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1 Introduction

Equivalence principle is (in part) formulated through diffeomorphism invariance of the
action and the corresponding physical observables. However, this statement should be
refined for spacetimes with boundaries, codimension one hypersurfaces [1]. Among the
spacetime boundaries of physical interest we can mention asymptotic boundaries of (A)dS
or flat spacetimes or black hole horizons. Presence of boundaries usually gives rise to new

– 1 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
1

degrees of freedom which only reside at the boundary and do not propagate into the bulk,
the boundary degrees of freedom (BDoF). The solution phase space therefore in general
contains both bulk and boundary degrees of freedom.

In gauge or gravity theories BDoF can be conveniently labelled through surface charges
associated with a certain sector of gauge symmetries which preserves the boundary struc-
ture and rotate us in the solution phase space. In the existing literature this certain part of
gauge symmetries is usually specified through specific falloff/boundary conditions on the
fields which are appropriately chosen to describe the desired physics. It was, however, noted
in [2] that there exists a maximal boundary phase space which can be achieved relaxing
the falloff conditions and is labelled by all possible boundary preserving gauge symmetries
which have finite surface charges; see also [3–5] for related work.1 For d dimensional gravity
cases this maximal boundary phase space is described by d charges/fields which are generic
functions over the boundary, a d− 1 dimensional surface in spacetime [2]. Then imposing
boundary or falloff conditions can be formulated through imposing second-class constraints
and working with a reduced boundary phase space.

An important property of the charges labelling the BDoF is their integrability over
the solution phase space. The basic formulation usually employed for the computation
of charges associated with the boundary preserving gauge symmetries is the covariant
phase space method [9, 10]. This formulation yields variation of charges in the solution
phase space, and if integrable one can then define charges. Another important feature of
the covariant phase space method à la Lee-Wald [9] is the ambiguities involved in the
formulation. In particular, there is the so-called Y -ambiguity according to which the
expression for the charge variation is ambiguous up to certain total variations over the
phase space. This ambiguity may be (partially) fixed by different physical requirements.
For example, this ambiguity was used in [11, 12] to fix the central charge of the algebra
of surface charges to a certain value, in [13–17] it was used to render surface charges
computed at asymptotic boundaries finite and also to relate charges computed in different
formulations of gravity [18, 19]; see also [20, 21]. In this work, as we will see the Y -ambiguity
is crucially used in the charge integrability analysis.

It has been argued that the integrability is related to the absence of flux through the
boundary [22, 23]. In [24], we made this statement more precise and conjectured that it is
always possible to render the charges integrable in the absence of “genuine flux” passing
through that boundary, even when boundary sources are switched on. According to the
conjecture, there exist particular field-dependent linear combination of boundary symme-
tries, field-dependent slicing spanning the boundary phase space, for which the components
of charges do become integrable in the absence of genuine flux. We dub these integrable
slicings. This clarifies the physical notion of integrability. Let us stress that while the vari-
ation of the charges does not depend on the slicing, the charges themselves are inevitably
computed in a specific slicing. We note that field-dependent slicings generically change the
bracket structure and hence the algebra of charges. See [25–29] and in particular [24] for
examples of change of slicing and how it affects the algebra.

1In a series of papers [6–8] a closely related notion of corner symmetries have been developed and studied.
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Recent studies of boundary degrees of freedom for gravity theories has been motivated
in pursuit of black hole microstates within the “soft hair proposal” [30] where the near
horizon symmetries and charges play a key role, e.g. see [26, 31–34]. There are various
types of horizons with different properties e.g. see [35], which regardless of the details,
are usually null surfaces. In addition, null hypersurfaces are causal boundaries of portions
of the spacetimes available to the congruence of causal curves which do not intersect the
null surface. Therefore, null surfaces suitably model black hole horizons and studying null
boundary symmetries and charges is expected to help with the identification of black hole
microstates, for a specific realization for three dimensional black holes see [36, 37].

We have hence established a program of studying null boundary symmetries and their
maximal boundary phase space. We have explored a generic null hypersurface in the 4d
Einstein gravity [27], 2d JT gravity and 3d Einstein-Λ [24]. Similar maximal phase space
for asymptotic boundaries in 2d and 3d has also been studied [17]. The analysis in [27] was
motivated by studying the phase space near horizon of Kerr black holes,2 while in [24] we
focused on 2d dimensional and BTZ black holes [39, 40] where we explicitly constructed
the maximal boundary phase space. We showed that in the 2d case we have two charges
which are functions of the v coordinate along the null boundary and in the 3d case there are
three charges which are functions over the null cylinder parametrised by v and a periodic
coordinate φ. By an appropriate choice of slicing, we rendered the charges integrable, in
accord with the conjecture made in [2]: in the 2d and 3d cases we do not have a propagating
bulk degree of freedom and there is hence no genuine flux through the null surface. The
integrable slicing is not unique and there are many such slicings. In particular, we discussed
there exists a fundamental slicing, for which the algebra of charges at any constant v takes
the simple form of Heisenberg algebra ⊕ Diff(d − 2) where ~ in the Heisenberg part is
proportional to inverse of the corresponding Newton constant. We should stress that the
charges we find at null boundaries are different than most of the charges and algebras
appeared in the literature which are functions of codimension two surfaces rather than
codimension one surfaces.3

