1∑
l=1

λl ωl =
N∑
j=1

µj ej . (3.4)

Here λl corresponds to the Dynkin label.2 When the Young diagram µ has rj box in the
j-th row, then λl = rl − rl−1 and µj = rj − |µ|/N . Here |µ| represents the number of total
box in the Young diagram µ. With the terminology, the central charge and the conformal
weight of primary operator labeled by µ are

c = 12k (ρ, ρ)
N(N + k) , hµ = C2(µ)

N + k
, C2(µ) = 1

2 (µ, µ+ 2ρ) . (3.5)

2Here we assumed that the labels λl (l = 1, 2, . . . , N − 1) are non-negative integer. We will see below
that the states are dual to conical defects satisfying the trivial holonomy conditions (3.23). In this paper,
we discuss only the leading order in 1/c(g), and at least in this case more generic states with non-integer λl
(or conical defects not satisfying the trivial holonomy conditions) are allowed. We shall discuss this issue
in more details in section 6.
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Here we use
(ρ, ρ) = 1

12N(N2 − 1) , (3.6)

and denote the eigenvalue of the quadratic Casimir operator by C2(µ).
The character and modular S-matrix can be defined similarly to the SU(2) case as

χµ = TrRµ
[
e2π i τ(L0− c

24)] , χµ(−1/τ) =
∑
ν

Sµν χν(τ) . (3.7)

Here Rµ is the representation with the highest weight labeled by the Young diagram µ.
The expression of the S-matrix may be found, e.g., in [41] as

Sµν = K
∑
w∈W

ε(w) exp
[
− 2π i
k +N

(w(µ+ ρ), ν + ρ)
]
, (3.8)

where W is the Weyl group of SU(N) and ε(w) = ±1 is associated with the group element.
Moreover, K is a constant fixed by the unitary constraint S S† = 1. In the k → −N limit
of (3.1), only a term dominates in the sum over the elements of Weyl group.3 Let us denote
the central charge c = i c(g) as in (1.8). For the case with two linked Wilson loops in the
representations Rµ∗ , Rν , we have

ZCFT [L(Rµ∗ , Rν)] = |Sµ∗ν |2 ' exp
[
π

3 c
(g) (µ+ ρ, ν + ρ)

(ρ, ρ)

]
. (3.9)

Here we ignored the coefficient in front of the exponential as we are only interested in the
large central charge limit. For example, the vacuum partition function is

ZCFT[R0] =
∣∣∣S0

0
∣∣∣2 ' exp

[
π

3 c
(g)
]
, (3.10)

which is the same as (2.13) for the N = 2 case. The partition function with a Wilson loop
in the representation Rµ is given by

ZCFT[Rµ] = |S0
µ|2 ' exp

[
π

3 c
(g) (ρ, µ+ ρ)

(ρ, ρ)

]
. (3.11)

Moreover, the unlinked case reads

ZCFT [Rµ, Rν ] '
∣∣∣∣S0

µS0
ν

S0
0

∣∣∣∣2
' exp

[
π

3 c
(g)
((ρ, µ+ ρ)

(ρ, ρ) + (ρ, ν + ρ)
(ρ, ρ) − 1

)]
= exp

[
π

3 c
(g) (ρ, µ+ ν + ρ)

(ρ, ρ)

]
,

(3.12)

which is the same as the case with one Wilson line in the representation Rµ+ν .
3An element of Weyl group for SU(N) permutes the N -dimensional basis ei. It is convenient to introduce

the charge conjugation µ∗ ≡ −w0µ, where w0 exchanges ei by eN−i for all i ≤ bN/2c. Note that the Weyl
vector is self-conjugate as ρ = −w0ρ. We can see that the dominant contribution at the critical level comes
from the term with w = w0. For instance, µ∗i + ρi > µ∗j + ρj and νi + ρi > νj + ρj for i > j, and hence the
exchange of µ∗i + ρi and µ∗j + ρj makes (µ∗ + ρ, ν + ρ) smaller.
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3.2 Conical defect geometry

Now we move on to the higher-spin gravity calculation. Here we consider higher-spin
gravity on S3 described by SU(N)× SU(N) Chern-Simons theory and construct a conical
defect geometry. The action of the Chern-Simons theory is

ICSG = ICS[A]− ICS
[
Ā
]

+ κ

4π

∫
∂M

Tr
(
A ∧ Ā

)
, (3.13)

ICS[A] = − κ

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)
. (3.14)

The boundary term is included since we will use a slightly singular coordinate system. In
the next subsection, we will see that there is a gauge choice such that the boundary term
does not contribute to the on-shell action. The gauge fields are defined as

A = Aaµ La dxµ , Ā = Āaµ L̄a dxµ , (3.15)

where we use the convention of [29] for L̄a. For the definition of higher-spin gravity, it would
be important to identify the gravitational sector SU(2) inside SU(N). We use so-called the
principal embedding of SU(2),4 which is generated by

L3 =
N∑
i=1

ρi ei,i , (3.16)

and L1, L2 satisfying [Li, Lj ] = i
2εijk Lk. Here ei,j are N ×N matrices with elements:

(ei,j) l
k = δi,k δ

l
j . (3.17)

The normalization of generators is given by

Tr(Li Lj) = εN δi,j , εN = (ρ, ρ) = 1
12N(N2 − 1) , (3.18)

see (1.7). The Chern-Simons level is related to the Newton constant as

κ = L

8GN εN
(3.19)

in this convention.
The gauge fields are linear combinations of higher-spin generalizations of dreibein and

spin connections. In particular, the metric can be read off as

gµν = − L2

4εN
Tr
[
(Aµ − Āµ)(Aν − Āν)

]
. (3.20)

4In this paper, we only consider the principal embedding of SU(2), see, e.g., [30] for other embeddings.
Conical defects for higher-spin AdS3 gravity with other embeddings have been analyzed in [42]. Moreover,
conical defects are identified with states in dual CFTs for other higher-spin AdS/CFT correspondences,
e.g., in [43] for N = 2 higher-spin holography of [44] and in [45] for matrix extended higher-spin holography
of [46, 47].
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The gauge configuration corresponding to S3 may be given by

A = b−1 a b+ b−1 db , Ā = b ā b−1 + b db−1 , (3.21)

where
a = iL1(dφ+ dτ) , ā = iL1(dφ− dτ) , b = ei θL3 . (3.22)

We can obtain the metric in (2.21) from the formula (3.20).
A solution to the equations of motion obtained from the Chern-Simons action is given

by a flat connection, which can be put into the form (3.21) by a gauge fixing. Here we
focus on the solutions with constant a, ā. The metric is actually transformed under gauge
transformation, therefore it has not so significant meaning. Here we construct “conical
defect geometry” in the sense of [42], i.e., a geometry described by a gauge configuration
with a trivial holonomy. We require the triviality condition for the holonomies along φ-cycle
around θ = 0 and along τ -cycle around θ = π/2. These holonomies are defined by

Holφ(A) = P exp
(∮

θ=0
A

)
, Holτ (A) = P exp

(∮
θ=π/2

A

)
, (3.23)

where P represents the path ordering. We mean by a trivial holonomy here that it is
proportional to ±1N×N for N even and 1N×N for N odd.5 Such geometry may be realized
by gauge configuration with

a = −
bN2 c∑
i=1

B
(1)
2i−1(1, 1)(ni dφ+ ñi dτ) , ā = −

bN2 c∑
i=1

B
(1)
2i−1(1, 1)(ni dφ− ñi dτ) , (3.24)

where ni, ñi ∈ Z for odd N and ni, ñi ∈ Z or ni, ñi ∈ Z+ 1/2 for even N . Here we define
a matrix B(l)

k by [
B

(l)
k (x, y)

]
ij
≡ x δi,k δj,k+l − y δi,k+l δj,k , (3.25)

which satisfies the relation:

eρL3 B
(l)
k (x, y) e−ρL3 = B

(l)
k

(
elρx, e−lρy

)
. (3.26)

The metric corresponding to the gauge configuration (3.24) is

ds2 = dθ2 +R2
N cos2 θ dτ2 + R̃2

N sin2 θ dφ2 , (3.27)

with parameters

R2
N =

bN2 c∑
i=1

2n2
i

εN
, R̃2

N =
bN2 c∑
i=1

2ñ2
i

εN
. (3.28)

This metric is for a conical geometry with conical deficit angles 2π(1 − RN ) around τ -
cycle at θ = π and 2π(1 − R̃N ) around φ-cycle at θ = 0. The conical defect geometry
reproduces (2.30) for N = 2. As in the case of Euclidean AdS3 analyzed in [42], we

5Precisely speaking, we consider the gauge group (SU(N)×SU(N))/Z2 for even N , and the minus sign
comes from the Z2, see [42] as well.
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consider the solutions with negative deficit angles, i.e., conical surplus geometry. This
means that we set RN ≥ 1 and R̃N ≥ 1. The equalities RN = R̃N = 1 can be realized by
choosing ni = ñi = ρi (see (3.3)), which correspond to S3-background.

