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1 Introduction

Predictive and acceptable models of inflation can be obtained under the assumption that the
Einstein-frame kinetic terms of some inflaton scalar contains a pole. A popular example
of such models is α-attractors [1–6]. As reviewed in section 2, these models generate
predictions that depend on the order and residue of the leading pole [7, 8]. The pole in
the kinetic term is usually introduced by hand, motivated from SUSY-induced hyperbolic
geometry [9, 10] or modified gravity [11, 12]. However, an often overlooked way to motivate
pole cosmology is through the inclusion of a vanishing conformal factor [13]. Moreover,
pole inflation can occur in the presence of multiple fields, but such scenarios have not been
studied to a great extent in the literature.

In section 2, we provide an overview of pole inflation, and go on to consider more
general tilts in the potential. This allows us to compute inflationary predictions assuming
that they do not depend on the detailed structure of the potential around the Standard
Model vacuum (that is usually ignored in studies of pole inflation). We briefly discuss how
reheating can be achieved in such models.

In section 3, we explore the possibility that Einstein-frame kinetic poles arise from
Jordan-frame non-minimal couplings of scalars to gravity in ordinary theories with no
Jordan-frame kinetic poles. Rewriting a generic theory with N > 1 scalars in the Einstein
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frame, we find that kinetic terms diverge along a (N − 1)-dimensional surfaces in field
space, singularity curves. We find that a multi-field generalisation of pole inflation can
arise, but only if the Jordan-frame scalar potential V satisfies some non-generic condition.
Under this condition, a robust attractor profile remains even in the presence of additional
fields, even with the added complication of multi-field effects. In particular, even if the
field space is warped, this has little effect as its curvature does not generically diverge on
the singularity curves. We show that in many cases one obtains a 2nd order pole with a
specific value of the residue, which implies the same predictions of Starobinsky inflation.
We examine multi-field models with conic section singular surfaces.

In section 4, we show that dimension-less theories provide a quantum structure that
produces pole inflation out of the origin of field space. The non-generic structure of the
potential needed to obtain pole inflation is not postulated, but comes from combining
general relativity with quantum mechanics. Considering the simplest model with one scalar
multiplet, we classify the inflationary predictions depending on the quantum RG running
of the couplings. As we have full theories that can describe the structure of the potential
around the SM minimum as well, we relax the assumption that it is not relevant for
pole inflation. This allows us to obtain inflationary predictions different from usual pole
inflation. Small couplings universally lead to slow RG running and to (approximatively)
quadratic inflation, that is excluded because the predicted tensor/scalar ratio r ≈ 0.15 [14]
is now too large. Moderate couplings add a higher order cubic term in the potential, which
can reduce r by an order unity factor down to an acceptable r ≈ 0.08 [15]. Smaller values
of r need larger couplings and predictions tend to become model-dependent. We explore
the qualitatively different fast RG runnings that arise at larger couplings in QFT. We find
that a coupling that runs non-perturbative in the UV (Landau pole, section 4.2) or in the
IR (confinement, section 4.3) can lead to small r. On the other hand, couplings that run
to an interacting fixed point in the IR (section 4.4) or in the UV (section 4.5) do not lead
to particularly small r, at least in the examined representative models.

Conclusions are given in section 5.

2 Overview of pole inflation

In the Einstein frame, fields are parametrised such that scalars have minimal coupling to
gravity. Pole inflation is obtained when the Einstein-frame action of a scalar φ has the
following form, with non-minimal scalar kinetic term KE(φ):

S =
∫
d4x

√
| det gE|

[
− M̄2

Pl
2 RE + KE(φ)

2 (Dµφ)(Dµφ)− VE(φ) + · · ·
]
. (2.1)

We here assume one scalar φ and (without loss of generality) a pole at φ = 0. The
Lagrangian close to the pole is usually assumed to be

KE(φ) ' αp
|φ|p

, VE(φ) ' VE(0) + V ′E(0)φ, (2.2)

corresponding to the assumption that the pole in the kinetic term is not accompanied by
a pole in the potential, that is approximated by a first-order Taylor expansion. We relax
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this assumption by assuming the slightly more general potential with a power q:

VE(φ) ≡ VE(0)
[
1− (βφ)q

q

]
. (2.3)

Rescaling the field φ → λφ shows that physics only depends on the combination αpβ
p−2.

The potential needs to have a negative gradient such that the field is pushed away from
the pole, towards the Standard Model (SM) minimum not described by the approximation
of eq. (2.2) or (2.3).

With one scalar only, the non-canonical factor K in the kinetic term for φ can be
reabsorbed by defining a canonically normalised Einstein-frame scalar φE(φ) as dφE/dφ =√
K. The region near to the pole corresponds to an infinite range of the canonical φE field

if p ≥ 2,

φE =


2√αp|φ|1−

p
2

p− 2 if p 6= 2,

√
α2 ln

∣∣∣φ/M̄Pl
∣∣∣ if p = 2.

(2.4)

This leads to a stretching of the potential and, in turn, to acceptable inflation if q is low
enough. In the special dimension-less case p = 2 the field range remains infinite also at
large |φ|.

For later reference we recall how the inflationary predictions can be computed without
rewriting the action in terms of a canonical scalar. The slow-roll parameters1 are given
by [16, 17]

ε ≡ 1
2
M̄2

Pl
KE(φ)

V ′E(φ)2

VE(φ)2 , η ≡ ε′(φ)
ε(φ)

M̄2
Pl

KE(φ)
V ′E(φ)
VE(φ) , (2.5)

and the number of e-foldings by

N(φ) =
∫ φ

φend
dφ′

KE(φ′)
M̄2

Pl

VE(φ′)
V ′E(φ′) . (2.6)

Inflation ends when ε(φend) ≈ 1. The scalar tilt ns, the amplitude of scalar perturbations
As and the tensor-to-scalar ratio r = At/As are given by the standard expressions

ns = 1− 2ε+ η, As = 1
24π2

VE

M̄4
Plε

, r = 16ε (2.7)

which are measured at about N ≈ 50− 60 e-folds before the end of inflation [18]

ns = 0.9649± 0.0042, As ≈ (2.1± 0.06)× 10−9, r / 0.044 (95% C.L.). (2.8)

Specialising to pole inflation, the number of e-folds close to the pole in eq. (2.2) becomes

N ' αp

M̄2
Plβ

q


φ2−p−q − φ2−p−q

end
p− 2 + q

if p+ q 6= 2,

ln φend
φ

if p+ q = 2.
where φend ≈

(
2αp

M̄2
Plβ

2q

) 1
p−2+2q

.

