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Abstract: We study the confinement/deconfinement transition in the D0-brane matrix
model (often called the BFSS matrix model) and its one-parameter deformation (the BMN
matrix model) numerically by lattice Monte Carlo simulations. Our results confirm general
expectations from the dual string/M-theory picture for strong coupling. In particular, we
observe the confined phase in the BFSS matrix model, which is a nontrivial consequence
of the M-theory picture. We suggest that these models provide us with an ideal framework
to study the Schwarzschild black hole, M-theory, and furthermore, the parameter region of
the phase transition between type IIA superstring theory and M-theory. A detailed study
of M-theory via lattice Monte Carlo simulations of the D0-brane matrix model might be
doable with much smaller computational resources than previously expected.

Keywords: Gauge-Gravity Correspondence, Lattice Quantum Field Theory, Matrix Mod-
els
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1 Introduction

The thermodynamic features of the D0-brane matrix model [1–3] (often called the Banks-
Fischler-Shenker-Susskind (BFSS) matrix model) and its one-parameter deformation known
as the Berenstein-Maldacena-Nastase (BMN) matrix model [4] are of great theoretical in-
terest and, therefore, have been the subject of many investigations. Here we extend the
insights gained by numerical simulations of these theories and provide a different view-
point on their properties. Our main motivation is to give evidence that M-theory [5] and
Schwarzschild black holes can be described by these matrix models.

M-theory plays an important role in the web of string dualities. It is the eleven-
dimensional theory which has membranes as fundamental degrees of freedom. It appears
as the strong-coupling limit of type IIA superstring theory, and its low-energy limit should
be eleven-dimensional supergravity [6]. There exist a few proposals for the nonperturbative
formulation of M-theory based on the holographic principle. Among them, we consider the
one based on the matrix-model approach [1–3].1 The history of this approach dates back
to the 1980s when the M-theory proposal had not been made yet. At that time, the
quantization of a supermembrane in eleven-dimensional spacetime was discussed, and a
matrix model, which is called the BFSS matrix model today, was introduced as a natural
regularization of the supermembrane in the light-cone gauge [2]. Later, this model was
re-discovered as a candidate for the nonperturbative regularization of M-theory [1].

Further analysis using gauge/gravity duality [8] suggested that the BFSS matrix model
can describe M-theory, type IIA superstring theory, and the phase transition between
them [3], based on the calculations on the string/M-theory side of the gauge/gravity duality.
The BMN matrix model [4] is a one-parameter deformation of the BFSS matrix model
discussed in refs. [1–3]. It has a rich phase structure and is often easier to analyze both
analytically and numerically. Thermodynamic features of the BFSS matrix model have
been studied intensively, starting from ref. [9]. Agreement with type IIA superstring has
been obtained with good precision using lattice simulations; for example, see ref. [10] for
numerical results at large-N and in the continuum limit. However, the parameter region
in which the BFSS matrix model is expected to be dual to M-theory has not been studied
in the past. Doing so was believed to be a very hard task because the stringy correction to
the effective string coupling constant becomes large at temperature T ∼ N−10/21, which is
a parametrically low temperature in the large-N limit. In this paper, we propose a much
easier way to identify the M-theory parameter region.

Black hole thermodynamics [11, 12] led to various deep insights into quantum gravity
and quantum field theory, and gauge/gravity duality provides us with an ideal setup for the
study of the quantum aspects of black holes and emergent geometry in holographic duality.
It has been successful for describing ‘large’ black holes which have positive specific heat.
Detailed nonperturbative and quantitative tests based on Monte Carlo simulations for the

1Another promising direction, to which numerical method similar to the one used in this paper can be
useful, is to study gauge theories dual to D2-branes or M2-branes. Maximally supersymmetric Yang-Mills
theory in 2 + 1 dimensions is dual to D2 or M2, depending on the parameter region [3], and hence, physics
similar to the one considered in this paper would be seen. See ref. [7] for a lattice simulation of this theory.
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BFSS matrix model were performed in ref. [9] and following papers, and good agreement
was also observed for D1-brane and D2-brane theories [7, 13–15]. Here, however, we are
especially interested in small black holes with negative specific heat. Holographic duality
should also be applicable to small black holes, including usual Schwarzschild black holes.
For example, 4d SYM on S3 should describe the 10d Schwarzschild black hole [16]. The
BFSS matrix model at very low energy should describe an 11d Schwarzschild black hole
in M-theory [3]. One of the goals of this paper is to give evidence that the BFSS matrix
model and BMN matrix model do describe small black holes.

In principle, the real-time dynamics of the matrix model can be efficiently simulated
on quantum computers [17]. Hence, in the future, it might even become possible to study
the entire life of a small black hole — from the formation via gravitational collapse to
eventual evaporation — in a controlled manner in a fully quantum setup, in the context of
superstring/M-theory.

Another, but very closely related, motivation is that we want to understand the micro-
scopic mechanism of the confinement/deconfinement transition. Via gauge/gravity duality,
deconfinement and the formation of a black hole are equivalent [18]. Strong-coupling results
based on dual gravity analyses and weak-coupling results [19, 20] show striking similarity,
and the latter show rather universal features regardless of the details of the theories [20].
Such generic features can naturally be understood in the framework of partial deconfine-
ment [21–25]: between the confined phase (∼ thermal AdS) and the deconfined phase (∼
large black hole) of SU(N) gauge theory, there exists a partially-deconfined phase (∼ small
black hole) in which an SU(M) subgroup (0 < M < N) is deconfined. For several theories,
partial deconfinement has been demonstrated analytically at weak coupling [24, 26], and
numerically at strong coupling [27]. In this paper, we provide evidence that the D0-brane
matrix model provides us with an ideal setup to which a dual gravity analysis is tractable.
As a byproduct, we will see that the confined phase, which has not been considered before,
should exist, and can be (meta-)stable up to rather high temperature (see figure 1 for our
conjecture). Once knowing it to exist, it is not hard to find such a confined phase numeri-
cally. Note that the existence of the confined phase is a consequence of the dual M-theory
description and not the type IIA string theory description.

This paper is organized as follows. First, we give a short summary of our main claims
in section 2. Then we explain the details in the following sections. In section 3, the BMN
matrix model is defined. The BFSS matrix model is obtained as a special case of the BMN
matrix model, where the flux parameter µ is set to zero. The BMN matrix model has
many vacua: in section 3.2 we specify the vacuum considered in this paper. In section 4,
we conjecture the phase diagrams of the BMN matrix model and BFSS matrix model,
based on results from various numerical simulations (obtained in this paper, and also in
previous studies) and dual gravity analyses. In section 5, numerical results are presented
and their consistency with the conjectures presented in section 4 is discussed.

– 2 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
6

T

E/N2

T

P

1

Figure 1. A cartoon picture of the (meta-)stable phases in the BFSS matrix model at finite
temperature in the ’t Hooft large-N limit (λ = g2N fixed). Red and blue lines characterize the
deconfined and confined phases, respectively. In the past, the existence of the confined phase was not
pointed out. Both are minima of the free energy, and the deconfined phase is the global minimum
at any temperature. The existence of the confined phase is a natural consequence of the dual M-
theory description, hence, the numerical confirmation of the confined phase on the matrix model
side would be an interesting clue towards demonstrating the validity of the M-theory description.

2 Short summary of the main claim

In this section, we summarize the main claims of the paper. The numerical evidence will
be explained in later sections, together with various potential subtleties.

We study the thermodynamic features of the BFSS matrix model and BMN matrix
model, whose definition is given in section 3. These models can have various nontrivial back-
grounds. In this paper, we are interested in the ‘trivial’ background. We carefully study the
properties of the configurations obtained in our simulations and extract the configurations
corresponding to the trivial background. The relevant parameters are the temperature T
and the flux parameter µ. The BFSS matrix model is obtained by setting µ = 0.

Based on lattice Monte Carlo simulations and dual gravity analyses, we propose the
following phase structure in the µ-T plane. If we vary T at fixed µ, there is a first-
order phase transition with a strong hysteresis (see the left panel of figure 2, and also
figure 7). The high-temperature, high-energy phase is deconfined (the Polyakov loop P is
nonzero; see appendix D for the definition of the Polyakov loop), while the low-temperature,
low-energy phase is confined (the Polyakov loop is zero). These phases are the minima
of free energy. There is a local maximum of free energy separating these two phases,
whose corresponding states are partially-deconfined.2 There are three kinds of critical
temperatures, Tc, T1, and T2 (see figure 2, and also figure 7). Tc is the temperature where
the free energies of the confined and deconfined phases coincide. At T > Tc (resp., T < Tc),
the deconfined phase (resp., confined phase) is the global minimum. Temperature T1 is the
highest temperature for the confined phase, i.e, the confined phase is a local minimum of
the free energy for Tc < T < T1, and this minimum disappears for T > T1. Temperature
T2 is the lowest temperature of the deconfined phase which is a local minimum of the free
energy at T2 < T < Tc. As a function of µ, Tc is monotonically decreasing, as shown in
figure 13.

2The partially-deconfined phase is stable in the microcanonical ensemble.
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Figure 2. Typical shapes of confinement/deconfinement phase transition line in large-N gauge
theories. The solid and dashed lines are minimum and maximum of the free energy at each fixed
temperature. Similar plots can be drawn by taking the vertical axis to be the energy E instead of
the Polyakov loop P . (This figure appeared originally in ref. [23].)

Let us briefly summarize how this phase diagram is obtained and how it is related to
M-theory.

BFSS matrix model (µ = 0). Let us start with the BFSS matrix model (µ = 0).
Ref. [3] studied the BFSS matrix model based on the dual gravity picture. The authors
found the phases corresponding to a type IIA black zero-brane and the M-theory black
string or black hole. It is natural to identify the type IIA and M-theory phases with the
completely- and partially-deconfined phases, respectively.3,4

Because of the existence of the partially-deconfined phase, we expect yet another,
namely a completely-confined phase, which is likely to be dual to a graviton gas in eleven-
dimensional spacetime; see figure 3. (Such a phase was not discussed in ref. [3].) On the
gravity side, T1 is the highest possible temperature of the eleven-dimensional black hole.
A very rough estimate for T1 is T1 & N2/9, as explained in section 4.1, and hence, the
confined phase should survive up to a rather high temperature. T2 is interpreted as the
temperature where the M-theory circle becomes large, and the transition from black string
to black hole (Gregory-Laflamme transition [32]) takes place [3] and is estimated to be
T2 ∼ N−5/9 [33]. (See, e.g., refs. [34–37] for detailed calculations for Gregory-Laflamme
transition, and ref. [38] for those with a boost.) Our numerical simulations confirm the
existence of the confined phase. Such a confined phase is tantalizing evidence for the
M-theory phase in the matrix model.5

Tc should be close to T2, because otherwise the black zero-brane in type IIA supergrav-
ity (or boosted uniform black string in M-theory, which is essentially the same as a black
zero-brane) is a good approximation, and we find sufficiently small free energy. Specifi-

3Here, we are assuming that the latter has negative specific heat and hence corresponds to the local
maximum of free energy; see section 4.1.2 and appendix E. On the large-energy, low-temperature side of
the M-theory phase the dual picture is a black string, while on the low-energy, high-temperature side it is
a black hole.

4From a different angle, refs. [28–31] proposed that the BFSS matrix model describes an 11d black string
or black hole boosted along the M-theory circle.

5As far as we notice, the existence of the confined phase in the BFSS matrix model has not been
appreciated in the past.
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E
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 11d graviton gas


(Completely confined)

11d black hole or 


nonuniform black string 


(Partially deconfined)

E

F

 11d graviton gas


(Completely confined)

Type IIA black zero-brane


or 11d uniform black string


(Completely deconfined)

 Tc < T < T1  T2 < T < Tc

Type IIA black zero-brane


or 11d uniform black string


(Completely deconfined)

11d black hole or 


nonuniform black string 


(Partially deconfined)

Figure 3. A conjecture for the relationship between free energy F versus energy E at fixed
temperature T in the BFSS matrix model. An 11d Schwarzschild black hole gives the local maximum
which separates the two minima. (See appendix E for why negative specific heat implies a free energy
maximum.)

cally, both T2 and Tc are expected to be zero in the strict large-N limit. For T2 < T < T1,
we expect a two-state signal in the Monte Carlo simulations if N is sufficiently large. In
the histograms of the energy or the Polyakov loop observables, there should be two peaks
corresponding to two minima of free energy. The local maximum of the free energy should
be seen as a dip separating the two peaks. However, in our simulation, we did not observe
the two-state signal; the deconfined phase is too unstable for the small values of N we
could study with available computer resources (N ≤ 16). As a consequence, we could not
determine T2 and Tc.

