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1 Introduction

Black holes, unlike many idealised physical systems, are intrinsically dissipative due to
the presence of an event horizon. Thus, when considering the characteristic oscillations
of these systems, instead of carrying out a standard normal-mode analysis, one reverts
to the computation of quasinormal modes (QNMs). The latter have in principle complex
frequencies, with the real part representing the actual frequency of the oscillation and the
imaginary part representing the damping.

QNMs have been studied in various contexts. On the one hand, in asymptotically flat
spacetimes they have been used in the context of black hole spectroscopy to infer the mass
and angular momentum of the final black hole created after a binary merger as well as for
testing no-hair theorems. On the other hand, in asymptotically AdS spacetimes, QNMs
of black branes have been used for studying the near-equilibrium behaviour of strongly
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coupled plasmas with a dual gravity description revealing intriguing connections between
the dynamics of horizons and relativistic hydrodynamics. For a recent review on QNMs
for asymptotically flat and asymptotically AdS black holes/branes see [1].

In this paper we study QNMs in black brane geometries that asymptote to the so-called
Lifshitz geometry1 described by the line element (for a review see [3]).

ds2 = −r2zdt2 + dr2

r2 + r2dxidx
i , (1.1)

where z is the critical exponent and i = 1, . . . , D − 2. These geometries manifestly realise
the Lifshitz symmetry LifD−2(z) (rather than relativistic invariance) which comprises of
temporal (H) and spatial (P i) translations, spatial rotations (Lij) as well as a scaling
symmetry Dz

H : t→ t′ = t+ a

P i : xi → x′
i = xi + ai

Lij : xi → x′
i = Lijx

j

Dz : r → r′ = λr, t→ t′ = λt, xi → x′
i = λzxi . (1.2)

When z = 1 the metric is AdS and has full relativistic symmetry, but for z 6= 1 the
system obtains anisotropic scaling between space and time and is thus non-relativistic.
For z ≥ 1, Lifshitz geometries satisfy the strong energy condition Rmnu

mun ≥ 0 for any
future directed timelike vector um, as well as the null energy condition Gmnkmkn ≥ 0 for
any future directed null vector km. Therefore there are no obstruction to supporting the
Lifshitz geometry with physically reasonable matter for z ≥ 1. For z < 1, some pathologies
emerge caused by the violation of the null energy condition [4].

Lifshitz geometries have an anisotropic curvature tensor and solve the Einstein equa-
tions with a non-trivial stress energy tensor. They were first constructed in [5] and have
been mainly realised in Einstein-Maxwell-Dilaton (EMD) [2, 6], Einstein-Proca (EP) [2]
and higher derivative gravity theories [2, 7–9]. Lifshitz black holes have been constructed
in various dimensions and for different values of z, with some analytic and many numerical
examples, see e.g. [10–12].

According to the holographic duality, these geometries are dual to strongly-coupled
non-relativistic field theories with Lifshitz symmetry. However, the corresponding holo-
graphic dictionary is less well-understood than in the case of AdS and in fact a real-time
formulation is still not fully developed. Holographic renormalisation, which is what allows
one to determine the independent sources and their corresponding expectation values, is
more elaborate [13–15]. These references find that the operator content of the dual the-
ory corresponds to a non-relativistic stress tensor complex, consisting of an energy density
E , energy flux Ei, momentum density Pi and spatial stress-tensor πij . In the absence of

1Note that here we are focusing our attention to spatially isotropic Lifshitz geometries. Non-spatially
isotropic Lifshitz geometries were obtained in [2].
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sources, these satisfy the usual Ward identities

∂tE + ∂iE i = 0 (1.3)
∂tE i + ∂jπ

ij = 0 (1.4)

In addition, a common feature present in holographic realizations of Lifshitz is the appear-
ance of a scalar operator with irrational scaling dimensions. This can be associated to the
longitudinal polarization of the massive vector in EP, or the dilaton in EMD theories.

Recent studies of a specific z = 2 Lifshitz geometry arising as reduction of higher-
dimensional theories [16] suggested that Lifshitz field theories couple generically to Newton-
Cartan geometries on the boundary —note that z = 2 is special as the symmetry group can
be augmented by Galilean boosts. This study has lead to some resurgence of interest in non-
relativistic holography, including studies of intrinsically non-relativistic gravity theories
such as Horava-Lifshitz —this is to be contrasted with what has been stated above, where
one considers relativistic gravity theories that admit non-relativistic solutions.