(2.9)
1Our slow-roll parameters are defined as ε = −Ḣ/H2 and η = ε̇/Hε. Our η = 2η̃− 4ε differs from the η̃

usually encountered in the literature, η̃ = M̄2
PlV

′′/V for canonical kinetic terms.
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Unlike φE, N can be large even for p < 2, provided that q is small enough, namely that
the potential is flat enough. The observables expressed in terms of N are (see [8, 19] for
q = 1)2

ns = 1− c

N
, r = 8

[
α̃
q/(p−2+2q)
p

(p− 2 + q)N

]c
, c = p− 2 + 2q

p− 2 + q
≥ 1 (2.10)

having defined the dimension-less combination α̃p ≡ αpβ
p−2/M̄2

Pl. Notice that ns − 1 is
dominated by η, as it scales with a lower power of N than ε. Data favour p > 1.5 if
q = 1 [8]. The case p = 2 (also known as α-attractor [20, 21]) gives predictions for ns that
do not depend on the parameter q in the potential: ns = 1 − 2/N and r = 8α̃2/(qN)2,
compatibly with current data if α̃2/q

2 / 20.
These predictions arise assuming that the structure of the potential around the SM

minimum negligibly affects inflation, that takes place in the region dominated by the pole.
In most realisations of pole inflation, approaching the singularity corresponds to climbing
up a stretched plateau, and as a result, the field moves away from the singularity, effectively
ending inflation. For a potential of the form in eq. (2.2), the field evolves away from the pole.
Graceful exit is achieved as long as the slow-roll parameter ε eventually surpasses unity.
While the details are model-dependent, reheating can still occur generically: even if the
field cannot oscillate in the shallow canonical potential, other mechanisms can contribute
to the reheating of the universe, e.g. instant preheating [25] or gravitational reheating [26].
After reheating, the canonical field will roll further down the potential, asymptotically
coming to a stop due to Hubble drag, or by falling in the SM vacuum. This value of the
field therefore finally sets the effective value of the Planck mass.

Finally, we discuss the opposite case where the scalar slowly rolls towards the pole,
because the Einstein potential VE is lower at the pole. This case gives rise to eternal
inflation, unless VE nearly vanishes at the pole. Only in such a special case eternal inflation
is avoided, since eventually ε ≈ 1. Moreover, the pole remains inaccessible, since the
canonical field is stretched to infinity. Reheating can then occur as described in above,
followed by the stabilisation of the Planck mass as the canonical field gradually comes to
a stop down the shallow VE.

3 Multi-field pole inflation from graviton canonicalisation

We consider N scalars φi with no poles in their gauge-covariant kinetic terms and non-
minimal couplings to gravity

S =
∫
d4x

√
| det g|

[
− 1

2f(φ)R+ Kij(φ)
2 (Dµφ

i)(Dµφj)− V (φ) + · · ·
]
. (3.1)

As is well known, this “Jordan frame” action can be brought to the Einstein frame where
the graviton action is canonical by the field redefinition gE

µν = gµν × f/M̄2
Pl.

For N = 1 scalar field the action acquires the form of eq. (2.1) with

KE = M̄2
Pl

(
K11
f

+ 3f ′2
2f2

)
, VE(φ) = M̄4

PlV

f2 , (3.2)

2In the special case p + q = 2, where c = ∞, one instead has ns = 1 − q/α̃p and r ≈ 16e−qN/α̃p where
the pre-factor depends on the precise value of φend.
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where K11 can be assumed to be 1 since a one-dimensional field space can always be
canonically normalized. Assuming that f is a generic function that crosses zero at some
point f(φ∗) = 0 (corresponding to strong gravitational interactions) with non-vanishing
derivative f ′(φ∗), eq. (3.2) results in a pole of order 2 at φ = φ∗. However in general one
has V (φ∗) 6= 0, so VE(φ∗) =∞. In order to have pole inflation the Einstein-frame potential
must instead be finite at the pole: one needs to assume an appropriate potential V that
vanishes quadratically fast at the pole.

For multiple scalar fields φi, i = 1, . . . , N , the Einstein-frame action has the form

S =
∫
d4x

√
| det gE|

[
− M̄2

Pl
2 RE +

KE
ij(φ)
2 (Dµφ

i)(Dµφj)− VE(φ) + · · ·
]
. (3.3)

The presence of multiple scalar degrees of freedom leads to the concept of a field space,
which is equipped with a positive-definite field space metric. This metric depends on the
Jordan-frame metric Kij and non-minimal scalar coupling to gravity f(φ), and is given
by [22]

KE
ij = M̄2

Pl

(
Kij

f
+ 3

2
1
f2

∂f

∂φi
∂f

∂φj

)
, (3.4)

We will assume canonical kinetic terms in the Jordan frame, Kij = δij . Even so, the metric
KE
ij generically describes a warped field space, dφ2 = KE

ijdφ
idφj .

A generic f(φ) can vanish along some surface, which we will refer to as a singularity
curve. This curve is the higher-dimensional analogue of a pole. Generically the singularity
curve is N − 1 dimensional: we here assume this is the case, and discuss in section 3.4 a
special case of a singularity curve with lower dimension.

Similar to the single-field case, the potential VE along the singularity curve will be
infinite unless the surface contains points where the Jordan-frame potential V (φ) vanishes
quadratically fast, in which case the resulting VE(φ) = V/f2 is finite. Even then, this is
not enough to get pole inflation, because scalars that parametrise the f = 0 surface may
lead to huge gradients of the VE potential. Therefore, a non-generic condition remains
necessary to get pole inflation: defining φ∗ as a local minimum of V (φ) restricted to the
surface f = 0, one needs V (φ∗) = 0.

