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Abstract: It is well known that in two spatial dimensions the fractional quantum Hall ef-
fect (FQHE) deals with point-like anyons that carry fractional electric charge and statistics.
Moreover, in presence of a SO(3) order parameter, point-like skyrmions emerge and play a
central role in the corresponding quantum Hall ferromagnetic phase. In this work, we show
that in six spatial dimensions, the FQHE for extended objects shares very similar features
with its two-dimensional counterpart. In the higher-dimensional case, the electromagnetic
and hydrodynamical one-form gauge fields are replaced by three-form gauge fields and the
usual point-like anyons are replaced by membranes, namely two-dimensional extended ob-
jects that can carry fractional charge and statistics. We focus on skyrmionic membranes,
which are associated to a SO(5) order parameter and give rise to an higher-dimensional
generalizaton of the quantum Hall ferromagnetism. We show that skyrmionic membranes
naturally couple to the curved background through a generalized Wen-Zee term and can
give us some insights about the chiral conformal field theory on the boundary. We then
present a generalization of the Witten effect in six spatial dimensions by showing that
one-dimensional extended monopoles (magnetic strings) in the bulk of the FQH states can
acquire electric charge through an axion field by becoming dyonic strings.
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1 Introduction

Higher-dimensional topological matter represents a very active field of research due to the
possibility to engineer synthetic dimensions in suitable artificial setups [1–6]. In fact, topo-
logical invariants in four and higher dimensions and novel quantum effects such as the
higher-dimensional Thouless pumping and anomalous quantum transports can be exper-
imentally detected and measured in synthetic matter [7–19]. At microscopic level, these
phases deal with point-like quasiparticles. In fact, in the higher-dimensional integer QH
states, the corresponding topological quantum field theories are built from one-form gauge
fields and describe the physical features of quasi-particles in the low-energy regime [20–
25]. This picture can be also extended in the interacting regime [7]. In this work, we
highlight a complementary point of view, in which higher-dimensional phases represent the
natural playground where extended objects naturally emerge. For instance, when one-form
gauge fields are replaced by three-form fields, a 6D FQHE for membranes can be consis-
tently built [26–30]. These emergent membranes, which naturally couple to three-form
gauge fields, could in principle emerge from suitable higher-dimensional lattice microscopic
models similarly to the string-like and membrane-like vortices that naturally emerge in
higher-dimensional superfluids and superconductors [31–33]. Moreover, besides topologi-
cal phases, a generalization of Anderson localization for strings and membranes has been
recently formulated [33]. It is then worth to further investigate the physics of extended
objects, such as membranes and strings and figure out all their physical implications in
higher-dimensional topological matter.

The main goal of this work is to unveil novel physical effects related to membrane and
string configurations in the 6D FQHE. We will first remark all the common features between
the 6D FQHE for anyonic membranes and the 2D FQHE for point-like anyons by discussing
the corresponding Hall conductivity, fractional statistics, bulk-edge correspondence and
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geometric features in curved space. We will start considering the topological-quantum-
field-theory description of the FQHE in terms of tensorial Chern-Simons theories and the
generalized anomaly inflow. We will then show that there exist suitable SO(5) skyrmionic
configurations that give rise to a 6D quantum Hall ferromagnetism in analogy to the two-
dimensional case. Moreover, these skyrmionic membranes will give us some insights about
the chiral 5+1-D CFT that lives on the boundary on the system and carries a ’t Hooft
(gravitational) anomaly. We will then consider string-like objects (extended monopoles)
carrying magnetic charge and show that they acquire an electric charge by becoming dyons
through a generalized Witten effect. All these points are summarized in table 1, where
we have also included the 4D case, which is very different with respect to the 2D and 6D
cases. In fact, the 4D FQHE for strings is not well defined for a number of reasons that will
be discussed in the paper. In the appendix A, we will provide a more detailed discussion
about the 4D case by showing the existence of dyonic strings (this is one of the few features
shared with the 6D case).

Although, our results are based on effective quantum field theories in the contin-
uum, the corresponding physical implications rely on observables that could be in principle
measured in suitable synthetic systems described by these effective field theories in the
low-energy limit.