BMN matrix model. We studied the BMN matrix model in order to confirm the two-
state signal and give stronger support for the validity of the M-theory description in the
BFSS limit. The large-µ region is weakly-coupled, and hence perturbative methods are
applicable. The small-µ region (more precisely, small but order N0) can be studied via dual
type IIA supergravity. By combining the large-µ and small-µ analyses, ref. [39] conjectured
that the transition is of first order at any µ, and the critical temperature Tc decreases
monotonically as a function of µ and becomes zero at µ = 0 (the left of figure 4).

We performed Monte Carlo simulations at various values of µ and observed quantitative
agreement with the phase diagram conjectured in ref. [39]. We observed clear two-state
signals at µ ≥ 0.5, and even at µ = 0.3 our results support the existence of a first-order
transition. As shown in figure 13, the critical temperature Tc agrees well with the conjecture
in ref. [39] at µ ≥ 0.8. Apparent deviation at µ < 0.8 can naturally be explained by taking
into account finite-N corrections on the gravity side.

– 5 –
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T

μ

deconfine

confine

μ

deconfine

confine

‘partially’


deconfine

T

Figure 4. Two kinds of conjectured phase diagrams of the BMN matrix model. The large-µ
region permits perturbative calculations [40, 41], and the transition is found to be of first order.
The small-µ region has been studied by using the dual gravity description [39] but the order of the
transition has not been established. We will argue that the left panel (first-order scenario) is likely
to be true.

3 BFSS and BMN matrix models

The BFSS and BMN matrix models consist of nine N × N bosonic hermitian matrices
XI (I = 1, 2, · · · , 9), sixteen fermionic matrices ψα (α = 1, 2, · · · , 16), and the gauge
field At. Both XI and ψα are in the adjoint representation of the U(N) gauge group,
and the covariant derivative Dt acts on them as DtXI = ∂tXI − i[At, XI ] and Dtψα =
∂tψα − i[At, ψα]. The action is given by

S = Sb + Sf (3.1)

for BFSS and
S = Sb + Sf + ∆Sb + ∆Sf (3.2)

for BMN, where

Sb = N

λ

∫ β

0
dt Tr

1
2

9∑
I=1

(DtXI)2 − 1
4

9∑
I,J=1

[XI , XJ ]2
 , (3.3)

Sf = N

λ

∫ β

0
dt Tr

{
iψ̄γ10Dtψ −

9∑
I=1

ψ̄γI [XI , ψ]
}
, (3.4)

∆Sb = N

λ

∫ β

0
dt Tr

µ2

2

3∑
i=1

X2
i + µ2

8

9∑
a=4

X2
a + i

3∑
i,j,k=1

µεijkXiXjXk

 , (3.5)

and
∆Sf = 3iµ

4λ ·N
∫ β

0
dt Tr

(
ψ̄γ123ψ

)
. (3.6)

Here εijk is the structure constant of SU(2), and hence i∑3
i,j,k=1 µε

ijk Tr (XiXjXk) =
3iTr (X1, [X2, X3]). At µ = 0, the BMN matrix model reduces to the BFSS matrix model,
which is obtained by dimensionally reducing 10d super Yang-Mills theory to 1 dimension.
The index α of the fermionic matrices ψα corresponds to the spinor index in ten dimension,

– 6 –
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and ψα are Majorana-Weyl fermions in these ten dimensions. γI (I = 1, · · · , 10) are 16×16
sub-matrices of 32× 32 10d Gamma matrices ΓI .

In this paper, we will consider the thermodynamic features of the BFSS and BMN
matrix models. There are three parameters: the ’t Hooft coupling λ = g2

YMN , the tem-
perature T and the flux µ. The ’t Hooft coupling has a dimension of (mass)3, and can
be set to 1 by proper rescaling of time t and matrices. In other words, all dimensionful
quantities are considered in units of λ. For example T , µ, and the energy E are actually
λ−1/3T, λ−1/3µ and λ−1/3E. We mainly focus on the ’t Hooft large-N limit,6 in which T
and µ are fixed and the energy is proportional to N2.

3.1 Trivial vacuum in the BFSS matrix model

In the BFSS matrix model, the potential term −1
4 [XI , XJ ]2 vanishes if the matrices com-

mute with each other. Therefore, at the classical level, there are flat directions. Due to
supersymmetry, a remnant of these flat directions survives at the quantum level. Namely,
the energy of almost-diagonal configurations XI ' diag(x1

I , x
2
I , · · · , xNI ) can be asymptot-

ically small when the distance between diagonal entries
√∑

I |xiI − x
j
I |2 is large. These

diagonal entries are regarded as the locations of D0-branes.
Despite the existence of flat directions, D0-branes can form a bound state.7 In this

paper, we will consider the ‘trivial vacuum’, in which all D0-branes are bound together.
The trivial vacuum becomes more and more stable as N becomes large.

3.2 Trivial and fuzzy-sphere vacuum in the BMN matrix model

In the BMN matrix model, the flat direction is lifted due to the deformation term. Instead,
it has multiple supersymmetric vacua characterized by the fuzzy-sphere classical solution8

Xi = µJi (i = 1, 2, 3) , Xa = 0 (a = 4, · · · , 9) , ψ = 0 , (3.7)

where Ji are the generators of an SU(2) algebra. As long as they satisfy the standard com-
mutation relation [Ji, Jj ] =

√
−1εijkJk, any representation is allowed. A generic representa-

tion is characterized by the spin s = 0, 1
2 , 1,

3
2 , · · · and the number of spin-s representations

ns. The matrix size N is N = (2s+ 1)ns and the classification of vacua is characterized by
partitions of N [4]. One more interesting point of view is that the classification of these
vacua on the gravity side can be interpreted as an electrostatic problem [43, 44].

The mathematical reason why these vacua are interpreted as fuzzy-sphere vacua is
that the matrices Xi can be interpreted as the embeddings Xi : S2 ↪→ R3. Being assigned
to generators of SU(2) they generate non-commutativity on the surface of S2 justifying
the fuzzy-sphere interpretation [45]. On equal footing is the interpretation from string
theory, where the diagonal elements of the matrices Xi,a are interpreted as positions of
D0-branes and non-diagonal elements as open strings between them. In the case of fuzzy

6The only exception is when we discuss a relation to the M-theory region, which requires a different kind
of large-N limit.

7For the precise meaning of this bound state, see ref. [42].
8Strictly speaking, the configuration (3.7) should be interpreted as the center of a wave packet. See [42]

for details.

– 7 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
6

sphere configurations, D0-branes are in a non-commutative sense localized on the surface
of S2 which furthermore lives in R3 ⊂ R9. The interpretation of D2-branes as consisting
of D0-branes is well known in string theory where under the presence of fluxes (µ in our
case) D0-branes polarize and form non-commutative structures [46].

Hence, fuzzy-sphere vacua can be interpreted from the gravity perspective as concentric
fuzzy spheres consisting of D0-branes, placed at the center of R6 and living only in the
three dimensional subpart of spacetime whose radii scale as

rs ' µs . (3.8)

When n0 = N and ns≥1 = 0, the ground state is given by

X1 = X2 = · · · = X9 = 0 , ψ = 0 . (3.9)

This state is called the “trivial” vacuum. Despite its simple appearance, the trivial vacuum
has rich, nontrivial features. In this paper, we focus on this vacuum.9

At the classical level, the radius of the spin-s fuzzy sphere is µ
√
s(s+ 1). As µ becomes

smaller, the radii of the fuzzy spheres approach zero, and hence, tunneling from the trivial
vacuum to nontrivial fuzzy-sphere vacua can happen more easily. Hence, it is crucial to
ensure that the combination µN is large enough to avoid ending up in an undesirable
vacuum. At zero temperature, the quantum fluctuation of each matrix entry is roughly
0.6N−1/2 [42].10 The radius of the smallest nontrivial fuzzy sphere (s = 1

2) is µ
2
√

3. The
radius of the largest fuzzy sphere (s = N−1

2 ) is µ
2
√
N2 − 1. Therefore, when N is not

so large, say N = 16, all possible fuzzy spheres are buried in quantum fluctuations if
µ . 0.018. On the other hand, if µ is fixed and N is sent to infinity, all fuzzy-sphere vacua
are distinguishable [42].

The Myers term is a convenient order parameter for the formation of fuzzy spheres. It
is defined by

M = i

3Nβ

∫ β

0
dt

3∑
i,j,k=1

εijk TrXiXjXk . (3.10)

We monitor it during the simulations. In addition, the different Tr(Xi)2 for each i are
measured to identify nontrivial vacua. The classical value of M is µ3

3N
∑
s nss(s+1)(2s+1),

which is 0 for the trivial vacuum, µ
3(N2−1)

12 for the largest fuzzy sphere (single fuzzy sphere
of s = N−1

2 ), and µ3

4 for N
2 fuzzy spheres of s = 1

2 . We can detect a formation of large
fuzzy sphere or many small fuzzy spheres, unless µ is too small, by monitoring M or R2

defined by

R2 = 1
Nβ

∫ β

0
dt

9∑
I=1

TrX2
I . (3.11)

9Unlike us, ref. [47] focused on the transition between various vacua.
10The value 0.6N−1/2 is the standard deviation. The order-one factor can be determined numerically,

from the expectation value of
∑9

I=1 TrX2
I , which is approximately 3.5N [10]. There are 9N2 matrix entries

and hence
√

3.5N
9N2 ≈ 0.6N− 1

2 .
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Figure 5. Fluctuations of the first three matrices TrX2
i /3 and TrX2

a/6 grouped together show
an obvious breaking of the symmetries. The parameters shown are N = 16, S = 24, T = 0.23 and
µ = 0.6. We see that the Myers term is very small, indicating not a formation of a big fuzzy sphere.
On the other hand, a priori there could be many small fuzzy spheres and in such a scenario the
Myers term cannot distinguish these configurations.

However, it is difficult to detect the formation of a small number of small fuzzy spheres
by monitoring M . Still, when such ambiguity arises, it is unlikely that the properties of
those vacua such as the deconfinement temperature are significantly different. Therefore,
we neglect this subtlety in the present paper. To summarize all the above, we show the
normalized R2

i and R2
a as well as the Myers term (3.10) in figure 5.

4 Conjectured phase structure at finite temperature

In this section we present our conjecture regarding the phase diagram of the BMN and
BFSS models. Numerical evidence will be shown in section 5.

First, let us discuss some generic features of the confinement/deconfinement transition
at large N .

The distribution of the phases of the Polyakov line, which we denote as θ1, θ2, · · · , θN ,
provides us with a convenient way to understand the confinement/deconfinement transition.
In the large-N limit, we can use a continuous function ρ(θ) defined at −π ≤ θ < π

and normalized as
∫ π
−π dθρ(θ) = 1 to describe the distribution of θ. Roughly speaking,

there are three kinds of phases visualized in figure 6 [19, 20]:11 the uniform (blue), non-
uniform and non-gapped (orange) and non-uniform and gapped (red) phases. They can

11Note that we are considering the thermal transition here. When the different boundary conditions such
as the periodic boundary condition are used, other types such as the multi-peak distribution can appear as
well. Recently, an analogue of deconfinement in the index of 4d N = 4 SYM was found [48], and multi-peak
distributions were reported in, e.g., ref. [49]. Sometimes, such phases are called ‘partially-deconfined phase’
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be understood as the confined, partially-deconfined (equivalently, partially-confined) and
completely-deconfined phases, respectively [23–25].

For historical reasons, let us call the transition between the uniform phase and the
non-uniform, non-gapped phase (resp., the non-uniform, non-gapped phase and the non-
uniform, gapped phase) the Hagedorn-like transition (resp., the Gross-Witten-Wadia
(GWW) transition).12 Let T1 (resp., T2) be the transition temperature for the Hagedorn-
like transition and the GWW transition, respectively. In figure 2, a sketch of the tempera-
ture dependence of the Polyakov loop P is shown. From left to right, the panels correspond
to T1 > T2, T1 = T2, and T1 < T2 respectively. The case with T1 = T2 can be found, e.g.,
for the weak-coupling limit of 4d Yang-Mills theory on S3. In this case, at the critical
temperature T = T1 = T2, states with different values of P have the same free energy,
and hence, all of them are equally important in the canonical ensemble. Such degeneracy
in the free energy comes from the cancellation of the entropy factor and the Boltzmann
weight, which is the same as the mechanism of the Hagedorn growth in string theory [50].
This gives a nice intuitive connection between deconfinement and the formation of a black
hole [19, 20]. When the interaction is introduced, depending on the details of the theory,
the vertical orange line can be tilted toward the left (T1 > T2) or right (T1 < T2). In the
former case, the non-uniform, non-gapped phase has negative specific heat (i.e. dE

dT < 0;
note that the energy E increases with P ), and in the canonical ensemble, this is a maxi-
mum, rather than a minimum, of the free energy at each fixed T . Such phase resembles the
so-called small black hole [20]. Partial deconfinement gives a natural way to understand
the negative specific heat [21, 23]. Note that, in the canonical ensemble, a first-order tran-
sition analogous to the Hawking-Page transition [18, 53] with hysteresis is expected when
T1 > T2.