This condition is analogous to the vanishing of the cosmological constant, VE(φSM) = 0.
There may be a connection between the two issues. In section 4, we will present a possible
rationale for V (φ∗) = 0: it is satisfied at the origin of field space in dimension-less theories.
Alternatively, one might conjecture that some fundamental theory needs to have V (φ∗) = 0,
because it means that the regions of field space f > 0 and f < 0 are not physically separated
by an infinite potential barrier, and that masses cannot be much heavier than the field-
dependent Planck scale

√
f .

If the above condition is satisfied, the fields that parametrise the f = 0 surface become
very heavy near to φ∗, and pole inflation proceeds along a one-dimensional ‘valley’ in
field space.

Before we examine the attractor nature of multi-field pole inflation, it is important to
understand how singularity curves affect the kinetic term of the theory and the evolution
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of trajectories within the field space. For a single-field theory, it is easy to see how poles
cannot be crossed; indeed, the field would need to have infinite energy to do so. A more
geometric way to see this is by observing that the field space distance dφ2

E = KE(φ)dφ2 is
infinite if the path of the field traverses a pole: even if the space is one-dimensional, it is
not possible to normalise the field when its domain includes poles. As a result, a theory
with poles is essentially a collection of multiple canonical theories that cannot communicate
with each other [23].

In the case of multiple fields, the field space metric has N(N + 1)/2 independent
entries, but it does not suffice for one of these entries to go to infinity at a point to cause
the singularity curve to act as a barrier for the field. Indeed, the singularity may be an
artefact of the way we have parametrised the fields. For example, consider the field space
line element

dφ2 = K11(φ2)dφ2
1 + dφ2

2 (3.5)

It is indeed possible to cross the singularity curve K11(φ2) =∞ if throughout the entirety
of the trajectory, dφ1 = 0 is satisfied. Therefore, this is only an apparent singularity.
However, compare this with the line element of a different field-space metric:

dφ2 = K11(φ1)dφ2
1 + dφ2

2 (3.6)

In this case, it is not possible to cross the singularity K11(φ1) = ∞ while maintaining
dφ1 = 0, which indicates that this curve can never be crossed. It is worth noting that if
the source of the pole is from a vanishing non-minimal coupling, the resulting singularity
curve cannot be crossed. This can be seen by examining the line element: one can, at least
locally, rewrite the field-space metric switching to one coordinate φ1 ‘perpendicular’ to the
f = 0 surface (for example φ1 = f itself) plus n− 1 coordinates along which f is constant.
Crossing f = 0 needs varying φ1, but its metric element has a pole at f = 0. Whenever f
is approximatively linear around f = 0, a dominant 2nd-order pole with residue α̃2 = 3/2
arises from the second term in eq. (3.4)

KE
11(φ1) = 3M̄2

Pl
2φ2

1
. (3.7)

Let us next discuss the implications for inflation. Since the components of KE
ij diverge

at f = 0, one might worry that the field-space curvature too can diverge at f = 0. General
arguments3 or explicit computations show that this is generically not the case. Let us

3The warped N -dimensional field space can be described as a surface in a N + 1-dimensional field space
with constant curvature, which leads to a geometric interpretation of the phenomenology of the theory [31].
Indeed, adding a R2/6f2

0 term to the Jordan-frame action, adds one extra scalar z contained in the graviton,
and describing the overall scale factor in space-time. This scalar becomes explicit going to the Einstein
frame. For f ≥ 0, the N + 1-dimensional field space is conformally flat with constant curvature and a pole
of order 2 at z = 0 [15]:

L E
kin = 6M̄2

Pl
z2

(Dµϕi)2 + (∂µz)2

2 , VE(z, ϕ) = 36M̄4
Pl

z4

[
V (ϕ) + 3f2

0
8

(
f − 1

6z
2
)2]

.

For large f2
0 the extra field z is heavy and can be integrated out as z2 = 6f , recovering the formulation

with N scalars. The f = 0 curve separates the theory at f > 0 from the theory with ghosts at f < 0.
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θ

s σ

φ1

φ2

Figure 1. Left: trajectory (red line) in two-field inflation in the neighbourhood near a singularity
curve (dark crosses). Right: typical pole-induced inflationary potential: a narrow flat valley in
canonical coordinates.

consider, for example, a Jordan-frame action of the form in eq. (3.1) with two scalars
φ1, φ2 and coupling to gravity f = M2 + ξ1φ

2
1 + ξ2φ

2
2. The field space metric is

KE
ij = M̄2

Pl
f2

M2 + ξ1(1 + 6ξ1)φ2
1 + ξ2φ

2
2 6M̄2

Plξ1ξ2φ1φ2

6M̄2
Plξ1ξ2φ1φ2 M2 + ξ1φ

2
1 + ξ2(1 + 6ξ2)φ2

2

 . (3.8)

The curvature in field space diverges at M2 + ξ1(1 + 6ξ1)φ2
1 + ξ2(1 + 6ξ2)φ2

2 = 0, away from
f = 0. Then, multi-field pole inflation does not significantly alter the nature of single-
field pole inflation. To illustrate this, consider a simple theory with field space metric
given in eq. (3.6). As discussed above, every theory with a n − 1-dimensional singularity
curve can be cast in this form locally by a judicious choice of coordinate system. In
view of our assumptions on the potential, and since field-space curvature is finite, the
inflationary trajectory has a low turn rate4 in field space near the pole, and therefore
approaches the singularity curve with some angle θ with respect to the φ1-axis, as shown
in figure 1. We change the coordinate system (φ1, φ2, . . .) to (σ, s1, . . .), where σ is parallel
to the inflationary trajectory and acts as the effective inflaton, and si are orthogonal. A
dominant pole given by KE

11(φ1) = αp/|φ1|p, yields the following line element along the
trajectory of the inflaton:

dφ2|pole = αp
|σ|p

dσ2 cos2−p θ (3.9)

having neglected sub-leading poles. The turn of the trajectory does not have an effect on
the order of the pole, so the scalar tilt is unaffected. The cos2−p θ term affects the residue,
and as a result can cause a suppression on the scalar-to tensor ratio, more pronounced if the
trajectory is oblique to the singularity curve.5 The observables in eq. (2.10) are modified

4Defined as the norm of the turn vector ωi = d2φi/dNdσ where φi = φi(σ) is the trajectory of the field,
and σ is the length in field space. Specific forms of the inflationary potential (for example, for p = 2, a
potential that depends on lnφ1) can lead to a non-negligible turn rate.