2 6D FQHE for membranes

We start revisiting and summarizing the main features of the 6D FQHE for membranes
by focusing on its topological and geometric responses. The effective topological quantum
field theory for the Laughlin states of membranes has been introduced in ref. [30]

SCS[c, C] =
∫
M7

[
− p

4πc ∧ dc+ 1
2πC ∧ dc+ J ∧ ?C

]
, (2.1)

where p is an odd-integer number, ? is the Hodge symbol (it contains the information of
the volume element in curved space), J is a three-form current associated to membranes,
C an external three-form gauge field, while c is a three-form hydrodynamic field. These
tensorial Chern-Simons theories and their quantization have been already discussed in the
high-energy-physics literature from different points of view [34–37]. Similarly to the 2D
FQHE, we can integrate out the emergent gauge field, by obtaining

SCS[C] =
∫
M7

[ 1
4πpC ∧ dC + J ∧ ?C

]
, (2.2)

which gives us the covariant Hall current

J = 1
2πp ? dC. (2.3)

Here, D = dC is the four-form field strength and in components, Bij = εijklmnDklmn

and Eijk = Dijk0 play the role the (tensorial) magnetic and electric fields, respectively.
In this picture, the membranes are electrically charged with respect to E and fractional
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conductivity for membranes is manifest in the above expression. The anyonic nature of
these membranes and their corresponding fractional charge can be rigorously established by
analyzing their fractional statistics through a generalized (tensorial) flux attachment and
Gauss-Hopf linking number calculated by considering the membrane world volumes [27–
29]. Here, the world volumes of the anyonic membranes naturally replace the world lines
of point-like anyons of the lower-dimensional case.

When M7 has a spatial boundary M6 = ∂M7 then the boundary states of the 6D FQH
states are described by a 5+1-D chiral conformal field theory (CFT) characterized by a
(anti-)chiral three-form field strength, namely H = ± ?H, where H = dB and B the two-
form gauge potential [30, 34, 38]. This theory naturally generalizes the 1+1-D chiral boson
that lives on the boundary of the 2D Laughlin states. This generalized bulk-boundary
correspondence can be understood through the anomaly inflow of chiral higher-form gauge
theories as recently discussed in ref. [39]. We point out that this bulk-edge correspondence
though higher-forms and anomaly inflow does not apply to an hypothetical 4D FQHE
for extended objects (strings), in which the 3+1-D boundary theory does not possess any
gravitational anomaly differently from the 2D and 6D cases [40]. Moreover, differently from
eq. (2.2), a tensorial Chern-Simons theory for a single two-form field B in 4+1-D dimensions
is a total derivative and does not provide any (fractional) Hall current in the bulk [34]. In
4+1-D, only time-reversal-invariant BF-like theories are still well defined in the bulk and
give rise to 3+1-D (non-chiral) dynamical gauge theories on the boundary [34, 41]. Thus,
the 4D FQHE can have a physical realization only in terms of point-like quasiparticles and
the corresponding effective topological action is given in terms of Chern-Simons terms built
from one-form gauge fields [20–22]. We now show further similarities between the 2D and
6D FQHEs by introducing a curved-space background. In the 2D FQHE case, it is well
known that there exists a non-trivial coupling between the Abelian SO(2) spin connection
ω and the electromagnetic field Aem, i.e. ω ∧ dAem. This is known as Wen-Zee term and
plays a central role in the study of Hall viscosity [42, 43]. In the 6D case, we propose the
following generalized Wen-Zee-like term

SWZ[C,ω] = 1
4πp

∫
M7

tr CS3(ω) ∧ dC, (2.4)

where CS3(ω) = ω ∧ dω + (2/3)ω ∧ ω ∧ ω, with ω here the spatial SO(6) spin connection,
which is intrinsically non-Abelian. The above expression is obtaining after integrating out
the hydrodynamic field c that directly couples with the spin connection in the FQH regime
through a similar mixed topological term. Notice that due to C field, the above action is
different from the generalized Wen-Zee term derived in ref. [23] for the 6D QHE of point-
like quasi-particles. When the spin connection and frame field e are independent then the
torsion tensor T = De + ω ∧ e is null zero anymore and a further mixed topological term
can be built

ST[C,ω, e] = β

4πp

∫
M7

tr CS3(e) ∧ dC, (2.5)

where β is a dimensional parameter and CS3(e) = e ∧ T . Notice, that both the gravita-
tional CS3(ω) and torsional Chern-Simons terms CS3(e) have been already appeared in the
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FQHE for (D/2− 1)-dimensional objects 2D 4D 6D
Chern-Simons terms for D/2 forms © × ©