4.1 BFSS matrix model (µ = 0)

In this subsection, we argue that the BFSS matrix model should have a confined phase
corresponding to a metastable vacuum. The dual M-theory description plays a crucial role,
and hence, the confirmation of confinement is tantalizing evidence for the dual M-theory
description.

4.1.1 ’t Hooft large-N limit via dual IIA superstring theory

Let us consider the ’t Hooft limit of the BMN matrix model at µ = 0, corresponding
to the BFSS model. The deconfined phase is dual to a black zero-brane in type IIA
string theory [3]. According to this, the dual gravity analysis predicts that the energy at
sufficiently low temperature is E ' 7.41N2λ−3/5T 14/5 up to stringy corrections. No phase

as well. Note also that, at strong coupling, the phase structure may be richer, and we may need to use
other order parameters as well; in the dual gravity description, various black hole solutions can exist.

12When the free-string picture is available, the transition between the uniform phase and the non-uniform,
non-gapped phase is actually the formation of the Hagedorn string [50], as long as the ’t Hooft coupling is
not too large. Such an interpretation may not be valid when the gravity dual is M-theory. The word “GWW
transition” is used to mean the formation of the gap in the eigenvalue distribution. In the weakly-coupled
theory studied in refs. [19, 20], this transition is of third order, resembling the original Gross-Witten-Wadia
model [51, 52].
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transition is expected; at any nonzero temperature, the energy is of order N2, and hence,
the system is in the deconfined phase. This conjecture has been tested via Monte Carlo
simulation by several groups, e.g., refs. [9, 10, 54–59]. In ref. [10], the large-N , continuum
limit has been taken in a wide temperature region λ−1/3T ≥ 0.4. Even at λ−1/3T = 0.4,
the distribution of the Polyakov line phases ρ(θ) is clearly gapped, and the energy can be
fit by the ansatz based on the weakly-coupled string theory. As long as the dual type IIA
description is valid, we expect only the deconfined phase.

As we will discuss below, a confined phase ( E
N2 → 0, P → 0 as N → ∞ at fixed T

and fixed λ) can also exist.13 Except for the parametrically low temperature, the confined
phase has larger free energy than the deconfined phase, and hence, it does not dominate
the canonical ensemble. Still, such a metastable phase can be identified in Monte Carlo
simulations if we choose the initial configuration for the simulation carefully. We will argue
that the existence of this confined phase constitutes strong evidence for M-theory on the
gravity side.

4.1.2 M-theory and confinement

Let us continue the study of µ = 0, but depart from the ’t Hooft limit and go to paramet-
rically small energy in the microcanonical ensemble. As we will see, dual gravity picture
suggests a first-order transition in the canonical ensemble.

Based on the gauge/gravity duality, it was conjectured [3] that there are two phases
dual to the type IIA black zero-brane and M-theory black hole (11d Schwarzschild black
hole), based on the analysis of the gravity side. Separately, refs. [28, 29, 31] studied the
matrix-model description of the 11d Schwarzschild black hole and discussed how thermo-
dynamic relations might be explained. More precisely [3, 31]:

• At E & N2/3λ1/3 and T & N−10/21λ1/3, a type IIA black zero-brane is a good dual
description. The energy and entropy scales as E ∼ N2λ−3/5T 14/5, S ∼ N2λ−3/5T 9/5.
The specific heat is positive.

• Below E ∼ N2/3λ1/3, the M-theory circle is relevant in the thermodynamic analysis.
When the energy is not too small, the appropriate object in the dual picture becomes
the uniform black string wrapped around and boosted along, the M-theory circle.
This object is a trivial M-theory uplift of black zero-brane, and hence thermodynamic
properties are similar to those of a black zero-brane.

• When the energy is lowered further, the Gregory-Laflamme transition [32] to a local-
ized boosted 11d black hole takes place at S ∼ N and T ∼ N−5/9 [33].

Therefore it is natural to expect T2 ∼ λ1/3N−5/9. Note that this is outside of the ’t Hooft
scaling regime T ∼ λ1/3N0 and we expect that Tc is close to T2.

The detailed properties of the M-theory black hole are not known. However, a few
generic features can be inferred. Firstly, we expect that the dual geometry is a black

13This is not the ’t Hooft large-N limit, and standard ’t Hooft counting does not hold.
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hole and graviton gas in a finite-size box, analogous to AdS times sphere. In refs. [28–
30], it is assumed only a part of D0-branes (or more precisely, matrix degrees of frreedom)
participate in the Shwarzschild black hole. Other D0-branes can describe gravitons emitted
from the black hole. This can naturally be understood in terms of partial deconfinement [21,
42], i.e., the deconfined sector describes the degrees of freedom in the black hole. By
assumption all eigenvalues are bounded (i.e., we imposed such constraint in the numerical
simulation), hence the degrees of freedom in the confined sector contribute to the bulk
geometry as well and the geometry would not be too different from black zero-brane seen
from an observer at sufficiently far from the black hole. Specifically, we expect a large
M-theory circle near the center of the bulk geometry. Secondly, the KK-momentum of
the black hole along the M-theory circle can decrease as the energy is lowered, because
the KK momentum corresponds to the number of D0-branes. Therefore, we expect that
the thermodynamic properties is not drastically different from a small black hole without
boost. Specifically, we conjecture that the M-theory black hole has negative heat capacity,
namely the temperature increases as the energy decreases.14

In the canonical ensemble, such a phase corresponds to the local maximum of free
energy separating the zero-brane phase (deconfined phase) and vacuum or graviton gas
(confined phase). To give a very rough estimate of T1, we use the Schwarzschild solution
in the noncompact space without boost, S ∼ T−9

GN,11
∼ N3T−9, as an approximation. Then

we obtain T ∼ N2/9 for the entropy at the Gregory-Laflamme transition, S ∼ N . There is
a jump of the temperature compared to the boosted uniform black string. It is likely that
a non-uniform black string phase connects these two phases. For complete evaporation to
graviton gas, the black hole would have to be much smaller than the Gregory-Laflamme
point. Therefore, we expect T1 & N2/9. A natural upper bound would be the 11d Planck
scale ∼ N1/3. We emphasize again that this is a very rough estimate; the important point
is that T1 can become parametrically large at large N .

It is natural to conjecture that such phases with negative specific heat, for which the
nontrivial geometry along the eleventh direction is important, are partially-deconfined.
See figure 3 for a sketch of the relationship between the free energy and energy at a fixed
temperature. The transition between the partially-deconfined phase and the completely-
deconfined phase is the Gross-Witten-Wadia (GWW) transition where the gap is developed
in the distribution of Polyakov line phases [23, 25]. In this sense, it would be natural to
interpret the GWW transition as a ‘phase transition between string theory and M-theory’.

Our study in the ’t Hooft limit suggests the phase diagram shown on the left of figure 4.
Assuming the dual gravity analysis for the µ→ 0 limit [3] is valid, a cross-over from type
IIA string theory to M-theory should be found as the energy is lowered if we zoom into the
lower-left corner of this phase diagram. Although the heat capacity is positive in the type
IIA region, it can turn negative in the M-theory region. Therefore, it is not unreasonable to
expect that the phase transition we observe in this paper is connected to the typeIIA/M-

14We emphasize that this statement is speculative and it is desirable to have a more elaborate analysis.
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theory phase transition.15 Therefore, we might be able to learn about the M-theory black
hole by studying the partially-deconfined phase in the BMN matrix model.

The highest temperature of the trivial-confined phase T1 is the highest temperature of
the partially-deconfined phase. Because we expect that the partially-deconfined phase is
dual to the eleven-dimensional Schwarzschild black hole, we should find the temperature of
the smallest possible black hole. We can use the Gregory-Laflamme-transition temperature
∼ N2/9 as a lower bound for T1. A loose upper bound can be obtained by the Planck scale
∼ N1/3.

A parametrically large T1 is probably a generic feature of string/M-theory.16 As a
well-known example, let us consider the case of the duality between 4d SYM and type IIB
string theory on AdS5×S5 with large fixed ’t Hooft coupling λ4d = O(N0) [16, 20]. In this
case, we have two scales: the Planck scale and the string scale. Supergravity is a good
approximation when the black hole is bigger than the string length because strings can
behave like point particles. Below this scale, the description as Hagedorn string is more
appropriate. Therefore, T1 ∼ `−1

s ∼ λ
1/4
4d is expected, where λ4d is the ’t Hooft coupling

of 4d SYM. Note that this is the same as the Hagedorn temperature of the free string.17
Note also that the mass of the 10d Schwarzschild black hole at T1 is much larger than
the Planck mass in this case. Still, in the strong coupling limit (λ4d → ∞), T1 becomes
parametrically large.

Strictly speaking, the 10d black hole phase considered above is the equilibrium state
of a 10d black hole plus graviton gas filling the rest of AdS5×S5. In the ’t Hooft large-N
limit, the energy of the graviton gas is much smaller than that of the black hole. Hence
it could be ignored in the thermodynamic analysis, and the 10d black hole is stable in
the microcanonical ensemble. The situation can change away from the ’t Hooft large-N
limit [60]. A weakly-coupled string description is justified as long as gs ∼ g2

4d � 1 and
`s

RAdS
∼ λ

−1/4
4d � 1. If λ4d & N8/17 (which is allowed while still satisfying g2

4d � 1), the
graviton gas can have larger entropy than the 10d black hole, even when the latter is not
as small as `s and hence supergravity is a good approximation. Therefore, at λ4d & N8/17,
a sufficiently small 10d black hole can evaporate completely to the gas of gravitons; it is
unstable even in the microcanonical ensemble. This argument identifies the highest possible
temperature of the 10d black hole, or more precisely, the system of graviton gas and the
10d black hole, which is equivalent to T1. The scaling with N can be estimated by requiring
the entropies of the black hole ∼ (`p,10dE)8/7 and graviton gas ∼ (RAdSE)9/10 to be of the
same order at T = T1. By using `9p,10d ∼ N−2 for RAdS ∼ 1, we obtain E ∼ N20/17 and
T1 ∼ N2/17. This is smaller than the Hagedorn temperature ∼ λ

1/4
4d if λ4d & N8/17, but

still it becomes parametrically large in the large-N limit.
15This expectation may not be valid if there is a phase transition separating the µ→ 0 limit and µ ∼ N0

region. A theoretically complicated feature of the limit of µ→ 0 is that different fuzzy-sphere vacua become
identical with the trivial vacuum of the BFSS matrix model unless the spin is increased as µ approaches
zero.

16We thank Steve Shenker for drawing our attention to ref. [60] which is crucial in the argument provided
below.

17The length of the string is related to the energy E and entropy S as E ∼ L
`2

s
and S ∼ L

`s
. The Hagedorn

temperature TH is the temperature at which the free energy of the free string F = E − TS becomes zero,
and hence, TH ∼ 1

`s
.
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The same analysis [60] can be applied to the AdS4×S7 geometry dual to the ABJM
theory [61]. A rough estimate of the highest possible temperature of the 11d black hole
T1 is obtained by requiring that the entropies of graviton gas ∼ (RAdSE)10/11 and black
hole ∼ (`P,11dE)9/8 are of the same order at T = T1. By using `−1

P,11d ∼
N1/6

RAdS
, we obtain

T1 ∼ 1
RAdS

(
`P,11d
RAdS

)−9/19
∼ N3/38

RAdS
. This T1 is smaller than the Planck mass, and hence the

approximation by eleven-dimensional gravity is self-consistent.
The same logic could be applied to the BFSS matrix model if the gravity side were

understood more precisely. It would be nice if we could see the trivial-confined phase at
a much larger N and a higher temperature. That it was not observed in past studies
is not necessarily a contradiction because a careful choice of the initial condition for the
simulation is needed to see such a phase which has small free energy.

4.2 BMN matrix model (µ > 0)

Let us now consider the µ > 0 case with trivial vacuum, and gradually raise the temperature
(canonical ensemble). At sufficiently low temperature, the system is in the confined phase.18
In the same manner, if we take a nontrivial fuzzy-sphere vacuum and raise the temperature,
the system is confined at a low temperature. To distinguish them, we use the names “trivial-
confined phase” and “fuzzy-sphere-confined phase”.19

As the temperature goes up, at some point, a transition to a deconfined phase can take
place. As long as the thermal excitation of each matrix entry is not too strong, we can
still distinguish different fuzzy-sphere backgrounds. Therefore, both a “trivial-deconfined
phase” and “fuzzy-sphere-deconfined phase” can exist.20

As we will see shortly, all these phases — trivial-confined phase, fuzzy-sphere-confined
phase, trivial-deconfined phase, and fuzzy-sphere-deconfined phase — can be minima of
free energy in the canonical ensemble. Multiple minima can coexist in certain parameter
regimes, and the phase structure can be rather complicated. We will take the trivial-
confined phase and study the transition to deconfinement, but a priori, we do not know
whether the trivial-deconfined or fuzzy-sphere-deconfined phase is obtained. To make the
analysis tractable, we split the discussion into two steps.