We proceed to evaluate the action for the gauge configuration. The bulk Chern-
Simons action in (3.14) vanishes for the ansatz, and the whole contribution comes from the
boundary term in (3.13) at θ = 0, π/2:

ICSG = −πL
∑bN2 c
i=1 ni ñi

GN εN
. (3.29)

Let us change the order of parameters as n1 ≥ n2 . . ., ñ1 ≥ ñ2 . . . and set

ni = −nN+1−i , ñi = −ñN+1−i (3.30)

for i > bN2 c. From now on, we require ni 6= nj and ñi 6= ñj for i 6= j, which generically
corresponds to the diagonalizability of matrix. Then, we could set

ni = µi + ρi , ñi = νi + ρi . (3.31)

Expressing

2
bN2 c∑
i=1

ni ñi =
N∑
i=1

ni ñi = (µ+ ρ, ν + ρ) , (3.32)

and using c(g) = 3L/(4εNGN ) as in (2.9), we can rewrite (3.29) as

ICSG = −πc
(g)

3
(µ+ ρ, ν + ρ)

(ρ, ρ) . (3.33)

This reproduces the partition function on S3 obtained from the modular S-matrix as
in (3.9). However, note that Young diagrams obtained in this way are not generic ones due
to the extra condition (3.30). The same condition actually arises in the case of Lorentzian
AdS3 and the condition can be relaxed by moving to Euclidean AdS3 [42]. We expect that
the condition (3.30) can be removed by working on Lorentzian dS3.

Here we remark that, in the case where µ is trivial, −ICSG is identical to the de Sitter
black hole entropy in the higher-spin gravity and also equals to the topological entanglement
entropy as in the case of Einstein gravity (2.35):

SdS BH = SA = log |S0
ν |2 = πc(g)

3
(ρ, ν + ρ)

(ρ, ρ) . (3.34)

3.3 Conical geometry in another gauge

The gauge configuration (3.24) for the conical geometry constructed in the previous sub-
section is singular at θ = 0 and θ = π/2 and the on-shell action has a contribution purely
from the boundary term. This is conceptually confusing since there are no boundaries
at θ = 0, π/2 on S3 but the boundary term plays a physically important role. We will
show that this issue can be reconciled by moving to another gauge configuration that is
gauge-equivalent to the original one (3.24).
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To this end, we note that the gauge configuration (3.24) describing the conical geometry
can be written as

a = h−1 dh , ā = h̄ dh̄−1 , (3.35)

where

h =
bN2 c∏
i=1

exp
[
−B(1)

2i−1(1, 1) (ni φ+ ñi τ)
]
, h̄ =

bN2 c∏
i=1

exp
[
B

(1)
2i−1(1, 1) (ni φ− ñi τ)

]
. (3.36)

It follows from (3.21) that the gauge configuration is written as

A = (h b)−1d(h b) , Ā = (b h̄) d(b h̄)−1 , (3.37)

or more explicitly

A = iL3 dr −
bN2 c∑
i=1

B
(1)
2i−1

(
e−ir, eir

)
(ni dφ+ ñi dτ) ,

Ā = −iL3 dr −
bN2 c∑
i=1

B
(1)
2i−1

(
eir, e−ir

)
(ni dφ− ñi dτ) .

(3.38)

The configuration (3.21) still has a residual gauge symmetry that fixes the met-
ric (3.20):

A→ g−1Ag + g−1dg , Ā→ g−1Ā g + g−1dg . (3.39)

Performing the residual gauge transformation with g = b h̄ results in the following gauge
configuration:

A = g−1
con dgcon , Ā = 0 , (3.40)

where gcon ≡ h b2 h̄. In this gauge, the chiral part of the gauge field becomes

g A g−1 = 2 iL3 dr+2 i
bN2 c∑
i=1

B
(1)
2i−1 (1,−1) ni sin r dφ−2

bN2 c∑
i=1

B
(1)
2i−1 (1, 1) ñi cos r dτ . (3.41)

The conical metric (3.27) can be reproduced by substituting this gauge configuration
to (3.20).

With this gauge choice, the on-shell action (3.13) has a contribution from purely the
bulk part:

ICSG = − κ

12π

∫
S3
Tr (A3) = −8πκ

bN2 c∑
i=1

ni ñi , (3.42)

which agrees with (3.29). This provides an alternative derivation which does not need the
boundary term contribution.
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4 Towards extension to Lorentzian dS3

In the previous sections, we have considered the Euclidean version of the duality, which
is interpreted as the relation between the squared norm of the Hartle-Hawking wave func-
tional (1.12) and the modular S-matrix of the WZW model. In this section, we consider the
original relation (1.11) between the Hartle-Hawking wave functional itself and the CFT on
the future boundary of the Lorentzian dS3. Since the geometry of Lorentzian dS3 evolves
from the initial state constructed by the Euclidean path integral as figure 1, quantities
computed in the boundary CFT are expected to include contributions from the Euclidean
part. We check this expectation by evaluating various quantities such as partition function,
two-point function, and entanglement entropy.

Firstly, we evaluate the classical limit of the partition function in the Liouville/Toda
CFT and show that the result includes a contribution from the Euclidean part of geometry,
which is expected to be a modular S-matrix element

∣∣∣S0
0
∣∣∣ from the discussions on the Eu-

clidean version of the duality. Secondly, we evaluate the two-point functions by calculating
the geodesic length connecting a pair of points of operators. This is mathematically equiv-
alent to computing a Wilson line in the Chern-Simons description of three-dimensional
gravity as we show in the appendix B, which is a de Sitter analogue of the argument for
the AdS3/CFT2 case presented in [48]. After that, we show that this gravitational compu-
tation can be reproduced from the direct CFT calculation of the two-point functions under
a special treatment of the UV cutoff, which is supported from the CFT dual of the hemi-
sphere. Furthermore, we calculate the holographic entanglement entropy in dS3/CFT2,
which is proportional to the geodesic length in our setup, and confirm that the same result
can be obtained from the codimension-two holography [49], combined with the brane-world
model [50].

4.1 Partition function in Liouville/Toda CFT

In this subsection, we would like to evaluate the partition function of the boundary CFT on
the future boundary S2 of Lorentzian dS3. We employ the description by Liouville/Toda
CFT with b → 0, which should lead to the same results from the description by WZW
model with k → −N as mentioned in the introduction. Notations and properties of the
Liouville/Toda CFT are summarized in appendix A. Calculations in this subsection fol-
low [51], in which the disk partition function is also considered.

We consider the Liouville CFT with the central charge c = i c(g), which is parameterized
by b as (A.2). In the classical limit b→ 0, we have

c ' 13 + 6
b2
, (4.1)

so the parameter b approximates

b−2 ' −13 + i c(g)

6 . (4.2)

Let us calculate the partition function in this limit. In the following, we fix the back-
ground metric to the unit sphere S2:

ds2 = dθ2 + sin2 θ dψ2, R = 2 . (4.3)
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In the b→ 0 limit, the constant solutions to the equation of motion are

2φn = log 1
4µ + iπ(2n+ 1) , (n ∈ Z) . (4.4)

The saddle point approximation for a solution associated to n becomes∫
Cn

dφ e−I[φ] = −e−iπ(2n+1)/b2e (4µ)1/b2+1 , (4.5)

where Cn denotes the steepest descent from the saddle point φn. Here we have to note
that the shapes of contours Cn and which contours should be summed over depend on the
parameter b. Considering constant solutions, the original path integral takes the form∫ ∞

−∞
dφ exp

[
−2(b−2 + 1)φ− 4µ e2φ

]
(4.6)

with real b. To analytically continue to complex b, we extend φ to complex values and
regard the integral as along the real axis in the complex plane of φ. However, there are
subtleties to analytically continue the parameter such that the resulting integral is certainly
well-defined.6

In our limit (4.2), fortunately, the path integral can be straightforwardly defined be-
cause the integrand is convergent in φ → ±∞ when Re

[
−2
(
b−2 + 1

)]
> 0. This is a

different point from [51], where the sign of the real part is reversed. In our case, we can
deform the defining contour to the steepest descent C0 of the n = 0 saddle point due to the
Cauchy’s theorem. Therefore the classical approximation of the partition function is

ZCFT '
∫
C0

dφ e−I[φ] = −e−iπ/b2e (4µ)1/b2+1 . (4.7)

Taking the limit (4.2), the dominant part in the large c(g) limit is

ZCFT ' C e
π
6 c

(g)(4µ)
i
6 c

(g)
, (4.8)

where C denotes a constant coefficient independent of c(g). We can interpret the factor
e
π
6 c

(g) as a contribution from the Euclidean part, as we have expected, because the squared
norm of the partition function is

|ZCFT|2 ' |C|2 e
π
3 c

(g)
, (4.9)

which is identical to the gravitational calculation (2.22) up to an overall constant. Therefore
this result reproduces the relation of the Euclidean dS/CFT (1.12) up to an overall constant.

The other factor (4µ)
i
6 c

(g) may be interpreted as a contribution from the Lorentzian
dS3. Consider the global coordinate of dS3

ds2 = −dT 2 + cosh2 T dΩ2
2 , (4.10)

6See also [52, 53] for details about the method of analytic continuation used here. In particular, appendix
C of [53] describes the analytic continuation of the gamma function, which takes essentially the same form
as the integral considered in this subsection.
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where dΩ2
2 = dψ2 + sin2 ψ dφ2 is the metric of a two-dimensional unit sphere. Introducing

a cutoff T∞, the on-shell action in a region 0 < T < T∞ is

IG = Λ
4πGN

∫ T∞

0
dT

∫
dΩ2
√
−g = c(g)

3

(
T∞ + 1

2 sinh(2T∞)
)
. (4.11)

Defining ε = 2e−T∞ , the gravity partition function behaves as (see, e.g., [28] as well)

ZG ' e
i
3 c

(g)
(
− log ε

2 + 1
ε2
)
. (4.12)

These divergent terms can be thought of as UV divergences in the boundary theory and
cancelled by adding local counterterms to the boundary action. While the original partition
function is invariant under a Weyl transformation δg(0) = 2δσg(0) and δε = δσε on the
boundary, the renormalized partition function is not invariant [54];

δZ
(ren)
G = e

i
3 c

(g)δσ, (4.13)

because the logarithmic term itself is not invariant and the effective boundary action with
divergent terms removed is not. This is the same form as µ

i
6 c

(g) by setting µ ∝ e2δσ.
Therefore, the imaginary contribution in (4.8) is interpreted as a Weyl anomaly in the
boundary theory.