Mixed Chern-Simons terms © © ©
Hopf map © × ©

Wen-Zee term for D/2 forms © × ©
Gravitational anomaly © × ©

Extended monopoles and dyons × © ©

Table 1. In this table we have summarized the main differences and similarities between 2D, 4D
and 6D FQHEs discussed in the paper. The symbols © and × refer to the presence and absence of
a specific feature, respectively.

context of topological insulators and superconductors in lower dimension [44–48] and their
linear combination in 2+1-D represents the action for exotic gravity [49], where β plays
the role of cosmological constant. Thus, the 2+1-D exotic gravitational action could be
induced from the above terms by employing a suitable dimensional compactification. Due
to the two above terms, the covariant Hall current in eq. (2.3) is modified as follows

J = 1
2πp ? dC + 1

4πp ? tr (R ∧R) + β

4πp ? tr (T ∧ T −R ∧ e ∧ e) , (2.6)

where R = Dωω = dω + ω ∧ ω is the two-form Riemann tensor. This is a perfectly gauge-
invariant expression, however, differently from the 2D case [42], the above geometric terms
do not contribute through an Euler number associated to the six-dimensional space once
the electric density is integrated on the whole space. However, when ?J is integrated
on a four-dimensional compact manifold, then the two geometric terms give us the first
Pontryagin invariant [50]. Importantly, purely geometric contributions such as those ones
considered in refs. [23, 24] would need to be included in the effective topological action in
order to also take into account the gravitational anomaly of the boundary.

Finally, we want to remark that besides topological and geometric responses and the
bulk-boundary correspondence, the FQHE is an incompressible quantum fluid. This central
bulk feature in 2D is encoded the W∞ or GMP algebra [51–53] , which is related the under-
lying quantum area-preserving diffeomorphisms induced by interactions. This can be also
understood by employing noncommutative geometry. As recently shown in ref. [29], non-
commutative geometry also appears in the higher-dimensional QHE and is deeply related to
Nambu geometry. In other words, membranes and C fields give rise to a noncommutative
geometry and this would represent a signature of an emergent volume-preserving diffeo-
morphisms for membranes. This represents a further evidence that the 6D FQHE shares
(almost) all the main features of the 2D counterpart. In the next sections we will also discuss
some novel features (skyrmionic configurations) that are instead unique for the 6D case.
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3 Skyrmionic membranes

Here, we are going to discuss the physics of the 6D FQHE in presence of a non-topological
order parameter associated to a local symmetry breaking. This will allow us to show the
existence of skyrmionic membranes in the bulk and discuss novel features of the boundary
states. In two spatial dimensions, the quantum Hall ferromagnetism can be understood
from the field-theory point view through a coupling between a SO(3) vector associated
to the ferromagnetic order and the hydrodynamic gauge fields [54]. This picture can be
naturally generalized to the six-dimensional case by replacing the SO(3) unit vector with
a SO(5) unit vector φi, with i = 1, 2, 3, 4, 5 such that φiφi = 1. As already shown in
refs. [26–29], in 6+1 dimensions it is possible to define the following three-form current
trough the SO(5) unit vector

JSk = 1
8π ? trφ(dφ)4, (3.1)

where we have used a shorted notation (dφ)4 = dφ ∧ dφ ∧ dφ ∧ dφ [29], with φ = φiΓi,
where Γi are the five Euclidean 4 × 4 Dirac matrices. This current describes skyrmionic
membranes and generalizes the more common current for point-like skyrmions associated
to SO(3). Moreover, the corresponding topological charge of these SO(5) skyrmions is
given by QSk = N

∫
S4 ?JSk with N a suitable normalization factor. The effective action

for the SO(5) non-linear sigma coupled to the FQH phase is then given by

SNL[c, C, φ] =
∫
M7

[
− p

4πc ∧ dc+ 1
2πC ∧ dc+ J ∧ ?C + JSk ∧ ?c+ 1

2tr dφ ∧ ?dφ
]
, (3.2)

where the last term is the (relativistic) kinematic term for φ. It is convenient at this point
to employ the HP 1 formulation of the SO(5) non-linear sigma models [26]. It is possible to
represent φi in terms of a pair of quaternionic fields Q = (q1, q2)T that satisfy the condition
Q†Q = 1. We can then define an SU(2) one-form connection A = Q†dQ such that a novel
three-form field is defined as

