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1 Introduction

We discuss thermal equilibrium of (super)strings near and above the Hagedorn temperature
— the Hagedorn phase of string theory.

In quantum field theories without gravity, one describes a thermal state by compacti-
fying Euclidean time on a circle, the thermal circle S1

β , and imposing appropriate boundary
conditions for bosons and fermions. The circumference of the thermal circle is equal to
the inverse temperature in units in which the Boltzmann constant and ~ are set to one.
However, in theories containing gravity, such as string theory, the size of the thermal circle
becomes a dynamical field, the “radion.” In this case, thermal equilibrium, corresponding
to a thermal circle of constant circumference is not guaranteed to exist. Furthermore, the
Jeans instability plagues asymptotically flat thermal backgrounds [1].

– 1 –



J
H
E
P
0
5
(
2
0
2
2
)
0
3
1

All of the string theories feature a special temperature, the “Hagedorn temperature”,
above which the one-loop free energy of a free string diverges [2–7]. Near and below this
temperature, closed string modes that wind once around the thermal circle become light
and can be described in terms of two conjugate complex scalar fields χ and χ∗. The field χ
is known as the thermal scalar. Above the Hagedorn temperature, TH , these fields become
tachyonic (for constant dilaton), thus the existence and stability of a high-temperature
phase may be hindered.

A system of free closed strings slightly below TH can be described by highly-excited,
long strings which can be viewed as performing random walks in target space, with a step
size of the order of the string length [8]. The energy, entropy and length of these strings all
scale linearly with the number of random-walk steps. Near TH , one can expect a transition
between a phase of long strings and that of short strings. A connection between the effective
description in terms of the thermal scalar and the excited string states was established by
evaluating the energy and density of states [9, 10].

For interacting closed strings near TH , it was demonstrated in [7] that the effective
potential of the winding modes includes an important non-local quartic term arising from
the interaction of χ and χ∗ with the radion. By including this interaction, Horowitz and
Polchinski (HP) [10] were able to show the existence of an approximate thermal equilib-
rium slightly below the Hagedorn temperature. They considered a winding-mode conden-
sate backreacting on an otherwise constant dilaton and S1

β × Rd geometry. The geometry
of this backreacted solution in the compact and radial directions can be visualized as a
cylinder whose circumference shrinks by a small amount in the region of space where the
winding-mode condensate is localized, as depicted in the middle of figure 1. Based on
the scaling properties of the entropy and temperature of strings and black holes (BHs), it
was speculated that as the string coupling varies, the two objects can transform into each
other [11–14]. Recently, the HP solution and the possibility that it continuously transits
into a BH were discussed in [15, 16].

In a previous article [17], we derived a low-energy effective field theory (EFT) for
bosonic and type II closed strings in the Hagedorn phase. The action of the EFT was
calculated from the requirement that its amplitudes are identical to the string S-matrix
elements. One of the main differences between our EFT action and the HP action is the
additional local quartic interaction term of the winding modes.

This quartic term can be interpreted as coming from strings that interact at their
intersections. The strength of the interaction is proportional to the number density of the
strings squared. Since the entropy density of winding strings is proportional to the winding-
mode condensate squared [15, 18], the local quartic term is proportional to the entropy
density squared [18–21]. Provided that the entropy density scales with the number density
of the strings, a scaling with the number density squared is obtained. Not coincidentally,
the strings free energy is formally similar to those appearing in the literature on interacting
polymers (e.g., [22]).

In this paper we establish the existence of a state of thermal equilibrium of strings
in the Hagedorn phase by showing that the radion can be stabilized in a space with the
geometry of S1

β × S2 ×Md−2, and in the presence of a specific three-form flux. The flux
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Figure 1. Shown from left to right are the compact time-radial parts of the geometries of our
thermal equilibrium solutions, of the HP solution and of the cigar background. The three-form
flux stabilizes the radius of the thermal circle, counteracting gravity. Without flux, an approximate
thermal equilibrium is described by the HP solution. The cigar background deviates significantly
from thermal equilibrium: the thermal circle is contractible and vanishes at the horizon.

produces an outward force on the thermal circle which exactly counterbalances the inward
gravitational force of the winding modes. The dilaton in our constructions is either linear
in one of the coordinates, or constant. In the latter case, either a Ramond-Ramond (RR)
flux or a cosmological constant (CC) are added to the effective action. The backreaction
of the RR flux produces an Anti-de-Sitter (AdS) space component in the resulting product
geometry, while the CC leads to a flat-space component.