A natural following step in the BDoF program and a non-trivial check for the integra-
bility conjecture is to analyze the maximal phase space of theories admitting propagating
degrees of freedom. The first such example is to consider 3d cases. There is indeed a
plethora of three dimensional beyond Einstein gravity theories which are free of ghosts, e.g.
see [41–43] and have massive propagating degrees of freedom (gravitons). Among these,
topologically massive gravity (TMG) [44, 45] is special as its action involves gravitational
Chern-Simons (CS) term which gives rise to massive chiral gravitons.

Various aspects of topologically massive gravity has been extensively studied in the
recent literature. While we do not have a full classification of TMG background solutions

2The analysis in [27] does not realize the maximal phase space as described in [2]; while we had four
charges two of the charges were functions of codimension two surfaces (rather than codimension one). The
analysis of the most general case will be presented in the upcoming paper [38].

3In the AdS3/CFT2 literature, it is customary to call the boundary degrees of freedom allowed by the
Brown-Henneaux boundary conditions as “boundary gravitons”. In our maximal boundary phase space
analysis, however, boundary gravitons appear as a subsector of our BDoF.
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yet, large classes of solutions have been constructed and analyzed [46–57]. As we will
review, TMG background solutions fall into to two classes, those which have Vanishing
Cotton Tensor (VCT), and those with non-vanishing Cotton tensor (NVCT). Solutions to
Einstein-Λ theory remain a solution in the presence of the CS term and constitute the VCT
class. In particular, BTZ black holes are hence also solutions to TMG. Several solutions
in the NVCT class has also been constructed, among them the warped solutions and other
black hole solutions [58–65].

1.1 Summary of the results

In this work, we perform the null boundary symmetry analysis for an arbitrary null surface
in TMG and construct the maximal boundary phase space. To this end we start with
the most general metric expanded around a null surface, to be more precise a null cylinder
whose axis is parametrised by “lightcone time” v and its circle by φ. We then impose TMG
equations of motion, which are third order differential equations, perturbatively around the
null cylinder and construct the solution phase space. The solution phase space is described
by four independent functions on the null cylinder. In this case, unlike the 3d Einstein-Λ
theory discussed in [24], we have chiral massive gravitons which propagate in the bulk
and can pass through the null cylinder. Three of the four functions in the phase space
correspond to BDoF and one to the chiral graviton propagating in the bulk.

There are diffeomorphisms which keep the null boundary structure and hence act
as symmetries over the solution phase space. These are 2d diffeomorphisms and the Weyl
scaling on the null cylinder and are hence specified by three functions over the null cylinder.
We then work through the usual formulation of covariant phase space method to compute
charges associated with these symmetries.

• VCT class. There is no propagating degrees of freedom in the VCT sector and hence
we are expecting integrable charges. Nonetheless, unlike previous cases [17, 24], a choice
of slicing is not sufficient to render the charges integrable. It has to be supplemented by
an appropriate choice of the Y -ambiguity (2.22). This is similar to the case of asymptotic
boundaries where Lee-Wald charges diverge and Y -terms are needed to render finite the
charges [17]. In other words, integrability of charges can be used to (partially) fix the
Y -ambiguity in the charges.

In the fundamental slicing (4.10) and (4.25), the charge algebra takes the form of a
Heisenberg ⊕ Virasoro algebra. The central charge of the Virasoro is proportional to the
coefficient of the CS part; precisely it is equal to the gravitational anomaly of dual 2d CFT:

[Sn,Sm] = 0, [Sn,Pm] = i

8Gδm+n,0, [Pn,Pm] = 0, (1.1a)

[J n,Sm] = 0, [J n,Pm] = 0, (1.1b)

[J n,Jm] = (n−m)J n+m + 1
4µGn

3δn+m,0 (1.1c)

where G is the Newton constant and coefficient of the CS part is (16πGµ)−1, see (2.1).
Note that the charges X n = X n(v) are Fourier modes of generic functions of v, φ. This is to
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be contrasted with the usual (e.g. near horizon or asymptotic) charge analysis, where time
dependence of charges is fixed. The zero mode of S is equal to the Wald entropy [10, 66], P0
is proportional to the logarithm of the expansion of the null vector field generating the null
boundary and J 0 is giving the angular momentum charge. We therefore, call Sn(v) entropy
aspect charge, Pn(v) expansion aspect charge and J n(v) angular momentum aspect charge.

Finally, we consider non-expanding backgrounds. The expansion aspect charge van-
ishes and the algebra reduces to the one obtained in [26] as the symmetries near a generic
Killing horizon, with the addition that our charges are still v-dependent.4 As a particular
example we study charges associated with BTZ black holes in TMG.