C = tr CS3(A), (3.3)

with CS3(A) = AdA+ (2/3)A ∧A ∧A. In this way we obtain the following identity

dC = 1
4 trφ(dφ)4. (3.4)

Here, C can be seen as the order parameter gauge field. More in general, we can consider
this model in a curved background by taking into account a topological coupling between c
and the geometric Chern-Simons terms introduced in the previous section. By integrating
out the c field, we then obtain the following new topological terms∫

C ∧ dC + (CS3(ω) + βCS3(e)) ∧ dC. (3.5)

The first term is nothing but the Hopf-Chern-Simons invariant, which is related to the
second Hopf map S7 → S4 and plays a central role in the characterization of the fractional
statistics of membranes [26, 27]. The other terms are new and describe the coupling of the
skyrmionic membranes to the curved background. The second Hopf invariant naturally
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generalizes the first Hopf map associated to point-like skyrmions in 2+1-D while in 4+1-
D there are no Hopf maps. This fact, one more time, tells us that the 6D FQHE is
the most natural generalization of the 2D FQHE. Similarly, the kinematic term of the
non-linear sigma model can be completely rewritten in terms of the quanternionic fields
and SU(2) one-form connection [26]. Depending on the strength of the four-form flux,
the skyrmionic membranes may behave as extended rigid objects, or may instead be more
accurately approximated by point-like particles in the dilute four-form flux case. The novel
effective field theory in eq. (3.5) should somehow give rise to novel features of the boundary.
This should be the case in particular for open skyrmionic membranes for which their spatial
boundaries live on the spatial boundary of the system and behave as skyrmionic strings. To
understand better this point, we embed the skyrmionic three-form field into a more general
expression that takes into account also a local SO(5) gauge field A. The corresponding
new four-form field strength is then given by [55–57]

dC → dĈ = trφ
[
F + (1/2)(DAφ)2

]2
, (3.6)

where F = dA + A ∧ A and DAφ = dφ + A ∧ φ. This field strength recovers eq. (3.4) for
A = 0 and represents the natural higher-form generalization of the field strength associated
to SO(3) ’t Hooft-Polyakov monopoles in 3D [58]. We can directly express the novel three-
form field Ĉ as follows

Ĉ= trCS3(A)+trφ
[
(dφ)2A+(1/2)(dφAφA+dAA+AdA)+(1/4)(A3 +(1/3)AφAφA)

]
,

(3.7)
where we remind that the first trace is taken on SU(2) while the second on SO(5) (here,
φ and A are not independent fields). This tensor field replaces C in eq. (3.5) and as
shown in ref. [55], the corresponding Hopf-Chern-Simons term can be seen as a Wess-
Zumino term of a suitable 5+1-D chiral superconformal field theory (SCFT). Its bosonic
sector is characterized by a self-dual three-form field strength and a SO(5) scalar fields
φ. Thus, the Hopf-Wess-Zumino term takes into account the ’t Hooft anomaly of CFT,
which can exist only at the boundary of a 6+1-D system. As mentioned in the previous
section and in ref. [30], the 6D FQHE naturally supports chiral (S)CFTs on its boundary
that are characterized by chiral two-forms, i.e. two-forms with self-dual or anti-selfdual
field strength. We then conclude by conjecturing that the bosonic sector of the higgsed
N = (2, 0) SCFT in ref. [55] represents a natural boundary theory of the 6D FQHE in
presence of skyrmionic membranes.

4 Dyonic strings

In this section, we discuss the physical conditions that allows us to obtain dyonic strings
in the bulk of the 6D FQH states, namely magnetically charged strings that acquire an
electric charge through a generalized Witten effect.

For generic open membranes, d ? J = JB, where JB is a two-form current. Here, JB
represents the physical current of the boundary the membranes, i.e. one-dimensional strings
that live on the boundary of the system and couple with the two-form field B. In ref. [55],

– 6 –



J
H
E
P
0
5
(
2
0
2
2
)
1
2
4

it was argued that besides the generalized Hopf-Wess-Zumino term discussed in previous
section, the effective action of the boundary theory also contains another topological term
that governs the coupling of the skyrmionic strings to the two-form field B, namely