The terminology “thermal equilibrium” admits at least two interpretations. One is that
the local temperature is constant in space, as for the solutions written in the paper. The
second is that there is no net energy flow between components of the system, for example, a
black hole and its emitted Hawking radiation. When the gravitational potential has a non-
trivial profile, the former interpretation fails; the local temperature depends on the position.
We view the solutions as interesting examples that are similar to quantum mechanical and
quantum field theory systems without gravity that exhibit thermal equilibrium.

Euclidean BH string backgrounds exhibit significant deviations from thermal equilib-
rium. The thermal circle at infinity shrinks towards a “tip” corresponding to the BH
horizon. Thus, the local temperature varies in Euclidean space, increasing towards the
tip. As in the HP solution, the BH solutions include a winding-mode condensate [23–26].
A specific example of such a background is a 2D Euclidean solution described by the
SL(2,R)/U(1) coset theory [27–29]. This is one of a few backgrounds whose worldsheet
conformal field theory (CFT) is known to be perturbatively exact in α′. A 10D solution
containing the cigar is obtained by considering the near-horizon region of k near-extremal
NS5 branes [30]. Recently, a solution of this cigar taking into account the backreaction of
the winding-mode condensate was found [31]. See also [15, 16, 32–35].

All the backgrounds discussed above feature a winding-mode condensate, however,
they differ in some important aspects. For instance, Euclidean BHs have a contractible
S1
β , while the HP solution and our solutions do not. The HP solution has asymptotic

temperature which is near and below the Hagedorn temperature, whereas our solutions
have flux and a fixed S1

β with temperature near but above the Hagedorn temperature.
Another important difference is that neither the HP solution nor the SL(2,R)/U(1) cigar
and cylinder backgrounds are uniform in space, while our solutions (with a constant dilaton)
are uniform. Additional similarities and differences are discussed later in the paper. The
geometries of the different solutions are depicted in figure 1.
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The paper is organized as follows. In the next section we briefly review the EFT for
the light winding modes near the Hagedorn temperature [17]. In section 3 we write the
action for type II light closed string modes with fluxes. We then derive equations of motion
(EOM) and solve them explicitly. Section 4 is devoted to a proposal that some worldsheet
field theories flow to a fixed point, which correspond to the target-space solutions (without
RR flux) of the EFT. In sections 5 and 6 we compare and contrast the SL(2,R)/U(1) cigar
and cylinder backgrounds, the HP background and our thermal equilibrium backgrounds.
Conclusions appear in section 7.

2 Effective action for strings near the Hagedorn temperature

In this section we review the effective action of type II closed strings in thermal equilibrium
in the Hagedorn phase which was derived in [17]. There, the compact-compact component
of the metric was fixed to unity by enforcing thermal equilibrium. This constraint will be
relaxed in the next section. A similar EFT for the heterotic string was derived in [36].

We adopt the following notations:1 χ and χ∗ denote fields representing the winding
modes that wind once around the thermal circle. The metric in the d spatial dimensions is
denoted by Gµν and the d-dimensional dilaton Φd. Other modes such as the Kalb-Ramond
two-form and the graviphoton are set to zero (up to a gauge) in this section.

The Hagedorn temperature of type II superstring theory is given by [2]:

TH = 1
2π
√

2α′
. (2.1)

The effective action of the winding modes in type II string theory near the Hagedorn
temperature, following from S-matrix calculations, is given by

S1 = β

∫
ddx
√
Ge−2Φd

(
Gµν∂µχ∂νχ

∗ +m2
χχχ

∗ + 2κ
2

α′
(χχ∗)2

)
, (2.2)

where κ2 is related to the Newton constant, κ2 = 8πGN . The quartic interaction term is
one of the main differences between our effective action and the HP effective action. To
compute it, we subtracted exchange amplitudes2 in the EFT from a four-point worldsheet
correlation function of on-shell winding vertex operators [17]. In [37], the quartic coupling
was computed up to a multiplicative constant, and the authors argued that the quartic
coupling is positive after performing a field redefinition such that the three-point coupling
of the radion with χ, χ∗ has no derivatives. In [36], the quartic coupling for the heterotic
string was calculated and found to be +3 κ2

α′ .
The mass squared of the winding modes is given by

m2
χ = − 2

α′
+ 1

4π2T 2(α′)2 . (2.3)

1In [17], the winding-mode fields were denoted by φ, φ∗ and the d-dimensional dilaton by ψ.
2These include four ingoing and outgoing string states, with an on-shell string mode, which can either

be a dilaton, a graviton, a radion or a gauge boson.
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The mass-squared in eq. (2.3) and the quartic-self interaction can be expressed as
follows:

m2
χ = −2c2εT

2 +O(ε2), (2.4)
2κ2

α′
= c2κ

2T 2 +O(ε), (2.5)

c2 = 16π2, (2.6)

with
ε ≡ T − TH

T
. (2.7)