Scalar field QNMs in Lifshitz black brane backgrounds were considered previously in
the literature. In particular, the cases that have been studied include D = 3, z = 3 in
NewMassiveGravity [17], D ≥ 4, z = 2 in R2 gravity [18] and D ≥ 2, z = 2 in a R3

gravity [19]. Additionally, the case of D = 4, z = 2 has been studied in the Einstein-Proca-
Scalar theory [20], in the EMD setup [21] and in a topological black hole in a Einstein-
Maxwell-Proca background [22–25]. All these quasinormal modes were found to be purely
imaginary. This is in contrast with the results of [26] for the EMD model that showed that,
at zero momentum, these modes have purely imaginary frequencies for z ≥ D−2, while for
z < D − 2 they pick up a real part. In all case, all quasinormal modes are situated in the
lower half-plane of complex frequencies, indicating stability. Furthermore, in the context
of holographic superconductors in a Lifshitz background, [27] found hydrodynamic modes
in the QNM spectrum of the charged scalar field close to the critical temperature.

In this work we study gravitational QNMs, focusing on the EP and the EMD model
for D = 4, 5 and general z. These QNMs are more interesting than scalar ones because the
corresponding fluctuations couple to conserved currents in the dual field theory. Currently,
these have only been calculated for the EP model for D = 4, z = 2 at zero temperature [28]
and negative imaginary frequencies were found. Our results for the leading behaviour of the
dispersion relations of the gapless (hydrodynamic) modes are summarised in the table below

EP EMD
ωshear = −i ν(z)k2 + . . . ωshear = −i ν̄(z) k4 + . . .

ωsound = us(z) k − iΓ(z)k2 + . . . ωsound = −iΓ̄(z) k2 . . .

where ω, k � 1 are the frequency and the momentum of the modes respectively. Note that
all the z dependence is hidden in the constant of proportionality that we have calculated
numerically. We see substantial differences in the relaxation of the two theories, and in the
case of the EMD theory, we also see significant deviation from the dispersion relations of
the hydrodynamic modes in AdSD, which take the form

ωshear = −i ν k2 + . . . , ωsound = usk − iΓk2 + . . . (1.5)
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where us is the speed of sound, Γ is the attenuation and ν is the diffusion constant. In
addition to the above hydrodynamic modes, we also find a tower of non-hydrodynamic
modes the real parts of which go to zero at z = D − 2, just like for the scalar QNMs [26].
All the quasinormal modes found are located in the lower half plane and we thus conclude
that the system is stable, which is in agreement with the non-linear time evolution of [29]
for the EMD model.

Through the holographic duality, QNMs correspond to poles of the (retarded) thermal
correlators of dual (D − 1)-dimensional strongly interacting quantum field theories. The
lowest QNM frequencies of black branes have a direct interpretation as dispersion relations
of hydrodynamic excitations in the dual field theory, which in our case enjoys Lifshitz
symmetry. Lifshitz hydrodynamics have been developed in [30, 31] and more recently
in [32]. This has been carried out in two competing approaches: both start with relativistic
hydrodynamics but break the Lorentz symmetry in different ways along the hydrodynamic
expansion. In particular, the difference lies on whether Galilean boosts are broken at the
perfect fluid level or at the first dissipative order. In both cases new transport coefficients
were identified and the bulk viscosity is found to vanish [30, 32]. Dispersion relations for
the hydrodynamic sound, shear and diffusion modes have been studied in [32] and a new
expression for the speed of sound has been obtained [32, 33]. The sound mode dispersion
relation in a higher-derivative gravity theory for z = 3, D = 3 at finite temperature in the
hydrodynamic limit was also studied in [34].

The remaining on this paper is structured as follows. In section 2 we give a brief
overview of the computation of gravitational QNMs and in sections 3 and 4 we discuss,
respectively, EP and the EMD theories and the corresponding results that we obtained.
Then in section 5 we carry out a comparison with the Lifshitz hydrodynamics developed
in [32] and finally in section 6 we conclude with some discussion and future directions.

2 Review of quasinormal mode computation

A detailed analysis of the quasinormal spectra for AdS-Schwarzschild and AdS-Reissner-
Nordstrom black branes was discussed previously in the literature [35]. It is well known that
the electromagnetic and gravitational perturbations split into the tensor (for D ≥ 5), vector
and scalar sectors depending on their transformation properties. The scalar sector contains
the sound and charge diffusion fluctuations, the vector contains the shear and transverse
gauge field fluctuations and the tensor modes are decoupled scalar equations. Out of
these fluctuations only the shear, sound and charge diffusion contain hydrodynamic modes,
meaning modes that obey dispersion relations such that the frequency approaches zero as
the momentum is decreased. These hydrodynamic modes correspond precisely to the shear
and sound modes in the hydrodynamic limit of the dual CFT at finite T we are interested in.