• NVCT class. In the NVCT case, there is in general a non-zero flux due to massive
gravitons passing through the null boundary. Hence the charges are not expected to be
integrable. As we are dealing with intrinsically non-integrable charges, we use the modified
bracket [23] (5.16) to extract out the integrable part of the charge variations. The remainder
is then associated with the flux passing through the surface (5.13).

Our charge analysis involves three steps: (1) finding appropriate slicing of the phase
space; (2) fixing the Y -ambiguity and (3) separating the integrable part of charge and
identifying the flux. These three steps should be worked through in accord with each
other. The first two steps are similar to the VCT case while the last step is particular to
the NVCT case.

Going through these steps and after a tedious and technical analysis, we find that the
charge algebra for the generic NVCT case is a Heisenberg ⊕ Virasoro algebra where the
central charge is the gravitational anomaly of the theory. It is the same algebra (1.1) as for
the VCT but with the modified bracket.5 This ensures that the limit of vanishing flux is
consistent with the VCT results. Moreover, the flux (5.13) is fully sourced by the expansion
of the null boundary and is associated to a symmetry perpendicular to the null surface.

We also discuss the vanishing expansion NVCT cases. In these cases the flux vanishes
and the charges become integrable. Nonetheless, unlike the VCT counterpart, there are
still three independent charges, in particular we still have an expansion aspect charge. To
the best of our knowledge, TMG solutions in this class was not discussed in the literature.

Finally, we study charges of axisymmetric TMG solutions, including the warped black
holes [58], and show that they have a vanishing expansion aspect charge and fall in the
same category as non-expanding backgrounds in the VCT class.

1.2 Organization of the paper

In section 2, we review some basic facts about TMG, its action, equations of motion and
how to compute the surface charges for the theory. In section 3, we present a general near
null surface expansion of metric and show that the Diff(C2)⊕ Weyl(C2) algebra, a part of
the 3d diffeomorphisms, preserves the null boundary which is the null cylinder C2. This
section and its results do not depend on theory and is hence in common with those in [24].

4Note that while all Killing horizons are non-expanding null surfaces, the converse is not necessarily true.
5Note that this central term is field-independent. This may be contrasted with the case of 4d asymptotic

symmetry analysis where the central extension is field dependent [23].
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In section 4, we study the VCT class of solutions and the associated surface charges. The
latter involves fixing the Y -ambiguity and finding the appropriate (fundamental) slicing.
As special cases we study null boundaries with zero expansion as well as charges for the
BTZ background. In section 5, we repeat the same analysis but now for the generic class of
NVCT. This case importantly features non-vanishing flux and non-integrable charges, and
hence involves a whole lot more technical issues, especially the modified bracket. We also
discuss the special non-expanding NVCT case where the charges are integrable and there
is no flux. In section 6, we construct all axisymmetric TMG solutions, in an expansion
around a null surface, these involve both VCT and NVCT solutions. Last section includes
our concluding remarks and some future directions.

2 Topologically massive gravity and its surface charges

Topologically massive gravity (TMG), with negative cosmological constant Λ = −1/`2, is
described by the action [44, 45],

S[g] = 1
16πG

∫
d3x L[g], L[g] :=

√
−g

(
R+ 2

`2
+ 1
µ
LCS

)
(2.1)

where R is Ricci scalar and LCS is the gravitational Chern-Simons term,

LCS = 1
2ε

µνρ
(

Γαµβ∂νΓβρα + 2
3ΓαµβΓβνγΓγρα

)
, (2.2)

with εµνλ being the Levi-Civita tensor which in our conventions
√
−gεvrφ = 1, and Γαµν is

the Christoffel symbol. This action has three parameters of dimension length, G, ` and the
Chern-Simons coupling 1/µ. One may hence construct two dimensionless constants out of
their ratios. These two may be taken to be `/G and µ`.

TMG action is constructed out of the metric, a covariant quantity under diffeomor-
phisms δξgµν = Lξgµν where Lξ denotes the Lie derivative along vector field ξµ, and the
connection Γαµν , a non-covariant quantity,

δξΓαµν = LξΓαµν + ∂µ∂νξ
α , (2.3)

where the first term in the above is defined as the Lie derivative of Γαµν treated as a usual
tensor with the same index structure. Due to the presence of CS term which involves the
connection, the TMG Lagrangian (2.1) is not diffeomorphism invariant. Variation of the
Lagrangian density induced by the diffeomorphism generated by vector field ξ is

δξL = LξL[g] + ∂µΞµξ [g]

= ∂µ
(
ξµL+ Ξµξ

) (2.4)

where
Ξµξ [g] =

√
−g

32πGµε
µνλ∂νΓαλβ∂αξβ , (2.5)

encodes the non-invariant part.
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Holographic aspects of asymptotically locally (warped) AdS3 solutions of TMG has
been analyzed in [41, 67–72]. Moreover, asymptotic symmetry analysis of the asymptot-
ically AdS3 solutions with Brown-Henneaux boundary conditions [73] has also been per-
formed [74–78]. It has been shown that we get two Virasoro algebras at different left and
right central charges cL, cR, where cL+cR = 3`/G is twice the usual Brown-Henneaux cen-
tral charge and cL−cR = 3

µG gives the gravitational anomaly of the presumed dual 2d CFT,
which corresponds to the non conservation of the dual stress energy [79–81]. This latter is
encoded in the diffeomorphism non-invariance of the TMG Lagrangian, as discussed above.