Substituting these expressions into S1, one finds, to leading order in ε,

S1 = β
∫
ddx
√
Ge−2Φd

{
Gµν∂µχ∂νχ

∗ − 2c2εT
2χχ∗ + c2κ

2T 2(χχ∗)2} . (2.8)

We can add the standard action for the graviton and dilaton to the action for the
winding modes,

S2 = − β
2κ2

∫
ddx
√
Ge−2Φd

{
R− 2Λ + 4Gµν∂µΦd∂νΦd

}
, (2.9)

where Λ is a cosmological constant (CC), which is not a free parameter in the theory.
However, in the next section we will add a fine-tuned CC in order to find a simple flat-
space, constant-dilaton solution of the EFT. For other solutions we will set Λ = 0. Note
also that we have not added a kinetic term for σ because we assume here that this field is
constant. We will add this term in the next section.

The total EFT action is therefore given by the sum of S1 and S2,

S = β

∫
ddx
√
Ge−2Φd

{
− 1

2κ2R+ 1
κ2 Λ− 2

κ2G
µν∂µΦd∂νΦd

+Gµν∂µχ∂νχ∗ − 2c2εT
2χχ∗ + c2κ

2T 2(χχ∗)2
}
. (2.10)

In principle, more terms involving products of χ, χ∗ and their derivatives should be added;
however, for solutions in which χ, χ∗ are constant and scale with a positive power of ε, which
are the class of solutions that we will consider, it is justified to ignore such terms [18].

3 Flux compactification backgrounds

We wish to demonstrate the existence of solutions of the EOM of the light fields, in which
the size of the thermal circle is fixed. The winding strings attract each other due to gravity,
but also produce flux that keeps the thermal circle from collapsing. This can be viewed
as an effective model for a thermal bath of strings at a temperature slightly above the
Hagedorn temperature.

For the string frame τ − τ metric Gττ , we use the notation from [38, 39],

Gττ = e2σ. (3.1)
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The effective action for the winding modes is slightly changed relative to eq. (2.2):

Sχ,χ∗ = β
∫
ddx
√
Ge−2Φd

(
Gµν∂µχ∂νχ

∗ + β2e2σ−β2
H

4π2(α′)2 χχ
∗ + 2κ2

α′ (χχ∗)2
)
. (3.2)

The new factor e2σ originates from the interaction of the winding modes with the radion
σ [10, 17].

Next, we add the Neveu-Schwarz Neveu-Schwarz (NS-NS) sector action for the light
fields,

SNS−NS = − β

2κ2

∫
ddx
√
Ge−2Φd

(
R− 2Λ + 4Gµν∂µΦd∂νΦd +

−Gµν∂µσ∂νσ −
1
4e
−2σHτµνH

µν
τ

)
. (3.3)

Here,

Hτµν = ∂νBτµ − ∂µBτν . (3.4)

We set the graviphoton to zero (up to a gauge). We also set to zero the spatial elements
of the Kalb-Ramond field strength Hµνλ = 0.

The two-form B with one τ -leg Bτµ, couples to the χ current,

i
β

2πα′β
∫
ddx e−2Φ√GB µ

τ (χ∂µχ∗ − χ∗∂µχ) . (3.5)

This is reproduced from an amplitude associated with two winding modes of winding
numbers ±1 and the B-field [17], as explained in appendix A. This additional term renders
the kinetic term of χ having covariant derivatives, but for simplicity of notation we keep
the ∂ notation.

Similarly, we consider a RR potential (p − 1)-form Cp−1, with one leg on τ , which is
coupled to a Euclidean (p− 2)-D-brane. We will solve the EOM outside any sources. The
RR action for the field strength Fp = dCp−1, with one leg in τ , is given by

SRR = β

4κ2(p− 1)!

∫
ddx
√
Ge−σFτµ2...µpF

µ2...µp
τ . (3.6)

Below, we list the EOM derived from the action3

S = Sχ,χ∗ + SNS−NS + SRR. (3.7)

3.1 Equations of motion

• The χ and χ∗ equations

e2Φd
√
G
∂µ
(
e−2Φd

√
GGµν∂νχ

)
= β2e2σ − β2

H

4π2(α′)2 χ+ 4κ2

α′
(χ)2χ∗. (3.8)

e2Φd
√
G
∂µ
(
e−2Φd

√
GGµν∂νχ

∗
)

= β2e2σ − β2
H

4π2(α′)2 χ∗ + 4κ2

α′
(χ∗)2χ. (3.9)

3In type IIB, eq. (3.6) has an additional factor of a half. Also, note that the Chern-Simons term involving
the product of the potentials and field strengths, vanishes in our case because they all have a leg in τ .
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• The Kalb-Ramond equation