In the case of black branes with Lifshitz asymptotics, the electromagnetic and gravi-
tational fluctuations once again split into the three sectors described above. In this work
we focus only on the scalar and vector fluctuation, which contain gapless (hydrodynamic)
modes, meaning modes that obey dispersion relations such that the frequency approaches
zero as the momentum is decreased. Note that in our case, even though we have a vector
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field in the bulk, there is no U(1) current in the dual theory, so only sound and shear modes
associated to the stress tensor are expected. In particular, we do not expect to find charge
diffusion hydrodynamic mode in the set-ups we are considering.

In particular, we consider linearised fluctuations around the Lifshitz backgrounds of
the form

gµν = g(Lifz)
µν + ε δgµν(r) e−i(ωt−kx) + . . .

Aµ = A(Lifz)
µ + ε δAµ(r) e−i(ωt−kx) + . . .

δφ = φ(Lifz) + ε δφ(r) e−i(ωt−kx) + . . . (for the EMD model) (2.1)

where ε is a small expansion parameter. Note that here we have chosen the momentum k

to point in the x direction without lose of generality. The precise form of the Lifshitz back-
ground, denoted by g(Lifz), A(Lifz) and φ(Lifz) is described in detail in the sections below.

In the vector sector, the non-trivial metric and gauge field fluctuations considered are

{δgti, δgxi, δAi, δgri} , (2.2)

where i denotes the spatial directions transverse to x, in which we retain isotropic e.g.
δgxy = δgxz in D = 5.

In the scalar sector, the non-trivial metric and gauge field fluctuations considered are

{δgtt, , δgtx, δgxx, δg, δAt, δAx, δgtr, δgrr, δgrx, δAr} , (2.3)

where δg = 1
D−3

∑
i δgii.

The equations of motion for these fluctuations carry a lot of redundant information
due to gauge invariance. In particular, under an infinitesimal coordinate transformation
xµ → xµ + ξµ, where ξµ is an arbitrary function of r, the fluctuations transform as

δgµν → δgµν −∇µξν −∇νξµ ,
δAµ → δAµ +∇µλ− ξν∇νAµ −Aν∇µξν ,
δφ→ δφ− ξν∇νφ . (2.4)

Typically this gauge freedom is dealt with by arranging the fluctuations into gauge invariant
combinations [35]; this is the approach we follow in the majority of our calculations. For
the scalar channel of the Einstein-Proca model we instead follow a method first discussed
in [36] that mimics the DeTurck trick.2 Specifically, we add a gauge fixing term ∇(ντµ) to
Einstein’s equations, where

τµ = ∇ν
(
δgνµ − det(δg)g

(Lifz)
νµ

2

)
, (2.5)

and a posteriori check that it vanishes. Note that such term is only added for the metric and
not for the gauge field. Since the gauge field is massive, the equation of motion completely

2This method was also used for double checking some of our results for the sound channel in the Einstein-
Maxwell-Dilaton model.
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determines A, which means that one can not do any gauge transformations. Comparing
the two approaches, considering gauge invariant combinations is preferred as it boils down
to a smaller number of equations to be solved numerically.

The final equations are then solved numerically subject to boundary conditions, namely
ingoing boundary conditions at the horizon and fast enough fall-off close to the UV bound-
ary compatible with the absence of sources.

3 Einstein-Proca theory

3.1 The model

In this section we consider the Einstein-Proca model, described by the following bulk action

S =
∫
dxD
√
−g

(
R− 2Λ− 1

4FµνF
µν − m2

2 AµA
µ

)
, (3.1)

where F = dA. The corresponding equations of motion are given by

Rµν = 2Λ
3 gµν + 1

2FµλF
λ
ν + m2

2 AµAν −
1
12FρσF

ρσgµν ,

∇µFµν = m2Aν . (3.2)

and it is easy to show that for

Λ = −z
2 + (D − 3)z + (D − 2)2

2 , m2 = (D − 2)z , (3.3)

they admit a solution

ds2 = r2(−r2(z−2)dt2 + dr2 + dxidxi) ,

A = rz

√
2(z − 1)

z
dt , (3.4)

which corresponds to a dual field theory at zero temperature with Lifshitz symmetry.
In order to put this system at finite temperature, one needs to consider configurations

with regular horizons that approach the above the solution close to the boundary. This
was achieved in [6], using the ansatz

ds2 = r2
(
−r2(z−1)F (r)dt2 + dr2

R(r) + dxidxi
)
,

A = rz

√
2(z − 1)

z
at(r)dt , (3.5)

which gives rise to two second order equations for F, at and an algebraic equation for R.
These equations can be solved numerically using a shooting method subject to appropriate
UV boundary conditions and regularity at the horizon (located at r = rh). In particular,
close to the boundary (r →∞), the fields fall off according to