Let us rephrase this conclusion in a slightly different language. With the global coor-
dinates (4.10), the boundary metric at T = T∞ may be given by dŝ2 = e2T∞ds2, where
ds2 is the metric of a unit sphere S2 given in (4.3). In order to move from the sphere with
radius eT∞ to the unit sphere, we need to perform the Weyl transformation, where the
metric is changed as ds2 → dŝ2 = eαds2. CFT on S2 should be invariant under the Weyl
transformation up to the Weyl anomaly. Due to the Weyl anomaly, the partition function
receives a correction as [55]

Z
(α)
G = eILZ

(α=0)
G , IL = c

48π

∫
d2z

[
∂α∂̄α+ 1

2
√
gRα

]
, (4.14)

see [56] and appendix A for the notation. Therefore, the partition function with α = 2T∞
is related to that with α = 0 up to a phase factor as

Z
(α=2T∞)
G = e

i
3 c

(g)T∞Z
(α=0)
G = e

i
3 c

(g)(− log ε
2)Z(α=0)

G . (4.15)

This explains the logarithmic divergence in (4.12).
It is easy to extend this calculation to SU(N) Toda CFT with a central charge c = i c(g),

which is dual to a higher-spin gravity described by SU(N) Chern-Simons gravity. The
central charge (A.17) of SU(N) Toda CFT approximates

c ' N − 1 + N(N2 − 1)
b2

(4.16)

in b→ 0. Therefore
b−2 ' − 1

N(N + 1) + i c(g)

N(N2 − 1) . (4.17)
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The action for Toda CFT is rewritten as

I = 1
2π

∫
d2w
√
g

[
Gij

2b2 ∂̄φi∂φj + R8
(
b−2 + 1

)N−1∑
i=1

i(N − i)φi + µ
N−1∑
i=1

eφi

]
, (4.18)

where we have used the relation
∑
j G

ji = i(N − i)/2 for the inverse of Cartan matrix Gij

for SU(N). Considering again constant solutions, the partition function approximates

ZCFT '
∫

dφ1 · · · dφN−1 e
−
∑

i[(b−2+1)i(N−i)φi+4µeφi ]

=
N−1∏
i=1

∫
dφi e−(b−2+1)i(N−i)φi−4µeφi .

Solutions to the equation of motion at the leading order are

φi = log i(N − i)4µ + iπ(2ni + 1) , (1 ≤ i ≤ N − 1, ni ∈ Z) . (4.19)

By the same discussion as in the Liouville CFT, the integral should include only the n = 0
saddle. Substituting this solution, we obtain the classical approximation

ZCFT ' C e
π
6 c

(g) (4µes)
i
6 c

(g)
, (4.20)

where C is a constant that is independent of c(g) and s ≡ − 6
N(N2−1)

∑N−1
i=1 i(N −

i) log [i(N − i)]. We can see that the squared norm of the partition function satisfies (1.17)
and the remaining part comes from the Euclidean dS3. When N = 2, this reproduces the
result of Liouville CFT (4.8).

4.2 Two-point functions

Next we focus on two-point functions of the boundary CFT, which can be approximated
by geodesic distances in the bulk spacetime. Therefore, we first calculate the length of a
geodesic between two points on the boundary of dS3.

Consider the three-dimensional de Sitter spacetime in Lorentzian signature

ds2 = −dT 2 + cosh2 T dΩ2
2 , (4.21)

where dΩ2
2 = dψ2 + sin2 ψ dφ2 is the metric of a two-dimensional unit sphere. We are

interested in the geodesic distance between two points at the same time: (T0, ψi, 0) and
(T0, ψf , 0). The geodesic distance between the two points is given by

D(ψi, ψf ) = arccos
[
1− 2 sin2

(
ψf − ψi

2

)
cosh2 T0

]
. (4.22)

Note that there is no geodesic which connects the two points in the Lorentzian de Sitter
spacetime when sin2

(
ψf−ψi

2

)
cosh2 T0 > 1, where D(ψi, ψf ) gets complex valued.

In the standard dS/CFT, we expect that the dual CFT2 lives on the sphere in the future
infinity (see figure 1), which is located at T = T∞ →∞ by introducing the regularization.
In this limit we find the geodesic distance:

D(ψi, ψf ) = 2 iT∞ + i log
[
sin2

(
ψf − ψi

2

)]
+ π . (4.23)
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ψi

ψf

ψi+ψf +π
2

ψi+ψf−π
2

T = T∞

T = 0

Figure 5. The profile of a geodesic which connects two points on the future boundary in the
Lorentzian dS3 with an initial Euclidean hemisphere, following from the standard Hartle-Hawking
prescription.

Even though this does not correspond to a real geodesic in a Lorentzian dS3, we can
interpret it as the geodesic length in a geometry obtained by gluing a future half T > 0 of
Lorentzian dS3 with the hemisphere −π

2 ≤ τ < 0:

ds2 = dτ2 + cos2 τ dΩ2
2 , (4.24)

along the circle T = τ = 0 as depicted in figure 5. The real part π in (4.23) comes from
the half circle on the hemisphere, which is identical to the maximal distance of geodesics
connecting a pair of boundary points of B3, while the imaginary length arises from the
time-like geodesics in the Lorentzian dS3. Indeed, we can show that the total geodesic
satisfies the saddle-point condition as follows. The geodesic distance between (T∞, ψi, 0)
and (T∞, ψf , 0) that goes through two points ψ̃i and ψ̃f on T = 0 takes the form∣∣∣ψ̃f − ψ̃i∣∣∣+ i log

[
e2T∞ cos

(
ψi − ψ̃i

)
cos

(
ψf − ψ̃f

)]
. (4.25)

Since this is complex, the extremization condition varying ψ̃i and ψ̃f splits into those of
both real and imaginary parts:

δψ̃i = δψ̃f , tan
(
ψi − ψ̃i

)
δψ̃i + tan

(
ψf − ψ̃f

)
δψ̃f = 0 , (4.26)

which give a relation
ψi + ψf = ψ̃i + ψ̃f . (4.27)

Assuming the geodesic in B3 is maximized to be π, i.e. satisfying ψ̃f − ψ̃i = π, we obtain

ψ̃i = ψi + ψf − π
2 , ψ̃f = ψi + ψf + π

2 . (4.28)

From this condition, one can reproduce our result (4.23).
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Now we consider a calculation of two-point functions in the dS3/CFT2. By employ-
ing (4.23), the geodesic approximation of the gravity dual of the CFT two-point function
leads to

〈O(ψi)O(ψf )〉' e−∆(g)D(ψi,ψf )'

 iε
2sin

(
ψi−ψf

2

)
2i∆(g)

= e−π∆(g) ·

 ε

2sin
(
ψi−ψf

2

)
2i∆(g)

,

(4.29)
where the cutoff ε is defined by ε = 2e−T∞ . The presence of “i” in front of ε can be
understood as an analytical continuation from AdS as e−ρ∞ = 2i e−T∞ , where ρ is the
radial coordinate of global AdS.

Now let us examine if we can reproduce the same result from the CFT side. The
second factor in the right hand side of (4.29) follows from the standard two-point function
in CFT for operators of dimension i ∆(g). Moreover, the first factor e−π∆(g) can be found
from an open Wilson loop on the hemisphere B3 with two end points on the boundary S2,
evaluated in the light of the CFT dual as follows:

ZCFT
[
B3, Rj

]
ZCFT[B3] = |S

j
0 |
|S 0

0 |
= e

π
6 c

(g)(
√

1−8GNEj−1) ' e−π∆(g)
j , (4.30)

assuming ∆(g)
j � c(g), corresponding to the geodesic approximation. In this way, we can

reproduce the gravity prediction of the two-point function (4.29) from the CFT calculation.
It is intriguing to note that we can also interpret this two-point function as the standard one
in a two-dimensional CFT with an ‘exotic rule’ that the UV cutoff is not ε but is i ε. This
might also be interpreted as the radius of the two-sphere, where the CFT lives, is imaginary.

4.3 Holographic entanglement entropy

Now we turn to the holographic entanglement entropy. By assuming a simple extension of
the holographic entanglement entropy in the AdS/CFT [9, 57, 58] to the dS/CFT (see [10–
12] for earlier works), we expect that this can be computed from the length of the geodesic.
We choose the subsystem A to be the interval ψi ≤ ψ ≤ ψf at φ = 0. Then the holographic
entanglement entropy can be found from (4.23) as

SA = D(ψi, ψf )
4GN

= i c
(g)

3 T∞ + i c
(g)

6 log
[
sin2

(
ψi − ψf

2

)]
+ c(g)

6 π . (4.31)

We can compare this with the standard formula of entanglement entropy in two-dimensional
CFTs [59, 60], which is written as follows in the present setup:

SA = c

6 log

4 sin2
(
ψi−ψf

2

)
ε̃2

 . (4.32)

Again by setting c = i c(g) and ε̃ = i ε = 2i e−T∞ , we reproduce the holographic entangle-
ment entropy (4.31).