1
κ2∂α

(√
Ge−2Φd−2σH αµ

τ

)
= 0. (3.10)

• Ramond-Ramond equation

1
κ2∂α

(√
Ge−σF αµ3...µp

τ

)
= 0. (3.11)

• The σ equation

e2Φd
√
G
∂µ
(
e−2Φd

√
G∂µσ

)
= −1

4e
−2σHτµνH

µν
τ − e2Φd−σ

4(p− 1)!Fτµ2...µpF
µ2...µp
τ

+ β2κ2

2π2(α′)2χχ
∗e2σ. (3.12)

• A linear combination of the spatial metric and dilaton equations

Rµν − ∂µσ∂νσ + 2∇µ∇νΦd −
1
2HµλτH

λτ
ν − e2Φd

2(p− 2)!Fµτµ3...µpF
τµ3...µp

ν

+ e2Φd

4(p− 1)!GµνFτµ2...µpF
τµ2...µp = 2κ2∂µχ∂νχ

∗. (3.13)

• The dilaton equation

R− 2Λ + 4∇2Φd − 4∂µΦd∂µΦd − ∂µσ∂µσ −
1
4HτµνH

τµν

= 2κ2
[
∂µχ∂µχ

∗ + β2e2σ − β2
H

4π2(α′)2 χχ∗ + 2κ2

α′
(χχ∗)2

]
. (3.14)

3.2 Solutions with a vanishing Ramond-Ramond flux

• The χ solution

Consider β = βH = 2
√

2π
√
α′ and a small negative constant σ = −ε. Since βeσ is

the inverse temperature T−1, one has

ε = T − TH
TH

. (3.15)

Setting these β, σ values in eq. (3.8), we find a constant solution for χ, χ∗,

χχ∗ = ε

κ2 . (3.16)

We are interested in the case ε� 1 when χ, χ∗ are light and higher-order corrections
to the effective action in eq. (3.2) are suppressed. Eq. (3.5) implies a phase for χ,

χ =
√
ε

κ
e−i

β
2πα′

∫
dxµ Bτµ , (3.17)

because we require that the covariant derivative of χ vanishes.
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• The σ solution

Equation (3.12) has a constant solution, |σ| = ε� 1,

− 1
4e
−2σHτµνH

µν
τ + 4e2σε

α′
= 0, (3.18)

provided that
HτµνH

µν
τ = 16ε

α′
+O(ε2) = 8c2εT

2 +O(ε2). (3.19)

• The Kalb-Ramond solution

Here we consider flux supported on S1
β × S2, away from any possible stringy source,

Hτij = hεS
2

τij , (3.20)

The indices i, j = 1, 2 correspond to directions in S2. Recall that ετijετij = 2. From
eq. (3.19) it follows that

h2 = 8ε
α′
. (3.21)

Below we will quantize this flux.

• The spatial metric solution

The Ricci tensor of a two-sphere of radius r0 is given by

RS
2

ij = 1
r2

0
GS

2
ij , (3.22)

where the metric Gij is the metric of a unit two-sphere, while the Ricci scalar is
given by

R = 2
r2

0
. (3.23)

Since ετijετik = Gjk, eq. (3.13) implies that

1
r2

0
Gij = h2

2 Gij , i, j = 1, 2 (3.24)

Gµν = δµν , µ, ν 6= 1, 2. (3.25)

Therefore
r0 = 1

2

√
α′√
ε
. (3.26)

For a small ε, this radius is parametrically larger than the string length. The quan-
tization of the flux dictates that e

i
2πα′

∫
S1×S2 H = 1. It follows that

ε = 4
n2 , n ∈ Z. (3.27)

For ε� 1, n� 1 and we can treat ε as a continuous parameter.
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3.2.1 A solution with the geometry of S1
β × S2 × Rd−2, a constant dilaton and

a cosmological constant

Here we consider adding a fine-tuned CC in order to find a flat-space solution with a
constant dilaton,

Φd(x) = Φ0, (3.28)

with Φ0 corresponding to a small string coupling. This fixes the CC, as eq. (3.14) implies
that

2
r2

0
− 2Λ− 1

2h
2 = − 4

α′
ε2. (3.29)

From eqs. (3.26), (3.21), it follows that

Λ = 2ε
α′

+O(ε2). (3.30)

Strictly speaking, in superstring theory, it is not allowed to add an arbitrary CC, yet it
may be the case that the CC in eq. (3.30) corresponds to the value of the minimum of
the potential of some other target-space field. We have not identified which field could
give rise to this positive CC. Note that in spite of the fact that the CC is positive, the
(d−2)-dimensional space is flat. In what follows, we will set Λ = 0 and find other solutions.