SSk−B = α

2

∫
∂M7
B ∧ dĈ = α

2

∫
M7

dB ∧ dĈ, (4.1)

where α is a suitable constant. Thus, the skyrmionic current ĴSk = (1/2π) ? dĈ behaves
as electric and magnetic source. This is in agreement with the fact that in 5+1-D, strings,
in presence of self-dual three-form field strengths, become dyons [59]. The underlying
mechanism is nothing but the higher-dimensional version of the Witten effect that occurs
in 3+1-D [60, 61], where point-like magnetic monopoles acquire an electric charge through
an axion field. Thus, to obtain dyonic strings in the bulk of our 6D system, we need to
first consider magnetic strings in our bulk and then introduce an axion field by generalizing
the Witten effect to our odd spacetime dimensional case (the conventional Witten effect
is defined in even spacetime dimensions). In 6D, static magnetic strings can behave as
extended magnetic monopoles [62, 63]. Thus, let us suppose that the static magnetic string
has coordinate (0, 0, 0, 0, 0, x6), namely it is a line string spanned by x6. Its corresponding
four-form field strength is then given by

Dijkl = 3QM
2πr5 εijklm6x

m, (4.2)

where r =
√
xixi, with i, j, k, l,m = 1, 2, 3, 4, 5 and QM is the magnetic charge. We

have then that
∫
S4 D = 4πQM , where S4 is the four-dimensional sphere with r2 = 1

that surrounds the extended magnetic monopole. We assume that there exists a suitable
configuration of D̂ = dĈ that supports the above static gauge potential. This physically
implies that suitable static three-form fields can be also related to magnetic string-like
objects and not just to membranes. In order to show that these magnetic strings become
dyons, we consider the following action in flat space

SW[θ,B, Ĉ] =
∫
M7

1
4π2 θ dB ∧ dĈ + 1

4πp Ĉ ∧ dĈ −
1
4 dB ∧ ?dB + B ∧ ?JB, (4.3)

where we have promoted B to be a dynamical gauge field that couples to a two-form current
JB. Moreover, θ is an axion field. We have omitted for simplicity all the other terms which
are not relevant for our current discussion. From now on, we will threat Ĉ as an independent
gauge field instead than a composite gauge connection, such that it will formally behave as
a dynamical background field like C. By varying the action with respect to B, we obtain

d ? dB + 1
4π2 dθ ∧ dĈ = ?JB. (4.4)

We now assume for simplicity that the axion field is only time-dependent θ = θ(t) and
homogeneous in space [61] and that only the charge density is non-zero in ?JB, namely
JµνB = (ρi0, 0), with i = 1, 2, 3, 4, 5, 6. The components of the above equations are given by

∂jĒ
ij = ρi,

−∂0Ē
ij + εijklmn∂kB̄lmn + 1

4π2∂0θB̂
ij = 0, (4.5)
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where B̂ij = εijklmnD̂klmn, Ēij = Hij0 and B̄ijk = εijklmnHlmn. By taking the divergence
of the second equation and combining it with the first one, we obtain

∂0ρ
i = 1

4π2∂0θ∂jB̂
ij . (4.6)

We now insert the static gauge potential in eq. (4.2) in the above equation such that the
only non-zero component is given by

∂0ρ
6 ≡ ∂0ρ = 1

4π2∂0θ∂jB̂
6j ≡ 1

4π2∂0θ QMδ
5(x), (4.7)

where δ5(x) is the Dirac delta function. We can now integrate on time and on the five-
dimensional space to obtain the relation between electric and magnetic charges, namely

QE = 1
2π∆θ QM , (4.8)

If we assume that there was no initial electrical charge bound to the magnetic string
monopoles then ∆θ = {0, π}. This implies that

QE = 1
2QM . (4.9)

In other words, a string-like magnetic monopole associated to the three-form field acquires
an electric charge related to the two-form field through an axion field. Importantly, this
6+1-D Witten effect can be naturally extended in 4+1-D as we will show in the appendix A.