We can also confirm the result (4.31) by applying the codimension-two holography (or
wedge holography) introduced in [49]. Refer to figure 6 for a sketch of our setup. This has
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an advantage that we can apply the AdS/CFT, which is more established, rather than the
dS/CFT. For our purpose, we start with the global AdS4 spacetime described by the de
Sitter slices:

ds2 = dη2 + sinh2 η (−dT 2 + cosh2 T dΩ2
2) . (4.33)

We limit the value of η to 0 ≤ η ≤ η∗ and impose the Neumann boundary condition on
the boundary η = η∗. According to the idea of brane-world holography [50], this gravity
background is dual to a quantum gravity on dS3 defined by η = η∗. As before, we also
cut along T = 0 and glue the geometry T > 0 with the hemisphere obtained by the Wick
rotation T → τ = iT .

The codimension-two holography argues that this four-dimensional geometry is dual
to a CFT on the two-dimensional sphere at T = T∞ →∞. In this setup, the entanglement
entropy SA of the two-dimensional CFT is computed by the area of the extremal surface
such that it ends on the boundary ∂A of the subsystem A. This extremal surface ΓA is
simply given by the two-dimensional surface defined by the product of the geodesic in dS3
(i.e. the one in figure 5) times the interval of the η direction given by [0, η∗].

The Newton constant in the effective three-dimensional gravity can be found from that
in four dimensions via the dimensional reduction as follows:

1
GN

= 1
G

(4)
N

∫ η∗

0
dη sinh η =

2 cosh2 η∗
2

G
(4)
N

. (4.34)

The holographic entanglement entropy in the codimension-two holography reads

SA = Area(ΓA)
4G(4)

N

= 1
4G(4)

N

∫ η∗

0
dη sinh η ·D(ψi, ψf ) . (4.35)

This indeed reproduces (4.31) by noting the relation (4.34).

5 Relation to Gaberdiel-Gopakumar duality

Up to now, we have examined the duality between the classical limit of (higher-spin) gravity
on S3 and SU(2) (or SU(N)) WZW model at the critical level limit. For the purpose, we do
not need details of duality, namely, howMCFT is realized in (1.3) (or (1.6)). In this section,
we provide a concrete realization as an analytic continuation of Gaberdiel-Gopakumar
duality [32]. Referring to the realization, we discuss the spectrum of the WZW model with
non-integer k and comment on quantum corrections in the succeeding sections.

5.1 Original Gaberdiel-Gopakumar duality

Before going into the details of our proposal, we would like to review the original Gaberdiel-
Gopakumar duality [32]. The duality is between a higher-spin gravity in three dimensions
and the two dimensional WN -minimal model described by the coset (1.9). The higher-spin
gravity is given by Prokushkin-Vasiliev theory [61] with higher-spin gauge fields with spin
s = 2, 3, . . . and two complex massive scalars. The proposal is that the classical limit of
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ψi

ψf
A

B3

dS3ΓA
AdS4

EAdS4

Figure 6. A sketch of calculation of holographic entanglement entropy in the codimension-two
holography. The green surface describes the dS3 brane, where we impose the Neumann boundary
condition and we expect the presence of three-dimensional gravity. The subsystem A is defined on
the S2 on the boundary of the dS3. The red surface describes the extremal surface ΓA whose area
leads to the holographic entanglement entropy. The four-dimensional ambient spacetime is AdS4.

the higher-spin gravity corresponds to the large N, k limit of the coset CFT (1.9) but the
’t Hoof parameter

λ = N

k +N
(5.1)

fixed finite. It was confirmed by the match of symmetry, partition function, correlation
function, and so on, see [62] for a review.

The higher-spin gravity constructed by [61] is defined on three-dimensional AdS space
with a negative cosmological constant, but it is not difficult to move to dS space with a
positive cosmological constant by a simple analytic continuation. Gravity theory on AdS3
is topological and it can be described by a Chern-Simons theory [15, 63]. The action of
the Chern-Simons gauge theory is given by

ICSG = ICS[A]− ICS
[
Ā
]
, ICS[A] = kCS

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)
. (5.2)

The gauge fields A, Ā take values in sl(2) Lie algebra and the Chern-Simons level kCS is
related to the Newton constant GN and the AdS radius LAdS as kCS = LAdS/(8GN εN ),
see (3.19) for the S3 case. With this description, we can easily construct a higher-spin
gravity by replacing sl(2) with a higher rank Lie algebra g. With the choice of g = sl(N),
we obtain a higher-spin gravity on AdS3 with gauge fields of spin s = 2, 3, . . . , N . Note
that an analytic continuation of the level kCS → κ = −i kCS yields a higher-spin gravity
on dS3 described as in (3.13) with (3.14).7 The gauge algebra of the Prokushkin-Vasiliev
theory is an infinite dimensional higher-spin algebra denoted by hs[λ]. One way to define

7The action (3.13) with (3.14) is actually for a higher-spin gravity on S3, thus we need further analytic
continuation for the time direction.
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hs[λ] is extending sl(N) such that hs[λ] reduces to sl(N) at λ = N by dividing its ideal.
The Prokushkin-Vasiliev theory includes two complex scalars with mass

L2
AdSm

2 = −1 + λ2 (5.3)

as well. The parameter λ is the same as the parameter for the gauge algebra hs[λ], and it
is identified with the ’t Hooft parameter introduced in the coset CFT (1.9) as (5.1). Here
we set

0 ≤ λ ≤ 1 , (5.4)

which is required from the dual CFT. For the range of parameter λ, we can assign different
boundary conditions to these two complex scalars. The conformal dimensions of the dual
operators are then given by

∆± = 1± λ (5.5)

with the choice of boundary conditions.
We would like to provide some supporting arguments for the proposal. Firstly, we

examine the match of symmetry. The asymptotic symmetry of higher-spin gravity on
AdS3 has been analyzed in [64–67]. For pure gravity on AdS3, the asymptotic symmetry
is well-known to be the Virasoro algebra with the central charge [68]

c = 6 kCS = 3LAdS
4GN εN

, (5.6)

see (1.8) for the S3 case. For higher-spin gravity with sl(N) Lie algebra, the asymptotic
symmetry is given by WN -algebra with the same central charge (5.6). In the same way, the
asymptotic symmetry of the Prokushkin-Vasiliev theory is given by an infinite-dimensional
higher-spin algebra called as W∞[λ]-algebra again with the same central charge (5.6). The
algebra W∞[λ] truncates at λ = L (L = 2, 3, . . .) to WL-algebra with spin s = 2, 3, . . . , L.
The dual coset (1.9) has WN -symmetry and is assigned to have the same central charge.
Since λ is in the range of (5.4), W∞[λ] and WN does not look like the same algebra.
However, it was shown in [69] that the algebra W∞[λ] has the triality relation

W∞[ N
N+k ] 'W∞[− N

N+k+1 ] 'W∞[N ] , (5.7)

with the same central charge c. With the help of the triality relation, we can show the
match of symmetry algebras for the duality. It might be useful to note that this triality is
equivalent to the following two duality relations:

(a) (k′, N ′, λ′) =
(
−2N − k − 1, N,− N

N + k + 1

)
, (5.8)

(b) (k′, N ′, λ′) =
(1−N
N + k

,
N

N + k
,N

)
. (5.9)
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These two relations generate totally six pairs of (k,N) with the same central charge:

(k,N)

(1−N
N + k

,
N

N + k

)

(−2N − k − 1, N)

(
−2N + k + 1

N + k
,

N

N + k

)

(
N − 1

N + k + 1 ,−
N

N + k + 1

)

(
− k

N + k + 1 ,−
N

N + k + 1

)

a

b

a

b

a

b (5.10)

As another evidence for the duality, we examine the spectrum of the coset CFT (1.9)
and check that it reproduces (5.5). The primary state of the coset CFT can be obtained
from the states in the WZW models constructing the coset, see [41] for details. Since the
coset (1.9) consists of three SU(2) WZW models, a primary state is labeled by three Young
diagrams (µ, ξ; ν). In general, all possible Young diagrams are not allowed for coset CFT,
and selection rules and field identifications have to be taken care of. In the current case,
ξ is uniquely fixed by µ, ν, so a primary state can be labeled by two Young diagrams as
(µ; ν). The conformal weight of a primary state (µ; ν) is given by

h(µ;ν) = n+ h(k)
µ + h

(1)
ξ − h

(k+1)
ν , h(k)

µ = C2(µ)
k +N

, C2 = 1
2 (µ, µ+ 2ρ) , (5.11)

see (3.5). The non-negative integer n is determined by how the numerator representation
is embedded in the denominator one, see [41] for details. The two bulk complex scalars are
dual to the CFT operators labeled with (�; 0), (0;�) or their complex conjugates. The
conformal weights can be computed as

h(�;0) = (N − 1)
2N

(
1 + N + 1

N + k

)
, h(0;�) = (N − 1)

2N

(
1− N + 1

N + k + 1

)
. (5.12)

Taking the ’t Hoof limit, they become

h(�;0) = 1
2 (1 + λ) , h(0;�) = 1

2 (1− λ) . (5.13)

Thus we have shown ∆+ = 2h(�;0) and ∆− = 2h(0;�) in the limit, which is consistent with
the duality. Generic states of the coset CFT are supposed to correspond to the bound
states of scalar fields in the higher-spin theory.
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5.2 Our duality from higher-spin AdS3 holography

In [13], a dS4/CFT3 correspondence was proposed as an “analytic continuation” of higher-
spin AdS4 holography of [14]. Thus, it is natural to expect that a similar dS3/CFT2
correspondence can be proposed by taking an “analytic continuation” of the Gaberdiel-
Gopakumar duality reviewed in the previous subsection, see [70] for an early attempt.
To interpret our duality proposed in subsection 1.1 as an analytically continued duality,
it is convenient to utilize the Gaberdiel-Gopakumar duality viewed in a different way as
in [42, 66, 71]. In this subsection, we introduce the different viewpoint, then it is almost
straightforward to see the relation to our proposal.