In summary, an NS-NS field strength supported on S1
β × S2, a constant radion, a

constant dilaton and a flat spatial metric in the remaining d− 2 dimensions are a solution
to all EOM.

3.2.2 A solution with the geometry of S1
β×S2×RΦd ×Rd−3 and a linear dilaton

Here we consider the case of a linear dilaton in some specific direction, which we denote
by x,

Φd(x) = Φ0 +Qx. (3.31)

Substituting the flux solution from eq. (3.19) and the Ricci scalar of the two-sphere from
eq. (3.23) with r0 =

√
α′

2
√
ε
from eq. (3.26) into the dilaton EOM (3.14) implies that

Q = ±
√
ε√
α′

+O(ε). (3.32)

A standard issue when discussing linear dilaton backgrounds is the appearance of a
strong coupling region. The string coupling gs scales as gs ∼ eΦ0+Qx, thus in some region
of x it becomes large. A potential fix to this issue is that higher-order terms in the string
coupling do not allow it to become strong.

In summary, we established that an NS-NS field strength on S1
β×S2, a constant radion,

a linear dilaton in one of the spatial dimensions and a flat spatial metric in d−3 dimensions
constitute a consistent solution to all the EOM.
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3.3 Solutions with a Ramond-Ramond flux and the geometry of S1
β × S2 ×

Sp−1 ×AdSd−p−1

In this subsection we discuss solutions with the geometry of S1
β × S2 × Sp−1 × AdSd−p−1

and constant dilaton. Here the AdSd−p−1 factor is Euclidean. As for the cases discussed
previously,

Hτµν = h̃ετµν , (3.33)

where h̃ may not necessarily be equal to h from the previous subsection. The RR flux is
supported on S1

β × Sp−1,
Fτµ2...µp−1 = fετµ2...µp−1 . (3.34)

We consider p = 3, 5 for type IIB and p = 4 for type IIA. For p = 1 we find that flux
quantization is inconsistent with the σ EOM. For p = 2, the combined spatial metric and
dilaton equation in the S1 direction is not satisfied. As will be shown, the combination of
the two kinds of fluxes fixes the dilaton in addition to stabilizing the radion.

For a constant dilaton, eq. (3.14) implies that

R = 1
2 h̃

2 +O(ε2). (3.35)

From equation (3.12) it follows that

1
4e

2Φdf2 + 1
2 h̃

2 = 4ε
α′
. (3.36)

We now turn to equations (3.13). The spatial metric equation on S2 requires that

1
r2

0
− 1

2 h̃
2 + 1

4e
2Φdf2 = 0, (3.37)

and similarly for the spatial metric on Sp−1 with radius r1,

p− 2
r2

1
− 1

4e
2Φdf2 = 0. (3.38)

For the AdSd−p−1 factor, we find that

− d− p− 2
l2AdS

+ 1
4e

2Φdf2 = 0. (3.39)

From the trace of the d-dimensional metric-dilaton eq. (3.13) we obtain

R− h̃2 − p− 1
2 e2Φdf2 + d

4e
2Φdf2 = 0. (3.40)

Using eq. (3.35), it follows that

h̃2 = 1
2e

2Φdf2 (d− 2p+ 2) , (3.41)

– 10 –
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and from eq. (3.36) we obtain our final results for f and h̃,

f = e−Φd 4√
d− 2p+ 3

√
ε

α′
, (3.42)

h̃ =
√

2(d− 2p+ 2)
(d− 2p+ 3)

√
ε

α′
. (3.43)

The scales of the spheres and the AdS space are determined from eqs. (3.37), (3.38)
and (3.39): the radius of S2 is given by

r0 =
√
d− 2p+ 3
d− 2p− 2

√
α′

ε
, (3.44)

the radius of Sp−1 is given by

r1 =

√
(p− 2)(d− 2p+ 3)

4

√
α′

ε
, (3.45)

and the AdS scale by

lAdS =

√
(d− p− 2)(d− 2p+ 3)

4

√
α′

ε
. (3.46)

The H3 flux is quantized, implying that ε ∝ 1
n2
H

with nH ∈ Z. The quantization of Fp

constraints the string coupling eΦd ∝ np−2
H
nF

where nF ∈ Z. Since the solution relies on
weakly-coupled EFT with light winding modes, the relevant region in parameter space is
1� nH and np−2

H � nF .
In summary, an NS-NS field strength on S1

β × S2, RR flux on S1
β × Sp−1, a constant

radion, a constant dilaton and an AdS space in the remaining d− p− 1 dimensions, is a
consistent solution to all the EOM.