2.1 TMG equations of motion

The first-order variation of the Lagrangian L is6

δL = Eµν [g]δgµν + ∂µΘµ[δg; g] , (2.6)

where
Eµν [g] := −

√
−g

16πG

(
Gµν − 1

`2
gµν + 1

µ
Cµν

)
= 0, (2.7)

gives the equation of motion and

Θµ[δg; g] =
√
−g

16πG

[
2∇[α

(
gµ]βδgαβ

)
+ 1

2µε
λµν

(
ΓαλβδΓβνα − 2Rαλδgαν

)]
, (2.8)

is the Lee-Wald symplectic potential. In (2.7), Gµν is Einstein tensor and

Cµν := εαβµ∇αSνβ , Sµν = Rµν −
1
4gµνR = Gµν + 1

4gµνR, (2.9)

Cµν is the Cotton tensor and Sµν is the 3d Schouten tensor. The Cotton tensor is trace-less
and divergence-free and hence the equations of motion (2.7) imply R = − 6

`2 . The Cotton
tensor in 3d is a substitute for the Weyl tensor. It is conformally invariant and its vanishing
is equivalent to conformal flatness.

Equations of motion are a system of third order partial differential equations which
may also be written as

Eµν := Dµβ T βν = 0 , (2.10)

where
Tµν := Rµν + 2

`2
gµν , Dµν = δµν + 1

µ
εµαν∇α . (2.11)

One can simply check that on-shell T = T µµ = 0,∇νT µν = 0.
Note that while equations of motion Eµν = 0 are covariant, the symplectic potential is

not a covariant vector:

δξΘµ[δg; g] = LξΘµ[δg; g] + Πµ
ξ [δg; g] , (2.12)

where

Πµ
ξ [δg; g] :=

√
−g

32πGµε
µνλ∂νδΓαλβ∂αξβ − ∂ν

( √−g
32πGµε

µνλδΓαλβ∂αξβ
)
. (2.13)

6In three dimensions we have the useful identity V [µεν]ρλ = 1
2 (εµνρV λ − εµνλV ρ).
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2.2 TMG surface charges

Being diffeomorphism non-invariant, one should revisit the usual Noether-Wald method [10]
for computing surface charges, see e.g. [82, 83]. Here we review and adopt this formulation
to the specific case of TMG. We have already taken the first steps in (2.8), (2.12) and (2.13),
where we explicitly see presence of non-tensor parts. To continue, let us assume that the
variation (2.6) is induced by an infinitesimal transformation generated by ξ and one can
hence define an on-shell conserved current,

Jµξ [g] := Θµ[δξg; g]− ξµL[g]− Ξµξ [g] . (2.14)

By virtue of Poincaré lemma, one finds

Jµξ [g] ≈ ∂νKµν
ξ [g] , (2.15)

where ≈ denotes on-shell equality and

Kµν
ξ [g] = −

√
−g

8πG

[
∇[µξν] + 1

µ
εµνλ

(
Sλαξ

α − 1
4Γαλβ∇αξβ

)]
(2.16)

is the Noether potential. Using (2.14), the Lee-Wald symplectic is current,

ωµLW[δg, δξg; g] := δΘµ[δξg; g]− δξΘµ[δg; g]−Θµ[δδξg; g]

≈ ∂ν
(
δKµν

ξ [g]−Kµν
δξ [g] + 2ξ[µΘν][δg; g] + Σµν

ξ [δg; g]
) (2.17)

where we used the identity

δΞµξ [g]− Ξµδξ[g]−Πµ
ξ [δg; g] = ∂νΣµν

ξ [δg; g] ,

Σµν
ξ [δg; g] :=

√
−g

32πGµε
µνλδΓαλβ∂αξβ .