• First, we ignore the possibility of a transition to the fuzzy-sphere-deconfined phase
and consider the transition between the trivial-confined phase and the trivial-deconfi-
ned phase. We argue that there are three kinds of critical temperatures, T1, T2, and
Tc, that satisfy T2 < Tc < T1. The trivial-confined phase (resp. trivial-deconfined
phase) exists as a minimum of free energy only at T ≤ T1 (resp. T ≥ T2). The

18By ‘confined phase’, we mean a phase in which the energy and entropy are of lower order in N than
N2, while they become of order N2 in the deconfined phase. Confinement is also indicated by a uniform
distribution of the Polyakov line phases. Note that ‘confined phase’ is sometimes used to indicate the phase
with order N0 energy and entropy.

19We could also call them ‘confined phase on the trivial background’ and ‘confined phase on the fuzzy-
sphere background’.

20If we fix µ and N and go to a very high temperature, the thermal excitation of each matrix entry
becomes larger than the size of any fuzzy sphere, and the distinction between “trivial-deconfined phase”
and “fuzzy-sphere-deconfined phase” disappears.
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free energy of these two phases coincides at T = Tc. The trivial-confined phase
(resp. trivial-deconfined phase) is favored at T < Tc (resp. T > Tc). See section 4.2.1.

• Next, we take into account the fuzzy-sphere-deconfined phase. We show that a
lower bound for T1 is obtained if we observe the trivial-confinement/fuzzy-sphere-
deconfinement phase transition. See section 4.2.2.

• When µ is very small and N is not very large, we see yet another “phase transition”;
one or few of the eigenvalues escape and roll to very large values. This corresponds
to a run-away behaviour toward the flat direction at µ = 0 [9, 62]. We can obtain a
lower bound for T1 also from this run-away behavior. See section 4.2.3.

4.2.1 Trivial-confinement/trivial-deconfinement transition

Let us think about what kind of phase diagram can appear in the BMN matrix model.
At each fixed µ, we expect one of the types of phase distributions shown in figure 2. The
large-µ region permits perturbative calculations [40, 41], and the transition is found to be
of first order, i.e., the left scenario in figure 2 is realized. Therefore, we expect one of the
two phase structures depicted in figure 4, depending on the order of the phase transition at
µ = 0. Let us call them the first-order scenario and not-first-order scenario, respectively.

We expect that the first-order scenario is more likely to be realized for the following
reasons:

• We expect a first-order transition in the BFSS matrix model, and if the µ → 0
limit is smooth, this first-order character should persist for finite µ. (Note that the
smoothness of the µ→ 0 limit is nontrivial, and the order of µ→ 0 and N →∞ can
be important.)

• In the not-first-order scenario, the first-order transition at large µ splits into two
transitions at small µ (T1 becomes smaller than T2, and Tc disappears). Then the
GWW transition should exist at some finite temperature T2 > 0 even at µ = 0.
It has to lie below λ−1/3T = 0.4, because ρ(θ) is gapped there [10]. But if this
were the case a big puzzle would pop up: why did the numerical simulations in the
past agree well with dual gravity predictions, although they have been performed
at higher temperature which could be separated from the low-temperature region,
where gravity is precise, by the GWW transition? Thus, a not-first-order scenario is
disfavored.

• If the GWW transition lies in the type IIA string theory region, there is yet another
problem: below the GWW transition, it is natural to expect that the system is in the
partially-confined phase, which corresponds to the RR-charge less than N ; it does
not agree with the charge counting in the gravity side.

More on the first-order scenario. Suppose the transition is of first order, as shown
in the left panel of figure 4. Then, as µ→ 0, the jumps of the energy and entropy have to
approach zero (more precisely, E

N2 and S
N2 have to approach zero), otherwise the µ = 0 limit
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Figure 6. The uniform (blue), non-uniform and non-gapped (orange) and non-uniform and
gapped (red) phases. They can be understood as the confined, partially-deconfined and completely-
deconfined phases, respectively.

P P

T T

N →

Tc Tc

µ→

T1

T1

T2

T2

Figure 7. The first-order scenario. The left panel is for larger µ, and the right panel is for smaller
µ. Both critical temperature and the size of the jump decrease as µ becomes smaller and N becomes
larger, while T1 can go up, as discussed in section 4.1.2. Strictly speaking, the orange part further
splits into two phases: the black string and black hole phases.

disagrees with the dual gravity picture [3] which has been tested throughly by numerical
simulations. It is natural to expect that the jump of the Polyakov loop also vanishes at
µ = 0; see figure 7. Then, the distribution ρ(θ) has to become almost flat, while staying
gapped; see figure 8.21

Let us summarize how the first-order scenario may work:

• The transition remains of first order at small µ. As µ becomes small, the transition
temperature approaches zero (figure 4 left).

• The jump of the energy and Polyakov loop at critical temperature becomes smaller.
(figure 7)

• The distribution of the Polyakov line phases at the GWW transition is distorted more
and more at smaller µ and approaches the uniform distribution. (figure 8)

21This is consistent with the claim in ref. [63] that the phase distribution becomes flat at zero temperature.
It is also consistent with the unpublished observation made by using the simulation data for ref. [57].
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Figure 8. Possible form of the phase distribution around the phase transition at very small µ.

4.2.2 Trivial-confinement/fuzzy-sphere-deconfinement transition

Suppose the first-order trivial-confinement/fuzzy-sphere-deconfinement transition is ob-
served at T̃c as T is increased before the trivial-confinement/trivial-deconfinement transi-
tion is observed. Here we consider the situation that initial configuration for the simulation
is taken from the trivial-confined phase, and temperature is gradually raised. (We will en-
counter this situation later in section 5.2.) Then, a natural expectation is that T̃c < Tc.

More precisely: suppose that the two-state signal is observed between T̃2 and T̃1,
where T̃2 < T̃1. Then, it is natural to expect T̃1 < T2. Otherwise, we should see the trivial
deconfined phase as well.

4.2.3 Run-away behavior

The BFSS matrix model has flat directions. The BMN model shows remnants of these:
when µ is small, scalars can be almost commutative, and eigenvalues can diverge as µ
is sent to zero. All four phases under consideration can have an instability in this semi-
flat direction. Let us denote such an instability as “run-away behavior”. This effect is
temperature-dependent: at sufficiently large temperatures, the flat directions are lifted.

In the trivial-confined phase, all D0-branes are sitting at the origin without any ex-
citation [42]. On the other hand, in the trivial-deconfined phase, each degree of freedom
has an energy of order N0. Because some amount of energy is needed for a D0-brane to
move in the flat direction, it is natural to expect that the trivial-deconfined phase is more
prone to the run-away behavior. We expect the same for the fuzzy-sphere background,
i.e., the fuzzy-sphere-deconfined phase is more prone to the run-away behavior. It is also
known that the problem with the flat direction is milder at high temperatures. Hence,
in the small-µ and not-so-large-N region, it can be the case that the deconfined phase
can be sufficiently stable only at higher temperatures. Consequently there can be a finite
temperature range where we do not notice the metastable deconfined contribution in the
simulations.22

22Note that it is hard to distinguish this possibility from a more standard scenario figure 7 with a very
shallow meta-stable minimum; in Monte Carlo simulations, both would exhibit the run-away behavior.
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All of these observations suggest the following scenario. Suppose we start with the
trivial-confined phase, gradually raise the temperature, and observe run-away behavior at
some temperature Trun-away. This temperature provides us with a lower bound for T1, i.e.,
Trun-away ≤ T1. At sufficiently large N , Trun-away and T1 should not differ much.

5 Numerical determination of the phase transitions

After the discussion of the continuum physics and the conjectures about the phase tran-
sition, we now present our results from numerical simulations. The simulations have been
done with the HMC algorithm. A careful analysis is needed to test the scenario described
in section 4. Prior to this description, we consider the simpler case of the bosonic analogue
of the BMN matrix model, where the transition point can be precisely identified even in
the small µ limit. After this exercise, we present the results of simulations for the full
supersymmetric BMN model. The BFSS matrix model is the limit of µ → 0 in the BMN
matrix model. Although our main interest lies in the limit of µ→ 0 which has dual grav-
ity descriptions, we will start from the large-µ region where the simulation is easier and
gradually move toward smaller µ.

The lattice action used for the simulations is discussed in appendix C. We use L to
denote the number of lattice points. The lattice spacing is a = β

L . The continuum limit is
taken by sending L to infinity.

5.1 Phase transitions in the bosonic BMN model

In this section we study the bosonic analogue of the BMN matrix model (bosonic BMN),
whose action is only the bosonic part of the original, supersymmetric BMN matrix model.
That is, we use the action S = Sb + ∆Sb, where Sb and ∆Sb are defined by (3.3) and (3.5),
respectively. This model is much easier to simulate than the full, supersymmetric BMN
model. This exercise is performed to confirm convergence to the bosonic BFSS model [64]
in the µ→ 0 limit.

Historically, there was some confusion regarding the phase structure of the bosonic
BMN model. At weak coupling (large µ), perturbative analysis shows that the phase
transition is of first order. At µ = 0, the first systematic study [65] used the data with
N ≤ 32 and suggested that the transition takes place at nonzero temperature and it is not
of first order. However, a later study with N > 32 revealed that the transition is actually
of first order after all [64]. From this fact, ref. [64] concluded that the phase diagram of
the bosonic BMN model looks like the left figure of figure 9.

Strictly speaking, to establish the phase structure unambiguously, it is necessary to
confirm that the phase transition is of first order even in the intermediate-µ region. Below,
we study a few intermediate values of µ, and confirm this. In addition, we study the
features of the transition in detail.

That the transition is of first order can be confirmed by observing the two-state signal
in the Polyakov loop. Indeed, this is shown in figure 10. We can see that the Polyakov loop
jumps from P ' 1

2 to P ' 0, at any µ. (In figure 10, the energy and Myers term are also
shown. The two-state signal is not clearly visible for these quantities.) We can see that
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confine
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Figure 9. Possible phase diagrams of the bosonic BMN model for the canonical ensemble. Ref. [64]
concluded that the left figure is the actual phase diagram.
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Figure 10. Histogram of the distribution of the Polyakov loop (first row), energy (second row),
and Myers term (third row) during lattice Monte Carlo simulations for the bosonic BMN model at
matrix size N = 64 and lattice size L = 24. The values of µ are 0.125, 0.25, 0.5 and 1.0, from left to
right. A two-state signal near the transition temperature is observed at all values of µ, particularly
for the Polyakov loop P . The jumps of energy and Myers terms are of order N2, but we do not
observe the formation of a fuzzy-sphere background.

P ' 1
2 corresponds to the GWW transition because the spectrum of the eigenvalues of the

Polyakov line develops a gap as we can see at the phase distributions shown in figure 11.
The transition temperature, where the free energies of the confined and deconfined

phases take the same value, can be determined from the two-peak signal; this is the tem-
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Figure 11. Distribution of the phases of the Polyakov line near the transition tempera-
tures for the bosonic BMN model. From left to right, µ = 0.125, 0.25, 0.5, 1.0 with Tc =
0.8853, 0.8864, 0.8918, 0.9134, respectively. The matrix size and the lattice size are N = 64 and
L = 24, respectively. The gap opens at P ' 0.5.

perature at which two peaks contain the same number of configurations. The separation of
two peaks is obtained by considering approximately same areas enclosed under two peaks.
The numbers of trajectories in our simulations are large enough to estimate the transition
temperatures with errors of 0.02%. The critical temperatures determined for different µ in
this manner are shown in figure 12. There is a symmetry µ ↔ −µ and the µ-dependence
in Tc is expected to be at least of quadratic order. Tc can actually be well described by
a quadratic fit. The limit of µ → 0 is consistent with the results for bosonic BFFS [64],
Tc|µ=0 = 0.885± 0.001 at N = 64, L = 24.

The dip in the histogram can be interpreted as the partially-deconfined phase, which
sits at the maximum of the free energy in the canonical ensemble. At this point, ρ(θ)
is expected to be nonzero everywhere between −π and +π. This is consistent with the
numerical observation: as mentioned above, if we look at configurations at each fixed P ,
then if P < 1

2 , ρ(θ) is nonzero everywhere between −π and +π as shown in figure 11.
The jumps of energy and entropy are of order N2, at any µ (see figure 10). The jump

of energy goes down with µ but does not vanish even at µ = 0 [64]. In the supersymmetric
theory, on the other hand, we expect the jump to vanish at µ = 0, up to the 1/N -suppressed
corrections as we discuss in section 4 and in figure 7.