As explained in the previous subsection, the match of symmetry for the origi-
nal Gaberdiel-Gopakumar duality is a consequence of the triality relation of W∞[λ]-
algebra (5.7). Since the symmetry of SL(N) × SL(N) Chern-Simons theory is the WN -
algebra as mentioned above, it is natural to conjecture a holographic duality between the
WN -minimal model described by the coset (1.9) and the Chern-Simons theory. However, in
order to have a duality with classical higher-spin gravity, we need to realize a large central
charge in the dual CFT. From the formula of central charge (1.10), we can see that the
central charge does not exceed N−1 for the coset CFT (1.9) with positive integer k. In [42],
a large central charge is realized by performing an analytic continuation of the level k as8

k = −N − N(N2 − 1)
c

+O(c−2) , (5.14)

with keeping N fixed. One may feel uncomfortable to take a non-integer k in the coset
CFT (1.9). However, this analytic continuation can be justified at the level of algebra [66].
Namely, we just need to consider a larger algebra W∞[λ] with large c and then to set
λ = N with dividing an ideal formed. If we furthermore set k to an integer, then an
additional ideal forms. Dividing the additional ideal, a minimal model with respect to the
WN -algebra is constructed, see, e.g., [72].

To figure out what the dual higher-spin gravity looks like at the corresponding limit,
we examine the spectrum of the CFT at (5.14). The conformal dimensions of the two
fundamental states were computed in (5.12). Taking the limit of (5.14), we find

h(�;0) = − c

2N2 +O(c0) , h(0;�) = 1−N
2 +O(c−1) . (5.15)

The first one is proportional to the central charge, and the corresponding state is usually
dual to a classical configuration. Actually, the conformal weights of generic states become

h(µ;ν) = − cC2(µ)
N(N2 − 1) +O(c0) , (5.16)

and the spectrum has been reproduced by conical defect geometry (or precisely speaking
conical surplus geometry) constructed in [42]. The match of higher-spin charges has been

8We can similarly take the limit of k → −N − 1 to obtain a large central charge limit since the expres-
sion (1.10) diverge both for k → −N and k → −N − 1. For k → −N , SU(N)k in the numerator of (1.9)
gives dominant contributions. On the other hand, for k → −N − 1, SU(N)k+1 in the denominator of (1.9)
gives dominant contributions.
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shown as well. Note that the leading contribution comes from SU(N)k in the coset (1.9)
since it gives the leading contribution due to the factor 1/(k+N). The second one is of order
O(c0), so it should be regarded as a perturbative complex scalar (combined with the scalar
dual to CFT state (0; �̄)). These conformal dimensions are negative, and it corresponds
to the fact that the CFT at the limit (5.14) is non-unitary. Generic states with label (µ; ν)
are identified with bound states with conical defects and perturbative scalar fields [42, 71].
In summary, the coset CFT (1.9) at the limit (5.14) is conjectured to be dual to the
SL(N) × SL(N) Chern-Simons gauge theory coupled with a perturbative complex scalar
with dual conformal dimension ∆ = 1−N . An important point here is that we need to sum
over conical defect geometries as non-perturbative contributions in the higher-spin theory.

We would like to construct an dS3/CFT2 by performing an analytic continuation of this
viewpoint of Gaberdiel-Gopakumar duality and see the relation to our proposal summarized
in subsection 1.1. As mentioned above, the Chern-Simons description of higher-spin gravity
on dS3 is given by replacing kCS with iκ satisfying κ ∈ R. This implies that gauge sector
is organized by SL(N)×SL(N) Chern-Simons gauge theory and the asymptotic symmetry
is given by WN -algebra but with a pure imaginary central charge (1.8) as analyzed in [70].
The symmetry can be realized by a coset CFT (1.9) with imaginary central charge. Setting
c = i c(g) with c(g) ∈ R, the limit (5.14) becomes (3.1). As in the case of AdS3/CFT2, the
SU(N)k sector in the coset (1.9) dominates at the limit (3.1). In other words, we have

MCFT = ŜU(N)1/ŜU(N)k+1 (5.17)

in this case. At large central charge c(g), the dominant contribution to the conformal weight
becomes

hµ = −i c(g)C2(µ)
N(N2 − 1) = ih(g)

µ , (5.18)

under the analytic continuation of central charge. Note that the conformal weight is also
pure imaginary. As shown in section 3, the state labeled by the Young diagram µ corre-
sponds to a conical defect (surplus) solution associated with the same Young diagram. In
the case of AdS3/CFT2, a complex scalar field gives contributions to the higher-spin sector
in the next order of 1/c(g). We expect that the situation is similar even in the current
dS3/CFT2 case. This will be discussed in section 7 below.

6 CFT and black hole spectra

As in (1.3), we have claimed that SU(2) WZW model at the critical level limit k → −2
corresponds to a pure gravity on dS3 at the classical limit. The primary state is labeled by
the representation Rj , which is related to the energy Ej of the dual object as

LEj = −c
(g)

3 j(j + 1) , (6.1)

see (2.10) and (2.11). The dual object is expected to be a black hole solution with the
metric

ds2 = L2
[
(1− 8GNEj − r2) dτ2 + dr2

1− 8GNEj − r2 + r2 dφ2
]

(6.2)
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The value of j Possible rep. Black hole interpretation
(1) j= 0 Identity rep. 3-sphere (S3)
(2) j= 1/2,1, . . . Degenerate rep. Conical surplus (δ < 0), discrete spectrum
(3) j > 0 Discrete rep. Conical surplus (δ < 0), continuous spectrum
(4) −1/2<j < 0 Complementary rep. Conical defect (δ > 0), continuous spectrum
(5) j=−1/2+iR+ Continuous rep. No clear geometrical interpretation

Table 1. The possible value of j for the SU(2) representation and its dual interpretation of black
hole spectrum.

as in (2.23). As argued in section 2, the solution also corresponds to a conical geometry
with deficit angle

δj = 2π
(
1−

√
1− 8GNEj

)
. (6.3)

However, we have not so far specified the value of j in the CFT or possible black hole energy
Ej . For a positive integer k, the unitary representation is given by j = 0, 1/2, 1, . . . , k/2.
However, now k is a complex number, and the unitarity of CFT is violated. Therefore, in
principle, other choices are allowed. In this section, we first consider the SU(2) case and
examine the possible spectrum and its dual interpretation. We then mention the SU(N)
case with generic N and the relation to the Gaberdiel-Gopakumar duality.

We wish to use the representations of the SU(2)k WZW model such that the dual
objects have a geometrical interpretation. A necessary condition may be the reality of the
energy, i.e., Ej ∈ R, and we will assume the reality condition in the following. We may
classify the range of j as in the table 1. Here we have restricted j ≥ −1/2 or j = −1/2+iR+
using the symmetry under j → −j − 1. The case (1) is with j = 0, which corresponds to
the identity representation. This leads to the vacuum state or 3-sphere in the dual gravity
theory. The case (2) is with j = 1/2, 1, 3/2, . . ., which corresponds to the naive analytic
continuation of the unitary representation of SU(2). Note that the upper bound is removed
for generic k. The dual geometry is given by a conical surplus with deficit angle δ < 0. The
black hole mass only takes discrete values satisfying (6.1). The case (3) is with j > 0, which
may correspond to the discrete series, and the energy Ej takes a negative real value. The
black hole geometry (2.23) is almost the same as the case (2) and the only difference is now
the spectrum is continuous. The case (4) is with −1/2 < j < 0, which would correspond
to the complementary or discrete series, and the energy takes

0 < 8GNEj < 1 . (6.4)

The dual object can be regarded as a conical geometry with deficit angle δj > 0. Since
the deficit angle is positive, the solution is physical. After the analytic continuation,
it is expected to correspond to a physical black hole solution. The case (5) is with j =
−1/2+iR+, which corresponds to the continuous series. This choice is natural for Liouville
description of the coset (1.9). However, the black hole energy takes

8GNEj ≥ 1 (6.5)
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and the signature of metric becomes (−,−,+). Thus, the geometrical interpretation of the
solution (6.2) becomes obscure.

In the previous section, we realized our duality as an analytic continuation of the
Gaberdiel-Gopakumar duality. This actually suggests the cases (1) and (2), namely, the
natural analytic continuation of the integrable representation of the affine SU(2) without
an upper bound of j. In fact, we characterized the dual geometry so as to satisfy the
condition of trivial holonomies (3.23), and we found that the geometry can be classified
by an integer value for N = 2. This implies that we have to sum over the black hole
solutions (2.23) with discrete values of the energy Ej satisfying the condition (2.12) for
j = 0, 1/2, 1, . . .. For a generic N , the dual geometry is labeled by a Young diagram µ,
which corresponds to the integrable representation of the affine SU(N) without the upper
bound of |µ|. Note that, however, our proposal is actually more generic as in (1.3) or (1.6).
So far we have only considered the leading order in 1/c(g) and the additional CFT MCFT
is not relevant to this order. Thus, we do not need to rely on the Gaberdiel-Gopakumar
duality, and a more generic spectrum of the SU(N)k WZW model could be adopted at least
at this order. In the language of the dual higher-spin gravity, it is our choice which kind of
geometry is summed over. Namely, we can use gravity solutions which do not satisfy the
trivial holonomy condition as well.