5Despite the notational similarity, this angle bears no relation to the so-called “mixing angle” (which
depends on the transfer of isocurvature perturbations) [24].
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simply by making the substitution αp → αp cos2−p θ assuming that the trajectory does not
turn sharply in the direction of the singularity curve. A locally linear f gives p = 2, so
that α̃2 = 3/2 is unaffected by the angle θ, leading to the same predictions as Starobinsky
inflation

ns = 1− 2/N, r = 12/(qN)2 (3.10)

if the potential V is approximatively linear, q = 1.
Before we examine a few choice models, it is interesting to contend with the possible

physical origins of singularities in the kinetic term that can lead to the behaviour described
above. Kinetic poles are well established in string theory: they can be traced to Kähler
potentials which arise generically due to string compactification [27, 28]. In such scenarios,
additional moduli fields are not necessarily introduced. However, the fact that multiple
fields contribute to inflation in our scenario (as opposed to acting like spectators) helps us
draw parallels to N-flation [29]. In fact, we find ourselves in a situation similar to pole N-
flation [30], where the Einstein frame kinetic term achieves a second-order ellipsoidal pole
(singular locus, in our language) for an arbitrary number of fields. In both scenarios, as
the fields approach the singularity, one can identify a single variable that explicitly features
a pole of second order, leading to pole inflation as usual. While our treatment so far has
been restricted to two fields, it is not difficult to see that near the singularity, one degree
of freedom would always feature a pole, even if more fields were added. In this sense, our
approach incorporates pole N-flation, albeit without reference to the physical origin of the
poles themselves.

We now turn our attention to the global structure of a few particular two-field models
that demonstrate the attractor nature of inflation.

3.1 Two-field pole inflation: hyperbolic singularity

We consider a model with two fields φ1 and φ2 and f = M̄2
Pl + ξ1φ

2
1 + ξ2φ

2
2 assuming

ξ1 = ξ+ > 0 and ξ2 = −ξ− < 0 so that there is a hyperbolic locus in which the kinetic
term blows up. This singularity is generic: we can observe this by The field-space metric
is obtained setting M = M̄Pl in eq. (3.8). It is convenient to switch to elliptic coordinates
(ρ, θ):

φ1 = M̄Pl

√
2
ξ+

sinh ρ sin(π/4− θ), φ2 = M̄Pl

√
2
ξ−

cosh ρ cos(π/4− θ) (3.11)

so that f = M̄2
Pl cosh(2ρ) sin(2θ), the singularity locus is θ = 0, and lines of constant θ are

hyperbolæ. Only the KE
θθ component contains a 2nd-order pole, and this is the only term

relevant for computing the observables:

KE
θθ|pole = 3M̄2

Pl
2θ2 . (3.12)

It is important to note that the linear vanishing of the non-minimal coupling f in these
coordinates is not a coordinate artifact, as we can verify that at the singularity locus, the
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first derivative of the kinetic term with respect to the original field φ1 still goes to infinity:

K,φ1 |pole = 1
M2
P + ξ+φ2

1 + ξ−φ2
2

 −24ξ3
+φ

3
1 24ξ2

+
√
ξ−φ

2
1

√
M2
P + ξ+φ2

1

24ξ2
+
√
ξ−φ

2
1

√
M2
P + ξ+φ2

1 −24ξ+ξ−φ1
(
M2
P + ξ+φ

2
1
)
 ,

(3.13)

and similarly for K,φ2 .
The poles in the field-space metric in the new elliptic coordinates is more easily

obtained computing eq. (3.4) in the new coordinates. The Einstein frame potential is
VE = V cosh2 ρ/sin2 2θ. Pole inflation is obtained if V is approximatively quadratic around
the pole at θ = 0 and ρ = ρ0 for (at least one) value of ρ = ρ0. In formulæ, we need

V = R(ρ, θ)
[
cθθ

θ2

2 + cρρ
(ρ− ρ0)2

2 + cθρθ(ρ− ρ0)
]

(3.14)

where R is any smooth function around the pole. The cij matrix determines the angle of
incidence θ of the inflationary trajectory. Along it one gets a pole with order p = 2 and
residue α̃2 = 3/2, and thereby the inflationary predictions of eq. (3.10).

3.2 Two-field pole inflation: elliptic singularity

A similar model is obtained assuming ξ1,2 < 0. The singularity curves are now ellipses,
conveniently parametrised using stretched polar coordinates (ρ, θ)

φ1 = M̄Pl√
−ξ1

ρ sin θ, φ2 = M̄Pl√
−ξ2

ρ cos θ, (3.15)

so that f = M̄2
Pl(1 − ρ2). The singularity curve is ρ = 1, and we must expand around it

in the f ≥ 0 region. The potential is VE = V/(1 − ρ2)2. In polar coordinates, the only
element of the kinetic matrix with a pole around ρ = 1 is

KE
ρρ|pole = 3M̄2

Pl
2(1− ρ)2 . (3.16)

The resultant theory has once again attractor predictions given in eq. (3.10), and reheating
proceeds in a similar way to the previous subsection.

3.3 Two-field pole inflation: linear singularity

We next examine inflation that features no inherent scale. Such a model will be further
motivated in section 4. In this case, we assume f = ξ1φ

2
1 + ξ2φ

2
2 with ξ1 = ξ+ > 0 and

ξ2 = −ξ− < 0. The field-space curvature diverges at ξ1(1 + 6ξ1)φ2
1 + ξ2(1 + 6ξ2)φ2

2 = 0,
away from the singularity curves, that are the two crossed lines φ1/φ2 = ±

√
ξ−/ξ+. The

best way to parametrise this theory is therefore a skew coordinate system

φ± = φ1

√
ξ+ ± φ2

√
ξ− (3.17)
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so that f = φ+φ− and the two singularity curves are φ+ = 0 and φ− = 0. Due to the
symmetry of the situation, we can focus on φ− = 0. This once again gives

KE
++|pole = 3M̄2

Pl
2φ2
−
. (3.18)

The resultant theory once again gives the attractor predictions of eq. (3.10). As such,
it is enough for the potential to vanish on at least one point on the singularity curve.
A potential with this property and which is exactly scale-invariant (quartic in the fields)
vanishes along all the singularity curve

V = λ

4
(
ξ1φ

2
1 + ξ2φ

2
2

)2
. (3.19)

3.4 Point singularity

We finally examine the situation where f is not linear around the pole and/or the singularity
curve along which f = 0 has less than N − 1 dimensions.