5.2 Phase transitions in the full BMN model

Our main interest is the thermal transition from confinement to deconfinement, while the
configuration of the Xi is kept in the trivial background with no relevant fuzzy sphere
contributions.23 This is due to the fact that this scenario is assumed in the dual gravity
predictions. We want to verify a continuous transition line from perturbative predictions
at weak coupling to the conjectures at strong couplings obtained with help from the dual
gravity description.

23Trivial (fuzzy-sphere) background means fluctuations around a configuration of the trivial (fuzzy-sphere)
vacuum.
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Figure 12. Transition temperatures for the bosonic BMN model against fluxes µ. The paren-
thesis indicates the errors of the fit, and the left-most point is the extrapolated BFSS transition
temperature (matrix size N = 64, lattice size L = 24) from [64]. The fit is given by the equation
Tc = 0.8846(01) + 0.0297(02)µ2.

A phase transition is a well-defined concept in the thermodynamic limit, which is the
large-N limit in the case of the matrix models. In our numerical studies at finite N and
finite simulation time, several ambiguities concerning the exact definition of the transition
have to be taken into account.

The first one is related to the common difficulty in identifying a first order transition.
In the ideal world, we would be able to study very large N efficiently. If N were sufficiently
large such that the separation of two phases is clear, and at the same time, the number
of configurations collected in the simulation would be very large such that the tunneling
between two phases can be captured, then the two-state signal would be very clean. In this
idealized case it would be possible to determine Tc, T1, and T2 precisely. For the bosonic
BMN model, we can actually perform such an analysis. However, for the full BMN model,
such a detailed study is not possible for all parameter sets because of large simulation cost.
Compared to the bosonic BMN model, we have fewer data points, and the 1/N -corrections
are larger. Still, the large-N behavior can be deduced by comparing the results for different
values of N .

The second complication arises at finite N due to tunneling to fuzzy-sphere configura-
tions. As we explained in section 4, there can be confinement or deconfinement with either
a fuzzy-sphere or a trivial background of the Xi fields. At small values of µ or N , tun-
neling between different backgrounds can take place with a non-negligible rate. At larger
µ, the tunneling is well suppressed even at the values of N we study in this work, and
we observe the trivial-confinement/trivial-deconfinement transition. However, at smaller
µ, deconfinement is associated with the transition to a fuzzy-sphere background. Let T̃c
be the critical temperature at which the transition between the trivial-confined phase and
fuzzy-sphere-deconfined phase is observed. If we do not see the transition to the trivial-
deconfined phase, then we expect T̃c ≤ Tc. Tc is the point where the free energies of the
trivial-confined and trivial-deconfined phases coincide as explained in section 4.2.2.

We have tested different strategies to disentangle the influence of the tunneling to a
fuzzy-sphere background and to obtain more information about the deconfinement transi-
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tion in the trivial background. One strategy corresponds to constraining the Myers term,
which forces the system to stay in trivial background.24 Alternatively we have also inves-
tigated indications of metastability related to hysteresis effects. These investigations will
be detailed below.

Our investigation led us to some expected and some unexpected observations, depend-
ing on the parameter region. The results are summarized in figure 13. (A complete list of
simulation points is given in appendix A, with short explanations regarding the simulation
setups and outcomes.) We split the parameter space into four regions:

• For µ ≥ 2.0, the transition between the trivial-confined and trivial-deconfined phases
can be easily identified. We observe convergence to the perturbative limit as µ be-
comes large. At intermediate µ, the Padé resummation based on the large- and
small-µ behaviors obtained via perturbative calculation and dual gravity analysis
gives a reasonable approximation to the simulation results. (See refs. [47, 66] for
similar observations.)

• For 0.8 ≤ µ < 2.0, convergence to the dual gravity prediction is observed as µ becomes
small. Below µ = 0.8, the deviations from the predicted line start to increase again.

• For µ < 1.6, transitions to fuzzy-sphere configurations are observed frequently (see
ref. [47] for a similar observation), which makes it in some regions impossible to
observe the trivial-deconfined phase. In these cases, deconfinement and tunneling to
a fuzzy-sphere background take place simultaneously, at least at the values of N and
L we have studied.

• For µ < 0.8, we observe pronounced metastable confined and deconfined phases.
The system tends to remain in one of the phases for a longer simulation time, at
least in the range of temperatures T ∈ [0.26, 0.27]. This effect is independent of
any constraint of the Myers term and even appears for fuzzy-sphere background.
We observe indications that the metastable confined state persists even in the BFSS
limit. As we will see, this apparent deviation from the gravity prediction may be
simply a finite-N effect.

5.2.1 Simulation setup

We use the same simulation program as done in earlier simulations of the BFSS model [10].
It is based on the RHMC algorithm [67], neglecting the phase of the Pfaffian based on the
arguments presented already in the BFSS case [9, 54]. The program includes a possible
constraint for R2 ≡ 1

N

∑9
I=1 TrX2

I , which has been used in some simulations of the BFSS
model to stabilize the trivial background in ref. [10], but not in the current paper. We
have added in the same way constraints for the Myers term and the Polyakov loop. (See

24The full path integral contains multiple backgrounds, and we are interested in a particular background.
Therefore, we have to restrict the path integral to the fluctuation around such a background, to obtain
physically meaningful result [1, 9, 57]. In this paper, we identify the background we are interested by
specifying the value of the Myers term. See section 5.2.1 for more details.
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Figure 13. The critical temperature Tc vs. flux parameter µ for the full BMN model. The data
points for the critical temperature correspond to a two-state signal with about equal probability
for confined and deconfined phase, and their error bars are given by the neighboring simulated
temperatures, for which these probabilities differ. The error bars without data points for µ = 0.6
indicate observation of a hysteresis, see figure 25. For µ = 1.5 and 1.6, we also observed hystereses
in the region given by the error bars but did not investigate the full extent of the hysteresis region.
For comparison, the prediction of the perturbative analysis [40], Padé resummation [47], and gravity
calculation [39] are plotted. In the main text, the way the transition temperature at each parameter
set is determined is detailed, and the apparent deviation from the gravity predictions at small µ
is explained. (Note that the latter can simply be a finite-N artifact.) In the BFSS limit µ → 0,
although we could not identify the two-state signal, we still conclude that we observe the confined
phase; see section 5.2.5.

ref. [27] as an example for a simulation with a constraint on P .) Each constraint forces an
observable O to lie in the interval [xmin, xmax] around a given value x depending on the
coupling strength γ. Inside the chosen interval the constraint has no effect. Expressed in
terms of the Heaviside function Θ, the additional contribution to the action is

Sconstraint(x;xmax, xmin, γ) =


γ · (O − xmin)2 (O < xmin)

0 (xmin ≤ O ≤ xmax)
γ · (O − xmax)2 (xmax < O)

(5.1)

where γ is a sufficiently large positive number. Consequently, the value of O is approxi-
mately constrained between xmax and xmin. We have added this constraint contribution to
the action in some of the simulations to stay as close as possible to the trivial background
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in certain parameter ranges. It prohibits tunneling to nontrivial backgrounds, which is
expected to be suppressed in the large-N limit, even at small N . We will discuss in detail
in which cases the constraints have been included.

In all our simulations, we have kept the trajectory length of the molecular dynamics
constant and adjusted the stepsize to achieve a similar acceptance rate. Statements about
tunneling time and probability are hence always in reference to this trajectory length.

In addition to a transition indicated by the Myers term, we observe a run-away behavior
of the scalar fields in the BFSS limit, remnants of which show up already at small µ. We
monitored TrX2

I for each I = 1, 2, · · · , 9 to keep it under control. We observed that this
effect appears preferably in the X9-direction, presumably due to a lattice artifact specific
to our regularization. The run-away behavior is generally enhanced by lattice artifacts and
consequently reduced in the large L limit.

5.2.2 Convergence to perturbative limit at µ ≥ 2.0

In this region, the transition between the trivial-confined and trivial-deconfined phases can
easily be identified. We observe convergence to the perturbative limit as µ becomes large,
as shown in figure 13. The tunneling to a nontrivial background close to Tc is not relevant
and we are able to determine Tc precisely from a two state signal in the Polyakov loop.
This indicates a first order phase transition, as shown in figure 14. By monitoring TrX2

I

and TrX1[X2, X3], we can confirm that the two peaks are both consistent with a trivial
background. Due to the stability of the results, no constraint part has to be added to the
action. The phase transition takes place at a rather high temperature, where the effect
from the fermions is not so important. Therefore, the transition temperatures become
similar to that of the bosonic theory.

We can also check more detailed features of the deconfinement transition and confirm
the picture that we have already investigated in the bosonic BFSS model [64]: for each
fixed T and µ in the first-order-transition region, the energy and 〈TrX2〉 depend on P as
a+ bP 2. For large µ, the distribution of the phases of the Polyakov line is consistent with
ρ(θ) = 1+2P cos θ

2π , and the GWW transition takes place at around P = 1
2 ; see figure 15.

However, already at µ = 2.0, we can see a subtle but clear deviation from the large µ
behavior: the GWW transition takes place slightly below P = 1/2, and the distribution of
the phases of the Polyakov line becomes distorted, as we can see from figure 16.

5.2.3 Convergence to dual gravity prediction at 0.8 ≤ µ < 2.0

As we can see in figure 13, the deconfinement transition line shifts from the perturbative to
the dual gravity prediction as decreasing µ towards µ = 1.0 and stays compatible with the
latter down to µ = 0.8. The probability of tunneling to fuzzy-sphere backgrounds increases
at smaller µ. Figure 17 shows an example of such a transition from trivial background
to fuzzy-sphere background in the deconfined phase. Note that the Polyakov loop stays
almost constant at this transition. Already below µ = 1.6, we have to add a constraint for
the Myers term to the action to stay in the trivial background. Without a constraint, the
deconfinement transition also induces a transition in the Myers term. We expect this effect
to be suppressed in the limit of large N . By using the constraint, we are able to confirm
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Figure 14. Full BMN model, flux µ = 3.0, matrix size N = 32, lattice size L = 12 at temperature
T = 0.756. [Top] From left to right, histogram of |P | close to the critical temperature, and Monte
Carlo history for the Polyakov loop at the same parameters for two typical runs with different
sequences of random numbers. A two-state signal is observed. [Bottom] Binned E vs |P | and
binned R2 vs |P |. Larger values of |P | (more deconfined) corresponds to larger values of E and R2,
as expected.

the trivial-confinement/trivial-deconfinement transition. As shown in figure 18, figure 19,
figure 20, and figure 21, we observe two-state signals indicating the first-order transition.

In the considered region of µ we are able to investigate in more detail the nature of
the phase transition. As µ becomes smaller, the shape of the distribution of Polyakov line
phases changes. In figure 22, we plot the distribution of phases for different values of P ,
for µ = 1.5 and µ = 1.6 close to the critical temperature Tc. A clear deviation from the
large µ behavior, now more pronounced compared to µ = 2.0, is observed. We can see that
the gap in the phase distribution of the Polyakov line closes around P = 0.42. In figure 23,
we show an extrapolation of ρ(θ = ±π) to the large-N limit for µ = 1.0 and 1.5. The
extrapolated value is consistent with zero for decreasing P as µ decreases. This is clearly
different from the distribution at the large-µ region, that develops a gap at P = 1

2 , and
continues the trend already observed at µ = 2.0.