7 Comments on quantum corrections

As evidence for our proposal, we have computed gravity partition functions both from the
SU(N) WZW model at the leading order in 1/c(g) and the classical limit of (higher-spin)
gravity and find perfect matches. It is natural to wonder what happens if we go beyond
the leading order in 1/c(g) or the classical limit. It is actually not an easy task. In the
proposal of (1.6), only the sector of the SU(N)k WZW model matters at the leading order
but MCFT starts to give contributions at the next order. In the same way, the partition
functions can be obtained purely from the (higher-spin) gravity in the classical limit, but in
principle there would be contributions from other perturbative matters at the next leading
order. This is indeed what happens when our duality is realized as an analytic continuation
of the Gaberdiel-Gopakumar duality as explained in section 5. In this section, we explain
this fact more quantitatively. We focus only on the vacuum partition function, but the
situation of other partition functions is qualitatively similar.

As usual we begin with the simplest case with N = 2. In section 2, we computed the
gravity partition function from the SU(2) WZW model at the level k → −2 + 6 i /c(g) and
considered the large c(g) limit as in (2.8). For a while, let us forget about the other sector
MCFT introduced in (1.3). The partition function is actually obtained with finite k from
the dual CFT as

ZCFT =
∣∣∣S0

0
∣∣∣2 =

∣∣∣∣∣
√

2
k + 2 sin

(
π

k + 2

)∣∣∣∣∣
2

, (7.1)

see (2.3) and (2.4). The partition function may be expanded as

ZCFT = e−ICFT , ICFT = I
(0)
CFT + I

(1)
CFT log c(g) + · · · . (7.2)
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The leading order expression I(0)
CFT can be read off from (2.13). The next leading order can

be also obtained from (2.13) as
I

(1)
CFT = −1 . (7.3)

We denote the partition function computed from gravity theory by ZG and expand it as

ZG = e−IG , IG = I
(0)
G + I

(1)
G log c(g) + · · · . (7.4)

The leading order contribution I(0)
G was obtained in (2.22) and it was shown to agree with

I
(0)
CFT. The next order contribution I(1)

G may be found in [30] as

I
(1)
G = 3 . (7.5)

Therefore, we do not find match at this order. However, this is not a contradiction since we
have neglected MCFT in the CFT side and perturbative matter fields in the gravity side.

Before discussing the discrepancy, let us comment on the Chern-Simons description of
pure gravity on dS3 [15]. The papers [26] and [30] argue that the correct de Sitter partition
function computed from the SU(2)× SU(2) Chern-Simons gauge theories is given by

ZCS
[
S3
]

=
∣∣∣∣∣
√

2
k + 2 sin

(
π

k + 2

)∣∣∣∣∣
2

e2 iπk . (7.6)

Note that the new factor e2 iπk comes from the on-shell Chern-Simons action for the classical
background of S3 and this factor is indeed trivial for integer k. In the large-k limit, this
leads to

ZCS
[
S3
]
' 1

(c(g))3 e
π
3 c

(g)
, (7.7)

where c(g) = 6 i k. From this expression, we can read off I(0)
G as in (2.22) and I(1)

G as in (7.5).
Let us come back to the discrepancy. As argued above, we have to include MCFT if

we would like to examine the next order effects in 1/c(g) in the CFT side. As a concrete
example, we regard SU(2)k WZWmodel as a part of coset CFT (1.9) with N = 2 describing
(an analytic continuation of) the Virasoro minimal model. The S-matrix for the minimal
model is given by (see, e.g., (18.91) of [41])

S (l′;p′)
(l;p) =

√
2

(k + 2)(k + 3) sin
(
π(2l + 1)(2l′ + 1)

k + 2

)
sin
(
π(2p+ 1)(2p′ + 1)

k + 3

)
, (7.8)

up to a sign factor (−1)(2l+2p)(2l′+2p′). The vacuum partition function calculated from the
coset CFT is

ZCFT =
∣∣∣S (0;0)

(0;0)

∣∣∣2 . (7.9)

As explained before, the leading order in 1/c(g) comes from the S-matrix of SU(2) at level
k. However, the term proportional to log c(g) arises also from the S-matrix of SU(2) at
level k + 1 as

sin
(

π

k + 3

)
' sin

(
π

1 + i 6 /c(g)

)
' sin

(
π − i 6π

c(g)

)
' i 6π

c(g) . (7.10)
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Thus, the total contribution can be read off as

I
(1)
CFT = 1 . (7.11)

It still does not match with (7.5), but it is natural as we do not include perturbative matter
in the gravity side.

We can do a similar analysis for generic N . To examine the effects at the next leading
order in 1/c(g), we consider the coset CFT (1.9) as a concrete example. The modular
S-matrix is written as

S (µ′;ν′)
(µ;ν) = S(k)µ′

µ S(1)ξ′
ξ S(k+1)ν′

ν , S(k)µ′
µ = K

∑
w∈W

ε(w) e−
2πi
k+N (w(µ+ρ),µ′+ρ) , (7.12)

see (3.8) and also [41] for more details. As explained before, ξ is uniquely fixed by µ, ν

through the selection rule of the coset, and the same is true for ξ′. Thus the vacuum
partition function computed from the coset CFT (1.9) is

ZCFT =
∣∣∣S (0;0)

(0;0)

∣∣∣2 =
∣∣∣S(k)0

0 S(1)0
0 S(k+1)0

0

∣∣∣2 , (7.13)

where

S(k)0
0 = 1√

N

1
(k +N)

N−1
2

N−1∏
p=1

[
2 sin

(
πp

k +N

)]N−p
. (7.14)

The leading order expression was already found to reproduce that from the higher-spin
computation in section 3. The contribution proportional to log c(g) is computed as

I
(1)
CFT = −(N − 1) + 2

N−1∑
p=1

(N − p) = N2 − 2N + 1 . (7.15)

Here we remark that the vacuum partition function computed from the higher-spin gravity
at the same order is

I
(1)
G = N2 − 1 . (7.16)

This result can be obtained from [30] or 1/k expansion of (3.8). The two computations
does not match with each other as in the case of N = 2, which suggests that perturbative
matters should be included.

Up to now, we have considered only contributions from (higher-spin) gravity. Here
we would like to include the effects of additional matters. Again we consider the analytic
continuation of the Gaberdiel-Gopakumar duality discussed in section 5. In this case, the
additional matter is a complex scalar with dual conformal dimension ∆ = 1− λ = 1−N .
The one-loop correction of the partition function of a real scalar field (i.e. s = 0) with mass
m2 can be read off from e.g., (1.12) of [30]. Now L2m2 = 1 − λ2. For generic m2, there
is no term proportional to log c(g), However, now λ is an integer number, and the one-
loop partition function diverges for the case. There is a similar divergence also for massless
higher-spin fields and a careful treatment of regularization leads to the term proportional to
log c(g). We expect that a term proportional to log c(g) arises also for a massive scalar field
with integer λ, but currently we do not know any prescription to regularize the divergence.
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Therefore, we cannot conclude whether the partition function at the order of log c(g) agrees
or not between the CFT and gravity computations even for the case of analytic continuation
of the Gaberdiel-Gopakumar duality.9

8 Conclusion and discussions

In this paper, we proposed a new example of dS/CFT correspondence for three-dimensional
de Sitter spaces. Our duality agrees with the general expectation of dS/CFT such that the
classical gravity limit corresponds to the infinitely large imaginary valued central charge.
The proposed duality relation is labeled by an integer N (≥ 2) and is summarized as (1.3)
for N = 2 and (1.6) for N > 2. The gravity theory is given by a higher-spin theory,
which includes gauge fields of spin s = 2, 3, . . . , N . In particular, the special case N = 2
corresponds to the Einstein gravity.

We argued that the dual CFTs are in a class of CFTs which include the large central
charge limit k → −N of the SU(N)k WZW model given by (1.4) and (1.8). This part
gives the dominant contributions to physical quantities due to the large central charge
limit and is dual to the gravity degrees of freedom. Indeed, we showed explicitly that the
semiclassical partition functions of Einstein gravity and higher-spin gravity with various
excitations on S3 perfectly agree with those computed from the dual CFTs. In the higher-
spin gravity, such solutions with excitations are realized by introducing conical defects in S3

and we presented explicit solutions in the Chern-Simons formulation of higher-spin gravity.
On the other hand, their CFT counterparts are products of the modular S-matrices, which
exponentially enhance to reproduce the classical (higher-spin) gravity result in the k → −N
limit. We also pointed out that our dS/CFT correspondence may also be interpreted as
an analytical continuation of the higher-spin holography (Gaberdiel-Gopakumar duality).
Interestingly, the triality relation known for this duality predicts that the gravity dual of
our two-dimensional CFT has a WN asymptotic symmetry, which gives a further evidence
that it is a classical higher-spin gravity with spin s = 2, 3, . . . , N .