3.4 Aspects of stability

Here we only discuss some aspects of the perturbative stability of the solutions, deferring
a full stability analysis to a future publication.

First, we point out that the form of the effective potential for the winding modes
guarantees stability relative to fluctuations about χχ∗ = ε

κ2 . Second, the integrated fluxes
are perturbatively protected from instabilities. One can, for instance, perturb both the H3
flux, the Fp flux and the radion σ in a correlated manner, but we argue that the solutions
are stable against this. Indeed, consider the terms in the action in which σ appears, where
in particular the |H3|2, |Fp|2 terms are positive,

S[σ] = β

∫
ddx
√
Ge−2Φd

[ 2
α′
χχ∗e2σ + 1

8κ2 e
−2σHτµνH

µν
τ (3.47)

+ 1
4κ2(p− 1)!e

2Φd−σFτµ2...µpF
µ2...µp
τ

]
.

For all the solutions discussed above, the extremum for the field σ is a minimum. Expanding
about the solution, the mass-squared of σ scales as ε

α′ .
Further investigation is required to complete a full stability analysis.
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3.5 Entropy

The entropy density carried by the winding modes is related to the Lagrangian density of
the winding modes Lχ in the d-dimensions through

s = (β∂β − 1)Lχ = 2β2e−2Φd+2σ

(2πα′)2 χχ∗. (3.48)

Setting βeσ ≈ βH = 2π
√

2α′, χχ∗ = ε
κ2 and κ2 = 8πGN , one obtains

s = ε

2πα′GN
. (3.49)

The scaling of the entropy as G−1
N characterizes the classical entropy of winding-mode

condensates [15, 16, 31, 34, 35] (for an earlier work, see [23]).

4 Worldsheet field theories

In this section we write a classical action for some worldsheet (WS) field theories, and
propose that they have fixed points corresponding to the backgrounds in section 3.2. The
WS theories describe a string propagating in the thermal target-space background. The
analysis below is done to leading order in α′. It would be interesting to validate our
proposal by studying the renormalization group flow of the couplings in the WS action.
Also it would be interesting to extend the leading-order result to higher-orders in α′, and
perhaps even find an exact CFT.

The spectrum of the WS of type II consists of Xµ bosonic fields and the WS fermions
ψµ, ψ̃µ. The WS CFT action is given by

SWS = SX + Sψ,ψ̃ + Sghosts + SSG. (4.1)

SX = 1
2πα′

∫
d2z

(
e−2σ∂τ ∂̄τ +Gµν∂Xµ∂̄Xν +Bµν(X)∂Xµ∂̄Xν + α′RΦD(X)

)
. (4.2)

Sψ,ψ̃ = 1
4π

∫
d2z

(
e−2σψτ ∂̄ψτ +Gµνψµ∂̄ψν

)
+

1
4π

∫
d2z

(
e−2σψ̃τ∂ψ̃τ +Gµνψ̃µ∂ψ̃ν

)
. (4.3)

So far the action is standard; the target space fields in this action are given by:

Gµν(X) = δµν , µ, ν 6= 1, 2, (4.4)
Gij = diag(1, sin2(θ)), i, j = 1, 2, (4.5)

σ(X) = −ε, (4.6)
Bαβ(X) = 0, α, β 6= τ, (4.7)

Bτi(X) = 1
2hετijX

j , i, j = 1, 2. (4.8)

The dilaton is either a constant or linear:

Φd(X) = Φ0, (4.9)
Φd(X) = Φ0 +Qx , Q2 = ε

α′
. (4.10)
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We deform the action by adding the following term, a sum of the winding vertex operators:4

Sχ = 2µ
∫
d2z ψτ ψ̃τ cos

[
βeσ

2πα′ (τL − τR)
]
. (4.11)

Here,
µ ≡
√
ε. (4.12)

In [17] we showed that the “Sine-Gordon” term in eq. (4.11) reproduces the EFT am-
plitudes. One can compute the leading-order conformal weight of the deformation, h =
1 + O(ε). In the previous section we verified that the equations of motion are satisfied to
leading order in the α′ expansion. This leads us to expect that the field theories with the
above action have fixed points corresponding to the backgrounds described in section 3.2.
The α′ corrections are small because space gradients of any of the target-space fields either
vanishes (for instance χ, χ∗, Gµν) or scale as

√
ε
α′ .

The Sine-Liouville CFT and the N = 2 supersymmetric Liouville theory include a
term similar to SSG in eq. (4.11). However, in our case the winding-mode vertex operators
are uniform in space, while in the Sine-Liouville theory (and in its supersymmetric version)
they are multiplied by e−

φ
Q , where φ is the dimension in which the dilaton is linear. Also,

in our case, µ is a small parameter in contrast to the Sine-Liouville theory, which has 1/µ
to a positive power, as its small expansion parameter.