We consider a scale-invariant theory with one field φ (see also [32]), so that

V (φ) = λ
φ4

4 , f(φ) = ξφ2 (3.20)

where ξ and λ are dimension-less coupling constants. This leads to a 2nd order pole at
φ = 0, KE = M̄2

Pl(1 + 6ξ)/ξφ2. The residue α2/M̄
2
Pl = 6 + 1/ξ has a non-standard value

because f is quadratic (rather than linear) around the pole at φ = 0. The Einstein-
frame potential is finite and exactly flat, VE = M̄4

Plλ/4ξ2, corresponding to q = 0 in the
language of section 2. Planck-suppressed non-renormalisable operators in the potential
could nonetheless still create a tilt and the desired SM minimum.

Let us next consider N = 2 fields and a scale-invariant f = ξ1φ
2
1 + ξ2φ

2
2 with ξ1,2 > 0.

Then f = 0 only at the point at the origin in field space, φ1 = φ2 = 0. It is convenient to
use stretched polar coordinates

φ1 = ρ√
ξ1

cos θ, φ2 = ρ√
ξ2

sin θ, (3.21)

such that f = ρ2 is not linear around the pole at ρ = 0. The dominant pole for the inflaton
field ρ is again 2nd-order, and its residual has the same non-standard value

KE
ρρ = M̄2

Pl(1 + 6ξ)
ρ2ξ

with 1
ξ
≡ cos2 θ

ξ1
+ sin2 θ

ξ2
(3.22)

obtained in the effective one-field case along a trajectory with angle θ. With more than
N = 2 scalars, pole inflation similarly arises from the origin of field space.

4 Pole inflation in dimension-less quantum theories

As discussed in the previous section, making gravity canonical can lead to poles in the
scalar kinetic terms, but pole inflation only arises if the potential V satisfies non-generic
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conditions. We already mentioned one possible rationale for them: as the factor f corre-
sponds to a scale transformation, nearly scale-invariant theories can have special properties.
We restrict the generic theory written in the Jordan frame in eq. (3.1) to field theories with
dimension-less couplings only.

At quantum level, quantum corrections break classical scale invariance. The quantum
counterpart of eq. (3.20) is well approximated by the classical expressions with running
couplings renormalised around the field value φ

V (φ) = λ(φ)φ
4

4 , f(φ) = ξ(φ)φ2. (4.1)

KE(φ) is no longer a simple power, and the Einstein-frame potential

VE(φ) = M̄4
Pl

4
λ(φ)
ξ2(φ) (4.2)

is no longer flat. Roughly speaking, one can now have pole inflation with p ≈ 2 and q ≈ 0,
where the small deviations from the classical values arise from anomalous dimension. More
precisely, VE(φ) cannot be approximated as a simple function, unlike what is assumed in
general treatments of pole inflation. The reason is that RG dynamics depend on lnφ ∝ φE,
the canonical scalar in eq. (2.4).

Since details of these functions matter, in this section we consider models that describe
the SM minimum too. The scalar today sits at the SM minimum, φ = φ0, where f(φ0) =
M̄2

Pl and VE(φ0) = 0, in view of the nearly vanishing of the cosmological constant. The
potential VE features the desired SM minimum if the RG running is such that

λ(φ0) = 0, βλ(φ0) = 0, ββλ(φ0) > 0 (4.3)

at a field value φ0 such that f(φ0) = M̄2
Pl [14]. In the above equation βx ≡ dx/d ln µ̄ denotes

the β function of a generic coupling x, and ββλ denotes the β function of the combination
of couplings that arise in βλ, the β function of λ. A similar notation is used below. Since
ββλ 6= 0, the tuning of parameters implied by βλ cannot be explained as a fixed point.

The slow-roll parameters of eq. (2.5) that determine inflation predictions can be written
in terms of the beta functions of the theory as

ε = ξ

1 + 6ξ
1
2

[
βλ
λ
− 2βξ

ξ

]2
, (4.4)

η = ξ

1 + 6ξ

[
2ββλ)
λ
− 4

ββξ
ξ
− 2β

2
λ

λ2 + 4
β2
ξ

ξ2 + βξ/ξ

1 + 6ξ

(
βλ
λ
− 2βξ

ξ

)]
. (4.5)

This shows that slow-roll inflation is generically achieved in theories with perturbative
dimension-less couplings. More specifically ε, η ∼ λ2/(4π)4 contain a two loop suppression
away from the potential minimum where inflation ends and ε, η become large in view of
the vanishing λ at the denominator.

Since p = 2, beyond the pole at the origin in field space φ = 0, another pole exists at
φ =∞, so that both small-field and large-field inflation can give acceptable predictions.
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4.1 Inflation with dimension-less theories at small coupling

If couplings are so small that away from the minimum we have |ε|, |η| � 0.01 (the size
suggested by data about ns = 1 − 2ε + η), only the field region around the potential
minimum matters. Then the potential can be expanded in Taylor series: at leading order
the inflationary potential is quadratic as function of the canonically normalised Einstein-
frame scalar φE(φ), defined by dφE/dφ =

√
K. This implies that N / 60 e-folds of inflation

probe about 3 orders of magnitude of RG running
∣∣∣∣ln φ

φ0

∣∣∣∣ ≈
√

4ξN
1 + 6ξ / 6 (4.6)

and that the tensor/scalar ratio is r ' 8/N ≈ 0.15 [14], above current bounds.6 Including
the next cubic order in the Taylor series can increase or reduce r [15]. A substantial
reduction down to acceptable values is possible; however whenever cubics have an order
unity effect (allowing to reduce r down to currently acceptable values r ∼ 0.08) one expects
that higher-order effects too start becoming relevant: one can no longer use the Taylor
expansion and needs a full theory.7

In a full theory, r gets significantly reduced (below the small-coupling limit that gives
quadratic inflation) if the couplings are such that the two-loop factor in eq. (4.4) gives
the desired |ε|, |η| ∼ 0.01. This corresponds to mild dimension-less couplings of order one.
More precisely, couplings must run by order unity in the ≈ 3 orders of magnitudes probed
by small-coupling inflation according to eq. (4.6).