Moreover, we explored this new dS/CFT duality further in two different directions.
As one of them, we studied partition functions, two-point functions, and holographic en-
tanglement entropy to promote the above duality in the Euclidean version of dS/CFT to
the Lorentzian one. In dS/CFT, we identify the future infinity of dS3 with the manifold
S2 where the dual CFT lives. We computed partition function of Liouville/Toda theory
on the S2 and found that the result is consistent with the above picture. Moreover, we
showed that two-point functions in the dual CFT on S2 agree with those obtained from
the dS3 under the geodesic approximation, with an exotic rule in the CFT that the UV
cutoff is taken to be an imaginary value. This prescription peculiar to the dS/CFT is also
supported from the Hartle-Hawking prescription which creates the de Sitter space from
nothing via the tunneling effect. This result of two-point functions implies that we can

9Instead of working on the limit (3.1) of the coset model (1.9), we may consider the ’t Hooft limit
explained in the previous section. However, as argued in appendix H.3 of [30], there are different difficulties
in the computations at the one-loop level. It is a future work to resolve these issues with the partition
function at the higher order in 1/c(g) expansion.
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obtain the Lorentzian version of dS/CFT by an appropriate analytical continuation from
the Euclidean version, where the cutoff parameter plays the role of an emergent time. This
is a quite intriguing setup of dS/CFT because the Lorentzian dynamics arises from the
topological theory of Chern-Simons theory on S3. In a similar way, we can calculate the
entanglement entropy for the dual CFT on S2. This can again be perfectly reproduced
from the gravity calculation, namely, the holographic entanglement entropy. We further-
more confirmed this result in the light of codimension-two and brane-world holography
for a four-dimensional AdS wedge spacetime. It will be a very interesting future prob-
lem to study this continuation from the Euclidean space to Lorentzian dS further to fully
understand the mechanism of emergent time in dS/CFT.

Another direction we explored is the quantum corrections. In the first half of this paper,
we confirmed the perfect matching between the classical (higher-spin) gravity partition
functions and those derived from dual CFTs. As a next step, we naturally ask whether we
can have a similar matching for one-loop quantum gravity corrections. This is a much more
nontrivial question because we need to know the full matter field contents in the gravity
theory, which are expected to be affected by the details of two-dimensional CFTs we choose,
i.e., the choices of MCFT in (1.3) and (1.6). In this paper, we made a first step toward this
problem. We evaluated the one-loop corrections of the gravity partition function as CFT
predictions. We found that both the pure SU(N)k and the WN -minimal model WN,k (1.9)
produce different one-loop corrections. We also noted that neither of them does not agree
with the pure (higher-spin) gravity contributions. This implies a presence of additional
matter fields, which produce extra contributions to the one-loop corrections. We would
like to leave further studies for a future problem.
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A Description by Liouville/Toda CFTs

As mentioned in the introduction, we can use Liouville/Toda CFT with b → 0 instead of
SU(N) WZW model with k → −N since the both provide equivalent descriptions at the
leading order in 1/c(g). In this appendix, we show that the results obtained in the main
context can be reproduced also from the Liouville/Toda CFT in the limit. The analysis
provides different useful viewpoints of our dS3/CFT2 duality. Moreover, one may feel that
the critical level limit of SU(N) WZWmodel is not rigorously justified. Physical quantities,
such as, S-matrix in (2.3) (or (3.8)) are obtained for integer k and analytic continuations
are taken with respect to k. Another aim of this appendix is to give evidence for our
expression at the critical level limit.

A.1 Liouville CFT

The action of Liouville CFT is given by

I = 1
2π

∫
d2w
√
g

(
∂̄φ ∂φ+ Q

4 Rφ+ µ e2bφ
)

(A.1)

with gab as the metric of world-sheet, g as
√

det gab, and R as the Ricci curvature with
respect to gab. The background chargeQ is related to the central charge c and the parameter
b as

c = 1 + 6Q2 , Q = b+ 1
b
. (A.2)

The Liouville CFT is known to have the self-duality under b → 1/b [73]. In fact, we can
see that the central charge is invariant under the self-duality. Since the Liouville CFT is
equivalent to the coset (1.9), the relation between the parameter should be given by

c = 1 + 6Q2 = 1− 6
(k + 2)(k + 3) . (A.3)

In particular, the k → −2 limit of the coset (1.9) with N = 2 corresponds to b → 0 (or
b→∞) limit of Liouville CFT.

The vertex operators in the Liouville CFT are of the form Vα = exp(2αφ) and the
conformal weights are hα = α(Q− α). Physical states correspond to operators with

α = Q

2 + i p (p ∈ R) , (A.4)

while degenerate operators have specific valued parameters

αr,s = b(1− r) + b−1(1− s)
2 (A.5)

with r, s = 1, 2, . . .. In particular, the identity operator corresponds to (r, s) = (1, 1). The
S-matrix between the degenerate and physical ones is given by [74]

S p
(r,s) ∝ sinh(2π r p b) sinh(2π s p/b) . (A.6)
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On the other hand, the Liouville CFT is equivalent to the coset CFT (1.9) with N = 2, and
the modular S-matrix for the coset is given by (7.8). The S-matrix between the primary
states (l; l′) and (j; j) reads

S (j;j)
(l;l′) ∝ sin

(
π

k + 2(2l + 1)(2j + 1)
)

sin
(

π

k + 3(2l′ + 1)(2j + 1)
)

= sin (πQb (2l + 1)(2j + 1)) sin
(
πQ

b
(2l′ + 1)(2j + 1)

)
= sinh(2π r p b) sinh(2π s p/b) .

(A.7)

Here we relate the Liouville momentum p and SU(2) quantum number j as

h = Q2

4 + p2 = j(j + 1)
k + 2 − j(j + 1)

k + 3 , (A.8)

which leads to
p = iQ

2 (2j + 1) . (A.9)

Similarly, we set
r = 2l + 1 , s = 2l′ + 1 . (A.10)

In this way, we reproduce (A.6) from the S-matrix for the coset (1.9).
Even though we already explained the equivalence between the coset CFT (1.9)

with N = 2 and the Liouville CFT, it is instructive to confirm that the expected
gravity partition function can be derived from the Liouville S-matrix correctly. In the
Liouville theory, the S-matrix is given by (A.6). We are interested in the matrix element
corresponding to S j

l′ for SU(2) WZW model and thus we set p→ iQ
2 (2j + 1) ' i

2b(2j + 1)
in the large c limit, i.e., b→ 0. To continue from the normal Liouville CFT to that for de
Sitter CFT, the value of b gets complex as

i c(g) ' 6
b2
. (A.11)

This leads to ∣∣∣∣S iQ
2 (2j+1)

(r,s)

∣∣∣∣2 ∼ exp
[
−2πi (2l′ + 1)(2j + 1)

b2

]
∼ exp

[
π

3 c
(g)√1− 8GNEl′

√
1− 8GNEj

]
,

(A.12)

where we have used (A.10) and (2.12). The above expression reproduces the previous
result (2.15) from the classical gravity on S3.

A.2 Toda CFT

In this subsection, we extend the previous analysis to the case with SU(N) at the critical
level limit (1.6). The coset CFT (1.9) was shown to have WN -symmetry with spin-s
currents (s = 2, 3, . . . , N) [75]. On the other hand, a definition of WN -algebra is given by
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so-called Drinfeld-Sokolov (DS) reduction of the SU(N) current algebra at level kDS, see,
e.g., [76]. The level k of the latter coset CFT is related to kDS as

1
k +N

= 1
kDS +N

− 1 . (A.13)

In terms of the DS reduction, the triality relations (5.9) and (5.9) are rewritten as

(a) k′DS +N ′ = 1
kDS +N

, N ′ = N , (A.14)

(b) k′DS +N ′ = 1− kDS −N , N ′ = N

N + kDS
−N . (A.15)

The relation (a) for the WN -algebra is known as Feigin-Frenkel duality [77].
Another realization of WN -algebra is via free field realization, which implies that the

symmetry algebra of Toda CFT is the WN -algebra. The action of Toda CFT is given by10

I = 1
2π

∫
d2w
√
g

(
Gij

2 ∂̄φi ∂φj + R4 (b+ b−1)
N−1∑
i=1

φi + µ
N−1∑
i=1

ebφi

)
, (A.16)

where Gij is the Cartan matrix of SU(N) and the inverse is defined via GijGjl = δil. The
index for the Toda fields φj is raised as φi = Gijφj . The central charge can be expressed as

c = N − 1 + 12(Q,Q) , Q =
(
b+ 1

b

)
ρ , b2 = − 1

kDS +N
, (A.17)

where ρ is the Weyl vector defined in (3.3). The Feigin-Frenkel duality (A.14) is realized
as the self-duality under b→ 1/b in the Toda field theory [78].

The vertex operators of the Toda CFT can be given by Vα = exp(
∑N
i=1 αiϕi) with

φj = ϕj − ϕj+1. The conformal dimension of the operator is hα = (α, 2Q − α)/2 with
α =

∑N
j=1 αjej . For Liouville CFT, we have used two types of spectra with α in (A.4)

and (A.5). In the Toda CFT, there are N − 1 momenta, and we can use one of the two
choices for each momentum. For our purpose, we only use

α = Q+ i p (pj ∈ R) (A.18)

for all momenta or α = αµ,ν with

αµ,ν = Q− b(µ+ ρ)− b−1(ν + ρ) . (A.19)

Here Young diagrams are represented by µ and ν. In particular, µ = ν = 0 corresponds
to the identity operator. The modular S-matrix between the two types of momenta was
obtained in [79] as

S p
(µ,ν) ∝

∑
w∈W

ε(w)e−2πb(w(µ+ρ),p) ∑
w′∈W

ε(w′)e−
2π
b

(w′(ν+ρ),p) , (A.20)

10Note that, in the standard notation for Toda CFT as expressed by the action, setting N = 2 does not
simply reduce to the Liouville CFT with the action (A.1) and some change of parameters is required.
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where the sums are taken over the elements of SU(N) Weyl group and ε(w) = ±1. As
in the Liouville case, we can reproduce the expression from S

(σ;σ)
(µ;ν) in (7.12) with p =

i (b+ b−1)(σ+ρ). In order to reproduce S σ
ν for SU(N) WZW model near the critical level,

we take p→ i (b+ b−1)(σ + ρ) ' i (σ + ρ)/b with b→ 0. Setting b as

i c(g) ' 12(ρ, ρ)
b2

(A.21)

as in (A.11), we find∣∣∣S i (b+b−1)(σ+ρ)
(µ,ν)

∣∣∣2 ∼ e− 4π i (ν+ρ,σ+ρ)
b2 ∼ e

π
3 c

(g) (ν+ρ,σ+ρ)
(ρ,ρ) , (A.22)

which reproduces the previous result (3.9).