5.2.4 Small µ ≤ 0.8 regime and convergence to BFSS limit

The point µ = 0.8 is the first point starting to depart from the gravity line and for even
smaller µ our estimate for the critical temperatures shown in figure 13 is always larger than
T

(gravity)
c . However, this apparent deviation from the gravity prediction may be simply a

finite-N effect: we used at most N = 16 to study the small-µ, small-T region. It is not
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Figure 15. Full BMNmodel: [Top] The histogram of the Polyakov line phases for [P−∆P, P+∆P ],
where ∆P = 0.005 and P = 0.46, 0.47, · · · , 0.51. [Bottom] ρ(π) or more precisely, the height of the
right-most bin in the histogram. Top and bottom rows use the same color for the same value of P .
[Left] T = 0.756 (close to T1) for µ = 3.0, N = 32, L = 12. The Myers term was not constrained in
this simulation. [Right] T = 1.18 (close to T1) for µ = 5.0, N = 32, L = 24.
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Figure 16. Full BMN model: [Left] Histogram of the Polyakov line phases in the interval [P −
∆P, P + ∆P ], for ∆P = 0.01 and various values of P , for µ = 2.0, T = 0.543 (close to T1), matrix
size N = 32, and lattice size L = 12. The large µ behavior ρ(θ) = 1+2P cos θ

2π is shown in black. A
clear deviation is observed close to P = 0.5. It appears that the GWW-point is between P = 0.4 and
P = 0.46. The Myers term was not constrained in this simulation. [Right] Large N extrapolation of
the size of the boundary bin for L = 12 and ∆P = 0.01. The GWW transition is seen to take place
around P = 0.46. Only data points left of the dashed vertical line were included in the linear fit.
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Figure 17. Full BMN model: monte Carlo history of |P | and M for N = 24, L = 24, µ = 1.5,
T = 0.43. The system is initially in the deconfined trivial background and tunnels to a fuzzy-sphere
background around trajectory 4500.
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Figure 18. Full BMN model: µ = 1.6, N = 32, L = 24, T = 0.452. Starting from the same initial
configuration, a confined and deconfined stream is obtained from two different random number
generator seeds. For these runs, no constraint on the Myers term is imposed and the simulation
remained in the trivial background.

unreasonable to compare to µ = 0 as a first approximation. Then, a rough estimate of the
critical temperature from the gravity side is Tc ∼ T2 ∼ N−5/9 & 0.251 for N = 12 and
0.214 for N = 16, up to an order one multiplicative factor. As we have seen in section 4.2.1,
T1 should also be similar. Therefore, the critical temperatures observed in our simulations
are in the right ballpark. In fact, if we observed the values much closer to the gravity line
shown in figure 13, this could even be seen as evidence against the duality conjecture. As
N increases, T2 and Tc should decrease while T1 should increase, and the hysteresis should
become more pronounced (figure 7). Thus, the numerical results should converge to the
gravity line even at small µ.

Possible caveats of our analysis have been explained earlier. It is difficult to stabilize
the trivial background, especially in the deconfined state.25 In addition, the run-away of

25It may not be an issue because the trivial background and fuzzy-sphere backgrounds are indistinguish-
able at µ . 0.018 for N = 16, as explained in section 3.2. However we never reached that small µ values.
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Figure 19. Full BMN model: the histogram (left) and typical Monte Carlo history (for T = 0.543)
(right) of P close to the critical temperature for µ = 2.0, for N = 24, L = 12 (top) and N = 32,
L = 12 (bottom).
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Figure 20. Full BMN model: histogram of P close to the critical temperature for µ = 1.0. From
left to right, N = 12, L = 12; N = 16, L = 12; N = 12, L = 24. A two-state signal is observed.
A consistent signal with lower statistics has also been observed for N = 12, L = 36, confirming the
trend of the critical temperature to slightly increase in the continuum limit.
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Figure 21. Full BMN model: histogram of P close to the critical temperature for µ = 0.8, N = 12,
L = 12 (left); N = 12, L = 24 (right). A blurred two-state signal is observed. A consistent signal
with lower statistics has been observed also for N = 8, L = 36; N = 8, L = 48, confirming the
trend of the critical temperature to slightly increase in the continuum limit.
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Figure 22. Full BMN, the histogram of the Polyakov line phases for [P − ∆P, P + ∆P ], where
∆P = 0.02, [Left] µ = 1.5, N = 24, L = 24, T = 0.429 (close to Tc) and [Right] µ = 1.6, N = 32,
L = 24, T = 0.45 (close to Tc) along with the large µ behavior ρ(θ) = 1+2P cos θ

2π in black. A clear
deviation is observed close to P = 0.5. The Myers term was constrained in the simulation for
µ = 1.5.
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Figure 23. Full BMN, the large-N extrapolation of boundary bin, near T1, for T = 0.31, µ = 1.0,
L = 12 (left) and T = 0.429, µ = 1.5, L = 24 (right), as well as ∆P = 0.025. The Myers term is
constrained in these simulations.

– 29 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
6

3

6

9

0.2 0.4 0.6
|P|

fr
e
q
u
e
n
c
y

T 0.16 0.2 0.22 0.24

1

2

3

0.2 0.4 0.6
|P|

fr
e
q
u
e
n
c
y

T 0.26

80000 85000 90000 95000 100000 105000

0
.0

0
.2

0
.4

0
.6

0
.8

MC time

|P|

4 M

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

|P|

M
y
e

rs

Figure 24. Full BMN, the histograms of the Polyakov distribution, and relative Monte Carlo
histories for small µ. [Top-Left] N = 12, L = 24 at µ = 0.3. A possible two-state signal is observed.
At T = 0.24 we observe runaway behavior of R2, as well as in the deconfined sector at T = 0.22.
[Top-Right] N = 16, L = 24 at µ = 0.5. For µ = 0.5, the histogram was obtained by adding two
independent streams which were initially prepared in a confined / deconfined state and remained
there throughout a sufficiently long Monte Carlo evolution time due to the relatively large N = 16.
[Bottom-Left] MC history of N = 12, L = 24 at µ = 0.3, T = 0.22 from the up-left histogram. The
signal suggests repeated tunneling between confined and deconfined states. Note that, at such a
small value of µ, the distinction between trivial background and fuzzy-sphere background is not
clear. [Bottom-Right] The relation between the Myers term and the Polyakov loop for the up-left
histogram. No significant correlation is observed. Note that the Myers term was constrained to
be below M = 0.02, but this cutoff was hit frequently, and often M became larger than the cutoff
0.02. (This is possible because the coefficient for the constraint term is large but finite.)

the scalar fields becomes more important towards the BFSS limit because the mass term
∼ µ2TrX2 is turned off. On the other hand, in this low-temperature region, we observe
an increased metastability which counteracts these effects. The trivial-confined phase gets
stabilized, and simulations without the constraint are possible in some parameter regions.

The metastability in the small-µ, low-T region is indicated by a strong dependence on
the initial conditions of the simulations which tend to stay in either a confined or deconfined
state when started with the respective initial configuration. The observed metastability
indicates a large separation of the temperatures T1 and T2 (see right panel of figure 7). As
we will see in section 5.2.5, the trivial-confined phase turns out to be rather stable at low
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temperatures even in the BFSS limit (µ = 0), while we could not see the two-peak signal
at µ < 0.3 (i.e., at µ < 0.3 and T . 0.3 we could not see the deconfined phase).

At very small µ, the difference in the Myers term for different fuzzy-sphere back-
grounds is significantly reduced (see section 3.2). Fuzzy-spheres can be buried in quantum
fluctuations, and we expect that there is not a strong dependence of the deconfinement
transition on the chosen background configuration. Therefore, the constraint on the Myers
term should not affect the result in the small-µ region. Indeed we can, for example, observe
very similar signals for metastable confined and deconfined state from the Polyakov loop
distribution at µ = 0.3, N = 16, L = 36, T = 0.27 independent of the constraint. The
metastability extends over a large temperature range indicating the difference between T1
and T2. Figure 24 presents evidence for these assertions. For µ = 0.5, a clear two-state
signal is observed by joining a confined and deconfined stream with the same simulation
parameters into a single histogram. Both streams remain in their respective state for a
sufficiently long time to conclude that there is a strong hysteresis. For µ = 0.3, repeated
tunneling between a confined and deconfined state has been observed. In the deconfined
parts of the Monte Carlo history, we observe runaway behavior in R2. For our choices of
N and L, µ = 0.4 was the smallest mass parameter for which we could observe a stable
deconfined phase at temperatures close to the transition temperature. Due to the choice
N = 12, as opposed to N = 16 for µ = 0.5, the two-state signal is not clear in the histogram,
but we were able to see repeated tunneling due to the increased tunneling probability and
simulation speedup at smaller N .

Let us give some more details on how we estimate T1, Tc, and T2 from results as those
shown in figure 25. In this example the parameters are N = 16, L = 24 at µ = 0.6.
It is challenging to observe a precise two state signal at these parameters and requires
large statistics. Another way to give an estimate for Tc in a first-order scenario is by
locating T1 and T2 since T2 < Tc < T1 (see figure 7). We then face the problem of locating
T2 which is indicated by the formation of a gap in the Polyakov eigenvalue distribution
and T1 which is the highest possible temperature with a metastable confined state. Both
determinations require large statistics to be trustable, but one may be able to roughly
estimate the difference ∆T = T1 − T2 at the current level of statistics. Hence we do
the following to locate T2: we start by considering deconfined initial configurations and
gradually lower the temperature until we see the simulation converge to a confined state.
When this transition is accompanied by a gap in the eigenvalue distribution of the Polyakov
loop, it provides an estimate of T2. Following this procedure, see figure 25, we have located
the temperature T2 to be approximately T2 ≈ 0.22. Even though a precise determination
would require larger N and much more statistics, we emphasize that this is nevertheless a
valid estimate.

To locate T1, we took the opposite direction. A confined initial configuration was
used from smaller temperatures and the temperature was gradually raised to check if the
configuration remains confined or not. In the right panel of figure 25, we observe a transition
to deconfined state for T1 ≈ 0.29 for the same parameters N,L, µ. This will be roughly the
maximum confined temperature for this configuration. Then we see that the temperature
window ∆T can be rather large even at these parameters. Towards lower µ, the situation
starts becoming even more difficult to analyze, but the same pattern is observed.
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Figure 25. Full BMN model: [Left] Monte Carlo history for N = 16, L = 24, µ = 0.6, T = 0.22.
The confined phase (|P | ' 0) is observed. [Right] For N = 16, L = 24, µ = 0.6, T = 0.29, starting
with a confined configuration. A transition to the deconfined phase is observed. The temperature
window is of order ∆T ≈ 0.07 at these parameters.

5.2.5 µ = 0: BFSS limit

In this subsection, we review the information extracted from our simulations on the BFSS
limit. As expected, the run-away of scalar fields becomes more relevant as we approach
µ = 0, especially at smaller N and L [9, 10, 54]. An interesting new observation is that the
signal for metastability in a confined state even persists in the BFSS limit, see figure 26.
Such a metastable state can exist because the tendency for the scalar field to diverge is
reduced in the confined phase. On the other hand, we did not observe the deconfined
phase in such a low-temperature region. As we have already seen in section 5.2.4, this
deviation from the gravity expectation can be due to finite N corrections. The expectation
is that T2 and Tc decrease with increasing N , as Tc, T2 ∼ N−5/9, which is still sizable in
our simulations (e.g., 12−5/9 ' 0.251, 16−5/9 ' 0.214). Therefore it is possible that the
simulations at finite N and small T see only the confined phase, even though the deconfined
phase exists all the way down to T2 = Tc = 0 in the large N limit. T1, on the other hand,
increases with increasing N , which means larger N stabilizes the confined metastable state
up to higher temperatures. Nevertheless, this is not in contradiction with Tc = 0 since the
deconfined state has lower free energy.

We performed a detailed investigation at T = 0.2, where the confined phase is suf-
ficiently stable. To obtain the confined phase, the initial configuration has to be tuned
appropriately. We obtained confined configurations by taking the initial configuration to
be a configuration from the BMN simulation at small µ, and XI = 0 for all I = 1, 2, · · · , 9
(‘cold start’). Due to the flat directions, the latter often does not converge to a confined
state, but we were able to observe such a convergence for N = 16, L = 48 and N = 10,
L = 48; see figure 27. While the confined phase appears to stabilize the flat directions to a
certain extent, instabilities may still appear after many Monte Carlo steps, as shown in the
left part of figure 27. We generally observe that the confined state is more stable at larger
N and/or larger L. We were not able to obtain a stable confined state for a sufficiently
long time below L = 30. However, for larger L, by slowly increasing the temperature, we
were able to see a confined phase up to about T = 0.26.

To make sure that we are observing the confined phase, we performed continuum
extrapolations (linear in 1/L) for N = 10, 12 and 16, as well as large N extrapolations
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Figure 26. Monte Carlo histories showing confined, stable states for N = 12, L = 48 and temper-
ature T = 0.2. From first row to third we have µ = 0.2, 0.1, and µ = 0 respectively. No constraint
was imposed for the simulation.
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Figure 27. Monte Carlo histories from cold starts (X1 = X2 = · · · = X9 = 0) for µ = 0, T = 0.2,
L = 48, N = 10 (left) and N = 16 (right). For N = 10, the onset of the run-away behavior (i.e.,
the increase of R2) can be seen at late time.
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Figure 28. Full BFSS (i.e., full BMN with µ = 0) at temperature T = 0.2. From left to right:
continuum extrapolation (lattice size L → ∞) for matrix size N = 10, 12, 16. The horizontal axis
scales as 1/L. We can see that the continuum extrapolation of E

N2 is consistent with zero for all
values ofN . Therefore, E

N2 is consistent with zero in the simultaneous continuum and large-N limits.
We note that for the simulation with parameters L = 30, N = 16, we discarded configurations with
a too-large value of R2 due to the run-away behavior. We show alternative plots and discuss the
reasoning in appendix F.