(2.18)

The surface charge variation is defined as /δQξ :=
∫

Σ ω
µ[δg, δξg; g] dxµ and hence the

surface charge variation associated to the vector field ξ is [83]

/δQLW(ξ) :=
∮
∂Σ

(
QµνGR + 1

µ
QµνCS

)
dxµν (2.19)

where QµνGR and QµνCS are respectively contributions of Einstein-Hilbert and the CS parts,

QµνGR =
√
−g

8πG
(
hλ[µ∇λξν] − ξλ∇[µh

ν]
λ −

1
2h∇

[µξν] + ξ[µ∇λhν]λ − ξ[µ∇ν]h
)
, (2.20)

QµνCS =
√
−g

8πG εµνλ
(1

2δΓ
α
λβ∇αξβ − δSλαξα − ξβSα[βhλ]α

)
. (2.21)

Here hµν = δgµν denotes metric perturbations, h = gµνhµν and the integration is over ∂Σ
which is a one-dimensional compact spacelike surface.
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Y -ambiguity. One can readily observe that the above definitions leave room for a free-
dom, an ambiguity, in the choice of the symplectic potential. Without changing (2.6), One
can shift the Lee-Wald symplectic potential as,

Θµ[δg; g]→ Θµ
Y[δg; g] = Θµ[δg; g] + ∂νY

µν [δg; g] . (2.22)

This Y -ambiguity, however, affects the expression for charge variation:

/δQ(ξ) = /δQLW(ξ) +
∫
∂Σ

dxµνYµν [δg, δξg; g] , (2.23)

where
Yµν [δg, δξg; g] := δY µν [δξg; g]− δξY µν [δg; g]− Y µν [δδξg; g] . (2.24)

As we will see later, fixing this ambiguity is a crucial part of charge analysis for the
TMG theory.

We would like to note that while Γµαβ is not a covariant object, its variation δΓµαβ is. As
a consequence of covariant phase space formalism in which symplectic current is defined as
an anti-symmetric bi-linear in variation of fields and despite diffeomorphism non-invariance
of the TMG action, as explicitly seen, (2.20), (2.21) are covariant. Addition of a Y -term,
as the above general discussion shows, does not change this fact.

3 Near null boundary metric

In this section we adopt an appropriate coordinate system to describe null boundaries and
derive the symmetry preserving the boundary structure. This will be used to compute the
surface charges in section 4 and 5.

3.1 Metric expansion

Consider a null surface N and choose the coordinate system such that it sits at r = 0.
In [24, 27] we found that the following adapted coordinates is appropriate of for discussing
charges near N metric:

ds2 = −V dv2 + 2η dv dr +R2 (dφ+ U dv)2 , (3.1)

with η = η(v, φ). Here, we restrict ourselves to the family of solutions in which the metric
components are smooth and analytic functions in r near the null surface and in particular
do not impose any other requirement. One can verify that imposing further requirements,
would limit our solution space and will not yield the maximal solution phase space we
desire to construct. Upon the smoothness requirement, we have7

V (v, r, φ) = rV1(v, φ) + r2V2(v, φ) +O(r3) (3.2a)
U(v, r, φ) = U(v, φ) + rU1(v, φ) +O(r2) (3.2b)
R2(v, r, φ) = Ω(v, φ)2 + rR1(v, φ) +O(r2) (3.2c)

7V0(v, φ) = 0 as r = 0 is a null hypersurface.

– 9 –
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where we keep the orders relevant to the charge analysis. The induced geometry on N reads

ds2
N = Ω2 (dφ+ U dv)2 . (3.3)

To decompose the bulk metric adapted to the study of null hypersurfaces, it is conve-
nient to define two null vector fields lµ, nµ (l2 = n2 = 0) such that l ·n = −1, lµ is outward
pointing and nµ inward pointing

l := lµ dxµ = −1
2V dv + η dr, n := nµ dxµ = − dv . (3.4)

In terms of these,

gµν = qµν − lµnν − lνnµ , qµν l
µ = qµνn

µ = 0, (3.5)

where qµν dxµ dxν = R2 (dφ+ U dv)2. The vector field lµ∂µ = ∂v − U∂φ +O(r) generates
the null surface and U can be treated as the angular velocity aspect of the given null
surface. The extrinsic geometry is encoded in the expansions of lµ, nν on N ,8

Θ
l

:= (qµν∇µlν)
∣∣
r=0 = χ

Ω , χ := ∂vΩ− ∂φ (ΩU) , (3.6a)

Θn := qµν∇µnν
∣∣
r=0 = − τΩ , τ := R1

2ηΩ (3.6b)

and in the twist field

ω := −(qφνnλ∇ν lλ)
∣∣
r=0 = 1

2

(Υ
Ω + ∂φη

η

)
, Υ := −Ω3 U1

η
. (3.7)

For later convenience we define the non-affinity l · ∇lµ := κ lµ on N

κ = V1
2η + ∂vη

η
− U ∂φη

η
, (3.8)

and

P := ln
(
η

χ2

)
, (3.9)

$ := Ω2

`2
+
( Υ

2Ω

)2
+
(
∂φη

2η

)2
+ 3

2

(
∂φΩ
Ω

)2
−
∂2
φΩ
Ω − 2 τ χ− 2τ Ω ∂φU − U∂φ(τ Ω) .

(3.10)

Note that Ω,P,Υ are the combinations which appeared in the charge expressions in the
Einstein gravity case analyzed in [24].