F = 1 + c1r
−D+2−z + c+r

−λ+/2 + c−r
−λ−/2 + . . . ,

at = 1 + c2c1r
−D+2−z + c3c+λ+r

−λ+/2 + c4c−λ−r
−λ−/2 + . . . , (3.6)
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Figure 1. Temperature as a function of z for Lifshitz black branes in the Einstein-Proca model for
D = 4 (blue) and D = 5 (red). Note that the curves approach the AdS values TD=4 = 3rh/(4π),
TD=5 = rh/π at z = 1.

where c1, c± are undetermined constants, c2, c3, c4 are functions of z (which we omit for
simplicity) and

λ± =

z + 3±
√

9z2 − 26z + 33 for D=5
z + 2±

√
9z2 − 20z + 20 for D=4 .

In our UV boundary conditions we require that c− = 0, following the analysis of [13]. The
temperature of the solution is finite and given by

T = rz+1
h

4π

√
R

F
F ′|r=rh

. (3.7)

In figure 1 we plot the temperature dependence with z for the numerical solutions we
have constructed.

3.2 Numerical results

3.2.1 Vector channel

Given the vector channel fluctuations, the equations of motion reduce to a set of two second
order ODEs for the gauge invariant quantities

δAy, δHxy = r4∂r(r−2δgxy) , (3.8)

which we omit for simplicity. The independent terms in the boundary asymptotics for the
gauge invariants can be written as

δAy = a(0)rz + a(1)r−2z+4−D, δHxy = r3−2zH(0) + r−z−D+5H(1) . (3.9)

It is easy to see that setting the sources to zero requires a(0) = H(0) = 0 [37]. At the
horizon we require ingoing boundary conditions, which implies that the fields behave as

δAy = (r − rh)−iω/4πTa(reg)
y , δHxy = (r − rh)−iω/4πT−1δH(reg)

xy , (3.10)
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Figure 2. Hydrodynamics modes for the shear channel in the EP model. (a) Plot of the dispersion
relation for the shear mode for z = 1.2 for the D = 5 EP model. (b) Values of the diffusion constant
ν(z) for D = 4 (blue) and D = 5 (red).

where T is the temperature and a(reg)
y , H

(reg)
xy admit regular power series expansions in the

near horizon region. We determine the spectrum of QNMs by discretising the differential
equations and solving the corresponding matrix problem in Mathematica. We find one
gapless mode

ωshear = −iν(z)k2 + . . . (3.11)

In figure 2(a) we plot of the dispersions relation for the shear mode for z = 1.2 for D = 5,
corresponding to a clear quadratic power-law behaviour for small momenta. Similar plots
have been obtained for different values of z and for D = 4, when perturbing around the
corresponding numerical backgrounds. The diffusion constant depends on the value of z
and in particular it decreases as z is increased, as shown in figure 2(b).

3.2.2 Scalar channel

We now consider the scalar channel fluctuations around the Lifshitz background (3.5).
As explained in the previous section, we follow the gauge fixing approach of [36], which
requires introducing an extra term in the equations of motion for the metric —we have
verified that this term vanishes within numerical precision for the modes of interest, so
that these fluctuations are indeed solutions of the linearised Einstein’s equations.

The equations of motion for these fluctuations are solved numerically by discretisation
subject to ingoing boundary conditions at the horizon and fast enough fall-off close to the
boundary compatible with the absence of sources; see appendix A for more details. We
find one gapless mode characterised by the standard dispersion relation

ωsound = us(z)k − iΓ(z)k2 + . . . (3.12)

We show in figure 3 the behaviour of ω(k) for z = 3/2, D = 4; we find analogous behaviour
for other values. We display the numerical values of us(z) and Γ(z) in figure 4. Note that
our results agree with the AdS values in e.g. [38].
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Figure 3. Hydrodynamics modes for the sound channel in the EP model. (a) real and (b)
imaginary part of the dispersion relation for z = 1.5 and D = 4.
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Figure 4. Coefficients of the dispersion relation for the sound channel in the EP model as a
function of z. (a) us and (b) Γ for D = 4 (blue) and D = 5 (red).