Sizeable couplings and a fast RG running come with the danger that couplings blow
up, running to strong coupling in IR (endangering computability and inflation) and/or in
the UV (Landau poles presumably ruin the consistency of the theory), unless an interacting
fixed point in the UV (asymptotic safety) or in the IR is dynamically reached.

In theories where a scalar φ charged under some gauge interaction has one quartic λ
and one Yukawa coupling y (its presence allows to get a quantum potential with the desired
SM minimum at φ0), the one-loop RGE have the generic form8

dg2

dt
= −bg4,

dλ

dt
= λ(sλλ+ sλyy

2 − sλgg2)− syy4 + sgg
4,

dy2

dt
= y2(fyy2 − fgg2), dξ

dt
= 1

12(1 + 6ξ)(s̃λλ+ sλyy
2 − sλgg2),

(4.7)

6During inflation the Planck mass varies as M̄Pl =
√
ξφ ∝ exp[±

√
2N/3] for ξ � 1. Large-field inflation

starts from φ � φ0 when the Planck length is much smaller, giving a partial self-censorship of trans-
Planckian inflation modes (conjectured to be a problem in [33]), altought it risks involving trans-Planckian
field values. The opposite happens for small-field inflation.

7If the full theory is 4-derivative gravity, it contains an extra inflaton candidate: the scalar present in
the graviton in the presence of R2 terms. This gives a much smaller r, and dominates inflation if the
Planckion s is heavier than the scalar graviton. Furthermore, a ghost lighter than the inflationary Hubble
scale cancels the fluctuations in the graviton, leading to a suppressed r [34]. We here do not consider this
possibility, and focus on pure QFT effects below the quantum gravity scale.

8We do not here consider the gravitational sector, where the dimension-less assumption leads to ‘agrav-
ity’: a renormalisable 4-derivative action with a possibly problematic ghost mode.
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Figure 2. Inflation with a scalar quartic that becomes non-perturbative in the UV hitting a
Landau pole. Left: sample of RG running in the model of section 4.2. Right: its possible inflationary
predictions, assuming small-field inflation that ends at non-perturbative λ = (4π)2 (dark red) or 103

(light red).

with positive and gauge-independent order one coefficients fi and si, that depend on
the specific model. Notice the multiple appearance of sλy and sλg. We defined t =
ln(E2/E2

0)/(4π)2 and included QFT effects and ignored quantum gravity effects (com-
putable in agravity).

Let us count the number of free parameters:

• The SM minimum is generated if λ(φ0) = βλ(φ0) and ββλ(φ0) > 0: this fixes λ and
y as λ0 = 0, y2

0/g
2
0 =

√
sg/sλ and restricts fg − fy

√
sg/sy > b (the left side of the

inequality is proportional to the sign of βy at φ0).

• The condition ξ0φ
2
0 = M̄2

Pl together with the measured value of the amplitude of
scalar perturbations (see eq. (2.7) and (2.8)) can be used to fix ξ and φ0: assuming
order one couplings one needs ξ ∼ 100 and thereby sub-Planckian φ0 = M̄Pl/

√
ξ.

Then the RG for ξ0 � 1 implies it undergoes a nearly-multiplicative renormalisation,
with beta-function βξ = (1 + 6ξ0)(−sλg + sλy

√
sg/sy)/12 at φ0 that will be negative

in all computed models.

In any given model, the gauge coupling g remains as the only free parameter (with small
values giving quadratic inflation). However, many models are possible and give different
RG coefficients.

We next discuss the possible irreversible RG flows (limit cycles are considered impos-
sible [35, 36]): to strong coupling in the UV (section 4.2), to strong coupling in the IR
(section 4.3), to an IR fixed-point (section 4.4), to an UV fixed-point (asymptotic safety,
section 4.5).
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4.2 Inflation with strong coupling in the UV

If one wishes to consider RG running that leads to strong coupling at high energy (and
thereby to a Landau pole, possibly sub-Planckian) the simplest theory has a Higgs-like
scalar: N ultra-light scalar real degrees of freedom φi with maximal global symmetry
SO(N), so that

f = φ2
1 + · · ·+ φ2

N , V = λ

4 (φ2
1 + · · ·+ φ2

N )2. (4.8)

For example, the SM Higgs has N = 4: the global symmetry arises accidentally due to the
SU(2)L gauge symmetry and the Higgs is much lighter than the Planck scale for unclear
reasons. Assuming that gauge interactions are absent or negligible, the one-loop RGE of
the theory are

(4π)2βλ = 2(8 +N)λ2, (4π)2βξ = (1 + 6ξ)2 +N

3 λ. (4.9)

So λ runs to small values in the IR, and ξ + 1/6 is multiplicatively renormalised

λ = λ0
1− 2(8 +N)tλ0

, ξ + 1
6 =

(
ξ0 + 1

6

)(
λ

λ0

)(2+N)/(8+N)
. (4.10)

For ξ � 1, the Einstein-frame potential satisfies VE = V 0
E (λ/λ0)(4−N)/(8+N), allowing small-

field inflation for N ≥ 4 and large-field inflation for N < 4. In the special case N = 4, the
quantum potential is flat up to terms suppressed by ξ. Figure 2(a) shows the running in
the quasi-flat case N = 5.

In this minimal model, inflation ends near to the Landau pole at strong coupling, where
ε, η can become of order unity but the perturbative computation becomes unreliable. Up to
this caveat, figure 2(b) shows the resulting predictions. Like in pole inflation, we assumed
small-field inflation out of the pole, and so the predictions only hold assuming that the
extra physics needed to generate the SM minimum starts to be relevant after inflation
end. Otherwise, the predictions would be modified depending on the extra physics near to
the SM minimum. For example, one could add non-renormalisable operators, or an extra
scalar, or extra couplings that appropriately modify the running. In the next sections we
will pursue the latter strategy, considering less minimal models that allow for RG runnings
without Landau poles.