Curvature components. In the rest of the work, the on-shell divergence-free and trace-
less tensor Tµν (2.11) will be of great relevance. The components Tll = lµlνTµν , Tlφ = lµTµφ
and Tφφ = Tφφ computed at r = 0 are given by

Tll = − 1
Ω (∂vχ− ∂φ(Uχ)− κχ) (3.11a)

Tlφ = ∂vω − ∂φ(Uω) + χω

Ω − ∂φκ (3.11b)

Tφφ = −2Ω
(
∂vτ − ∂φ(U τ) + κ τ + ω2

Ω + ∂φ

(
ω

Ω

)
− Ω
`2

)
. (3.11c)

8Since lµ is outward pointing, Θl ≥ Θn or χ+ τ ≥ 0.
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3.2 Solution phase space, a preliminary discussion

The family of geometries in (3.1) are the most general ones with r = 0 as the null surface and
in the leading order expansion in r they are specified by seven unknown functions over the
null cylinder spanned by v, φ. A special class of these geometries are solutions to equations
of motion (2.7). As will become more explicit and apparent in the coming sections, there
are three independent field equations which may also be imposed perturbatively around
r = 0. These lead to three relations among these functions. A generic geometry in the
“solution space” is hence specified by four unknown function of v, φ at the r = 0 null
boundary. Higher order terms in the expansion of the metric in powers of r will be fixed
by equations of motion at higher orders. As we will see, however, only the lowest order
terms given in (3.2) contribute to the charge analysis around the null boundary N .

The metric expansion (3.1) and (3.2) of course do not depend on the theory and similar
ansatz was also used in [24] to analyze Einstein-Λ theory. In that case the V2 coefficient was
also restricted by the equations of motion and the solution space had only three independent
functions in it. In the TMG case, however, dealing with third order field equations, we
have one less constraint at leading order and hence the solution space has four functions in
it. The difference between the two cases is due to the existence of a chiral graviton mode
in TMG.

The above discussions may be put in a different, and a bit more systematic wording. In
3d, metric has six components. Three of them can be fixed by diffeomorphisms and hence
there remains three independent functions over the spacetime; h, U, V in the metric (3.1).
Equations of motion describing TMG are third order partial differential equations and
solutions of this theory will be uniquely determined when nine co-dimension one functions,
e.g. functions of v, φ, are specified on the boundary, say r = 0. On the other hand, canonical
analysis of TMG [84] implies that, contrary to Einstein gravity, there are four second-class
constraints in addition to three first-class constraints. Therefore we expect that 5 (= 3+ 4

2)
of co-dimension one functions can be determined in terms of the other four co-dimension
one functions via constraint equations. Hence, solution space near null surface r = 0 can be
uniquely determined through four functions of v, φ. As we will show in the coming sections,
this solution space admits a Poisson bracket structure and is hence a solution phase space.

3.3 Null boundary symmetries

Consider the vector field ξ whose components are

ξv = T

ξr = r(∂vT −W ) + r2 (Ω2U1 + ∂φη
)
∂φT

2Ω2 +O(r3)

ξφ = Y − rη∂φT

Ω2 + r2ηR1∂φT

2Ω4 +O(r3)

(3.12)

where T = T (v, φ),W = W (v, φ), Y = Y (v, φ) are three arbitrary functions which are 2π
periodic in φ. While transforming the fields V, h, U, η, the vector field (3.12) preserves the

– 11 –
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r = 0 null surface, i.e. δξgrr|r=0 = 0. Explicitly, the fields transform as

δξη = 2 η
χ

[
∂vT̂ − ∂φ(U T̂ )

]
− Ŵη + Ŷ ∂φη+2ηΩT̂

χ2 Tll (3.13a)

δξU = ∂vŶ + Ŷ ∂φU − U ∂φŶ , (3.13b)
δξΩ = T̂ + ∂φ(Ŷ Ω) (3.13c)

δξP = −Ŵ − 2∂φŶ + Ŷ ∂φP+2ΩT̂ Tll
χ2 (3.13d)

δξχ = ∂vT̂ − ∂φ(U T̂ ) + ∂φ(Ŷ χ) (3.13e)

δξΥ = −T̂ ∂φP − 2∂φT̂ + Ŷ ∂φΥ + 2Υ∂φŶ + Ω∂φŴ + 2ΩT̂
χ
Tlφ (3.13f)

δξτ = − T̂
χ

[
ω2

Ω + ∂φ

(
ω

Ω

)
− Ω
`2

]
+ ∂φ

(
Ŷ τ
)
−
τ
[
∂vT̂ − ∂φ

(
U T̂

)]
χ

− 2ω
Ω ∂φ

(
T̂

χ

)
− ∂φ

[
1
Ω∂φ

(
T̂

χ

)]
−Ωτ T̂

χ2 Tll−
T̂

2ΩχTφφ (3.13g)

δξκ = Ŷ ∂φκ+ ∂v (∂vT − U∂φT + κT )− U∂φ (∂vT − U∂φT + κT ) (3.13h)

where hatted-generators are defined as

Ŵ := W + 2
(
κ+ U∂φη2η − ∂vη

2η

)
T − U∂φT , Ŷ := Y + UT , T̂ := Tχ . (3.14)