4 Einstein-Maxwell-Dilaton theory

4.1 The model

In this section we consider the theory described by the bulk action

S =
∫
dxD
√
−g

(
R− 2Λ + 1

4e
λΦFµνF

µν − 1
2∂µΦ∂µΦ

)
, (4.1)

which gives rise to the following equations of motions

Rµν −
1
2e

λΦFµρF
ρ
ν −

1
2∂µΦ∂νΦ + gµν

(
− 2Λ
d− 2 + 1

4(d− 2)e
λΦFµνF

µν
)
,

∇µ
(
eλΦFµν

)
−m2Aν = 0 ,

∇2Φ− λ

4 e
λΦFµνF

µν = 0 . (4.2)
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As it was shown in [2] (for generalisations see [39]), this theory admits an analytic solution
black hole configuration given by

ds2 = −r2zf(r)dt2 + dr2

r2f(r) + r2dxidx
i ,

eλΦ = eλΦ(r) = r−2(D−2) , A = a0r
z+D−2 , f(r) = 1− rh

r

z+D−2
, (4.3)

where

Λ = −1
2(z +D − 2)(z +D − 3) , λ2 = 2D − 2

z − 1 , a0 =
√

2(z − 1)
λ2(z +D − 2) . (4.4)

It is easy to see that close to the boundary r → ∞ this solution approaches the
Lifshitz metric with critical exponent z, while the black hole horizon is located at r = rh
corresponding to temperature

T = z +D − 2
4π rzh , (4.5)

where rh is the radius of the horizon and in our units rh = 1.
It is worth mentioning that these configurations are not smoothly connected to AdS

branes in the limit z → 1. This is easily seen by noting the divergence in the coupling λ
which appears explicitly in the equation of motion for the dilaton.

4.2 Numerical results

4.2.1 Vector channel

We consider the vector channel fluctuations around the background (4.3) in the gauge
where δgri = 0 and we focus our attention on the gauge invariant quantities

δAy, δHty = a0r
D−z+1
h ∂r(r−2δgty) , (4.6)

which obey second order ODEs. The independent terms in the boundary asymptotics for
the gauge invariants can be written as

δAy = a(0)rD−2+z + a(1)r2−2z , δHty = r−3+2zH(0) + r1−D−zH(1) . (4.7)

The leading terms parametrise the field theory sources so we set them to zero. Given these
boundary conditions in the UV and ingoing boundary conditions at the horizon,

δAy = (r − rh)−iω/4πTa(reg)
y , δHty = (r − rh)−iω/4πT δH(reg)

ty , (4.8)

we proceed to solve the ODEs numerically to find the spectrum of QNMs. We find one
gapless mode with dispersion

ωshear = −iν̄(z)k4 + . . . (4.9)

In figure 5(a) show the dispersion relation for D = 4, z = 3/2, which behaves line ∼ k4 in
the hydrodynamic limit — this was also confirmed by studying the logarithmic derivative of
the dispersion kIm[ω]′/Im[ω]. We find an analogous behaviour for D = 5. The dispersion
constant, ν̄, depends on the value of z in a way which we depict in figure 5(b).

– 10 –



J
H
E
P
0
5
(
2
0
2
2
)
0
1
8

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0000

0.0005

0.0010

0.0015

0.0020

k rh

Im
[ω

]

4
π
T

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.00

0.02

0.04

0.06

0.08

0.10

z

ν
r h
4-
z

Figure 5. Hydrodynamics modes for the shear channel in the EMD model. (a) Plot of the
dispersion relation for D = 4 and z = 3/2. (b) Plots of ν̄(z) as a function of z for D = 4 (blue)
and D = 5 (red).

4.2.2 Scalar channel

In this section we consider the scalar sector fluctuations around the background (4.3). In
particular, in the gauge where δgtr, δgrr, δgrx, δar = 0, these fluctuations are combined
into the following gauge invariant combinations

Z1 = δφ− 1
2r(d− 2)φ

′ (2δgxx + (D − 4)δg)− 2
λ

1
r2 (δgxx − δg) ,

Z2 = δat + ω

q
δax −

1
2r(D − 2)a

′
t (2δgxx + (d− 4)δg) ,

Z3 = r2z−2fδgtt − 2ω
q

1
r2 δgtx −

ω2

q2 (δgxx − δg)− 1
2r (r2zf)′δg . (4.10)

The equations of motion for these master fields take the form of three second order ODEs
of degree 6 in the frequency. At the horizon we impose ingoing boundary conditions

Zi = (r − rh)−iω/4πTZ(reg)
i , i = 1, 2, 3 (4.11)

where Z(reg)
i admit regular power series expansions. A mode analysis close to the boundary

of the form

Z1 ∼ r∆1 , Z2 ∼ r∆2 , Z3 ∼ r∆3 , (4.12)

reveals modes with scaling dimensions ∆1 = 3 + z + ∆2,∆3 = 3− z + ∆2 where

∆2 = {D − 2 + z,D − z, 2− 2z, β±}

β± =


1
2

(
3 + z ±

√
57 + 46z + 9z2

)
for D = 5

1
2

(
2 + z ±

√
20 + 28z + 9z2

)
for D = 4 .