5 Comparison with the cigar background

The purpose of this section is to compare and contrast the thermal equilibrium background
that we found and the SL(2,R)k/U(1) cigar and cylinder backgrounds.

The asymptotic radius of these backgrounds is related to the level k by
√
α′k, they

are weakly-curved for large k and for the cigar, the cycle vanishes in size at the tip. The
geometry and dilaton in the cigar are given by:

ds2 = tanh2
(

ρ√
kα′

)
dτ2 + dρ2, τ ∼ τ + 2π

√
α′k , (5.1)

Φ(ρ) = Φ0 − log
(

cosh
(

ρ√
kα′

))
. (5.2)

In addition, a negative CC is required,

Λ = − 2
α′k

. (5.3)

The gauged Wess-Zumino-Witten CFT describes the target space to all orders in the α′
expansion [28]. The Fateev-Zamolodchikov-Zamolodchikov duality [40] can be used to
describe the cigar theory in terms of the Sine-Liouville CFT on a cylinder [41]. A super-
symmetric version of this CFT is the N = 2 Liouville CFT [42, 43].

4We focus on the real positive solution χ =
√
ε
κ
.
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The cigar background includes a winding-mode condensate [24–26]. Neglecting α′

corrections and treating the winding-mode as a fluctuation about the background, its
profile is given by

χ(ρ) ∝ 1
coshk

(
ρ√
α′k

) . (5.4)

This is a zero-mode solution of the EOM of the winding modes. The backreaction of the
winding-mode condensate on the geometry was discussed recently in [31], where it was
shown that the profile of the winding-mode condensate is determined by the Nambu-Goto
action of a string wrapping the cigar up to a radial distance ρ:

χ(ρ) = e−
γ
2 e−

β
2πα′

∫ ρ
eσ(y)dy, (5.5)

where γ is the Euler-Mascheroni constant. In contrast to the space-filling condensate for
the thermal equilibrium solution, for the cigar and for large k, the winding modes are
localized near the tip of the cigar. One can thus focus on the region near the tip to
make the comparison. However, the important difference between the thermal equilibrium
backgrounds and the cigar background is in the nature of the thermal cycle: whether it is
contractible or not. Additionally, the cigar is not uniform while our solutions with constant
dilaton are uniform.

Another target-space solution is that of the N = 2 Liouville theory with k slightly
smaller than 1, corresponding to an effective temperature slightly higher than the Hagedorn
temperature. This solution differs from the thermal equilibrium solution in that it does
not include fluxes.

6 Comparison with the Horowitz-Polchinski background

The purpose of this section is to compare and contrast the thermal equilibrium back-
ground and the HP background [10], whose properties were reviewed recently in [16]. The
HP background exists for d ≤ 5 and has the topology Sβ1 × Rd. The asymptotic radius of
the thermal circle corresponds to a temperature close to, but below, the Hagedorn temper-
ature. The winding-mode condensate is localized in a of a region in space of radius

√
α′

|ε|
and its magnitude is of the order of |ε|. In our convention, used in eq. (3.2), the magnitude
also scales with the inverse of the string coupling 1

gs
. The thermal circle becomes slightly

smaller than the asymptotic circumference, and the local temperature surpasses the Hage-
dorn temperature in the central region where the condensate is localized. A Lorentzian
interpretation of the Euclidean condensate is that of a gas of highly excited strings under
the influence of Newtonian gravity.

The entropy density is proportional to |χ|2 which is of order of |ε|
2

GN
. This scaling should

be compared to the thermal equilibrium solutions for which the thermal circle is constant
and |χ|2 ∼ ε

GN
. Another difference between the two solutions is the importance of the

winding self-interaction quartic coupling term relative to the coupling of the radion and
two winding modes. For the HP solution, the quartic coupling is suppressed by a factor of
|ε|, whereas in the thermal equilibrium solution, both are of order ε2. In addition, the HP
solution is not uniform due to the condensate, while our solutions are uniform.

– 14 –
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S1
β × S2 ×Md−2 SL(2,R)k�1/U(1) SL(2,R)k/1/U(1) HP

Uniform Yes, with const. Dilaton No No No
Curvature Weak Weak (without backreaction) Strong Weak
Thermal equilibrium Yes No Yes Approximate
Asymptotic Temperature ' TH � TH ' TH / TH

Dilaton, ΦD const./linear at ρ ≈
√

2α′, ∼ const. Linear ≈ const.
Winding condensate Space filling Near the tip Space filling Size ∼1/

√
|ε|

Flux Yes No No No

Table 1. In this table, we list the similarities and differences between the various target spaces, the
S1
β×S2×Md−2 background, the cigar background, the super-Liouville one and the HP background.