Null Boundary Symmetry algebra. ξµ are “null boundary Killing vectors” or null
boundary symmetries, i.e. vector field keeping the form of the metric (3.1). Recalling
that equations of motion (2.7) are covariant, ξµ (3.12) hence rotate us in the solution
space. Therefore, ξµ are symmetries of our setting. By definition, hence, one would expect
that the null boundary symmetries should form an algebra. The symmetry generators are
“field dependent”, i.e. components of ξµ depend on the functions specifying the metric.9

Therefore, when computing the Lie-bracket of the symmetry generators we need to adjust
for this field dependence to close onto an algebra [23, 85]. Using the adjusted bracket we
find the algebra of null boundary symmetries generating vector fields

[ξ(T1,W1, Y1), ξ(T2,W2, Y2)]adj. bracket = ξ(T12,W12, Y12) (3.15)

where

T12 = T1∂vT2 − T2∂vT1 + Y1∂φT2 − Y2∂φT1 (3.16a)
W12 = T1∂vW2 − T2∂vW1 + Y1∂φW2 − Y2∂φW1 + ∂vY1∂φT2 − ∂vY2∂φT1 (3.16b)
Y12 = Y1∂φY2 − Y2∂φY1 + T1∂vY2 − T2∂vY1 . (3.16c)

This is a Diff(C2) ⊕ Weyl(C2) algebra, where C2 is the cylinder spanned by v, φ; T, Y
generate diffeomorphisms on this cylinder and W generates a Weyl scaling along the r
direction. This algebra is exactly the same as the one we had in [24]. This is of course
expected as the above analysis is independent of the theory and only relies on the fact that
we are expanding a 3d metric around a null surface at r = 0.

9The lowest order terms in ξµ (3.12) are field independent, field dependence appears in higher r orders.
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4 Vanishing Cotton tensor (VCT) solution phase space and charges

As discussed all solutions to Einstein-Λ theory are also solutions to TMG. This class of solu-
tions have vanishing Cotton tensor and we hence dub them as VCT solutions which satisfy,

Tµν = Rµν + 2
`2
gµν = 0 , Cµν = 0 . (4.1)

One can readily see that these are equations of motion for the usual Einstein gravity and
hence the solution space in the VCT sector is expected to be exactly the same as that
of Einstein gravity constructed and discussed in [24]. The equations of motion may be
decomposed in terms of Raychaudhuri equation Tll = 0, Damour equation Tlφ = 0 and
Tφφ = 0. At the zeroth order in r, they respectively lead to

∂vχ− ∂φ(Uχ)− κ χ = 0 (4.2a)

∂vω − ∂φ(Uω) + χω

Ω − ∂φκ = 0 , (4.2b)

∂vτ − ∂φ(U τ) + κ τ + ω2

Ω + ∂φ

(
ω

Ω

)
− Ω
`2

= 0 . (4.2c)

The equations of motion (4.1) restrict the family of near null boundary solutions to
exactly those discussed in section 3 of [24], which considered the maximal phase space for 3d
Einstein-Λ around a null surface. Explicitly, the metric (3.1) at first order in r is specified
by six functions, η,Ω,U and V1, R1, U1. The latter three are encoded in κ, τ, ω. One may
solve for κ, τ,U in terms of η,Ω, ω using (4.2). The O(r2) terms will then be determined
through the lower order functions using equations of motion (4.1), but as will be discussed
below, do not contribute to the surface charges at r = 0. Therefore, the solution space is
specified by three functions over the r = 0 null surface spanned by v, φ.

Surface charges at the null boundary. The null boundary Killing vectors 3.3 gen-
erate symmetries over the VCT solution space which is parametrised by three functions.
Since there are three functions in ξµ, there are at most three associated charges which are
functions over the solution space. Variation of the Lee-Wald part of charge densities over
the VCT solution space for TMG may be computed evaluating (2.19). Straightforward,
but tedious computation yields

16πGQvrTMG

∣∣
r=0 = 16πGQvrGR

∣∣∣
r=0

+ 1
µ

(
δΓαφβ∇αξβ+ 1

`2
hφαξ

α
)∣∣∣

r=0

= Ŵ δ

(
Ω+ 1

µ
ω− 1

µ

∂φη

η

)
+Ŷ δ

(
Υ+ 1

µ
$

)
+T̂ δP

− 1
µ
∂vŶ δ(τ Ω)+ 1

µχ

[
−τ ΩδU+δ

(
∂φη

η

)](
∂vT̂+T̂ Tll

Ω
χ

)
(4.3)

+ T̂

µχ

{
∂φ

[
χδP

Ω − ∂φ(δUΩ)
Ω +2δU ω

]
+χU ∂φ

[ 1
χ

(
−τ ΩδU+δ

(
∂φη

η

))]
+δU

[
χτ−ω2−Ω∂φ

(
ω

Ω

)
+ Ω2

`2

]
−ωχδPΩ + χ

Ω ∂φ

(
δΩ
Ω

)}
.
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The Tll term vanishes on-shell. The above has been written using the slicing (3.14). This
is the slicing used in [24] to render the charges integrable. Due to the presence of last three
lines in (4.3), the TMG charges are not integrable in this slicing, nevertheless, we show
next that Y -ambiguity can be employed to remedy this.