4.3 Inflation with strong coupling in the IR

In non-abelian gauge theories with a small matter content (loosely speaking, fewer
scalars and fermions than vectors), the asymptotically free gauge coupling g runs to non-
perturbative values at some low-energy scale Λ, analogously to QCD. We add a charged
scalar φ with a quartic coupling λ that runs in a similar way. Ignoring the issue of gen-
erating the SM minimum, large-field inflation would end at φ ∼ Λ. We generate the SM
minimum at a scale φ = φ0 by adding fermions, such that one Yukawa coupling y induces
a running λ with the desired SM minimum at an arbitrary scale φ0. If φ0 is many orders of
magnitude above Λ, the couplings g(φ0) are weak and one gets the predictions of quadratic
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Figure 3. Inflation with couplings that become non-perturbative in the IR giving rise to confine-
ment. Left: sample of RG running in the model of section 4.3 with Nf = 3 and gauge coupling
g = 1 at the SM minimum after inflation. Right: its inflationary predictions for different values
of g.

inflation. If φ0 is not much larger than Λ so that couplings g(φ0) are moderately large, one
gets different predictions.

As a concrete example, we consider a theory similar to the SU(5) extension of the SM:
a SU(5) gauge theory with Nf generations of chiral Weyl fermions in the anomaly-free
5̄⊕ 10 representation and a complex scalar Φ in the fundamental 5 with quartic λ|Φ|4 and
Yukawa coupling yΦ 10 10. With this coupling, order one factors in the RG equations

(4π)2βg = −
(109

6 + 2
3Nf

)
g3, (4π)2βλ = 12λ

(
3λ+ y2 − 12

5 g
2
)
− 6y4 + 99

25g
4,

(4π)2βy = y

(
6y2 − 108

5 g2
)
, (4π)2βξ = (1 + 6ξ)

(
4λ+ y2 − 12

5 g
2
)
. (4.11)

allow, if Nf > 1, to generate the desired minimum in the Coleman-Weinberg Φ potential
with a small enough Yukawa coupling (unfavourable order one factors would lead to a
Landau pole in y and/or to no minimum). Figure 3(a) shows a sample of RG running,
with y and λ tuned in such a way that the Einstein potential has the desired SM minimum.

As expected, for small couplings both small-field and large-field inflation reproduce
the predictions of quadratic inflation, with its too large r ≈ 0.15.

Small-field inflation (from low energies φ < φ0, in red in figure 3(b)) leads to an
excluded tensor/scalar ratio r, because larger than the quadratic limit. This is due to the
larger value of the gauge coupling at low energies, and it is partially counter-acted by the
fact that ξ runs to larger values at lower energies.

The opposite happens for large-field inflation (from high energies φ > φ0, in blue in
figure 3(b)). Since couplings run to smaller values at higher energy, a substantial reduction
in r needs a φ0 not much above Λ. Different models would give qualitatively similar
predictions (see for example figure 3 of [15]).
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4.4 Inflation with an IR fixed-point

Non-Abelian gauge theories with a large enough matter content exhibit a qualitatively
different behaviour: the gauge coupling g runs in the infra-red to a fixed-point g = g∗.
Banks and Zaks [37] showed that this phenomenon can be computed perturbatively in
theories with matter content such that the one-loop RG coefficient −b is negative and
accidentally small, and its two-loop counterpart b′ is positive. Then the 2 loop term in the
RGE for g is relevant,

dg2

dt
= −bg4 + b′

(4π)2 g
6 + · · · , t = lnµ2/µ2

∗
(4π)2 (4.12)

while higher order terms can be neglected, so that the IR fixed-point g2
∗ = (4π)2b/b′ is

reliably computed. The analytic solution to RGE where the fixed-point is approached for
µ / µ∗ is

bt = 1
g2 + 1

g2
∗

ln
(
g2
∗
g2 − 1

)
i.e. g2 = g2

∗
1 +W (e−1+bg2

∗t)
(4.13)

having introduced the Lambert function W (z)eW (z) = z to invert the relation between g

and t. When g reaches its IR fixed-point, the Yukawa y and quartic coupling λ behave as
follows:

• y too reaches an IR fixed-point, y2
∗/g

2
∗ = fg/fy.

• If the condition βλ = 0 is satisfied at two values real of λ (this depends on the values
of the RG coefficients), the higher solution is an IR-attractive fixed-point for λ. If
it is positive, the potential is acceptable. In other words, dynamics self-adjusts the
dimension of the φ4 composite operator to its classical dimension. The fact that
λ(µ̄) remains finite at low energy means that our pole-inflation assumption V (0) = 0
is satisfied.

• At the fixed-point for λ, y, the ξ coupling gets renormalised multiplicatively. In other
words, the φ2 composite operator acquires an anomalous dimension.

We consider, as a simple example, a SU(N) gauge theory with Nf Weyl fermions
ψi ⊕ ψci in the N ⊕ N̄ , one fermion singlet ν, one complex scalar Φ in the fundamental N .
Without loss of generality, the Yukawa interactions and the potential can be written as

LYuk = yΦψc1ν + ȳΦ∗ψ1ν + h.c., V = λ|Φ|4. (4.14)

The RG equations are

dg2

dt
= −bg4 + 1

(4π)2

[((13N2 − 3
)
Nf − 34N3 + 4N2 − 3

)
3N g6 − 1

2g
4
(
ȳ2 + y2

) ]
, (4.15)

dy2

dt
= y2

[3 +N

2 y2 + 6 +N

2 − 3(N2 − 1)
2N g2

]
, (4.16)
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Figure 4. Inflation with couplings that approach a fixed point in the IR. Left: sample of RG
running in the model of section 4.4 for Nf = 21 corresponding to IR fixed-point g∗ ≈ 1.9. Right:
its small-field (red) and large-field (blue) inflationary predictions for different values of Nf .

dλ

dt
= λ

[
2λ(N + 4) + 2(y2 + ȳ2) + 3N

2 − 1
N

g2
]

− (y2 + ȳ2)2 + 3g4N
(
N2 +N − 4

)
+ 2

8N2 , (4.17)

dξ

dt
= (6ξ + 1)

[1
6
(
ȳ2 + y2

)
− N2 − 1

4N g2 + N + 1
3 λ

]
, (4.18)

where b = 11
3 N −

2
3Nf − 1

6 is chosen small and positive, and a similar RG holds for ȳ.
The perturbative IR fixed point for g exists for Nf ≈ 11N/2; it is lost for higher Nf and
perturbative control is lost for lower Nf (we are interested in mildly large couplings). Given
the order one factors, the acceptable parameter space of the model is somehow restricted.
Assuming, for simplicity, ȳ = y, the value of the Yukawa coupling y needed to have the
desired SM minimum in the SM minimum obtained imposing λ = βλ = 0 is below the
fixed-point value of y for 3 < N < 12 by less than 4% (larger values of y lead to a Landau
pole). Furthermore, the gauge coupling g at the SM minimum where λ = βλ = 0 must be
similarly near to its fixed point to avoid having maximum rather than a minimum, as can
be seen by imposing ββλ > 0.