We would like to emphasize that while BHs can be in thermal equilibrium with their environment,
here we simply point out that the local temperature in Euclidean signature varies.

In table 1, we summarize the properties of the of the thermal equilibrium backgrounds
compared to those of the SL(2,R)/U(1) backgrounds and to the HP background.

7 Summary and discussion

In this paper, we derived the equations of motion for the light fields of closed strings above
and near the Hagedorn temperature. We verified explicitly that the equations of motion
possess several solutions with an isotropic and homogeneous flux keeping the thermal cycle
fixed and stable. The solutions differ by the behavior of the dilaton - constant or linear, by
whether the cosmological constant vanishes and whether they include a non-vanishing RR
flux. The cosmological constant could perhaps correspond to the value of the minimum of
the potential of some other target-space fields. It would be interesting to find out whether
this is indeed the case.

We thus demonstrated that a state in thermal equilibrium in the Hagedorn phase of
string theory, slightly above the Hagedorn temperature, does indeed exist. Typically, the
condensate of light winding modes is interpreted as a collection of strings at high temper-
ature. From this Lorentzian perspective, our Euclidean solutions provide descriptions of
thermal bath of strings in the Hagedorn phase.

However, attempting to analytically continue the Euclidean solution to Lorentzian
signature via the standard procedure τ ∼ τ + βeσ → it, leads to several issues. For
example, the continued three-form flux would fail to satisfy quantization, would be sourced
by imaginary string sources and would have a negative energy. We interpret these issues
as suggesting that a more appropriate continuation should involve the thermodynamical
quantities, such as the entropy, energy and pressure, which are intrinsic properties of the
thermal state.

As the temperature decreases, from above, to the Hagedorn temperature TH , ε = T−TH
TH

decreases to 0. One could imagine that as ε is decreased, the volume of the spheres increase,
the values of the asymptotic fluxes (and the slope of the linear dilaton) decrease and
formally vanish at the Hagedorn temperature. Decreasing ε further, we envision a transition
to a thermal phase of short strings in which the winding-mode condensate vanishes.
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We discussed aspects of the stability of the solutions, as well as the entropy carried by
the winding modes. The similarities and differences between the thermal background, the
cigar background and the HP background were also discussed and elucidated.

We do not expect our solutions to be related to black holes. Our solutions are
translation-invariant while the black-holes solutions are not. In [18, 19], evidence was
presented that a simple version of the solution with constant dilaton and no RR flux is
related to de-Sitter space. For instance, both are isotropic and uniform. The thermal
state that we have found can serve a starting point for describing a string theory dual to
asymptotically de Sitter space.

However, we think that our theory does have another solution (or multiple solutions)
with T > TH (here T is the asymptotic temperature) in which the quartic interaction
is important and where the thermal cycle pinches off. This solution should include a
winding condensate and corresponds to black-hole solution(s). It would be interesting to
investigate this further. For references discussing relations between black holes and the
super-Hagedorn phase, see for example [44, 45] and [46].
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A Winding current and the B-field

An S-matrix calculation of the amplitude of a massless modes with polarization tensor
ε3µν , with two winding modes of winding numbers ±1 yields [17]

S(k1, k2, k3) = −1
2κ
′β(2π)dδd

(
k⊥1 + k⊥2 + k⊥3

)
ε3µνk

µ
12k

ν
12 , k12 ≡ k1 − k2. (A.1)

Below it is explained how to extract a term in the effective action which reproduces this
amplitude. As always, the (2π)δd(. . .) factor transforms into

∫
ddx in the effective action.

For χ, χ∗ and Bτµ one should take kτ1 = β
2πα′ , k

τ
2 = − β

2πα′ . In addition, factors of −i∂µ are
induced by the spatial momenta of the winding modes. One should also take into account
a relative minus sign between the effective field theory amplitude and the string amplitude
in Euclidean signature. These steps yield the following term in the d-dimensional effective
action

i
β

2πα′κ
′
∫
ddxB µ

τ (χ∂µχ∗ − χ∗∂µχ) . (A.2)

Applying the field redefintions which appear between eqs. (57)–(58) of [17], χ→
√
βχ, χ∗→√

βχ∗ and B → κ′B, one eventually obtains

i
β

2πα′β
∫
ddx e−2Φ√GB µ

τ (χ∂µχ∗ − χ∗∂µχ) . (A.3)
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We have also included the dilaton and metric factors to agree with the standard form of
the covariant effective action at leading order in the string coupling. This result coincides
with eq. (4.6) of [36] who analyzed the Heterotic string in Lorentzian signature.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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