More concretely, the boundary conditions for the master fields take the form

Z1 = c1r
−D+2−z+β− + c̃1r

−D+2−z+β+

Z2 = c2r
D−2+z + cb c1r

β− + cd c̃1r
β
+ + c4r

2−2z

Z3 = ca c2r
2z + c3r

2 + cc c1r
β− + cf c̃1r

β
+ + cg c4r

2−2z (4.13)
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Figure 6. Hydrodynamic modes for the sound channel in the EMD model. (a) Plot of the
dispersion relation as a function the momentum for z = 3/2 for D = 4. (b) Values of the relaxation
constant Γ̄(z) for D = 4 (blue) and D = 5 (red).

where ca, cb, cc, cd, ce, cf , cg are known functions of z — the UV asymptotics of the field
fluctuations are recorded in appendix B. Given the above expansion, by setting c̃1, c2, c3 = 0
we are demanding that the boundary sources vanish.

Imposing these boundary conditions, we solve the corresponding eigenvalue problem
to find the following dispersion relation for the sound mode

ωsound = −iΓ̄(z)k2 + . . . , (4.14)

indicating that for the Einstein-Maxwell-Dilaton case the speed of sound is zero. In fig-
ure 6(a), we plot the dispersion relation for z = 3/2, D = 4 and we see a clear quadratic
scaling —this was also confirmed by studying the logarithmic derivative of the dispersion
kIm[ω]′/Im[ω]. We find analogous behaviour for other values of z and D. We depict the
behaviour of Γ̄(z) in figure 6(b). We confirmed these results by repeating the calculation
using a gauge fixing term instead of master fields.

4.3 Analytic results for z = D − 2 in the vector channel

In this section we carry a perturbative analysis in an attempt to get an analytic handle on
the numerical results we obtained for the shear channel. Due to the non-analytic behaviour
of the metric functions, the hydrodynamic expansion can only be pushed analytically for
z = D − 2.

In particular, we consider a perturbative expansion in the momentum k of the form

k = ε k̄ , ω =
n∑
i=1

εi ω̄(i) (4.15)

together with

δay = (1− uβ)−iω/4πT
n∑
i=0

εia(i)
y (u) ,

δHty = (1− uβ)−iω/4πTu3
n∑
i=0

εi δH
(i)
ty (u) , (4.16)
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where u = rh/r, β = z + D − 2 and the prefactors were chosen in such a way to simplify
the IR boundary conditions. Note that, in units of rh = 1, we have 4πT = z +D − 2. At
each order, i, we find two second order equations, which we can recast as a single higher
order ODE for δa(i)

y (u). Solving these equations, we find that at zeroth order

δa(0)
y (u) = c0, δH

(0)
ty (u) = 0 , (4.17)

while at order 1 (and in fact for all odd orders)

ω̄(1) = 0 , δa(1)
y (u) = 0, δH

(1)
ty (u) = 0 . (4.18)

Finally, we were able to solve the corresponding ODE at quadratic order and determine
ω̄(2) = 0 through imposing boundary conditions. Focusing on D = 4, in the IR the solution
looks like

δa(2)
y (u) = c0

192 k̄
2(12− π2) + c2 + (1− u)

32 c0 k̄
2(12− π2) + . . . ,

δH
(2)
ty (u) = c0

36(−9 + 14k̄2) + c0
18(9− 8k̄2)(1− u) + . . . , (4.19)

and in the UV

δa(2)
y (u) = c0π

2

96 k̄2 + c2 + c1 u
2

72 (9− 14k̄2 + 12k̄2 log u) + . . . , (4.20)

δH
(2)
ty (u) = − c0

36u
2(9− 14k̄2 + 12 k̄2 log u) + . . . . (4.21)

Similar results apply for D = 5. Determining analytic solutions to the higher order equa-
tions was not possible.

To summarise, from this perturbative solution we have been able to conclude that the
quadratic piece vanishes, ω̄(2) = 0, which is consistent with our numerical results. Unfortu-
nately we were not able to solve the equations to a sufficiently high order in perturbation
theory to determine the value of the first non-trivial term, namely ω̄(4).