(linear in 1/N) for L = 30, 36, 48, at T = 0.2; see figures 28, 29. (To obtain these data
points, we only used the parts of the Monte Carlo histories before the instabilities due to the
flat directions set in.) We observe that the Polyakov loop P is consistent with zero in the
large N limit, and thus consistent with a confined phase. Similarly, the energy is consistent
with zero in the continuum limit independently of N .26 Note that, in the deconfined phase,
we expect larger values of the energy and the Polyakov loop that are clearly distinguishable
from zero. The energy of the deconfined phase predicted by the gravity dual (the black
zero-brane in type IIA superstring theory) is E

N2 ' 7.41T 14/5 ' 0.0818 at T = 0.2, up to
string-theoretical corrections. As for the Polyakov loop in the deconfined phase, ref. [9]
observed P ' exp

(
−0.15

T + 0.072
)
at 0.475 ≤ T . 1. This fit agrees well with the values of

P at T ≥ 0.4 obtained in ref. [10]. By assuming that this fit is valid at lower temperatures
as well, we obtain P ' 0.51 at T = 0.2.

6 Conclusion and discussion

In this paper, we studied the thermodynamic features of the BFSS matrix model and
BMN matrix model. Specifically, we studied the confinement/deconfinement transition
in the trivial background. We conjectured the phase structure based on dual gravity
description [3, 39] and previous numerical studies. According to our conjecture, there are
two kinds of confined phases: the completely-confined phase, which is the (local) minimum
of the free energy, and the partially-confined phases (eleven-dimensional Schwarzschild
black hole), which is the local maximum of the free energy separating the completely-
confined phase (M-theory vacuum up to a small thermal fluctuation) and completely-
deconfined phase (black zero-brane in type IIA string theory). We provided the evidence

26Due to supersymmetry, the zero-point energy is zero.
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Figure 29. Full BFSS (i.e., full BMN with µ = 0) at temperature T = 0.2. From left to right:
large N extrapolation for lattice size L = 30, 36 and 48. The horizontal axis scales27 as 1/N . We
can see that the large-N extrapolation of the Polyakov loop is very close to zero for all values of L.
As a result, the Polyakov loop is consistent with zero in the simultaneous continuum and large-N
limits. We again refer to appendix F for the datapoint with L = 30, N = 16.

supporting this conjecture by performing lattice Monte Carlo simulations, modulo a few
subtleties associated with the finite-N effects. It is natural to expect that the confined
phase of the BFSS matrix model can describe M-theory, and hence, we might have finally
reached the M-theory region.

The relationship between the flux parameter µ and critical temperature Tc is shown
in figure 13. Naively, it may appear that the matrix model and gravity disagree at small
µ. However, this is not the case; the gravity line is from the strict large-N limit, while the
matrix model results are obtained at finite N , and the apparent disagreement is consistent
with the gravity analysis and finite-N correction. This apparent deviation is actually good
news!

Because such a confined phase was not observed in the past, the consistency has to
be discussed carefully. All studies but ref. [57] focused on the high-temperature region
(for example, ref. [10] studied T ≥ 0.4, N ≤ 32, L ≤ 32), by gradually lowering the
temperature, and hence, it could be a problem if the confined phase had been observed.
It is straightforward to go to larger N , say N = 64 or 128, at 0.4 . T , and we might be
able to see the confined phase there if the sufficiently fine lattice is used and the initial
configuration is carefully tuned. It would be a good consistency check. Ref. [57] studied
lower temperature (T ∼ 0.1) and much smaller N (N = 3, 4, 5). They introduced the
cutoff for TrX2

I and studied the unstable phase, whose energy was consistent with the
deconfined phase. This phase may be stabilized at sufficiently large N and become the
stable deconfined phase.

One surprise, which we did not expect when we started this project, was that the
confined phase exists up to a rather high temperature, even in the BFSS limit. Concerning
Monte Carlo simulations, it is very good news: at higher temperatures, the temporal
circle is smaller, and hence, the simulation cost is smaller. Therefore, the detailed study

27As opposed to the deconfined phase, it is not clear a priori whether E
N2 and R2 should have 1/N or 1/N2

corrections. Both options provide a reasonable fit to our data and we chose the 1/N option in figure 28.
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of M-theory via Monte Carlo simulation of the BFSS or BMN matrix models might be
doable with much smaller computational resources than previously expected. Nontrivial
fuzzy-sphere backgrounds corresponding to M2-branes or M5-branes may also be tractable
targets. To deepen the understanding of the duality in the M-theory region, it is important
to perform calculations in the gravity side that can be compared to the simulation results
in the matrix model side. Of equal importance is a similar confinement-to-deconfinement
analysis for the fuzzy sphere backgrounds, since in this case the precise dependence of the
relevant temperature withN is not known. This is an interesting problem, not only from the
matrix model side but also from the gravity analysis also, yet the difficulty to extract precise
results is emanating from carefully manipulating multi-centered supergravity solutions [68].
A better understanding of these solutions and their connection with analytic and Monte
Carlo results, along the line of the trivial vacuum analysis, will lead to a better M-theory
interpretation.

Note that our analysis on the M-theory regime of the gravity side was only qualitative.
In order to understand the duality better, it is important to improve the analysis. It is natu-
ral to think that only a part of the matrix degrees of freedom is excited and form a black hole
and graviton gas [21, 28–30, 42], but the rest of the degrees of freedom can still contribute to
the emergence of the background spacetime [42]. The number of degrees of freedom form-
ing a black hole can be determined from the distribution of the Polyakov line phases [25].
As a rough estimate, it would be reasonable to identify it with the entropy [28–31].

For extremely low temperatures, we expect to enter the M-theory regime [3]. That is
because the small temperature region is related to the small energy regime and the latter
is expected to be connected with M-theory. Therefore, it might be possible that we can
access the M-theory region by keeping µ fixed and taking the limit T � 1. This would
correspond to a BMN M-theory description with a finite deformation, and indeed for low
temperatures, this is assumed to be described by the M5-brane of M-theory [4]. We can see
hints for this feature since the clustering of the six matrices that construct the five-sphere
leads to an average mean value bigger than the rest of the three matrices that construct
the SO(3) part. Indeed, recalling figure 5 this phenomenon can be observed in simulations
and we will report a more detailed analysis in a different project. We may also note that
in the very low temperature regime we cannot compare with results from the gravity side,
since at this level there is no such precise analysis for the M5-brane.

The completely-confined phase is rather stable, and hence, can be studied straightfor-
wardly. The study of the partially-confined phase can be tricky because it is unstable in
the canonical ensemble. Still, it may be doable by constraining the value of the Polyakov
loop appropriately. This phase, which is expected to be the dual of the eleven-dimensional
Schwarzschild black hole, would offer us an ideal framework to study the black hole evapo-
ration. It might be possible to study the region near the border between string theory and
M-theory (T ∼ T2) in a similar manner by introducing appropriate constraints.

Qualitatively, the BMNmatrix model resembles four-dimensional maximal super Yang-
Mills on three-sphere. For the latter, deconfinement is studied not just by using the thermal
boundary partition function but also with the index [48]. The index is calculable analyti-
cally even at strong coupling, and impressive agreement with gravity has been observed [69].
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Such an approach might be useful for the BMN matrix model as well, providing connections
to the counting of the supersymmetric black hole in an analytically tractable manner.

Rich phase diagrams are expected for other gauge theories as well. Qualitative aspects
of the phase diagrams of maximally supersymmetric Yang-Mills theories was discussed in
ref. [3] by utilizing dual gravity pictures and string dualities. These theories may exhibit
confinement, as we observed for the matrix model. Two- and three-dimensional theories can
be studied on lattice without having the parameter fine-tuning problem, and simulations on
small lattices are already tried; see refs. [13–15] for the two-dimensional theory and ref. [7]
for the three-dimensional theory. Lattice Monte Carlo simulation of these theories can be
a powerful tool to reveal the nonperturbative aspects of string/M-theory and holography
further.

Last but not least, it is important to understand how the information of eleven-
dimensional spacetime is encoded in the BFSS matrix model in which only ten of eleven
dimensions can be seen manifestly; see e.g. ref. [70]. We might be able to get some hints
by studying the M-theory parameter region of the BFSS matrix model and identifying the
gravity dual precisely.
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A Summary of simulations

In this appendix, we present a list of the simulations done to obtain the data underlying
the findings of this paper. Very short Monte Carlo chains, especially at temperatures far
away from the transition temperature, which did not enter the conclusions drawn in our
work, are omitted here. None of the omitted data contradicts the presented findings.

In the column labeled “constraint,” we refer by “M : xmin, xmax, γ” to a constraint on
the Myers term and by “P : xmin, xmax, γ” to a constraint on the Polyakov loop. Details
on the constraints are given in section 5.2.1.

µ L N T constraint observation
5.0 24 32 1.172, 1.176, 1.18, 1.182 none Stable confined phase at T = 1.172, tun-

nelling at 1.176, stable deconfined phase
at T ≥ 1.18. (∼ 5000 − 8000 MC steps
each)

5.0 12 48 1.188, 1.189, 1.19 none Stable confined phase at T = 1.188, tun-
nelling at 1.189, stable deconfined phase
at T = 1.19. (∼ 3000 MC steps each)

3.0 12 32 0.752, 0.753, . . . , 0.757 none See figure 14 + stream mainly confined
for T = 0.752, 0.753.

3.0 24 32 0.75, 0.752 Repeated tunneling for T = 0.75 (∼
12000 MC steps), deconfined for T =
0.752 (∼ 8000 Steps).

2.0 12 24 0.538, 0.539, . . . , 0.544 none See figure 19 + more pronounced confine-
ment at T < 0.542.

2.0 12 32 0.537, 0.538, . . . , 0.544 none See figure 19 + more pronounced confine-
ment at T < 0.542.

2.0 24 24 0.53, 0.535, 0.54 none Tunneling to confined phase at T = 0.53,
repeated tunneling at T = 0.535, stable
deconfined phase at T = 0.54.

1.6 24 32 0.45, 0.451, . . . , 0.454 none Mix of confined and deconfined signals
without repeated tunneling and clear sys-
tematics, suggesting strong hysteresis in
this temperature range. See figure 18 for
T = 0.452.

1.5 24 24 0.43, 0.432, . . . , 0.44 none Initially confined simulations in the triv-
ial background remain in this phase for
some time and, if leaving this phase, tun-
nel first to a deconfined phase in the
trivial background and shortly after to
a deconfined fuzzy sphere phase, see fig-
ure 17. Initially deconfined configura-
tions in the trivial background all quickly
tunnel to a fuzzy sphere background, see
figure 17.

1.5 24 8 0.429 P: 0.34, 0.46, 5000
M: 0, 0.035, 30000

Double constraint used to efficiently gen-
erate data for figure 23.

1.5 24 12 0.429 P: 0.34, 0.46, 5000
M: 0, 0.035, 30000

Double constraint used to efficiently gen-
erate data for figure 23.

1.5 24 16 0.429 P: 0.36, 0.48, 5000
M: 0, 0.035, 30000

Double constraint used to efficiently gen-
erate data for figure 23.

1.5 24 24 0.429 P: 0.34, 0.46, 5000
M: 0, 0.035, 30000

Double constraint used to efficiently gen-
erate data for figure 23. Polyakov loop
repeatedly moves between P-constraint
boundaries, indicating that T = 0.429 is
very close to the critical temperature.
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µ L N T constraint observation
1.0 12 12 0.29, 0.3, 0.31, 0.32 M: 0, 0.03, 500000 See figure 20 + clearly confined signal for

T = 0.29
1.0 12 16 0.3, 0.31, 0.32 M: 0, 0.03, 500000 See figure 20
1.0 24 12 0.3, 0.31, 0.315, 0.32,

0.33
M: 0, 0.03, 500000 See figure 20 + clearly confined signal for

T = 0.3
1.0 36 12 0.315, 0.32 M: 0, 0.03, 500000 Confined signal for T = 0.315, repeated

tunneling for T = 0.32.
1.0 48 12 0.315 M: 0, 0.03, 500000 Confined signal for T = 0.315.
0.9 24 16 0.24, 0.25, 0.26, 0.27,

0.28, 0.29
M: 0, 0.04, 30000 Confined state at T = 0.27.

0.8 12 12 0.24, 0.25, 0.26 M: 0, 0.025, 15000 See figure 21.
0.8 24 12 0.25, 0.26, 0.27 M: 0, 0.025, 15000 See figure 21.
0.8 36 8 0.26 M: 0, 0.025, 15000 Some tunneling, mainly confined. Con-

firms increasing Tc in continuum limit.
0.8 48 8 0.26 M: 0, 0.025, 15000 Some tunneling, mainly confined. Con-

firms increasing Tc in continuum limit.
0.6 24 16 0.2, 0.21, 0.22, 0.23,

0.24, 0.25, 0.26, 0.27,
0.28, 0.29, 0.3, 0.31

M: 0, 0.04, 30000 See figure 25.