B Geodesic from Wilson line

Here we work out the relation between the expectation value of a Wilson line and the
geodesic distance, by extending the argument in AdS3/CFT2 [48] to our dS3/CFT2.
This also provides a prescription for computing the holographic entanglement entropy in
dS3/CFT2.

B.1 Wilson line calculation

Consider an SU(2)-valued field U . Wilson line along a curve γ(s), s ∈ [si, sf ] with two
boundary conditions |Ui〉 , |Uf 〉 can be expressed as in the AdS case of [48]

〈Uf | P exp
(∫

γ
A

)
P exp

(∫
γ
Ā

)
|Ui〉 =

∫
DU DP Dλ exp

(
−Iγ [U,P, λ;A, Ā]

)
, (B.1)

where
Iγ [U,P, λ;A, Ā] =

∫ sf

si

ds
[
Tr(PU−1DsU) + λ(s)

(
TrP 2 − c2

)]
, (B.2)

and su(2)-valued field P is a canonical momentum conjugate to U . The covariant derivative
Ds defined by

DsU = dU
ds +AsU − UĀs , As ≡ Aµ

dxµ

ds , Ās ≡ Aµ
dxµ

ds . (B.3)

Here λ(s) plays the role of Lagrange multiplier constraining TrP 2 to the quadratic Casimir
c2.11 The action (B.2) is invariant under a local gauge transformation

U(s)→ L (γ(s)) U(s)R (γ(s)) , (B.4)
P (s)→ R−1 (γ(s)) P (s)R (γ(s)) . (B.5)

In the AdS3 case, it is shown in [48] that on-shell the action Sγ (divided by
√

2|c2|) with
boundary conditions U(si) = 1 and U(sf ) = 1 reduces to the length of the geodesic
connecting two edge points γ(si) and γ(sf ). Below we will confirm that the same is true
for our dS3.

11Note that c2 is negative for SU(2) since P is anti-Hermitian.
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The equations of motion for (B.2) are

U−1DsU + 2λP = 0 , dP
ds + [Ās, P ] = 0 , TrP 2 = c2 , (B.6)

and the on-shell action becomes

Ion-shell = −2c2

∫ sf

si

ds λ(s) = −2c2 ∆α , (B.7)

where ∆α = α(sf )− α(si) and α satisfies dα/ds = λ(s). Now let A and Ā take the forms

A = L dL−1 , Ā = R−1 dR , (L,R) ∈ SU(2)× SU(2) . (B.8)

We can obtain this solution by performing a gauge transformation from a trivial solution
A = Ā = 0, so we first solve (B.6) in this case, giving

P (s) = P0 , U(s) = U0(s) ≡ u0 exp (−2α(s)P0) , (B.9)

where P0 and u0 are constant operators. We perform a gauge transformation (L,R), then
we have

U(s) = L (γ(s)) U0(s)R (γ(s)) , (B.10)
P (s) = R−1 (γ(s)) P0R (γ(s)) . (B.11)

We impose boundary conditions for U as U(si) = Ui and U(sf ) = Uf , then we have

Ui = L (γ(si)) u0 e
−2α(si)P0 R (γ(si)) , (B.12)

Uf = L (γ(sf )) u0 e
−2α(sf )P0 R (γ(sf )) . (B.13)

This leads to

e2∆αP0 = R (γ(sf )) U−1
f L (γ(sf ))

[
R (γ(si)) U−1

i L (γ(si))
]−1

. (B.14)

To evaluate the value of ∆α, we take trace for some representation of SU(2). We adopt
here the fundamental representation, then

trf e
2∆αP0 = 2 cos(∆α

√
2|c2|) , (B.15)

because P0 has eigenvalues ±i
√
|c2|/2. Solving this equation for ∆α and substituting it

to (B.7) we obtain

Ion-shell =
√

2|c2| cos−1
[1

2 trf
(
R (γ(sf )) U−1

f L (γ(sf ))
[
R (γ(si)) U−1

i L (γ(si))
]−1)]

.

(B.16)
Therefore we can obtain the value if we specify the connections L (γ(s)) , R (γ(s)), the end
points of the Wilson line γ(si), γ(sf ) and the boundary conditions.
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B.2 Euclidean dS3 with boundary: B3

Here we calculate a Wilson line in B3 that ends on the boundary S2. First, we take the
global patch,

ds2 = dr2 + sin2 r
(
dθ2 + sin2 θ dφ2

)
, (B.17)

of S3 and cut along an equator r = π/2 to obtain B3. Note that the radius of S3 is fixed
to 1.

It is easier to use the static patch,

ds2 = cos2 ρ dτ2 + dρ2 + sin2 ρ dφ2 , (B.18)

in order to calculate the Wilson line. Note that 0 ≤ ρ ≤ π/2. The associated gauge
connections with (B.18) are [29]

A = L dL−1 , L = e−i ρL2 e−i (φ+τ)L3 , (B.19)

Ā = R−1 dR , R = ei (φ−τ)L3 e−i ρL2 . (B.20)

The on-shell action (B.16) with the endpoints

ρ(si) = ρi, ρ(sf ) = ρf ,

τ(sf )− τ(si) = ∆τ ,
φ(sf )− φ(si) = ∆φ ,

becomes

Ion-shell =
√

2|c2| cos−1 (cos ∆τ cos ρi cos ρf + cos ∆φ sin ρi sin ρf ) , (B.21)

which is indeed identical to the geodesic distance between γ(si) and γ(sf ) in the B3.
The relations between the global patch (B.17) and the static patch (B.18) are given by

sin ρ = sin r sin θ , cos2 τ = cos2 r

1− sin2 r sin2 θ
. (B.22)

On the boundary r = π/2, this reduces to

sin ρ = sin θ , cos τ = 0 . (B.23)

Therefore, the endpoints of a Wilson line on the boundary satisfy

τ = π

2 , ρ = θ or τ = 3π
2 , ρ = π − θ . (B.24)

Thus, the geodesic distance becomes
Ion-shell√

2|c2|
= cos−1 (cos θi cos θf + cos ∆φ sin θi sin θf ) , (B.25)

in the global patch. Let ni,nf be vectors representing the points on S2:

ni = (sin θi cosφi, sin θi sinφi, cos θi)T , (B.26)
nf = (sin θf cosφf , sin θf sinφf , cos θf )T , (B.27)

then (B.25) reduces to
Ion-shell√

2|c2|
= cos−1(ni · nf ) , (B.28)

which represents the length of the arc between γ(si) and γ(sf ) in the B3.
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B.3 Lorentzian dS3: Poincaré coordinates

Next, we consider Lorentzian dS3 spacetime in the Poincaré patch:

ds2 = −dz2 + dw dw̄
z2 , (B.29)

where w = x+i y. Three-dimensional dS gravity can be formulated by SO(3, 1) ' SL(2,C)
Chern-Simons theory. The associated gauge connections to the metric (B.29) are

A = L dL−1 , L = e−
iw
z
J1 elog z·J0 , (B.30)

Ā = R−1 dR , R = elog z·J0 e
i w̄
z
J−1 , (B.31)

where Ja are the generators of sl(2). We fix the coordinates of the end points as

z(si) = zi , z(sf ) = zf , w(si) = wi , w(sf ) = wf , (B.32)

and impose the boundary conditions

Ui = Uf = 1 , (B.33)

then

Ion-shell =
√

2c2 cos−1
(
z2
i + z2

f − |∆w|2

2zi zf

)
. (B.34)

This form is identical to the geodesic distance between γ(si) and γ(sf ) in Poincaré dS3.
If the Wilson line ends on the future asymptotic boundary, by fixing zi = zf ≡ ε,

Ion-shell =
√

2c2 cos−1
(

1− |∆w|
2

2ε2

)
. (B.35)

Therefore the on-shell action is real only if |∆w|2/2ε2 < 1. In particular, when
|∆w|2/2ε2 � 1,

Ion-shell '
√
c2
2 ·
|∆w|2

ε2
. (B.36)

On the other hand, if |∆w|2/2ε2 � 1, then

Ion-shell√
2c2

' π ± i log
(
|∆w|2

ε2

)
. (B.37)

B.4 Lorentzian dS3: global coordinates

Let us finally study the global patch,

ds2 = −dT 2 + cosh2 T
(
dψ2 + sin2 ψ dφ2

)
, (B.38)

which is related to the Poincaré patch via the coordinate transformation:

1
z

= sinh T + cosh T cosψ, |w| = sinψ
tanh T + cosψ . (B.39)

– 44 –



J
H
E
P
0
5
(
2
0
2
2
)
1
2
9

Fixing the end points as

T (si) = Ti , ψ(si) = ψi , φ(si) = φ0 , (B.40)
T (sf ) = Tf , ψ(sf ) = ψf , φ(sf ) = φ0 , (B.41)

the on-shell action (B.36) becomes in the limits Ti, Tf � 1

Ion-shell√
2c2

' π ± i log
[
eTi+Tf sin2

(
ψf − ψi

2

)]
, (B.42)

which agrees with the result of the ordinary calculation of the geodesic (4.23).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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