Figure 4(a) shows a sample of RG running assuming N = 5 colours and Nf = 21
flavours. We choose a somehow low Nf such that the Banks-Zaks fixed-point has a moder-
ately large coupling g∗, in order to obtain inflationary predictions that substantially deviate
from those of quadratic inflation obtained in the weak coupling limit. Figure 4(b) shows
that small-field inflation (from the pole at φ = 0) can give acceptable predictions for ns
and r. On the other hand large-field inflation predicts a too large r, if QFT RG evolution
near to the Planck mass can be trusted.
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Figure 5. Inflation with couplings that approach an interacting fixed point in the UV. Left: sample
of RG running in the model of section 4.5 with N = 5 and Nf = 29. Right: its small-field (red)
and large-field (blue) inflationary predictions for different values of g0/g∗.

4.5 Inflation with an UV fixed-point

As we are interested in moderately large couplings that avoid Landau poles, the remaining
possibility is asymptotic safety: dimension-less couplings that run up to an interacting UV
fixed-point. Litim and Sannino [38] found that this is perturbatively realised in specific
models, where the one-loop gauge beta function coefficient b is small and negative, and the
two-loop term is positive thanks to the contribution of a Yukawa coupling y′ that reaches
its UV fixed-point. As a result the gauge coupling runs according to eq. (4.13), where now
b < 0. The models involve a SU(N) gauge theory with Nf Weyl fermions in N ⊕ N̄ and
N2
F neutral scalars Sij with (for simplicity) a common Yukawa y Sijψiψcj . Since the scalars

Sij are neutral, their scalar potential does not give rise to the desired post-inflationary SM
minimum.

Following [39], we thereby add an extra inflation-candidate scalar Φ in the fundamental
of SU(N), with a Yukawa coupling to one fermion flavour, as in eq. (4.14). We can assume,
for simplicity, that the mixed scalar quartic |Φ|2|Sij |2 vanishes. Then the RG equations
for y, λ, ξ are as in eqs. (4.15).

Figure 5(a) shows an example of the running tuned in such a way that the Einstein
potential has the desired SM minimum at φ = φ0 where g = g0. We assumed N = 5
colours, Nf = 30 flavours (such that the UV fixed-point of g∗ is moderately large, allowing
for significant deviations from the weak coupling limit), ȳ = y and g0/g∗ = 0.5. Figure 5(b)
shows the resulting inflationary predictions as function of g0/g∗. Large-field inflation (in
blue) gives too large r, small-field inflation (in red) allows acceptable values of r but
not below r = 0.05 because when g0 gets so large that details of the theory matter, the
predicted ns and r start deviating from the best-fit values. A similar result is found for
different number of colours N .
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5 Conclusions

A pole in the kinetic terms of one scalar φ leads to pole inflation. We explored the possibility
that the same phenomenon arises in theories without poles in the Jordan frame, but rather
in the Einstein frame originating from a non-minimal coupling of a scalar f(φ) to gravity.
Points in field space where f = 0 (namely, where gravity is strongly coupled) lead to pole
inflation provided that the Jordan-frame scalar potential vanishes fast enough at the pole.
In this case, pole inflation is recovered through the usual “stretching” of the canonicalised
field. The needed condition on the potential is non-generic, and similar to the vanishing of
the cosmological constant at the SM minimum.

We next explored the generic case with N scalars φi, where we found that the pole is
generically promoted to a singularity curve, the (N−1)-dimensional surface where the non-
minimal coupling vanishes, f(φi) = 0. We describe the required form of the Jordan frame
potential such that the multi-field generalisation of pole inflation is realised: the potential
needs to vanish fast enough around at least one point of this surface. The field space is
now generically warped, but the curvature is generically finite at and near the singularity
surface and has negligible effects. The inflationary trajectory asymptotically approaches
the singularity surface with an angle of incidence that depends on the potential. This
modifies the effective residue at the pole. Up to this caveat, one obtains the usual attractor
predictions that depend solely on the order and the residue of the pole. The pole has 2nd
order and a universal residue whenever f(φi) is approximatively linear around f = 0.
Assuming an approximately linear tilt in the potential, this gives the same predictions as
Starobinsky inflation.

At first glance, the above situation has two unsatisfactory aspects:
1. The predictions of pole inflation arise assuming that inflation is fully dominated by

field values around the pole, so that the structure of the potential around the SM
minimum is neglected.

2. Canonicalisation of the graviton (namely, going from a generic Jordan frame to the
Einstein frame) gives rise to pole inflation only if the potential has a non-generic
structure.

In section 4 we showed that the needed structure of the potential automatically arises in
quantum theories with dimension-less couplings only. A small tilt is provided by their RG
running that lifts the exact flatness of the classical potential. Having a physical origin
for the tilt, we can thereby abandon the assumption that inflation is fully dominated by
the pole, and consider theories where the SM minimum is present and affects inflationary
predictions. Small couplings universally lead to slow RG running and to nearly-quadratic
inflation, that predicts a too large tensor/scalar ratio. We thereby consider larger cou-
plings that provide the possible faster RG running that can arise in QFT: a coupling that
runs either to a perturbative fixed point or to non-perturbative values, either in the UV
(figures 2, 5) or in the IR (figures 3, 4). We then found that some of these models can
provide acceptable inflationary predictions. In all the considered models, RG coefficients
are such that the non-minimal coupling ξ to gravity runs to smaller values at higher scales.
Different models where ξ runs in the opposite way could give different predictions.
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