5 Conclusions and outlook

Summarizing, we have discussed the important role of extended objects in the 6D FQHE.
Here, membranes and strings are related to three-form and two-form gauge fields, respec-
tively. These gauge fields replace the more familiar one-form fields that appear in the
effective field theory description of the more 2D FQHE. We have shown that skyrmionic
membranes associated to SO(5) naturally couple with the curved background through a
generalized version of the Wen-Zee term and become important in a better identification
of the 5+1-D chiral CFT that lives on the boundary of the system. Moreover, we have
also shown that besides the strings that live on the boundary, also magnetic strings in the
bulk can transmute to dyonic strings, i.e. they can acquire an electric charge through a
generalized Witten effect that involves an axion field and a dynamical two-form (Kalb-
Ramond) field. Although these novel results have been derived through effective quantum
field theories in the infrared limit, their physical implications are general and could be
also relevant in higher-dimensional microscopic systems where suitable lattice deforma-
tions/defects or generalized vortices [31, 33] in superfluid phases can behave as string-like
and membrane-like objects.
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6 4+1-D Witten effect

A 4D FQHE for strings cannot be properly built mainly because of the absence of a gravi-
tational anomaly and because the Chern-Simons terms such as B∧dB are total derivatives.
Moreover, there is not a natural extension of the Wen-Zee term that couples the curved
background and two-forms in a consistent way. However, we can still build skyrmionic
currents and study dyonic strings in a 4D FQHE that involves also one-form gauge poten-
tials as we show in this appendix. A SO(4) order parameter allows us to build a two-form
current for skyrmionic strings, given by

JSk = 1
8π ? trφ(dφ)3, (6.1)

φ = φiΓi, where Γi are four Euclidean 4 × 4 Dirac matrices. This current can be directly
coupled to a two-form potential: B ∧ ?JSk. Due to the absence of an Hopf map, we cannot
rewrite this current in terms of a two-form gauge field. We can then introduce the following
action in 4+1-D

S[θ,B,A] =
∫
M5

1
4π2 θ dB ∧ dA+ CS5(A)− 1

4 dB ∧ ?dB + B ∧ ?JB, (6.2)

where JB is a generic two-form current and can also contain JSk. Here, CS5(A) is the 4+1-
D Chern-Simons form built from a standard one-form field A (notice that its corresponding
level is not important in our current discussion and for this reason it is encoded implicitly
in the definition of CS5(A)). For simplicity we consider this action in flat space-time M5 in
order to avoid the geometric terms such as the Wen-Zee-like terms that can be constructed
by coupling the curved background to one-form fields as shown in ref. [23]. Moreover, an
axion field is crucial in order to show the existence of a generalized Witten effect. When θ is
constant the first term in the above action becomes a total derivative and A and B are com-
pletely decoupled in the bulk. In this case we recover the standard 4D FQHE for point-like
objects discussed in other works. By varying the above action with respect to B, we obtain

d ? dB + 1
4π2 dθ ∧ dA = ?JB. (6.3)

As done in 6+1-D case, we now assume for simplicity that the axion field is only time-
dependent θ = θ(t) and homogeneous in space and that only the charge density is non-zero
in ?JB, namely JµνB = (ρi0, 0), with i = 1, 2, 3, 4. The components of the above equations
are given by

∂jĒ
ij = ρi,

−∂0Ē
ij + εijkl∂kB̄l + 1

4π2∂0θB̃
ij = 0, (6.4)

where B̃ij = εijklFkl, Ēij = Hij0 and B̄i = εijklHjkl. By taking the divergence of the
second equation and combining it with the first one, we obtain

∂0ρ
i = 1

4π2∂0θ∂jB̃
ij . (6.5)
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In 4D, static magnetic strings can behave as extended magnetic monopoles [62]. Thus, let
us consider that the static magnetic string has coordinate (0, 0, 0, x4), namely it is a line
string spanned by x4. Its corresponding two-form field strength is then given by

Fij = QM
r3 εijkx4xk, (6.6)

where r =
√
xixi, with i, j, k = 1, 2, 3 and QM is the magnetic charge. We have then that∫

S2 F = 4πQM , where S2 is the two-dimensional sphere with r2 = 1 that surrounds the
extended magnetic monopole. By inserting the above monopole field strength in eq. (6.5),
we obtain

∂0ρ
4 ≡ ∂0ρ = 1

4π2∂0θ∂jB̃
4j ≡ 1

4π2∂0θ QMδ
3(x), (6.7)

where δ3(x) is the Dirac delta function. We can now integrate on time and on the three-
dimensional space to obtain the relation between electric and magnetic charges, namely

QE = 1
2π∆θ QM , (6.8)

If we assume that there was no initial electrical charge bound to the magnetic string
monopoles then ∆θ = {0, π}. This implies that

QE = 1
2QM . (6.9)

In other words, string-like magnetic monopoles associated to a one-form field acquire elec-
tric charge related to the two-form field B through an axion field.
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