5 Comparing with Lifshitz hydrodynamics

The hydrodynamic modes of homogeneous and isotropic non-relativistic fluids with generic
dynamical exponent z was discussed in [30–32], with the main difference between the two
approaches being that in [30, 31] boosts are broken at the first dissipative level while
in [32] they are already absent at the ideal level. In particular, [32] derived the following
hydrodynamic dispersion relations for sound and shear

ωsound = usk − ik2Γ + . . . ,

ωshear = −iη0
ρ0
k2 + . . . (5.1)

where ρ is the mass density, η is the charge density and the zero index denotes equilibrium.
They also expressed the speed of sound us and the attenuation Γ in terms of equilibrium

– 13 –
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quantities as follows

u2
s = z

d

ε̃0 + p0
ρ0

,

Γ = 1
d

(d− 1)η0
ρ0

+ π̄0
2ρ0

u2
s (5.2)

where d = D − 1, ε̃ is the internal energy, p is the pressure and π̄ is the dissipative part of
the thermal conductivity.

In the case of the Einstein-Proca model the dispersion relations we found numerically
is consistent with the behaviour above for non-vanishing values of all parameters, in a way
which smoothly connects to the AdS values as z → 1. However, for the EMD model we
numerically find that the speed of sound as well as the leading term in the shear dispersion
relation vanish. The latter was also confirmed analytically for a particular choice of z. To
reconcile the two results, ρ0 → ∞ together with π̄0 ∼ ρ2

0 while the rest of the coefficients
are order one. Checking this explicitly is left for future work.

6 Discussion and future direction

In this work we have considered linearised perturbations around Lifshitz black branes, with
a focus on electromagnetic and gravitational fluctuations in the scalar and vector channels.
We found that in the case of the Einstein-Proca model, the dispersion relations of the
hydrodynamic shear and sound mode have the same structure as in asymptotically AdS
black branes, namely they have quadratic and linear dispersions, respectively. On the other
hand, we found that the dispersions of the shear and sound modes in Einstein-Maxwell-
Dilaton model are quartic and quadratic, respectively. This is a significant difference
between the two models, signalling that the two models approach equilibrium differently.
It would be interesting to understand this better from the field theory perspective. As
mentioned in section 4, the z → 1 limit of the EMD system does not smoothly approach
the relativistic Einstein-Maxwell theory, at least taken while keeping all other quantities
regular in (z − 1). This could explain the root of the qualitative change we observe in the
dispersion relations of the hydrodynamic modes.

Preliminary analysis of the near-horizon expansion of the perturbation indicates the
phenomenon of pole-skipping does occur in asymptotically Lifshitz geometries. Specifi-
cally, we find that the Matsubara frequencies exist in the lower half plane at the exact
same locations as in the relativistic case. It would be interesting to check if the Lifshitz
hydrodynamic sound mode, when driven to instability by a choice of a specific value of
imaginary momentum that is well outside the standard regime of validity of hydrodynam-
ics, exhibits connections with chaos through the phenomenon of pole-skipping [40]. In
addition, in the spirit of [41, 42], it would be interesting to further investigate the radius
of convergence of the non-relativistic hydrodynamic expansion and, through resummation,
test whether it is possible to extract non-hydrodynamic QNMs from the hydrodynamic
ones. This will be shed light on the thermalisation properties of strongly coupled non-
relativistic fluids —for relativistic fluid thermalisation, it is known that the hydrodynamic
expansion becomes applicable very early during dynamical processes.
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An exciting recent technical development with the potential of leading to rapid progress
in both gravitational physics and holography involves the limit of large number of dimen-
sions (D) of general relativity [43, 44]. This tool has so far been applied to relativistic
theories of gravity, realised on geometries that are either asymptotically flat or asymp-
totically AdS, providing a number of very interesting results. By treating D as a free
parameter, one can use this approach to perform a perturbative expansion in 1/D, which
leads to a drastic simplification of the theory. The non-trivial black hole dynamics are
localised within a distance 1/D from the horizon and it is thus possible to capture them
with an effective theory given by a set of constraints that depend solely on the directions
parallel to the horizon. It would be interesting to explore the applicability of this tool in
spacetimes with Lifshitz asymptotics. The first step in this direction would be to see if
the tower of gravitational QNMs splits into two subgroups, one controlling the dynamics
in the near horizon region and the other in the far region, when D →∞.
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A Asymptotics for the sound fluctuations in the Einstein-Proca model

We specify ingoing boundary conditions for all the fluctuations, which translates to de-
manding the following behaviour near the horizon