0.5 24 12 0.22, 0.25, 0.26 M: 0, 0.02, 15000 Blurred two-state signal at T = 0.25 (re-
peated tunneling), confined at T = 0.24,
deconfined at T = 0.26

0.5 24 16 0.26 M: 0, 0.02, 15000 Stable (∼ 2000 MC steps) confined and
deconfined signals at T = 0.26 after
starting with suitable initial conditions.
Clear two-state signal once streams are
combined, see figure 24.

0.5 36 12 0.25, 0.4 M: 0, 0.02, 15000 Stable (∼ 2000 MC steps) confined signal
at T = 0.25. Immediate tunneling from
confined to deconfined phase with P ≈
0.7 for T = 0.4.

0.5 48 12 0.26 M: 0, 0.02, 15000 Stable (∼ 1000 MC steps) confined signal
at T = 0.26

0.3 24 12 0.16, 0.2, 0.22, 0.24 M: 0, 0.02, 15000 See figure 24
0.3 48 12 0.23 M: 0, 0.02, 15000 Confined signal.
0.2 48 12 0.2 M: 0, 0.02, 15000 Confined signal.
0.2 48 12 0.2 none Very similar for both P and M to con-

strained simulation.
0.1 48 12 0.2, 0.24, . . . , 0.36 none Starting from a confined configuration:

stable confined signal for T ≤ 0.24, im-
mediate divergence of R2 for T ≥ 0.28.

0.01 48 12 0.2 none Starting from a confined configuration:
stable confined signal.
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µ L N T constraint observation
0 24 10 0.2 none Divergence of R2 after about 1000 MC

steps, not enough stable MC steps for re-
liable measurements.

0 24 16 0.2 none Divergence of R2 after about 1000 MC
steps, not enough stable MC steps for re-
liable measurements.

0 30 10 0.2 none See section 5.2.5.
0 30 12 0.2 none See section 5.2.5.
0 30 16 0.2 none See section 5.2.5.
0 36 10 0.2 none See section 5.2.5.
0 36 12 0.2 none See section 5.2.5.
0 36 16 0.2 none See section 5.2.5.
0 48 10 0.2 none See section 5.2.5.
0 48 12 0.2, 0,24, 0.25, 0.26, 0.28 none Starting from a confined configuration:

stable confined signal for T ≤ 0.24; diver-
gence of R2 after metastable confined sig-
nal for T = 0.25; immediate divergence
of R2 for T ≥ 0.26 and P increasing to
∼ 0.5. See also section 5.2.5.

0 48 16 0.2 none See section 5.2.5.
0 72 10 0.2 none See section 5.2.5.

B MC histories

All MC histories not shown here but used (for µ < 2 and µ > 3 as well for higher N and
S) are quite short, e.g. about 3000-5000 Monte Carlo steps.

C Detail of the lattice regularization

Below, we explain the details of the lattice regularization. The action is the same as the
one used in ref. [10], except that the Myers term is added.

C.1 Gauge fixing

The action of the BMN matrix model given in section 3 is invariant under the SU(N) gauge
transformation. For numerical efficiency, we take the static diagonal gauge,

At = 1
β
· diag(α1, · · · , αN ), −π < αi ≤ π. (C.1)

Associated with this gauge fixing, we add the Faddeev-Popov term

SF.P. = −
∑
i<j

2 log
∣∣∣∣sin(αi − αj2

)∣∣∣∣ (C.2)

to the action.

C.2 Lattice action

We regularize the gauge-fixed continuum theory by introducing a lattice with L sites. Our
lattice action is

Sb = N

2a

L∑
t=1

9∑
I=1

Tr (D+XI(t))2 − Na

4

L∑
t=1

9∑
I,J=1

Tr[XI(t), XJ(t)]2. (C.3)
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Sf = iN
L∑
t=1

Trψ̄(t)
(

0 D+
D− 0

)
ψ(t)− aN

L∑
t=1

9∑
I=1

ψ̄(t)ΓI [XI(t), ψ(t)], (C.4)

∆Sb = aN
L∑
t=1

Tr

µ2

2

3∑
i=1

Xi(t)2 + µ2

8

9∑
a=4

Xa(t)2 + i
3∑

i,j,k=1
µεijkXi(t)Xj(t)Xk(t)

 (C.5)

and

∆Sf = 3iµ
4 · aN

L∑
t=1

Tr
(
ψ̄(t)γ123ψ(t)

)
, (C.6)

where

D±ψ(t) ≡ −∓ 1
2U

2ψ(t± 2a)
(
U †
)2
± 2Uψ(t± a)U † ∓ 3

2ψ(t) = aDtψ(t) +O(a3). (C.7)

Here, U = diag(eiα1/L, eiα2/L · · · , eiαN/L), −π ≤ αi < π. The Faddeev-Popov term SF.P. is
simply the same as the original form, (C.2)

D Polyakov loop

Let us briefly review the Polyakov loop and the Polyakov line phases. In gauge theories,
the Polyakov loop P is defined by

P = 1
N

Tr
(
P exp

(
i

∫ β

0
dtAt

))
(D.1)

= 1
N

N∑
j=1

eiθj , (D.2)

where P stands for path ordering. The N × N unitary matrix inside the trace is called
the Polyakov line. Because the Polyakov line is a unitary matrix, its eigenvalues can be
written as eiθ1 , · · · , eiθN , where the phases θ1, · · · , θN lie between −π and π.

In the large-N limit, we can introduce the distribution function of the Polyakov line
phases ρ(θ) which is continuous and non-negative on [−π, π). We normalized it as∫ π

−π
dθρ(θ) = 1. (D.3)

In terms of the distribution function, the Polyakov loop becomes

P =
∫ π

−π
dθ ρ(θ) eiθ, (D.4)

which is also useful for investigating the confinement/deconfinement transition.
Due to the ZN center symmetry that shifts all the phases simultaneously by a multiple

of 2π
N , there is an ambiguity regarding P and ρ(θ). In this paper, we fixed the center

symmetry configuration-by-configuration in such a way that P becomes real and positive.
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E Canonical ensemble and microcanonical ensemble

In the microcanonical ensemble, the energy E is restricted to a small range [E,E + dE],
and all states contribute with the same weight. The entropy S(E) is related to the density
of states Ω(E) as S(E) = log Ω(E). Dual gravity solutions such as 11d Schwarzschild black
hole correspond to typical configurations dominating the entropy. The microcanonical
temperature Tmicro is obtained from the entropy S as

1
Tmicro

= dS

dE
. (E.1)

Therefore, the specific heat capacity dE
dTmicro

is

dE

dTmicro
= − 1

T 2
micro

(
d2S

dE2

)−1

. (E.2)

The Euclidean path integral of the matrix model describes the canonical thermodynam-
ics. In the canonical ensemble, temperature T is a controllable parameter. The partition
function is given by

Z(T ) =
∫
dEΩ(E)e−E/T =

∫
dEe−F (E,T )/T , (E.3)

where F is the free energy defined by

F (E, T ) = E − TS(E). (E.4)

For simplicity, let us assume that the maximum of entropy is uniquely determined at each
E. (It is not the case if there are two or more separate local maxima and the first-order
phase transition in the microcanonical ensemble takes place. We will consider such a case
later.) Then, by taking the derivative with respect to the energy, we obtain

∂F (E, T )
∂E

= 1− T dS(E)
dE

= 1− T

Tmicro(E) . (E.5)

Therefore, free energy is extremized at the value of E which corresponds to Tmicro(E) = T .
The second derivative is

∂2F (E, T )
∂E2 = T

T 2
micro

(
dE

dTmicro

)−1
. (E.6)

Therefore, if the heat capacity in the microcanonical ensemble is positive (resp., negative),
the free energy is minimized (resp., maximized) in the canonical ensemble.

E.1 The case of first order transition in the microcanonical ensemble

Suppose there are two local maxima of the entropy S1(E) and S2(E) corresponding to
phase-1 and phase-2, as shown in the top row of figure 30. We assume that S1(E) > S2(E)
at E > Ec and S1(E) < S2(E) at E < Ec, and hence a first-order transition takes place
at E = Ec. The entropy S(E) in (E.3) becomes S = log(eS1 + eS2). This is approximated
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Figure 30. [Top] Coexistence of two local maxima of entropy S1(E) and S2(E) corresponding to
phase-1 and phase-2 in the microcanonical ensemble. We assume that S1(E) > S2(E) at E > Ec
and S1(E) < S2(E) at E < Ec. [Bottom] Corresponding canonical phase diagram; free energy
minimum (left) and maximum (right).

well by S1 and S2 at E > Ec and E < Ec, respectively. When E is infinitesimally close to
Ec, we have to take into account both phases.

We have

dS(E)
dE

= 1
eS1 + eS2

×
(

eS1

Tmicro,1
+ eS2

Tmicro,2

)
, (E.7)

where 1
Tmicro,i

= dSi
dE is the microcanonical temperature of phase-i (i = 1, 2). When E

is varied from slightly below Ec to slightly above Ec, it moves from 1
Tmicro,2

to 1
Tmicro,1

.
Therefore, the canonical phase diagram becomes like the bottom row of figure 30.

Suppose yet another maximum of the entropy S3(E) corresponding to phase-3 exists
as shown in figure 31, and S3(E) is always smaller than S1(E) or S2(E). Then phase-3 does
not affect the canonical phase diagram at all; see the bottom row of figure 31. Still, if other
parameters than energy are taken into account, phase-3 may be visible in the canonical
simulation.

F Run-away behavior for BFSS with L = 30, N = 16

As noted in the main text, we had to discard some configurations in the BFSS (µ = 0)
simulations at T = 0.2 with parameters L = 30, N = 16. The purpose of this appendix
is to discuss this issue in more detail. In figure 32, we show three different versions of
the continuum extrapolation at N = 16, one without discarding any trajectories, and two
versions when discarding trajectories with R2 > 3.21 and R2 > 3.23, respectively. We
observe that by making the cutoff smaller, the data fits better to the expected continuum
extrapolation. The same is true for the large N extrapolation, see figure 33.
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Figure 31. [Top] Coexistence of three local maxima of entropy S1(E), S2(E), and S3(E) in the
microcanonical ensemble. We assume that S1(E) > S2(E) at E > Ec and S1(E) < S2(E) at
E < Ec, and S3(E) is always smaller than S1(E) or S2(E). [Bottom] Corresponding canonical
phase diagram; free energy minimum (left) and maximum (right).
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Figure 32. BFSS at T = 0.2, continuum extrapolations in the confined phase for N = 16.
Trajectories for L = 30, N = 16 were discarded if R2 was greater than a certain cutoff value. From
left to right: no cutoff, R2 ≤ 3.23, R2 ≤ 3.21. We observe that the continuum value of the energy
approaches zero as the cutoff is lowered.

The reasoning to obtain these cutoff values is as follows. Comparing the simulation
results of L = 30, N = 16 to L = 36, N = 16 and L = 48, N = 16, we observe that L = 30,
N = 16 has much more pronounced pre-run-away behavior, meaning that R2 is increased
for short phases of simulation time. By extrapolating the expectation value of R2 from
L = 36, N = 16 and L = 48, N = 16 to L = 30, N = 16, we find an expected value of 3.184
and observe that by putting the cutoff to 3.23, this expectation value is roughly achieved.
Since L = 36, N = 16 has somewhat more pre-run-away behavior than L = 48, N = 16,
the cutoff value should be somewhat lower than this estimate, and we find that 3.21 gives
reasonable fits. We stress that due to this uncertainty, 3.21 is only a rough estimate for a
proper cutoff.
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Figure 33. BFSS at T = 0.2, large N extrapolations in the confined phase for L = 30. Trajectories
for L = 30, N = 16 were discarded if R2 was greater than a certain cutoff value. From left to right:
no cutoff, R2 ≤ 3.23, R2 ≤ 3.21. We observe that the large N value of P approaches zero as the
cutoff is lowered.

This begs the question why a similar cutoff had not to be imposed on the data of
the other simulations. It first has to be said that it is very hard to quantify the precise
amount of run-away behavior in the simulations due to a lack of knowledge about the
actual expected value of R2. Nevertheless, a tentative answer may be that for N < 16,
the pre-run-away behavior is dominated by finite N effects as opposed to finite L effects.
Hence, the extrapolations may still show the expected behavior, as we have roughly the
same amount of pre-run-away behavior in all simulations. For N = 16, on the other hand,
the data points have a different amount of pre-run-away behavior, resulting in poor fits.
Strong pre-run-away behavior for L = 30 is also consistent with the observation that we
did not achieve any stable simulation with L = 24 in the BFSS limit due to immediate
run-away behavior.
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