δgtt = r2zF (r)(r − rh)−iω/4πT−1δg
(reg)
tt ,

δgtr = (r − rh)−iω/4πT−1δg
(reg)
tr ,

δgtx = (r − rh)−iω/4πT δg(reg)
tx ,

δgrr = r2

R(r)(r − rh)−iω/4πT−1δg(reg)
rr ,

δgrx = (r − rh)−iω/4πT−1δg(reg)
rx ,

δgxx = r2(r − rh)−iω/4πT δg(reg)
xx ,

δg = r2(r − rh)−iω/4πT δg(reg) ,

δAt = (r − rh)−iω/4πT δa(reg)
t ,

δAr = (r − rh)−iω/4πT−1δa(reg)
r ,

δAx = (r − rh)−iω/4πT δa(reg)
x , (A.1)
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where (reg) indicates that the respective functions admit regular power series expansions
in the near horizon. On the other hand, close to the boundary we get an expansion of the
form [37]

δgtt = r2zF (r)
(
g

(0)
tt + g

(v)
tt r

−z−D+2 + s
(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ . . .

)
,

δgtr = g
(0)
tr r

2z−1 + g
(v)
tr r

−z−D+1 + . . . ,

δgtx = r2z
(
g

(0)
tx + g

(v)
tx r

−D+4−3z + g
(c)
tx r
−z−D+2 + . . .

)
+ r2

(
ḡ

(0)
tx + ḡ

(v)
tx r

z−D + ḡ
(c)
tx r
−z−D+3 + . . .

)
,

δgrr = r2

R(r)
(
g(0)
rr + g(v)

rr r
−z−D+2 + s

(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ . . .

)
,

δgrx = g(0)
rx r

1 + g(v)
rx r

−z−D+1 + s
(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ + . . . ,

δgxx = r2
(
g(0)
xx + g(v)

xx r
−z−D+2 + s

(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ . . .

)
,

δg = r2
(
g(0)
yy + g(v)

yy r
−z−D+2 + s

(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ . . .

)
,

δAt = rz
(
a

(0)
t + a

(v)
t r−z−D+2 + s

(−)
1 rβ− + s

(−)
2 rγ− + s

(+)
1 rβ+ + s

(+)
2 rγ+ . . .

)
,

δAr = a(0)
r rz−1 + a(v)

r r−D+1−2z + . . . ,

δAx = rz
(
a(0)
x + a(v)

x r−D+4−3z + a(c)
x r−z−D+2 + . . .

)
, (A.2)

where

γ± =

−
1
2(z + 4±

√
9z2 + 4z + 20) for D=4

−1
2(z + 5±

√
9z2 + 6z + 33) for D=5 ,

β± =

−
1
2(z + 4±

√
9z2 − 20z + 20) for D=4

−1
2(z + 5±

√
9z2 − 26z + 33) for D=5 .

Note that (A.2) is meant to capture the general form of the expansion and not all coefficients
are independent. Furthermore, just like in the DeTurk trick, the non-analytic terms, γ±,
are an artefact of the way we fix the gauge and the free constants that multiply it are in
fact zero on the actual solution. In this expansion we identify the leading coefficients g(0)

tt ,
g

(0)
tx , ḡ(0)

tx , g(0)
rr , g(0)

xx , g(0)
yy , a(0)

t , a(0)
x ,s(−)

i as sources and we demand that they vanish.
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B Asymptotics for the sound fluctuations in the Einstein-Maxwell-Dilaton
model

The UV expansions for the field fluctuations in the scalar sector of the EMD model take
the form

δgtt = r2zf(r)
(
g

(0)
tt + g

(v)
tt r

2−D−z + . . .
)
,

δgtx = r2z
(
g

(0)
tx + g

(v)
tx r

−D+4−3z + g
(c)
tx r
−z−D+2 + . . .

)
+ r2

(
ḡ

(0)
tx + g

(v)
tx r

z−D + gtx
(c)r−z−D+2 + . . .

)
,

δgxx = r2
(
g(0)
xx + g(v)

xx r
2−D−z + . . .

)
,

δg = r2
(
g(0)
yy + g(v)

yy r
2−D−z + . . .

)
,

δAt = rz+D−2
(
a

(0)
t + a

(v)
t r−D+4−3z + a

(c)
t r−z−D+2 + . . .

)
,

δAx = rz+D−2
(
a(0)
x + a(v)

x r−D+4−3z + a(c)
x r−z−D+2 + . . .

)
,

δφ = φ(0)rβ− + φ(d) + φ(v)rβ+ + φ(c)r−2+z + . . . , (B.1)

which, at least for the majority of the metric fields, looks similar to (A.2). Note that (B.1) is
meant to capture the general form of the expansion and not all coefficients are independent.
Close to the UV boundary we impose boundary conditions that kill the leading modes g(0)

tt ,
g

(0)
tx , ḡ(0)

tx , g(0)
xx , g(0)

yy , a(0)
t , a(0)

x , φ(0) as they correspond to boundary sources.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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