4.1 Integrability: fixing the Y -ambiguity

As discussed, VCT solutions do not have a local (propagating) degree of freedom. There-
fore, there should be a slicing of the solution phase space where the charges become in-
tegrable. In the µ → ∞ limit, the hat-slicing (3.14) works perfectly well and renders the
charge integrable, recovering the results of [24]. For finite µ, however, the charges are not
integrable in this slicing. We tried many different slicings (reparametrisations on the solu-
tion phase space) but the charges remained non-integrable. Nevertheless, this issue can be
resolved recalling the inherent Y -ambiguity of the Iyer-Wald procedure, cf. (2.22). Remark-
ably, there exists a Y -term which together with adapting a suitable slicing yields integrable
charges. Integrability can be used as a criterion to partially fix this Y -ambiguity.10 Besides
the addition of the Y -term, to arrive at the final conveniently written result we need to
make a couple of more changes of slicing, as we outline below.

We now detail the computations. First we note that the charge density (4.3) can be
suggestively written as

/δQLW(ξ) = 1
16πG

∫ 2π

0
dφ
{
Ŷ δΥ̃+δξ

(
Ω̂+ 1

2µ ∂φP
)
δP−δΩ̂δξP

+ 1
µ

[
δU δξ(τ Ω)−δξU δ(τ Ω)+ 1

2Ω2 (δξΩ∂φδΩ−δΩ∂φδξΩ)+ 1
4η2 (δξη∂φδη−δη∂φδξη)

]}
+ T̂

χ2Tllδ
(
Ω2
)

+ 1
µ

T̂

χ

[1
2TφφδU−TlφδP+Tll

Ω
χ
δ

(Υ
Ω +∂φP

)]}
(4.4)

where

Ω̂ := Ω + 1
µ

Υ
2Ω ,

Υ̃ := Υ + 2∂φΩ̂ + Ω̂∂φP + 1
µ

{
−2 τ χ+ Ω2

`2
+
( Υ

2Ω

)2
+ 1

4(∂φP)2 + ∂2
φP
}
. (4.5)

From the expression (4.4), we see that the first line is integrable if we make the following
change of slicing

ˆ̂
W ≈ −δξP, ˆ̂

T ≈ δξ
(

Ω̂ + 1
2µ ∂φP

)
,

ˆ̂
Y := Ŷ, δ

ˆ̂
W = δ

ˆ̂
T = δ

ˆ̂
Y = 0,

where ≈ denotes on-shell equality. The double-hat symmetry generators ˆ̂
W,

ˆ̂
T,

ˆ̂
Y are related

to the original symmetry generators W,T, Y through (3.14) where on-shell we drop terms
10We note that requirement of integrability concerns the finite part of the charges and is different from

the prescriptions used in the (holographic) renormalisation procedure to eliminate the divergent part of the
charges [17].
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proportional to Tµν . In the double hat-slicing, the second line of (4.4) still remains non-
integrable and the last line vanishes on-shell for the VCT case.

The non-integrable part comes from the CS contribution to the charge density (2.21).
Its form suggests that a Y -term of the following form

Y µν [δg; g] =
√
−g

8πGµ ε
µνλBλ[δg; g] (4.6)

with Bλ depending on the (variations) of metric and Christoffel symbols. Straightforward
but lengthy algebra reveals that

Bλ[δg; g] = −1
8 Γαλβδgβα + 1

2 nαl
βδΓαλβ−

δΩ
2Ω∂λP , (4.7)

does the job.11 The Bφ component,

2Bφ = −δΩ∂φΩ
2Ω2 − δη∂φη

4η2 + Ωτ δU − δω−δΩΩ ∂φP +O(r) , (4.8)

contributes to the charge and removes the second line in (4.4). Adding Y -term (4.6) to the
surface charge, we have

/δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
[
Ŷ δΥ̃ + δξ

(
Ω̂ + 1

µ

∂φΩ
Ω + 1

2µ ∂φP
)
δP − δξP δ

(
Ω̂ + 1

µ

∂φΩ
Ω

)]
.

(4.9)
Upon a further change of slicing δξ(Ω̂ + 1

µ
∂φΩ
Ω + 1

2µ ∂φP) ≈ T̃ , the charges become integrable.
Explicitly, we define

W̃ := Ŵ + 2∂φŶ − Ŷ ∂φP, Ỹ := Ŷ, (4.10a)

T̃ := T̂

Ω

(
Ω− 1

2µ
Υ̂
Ω

)
+ ∂φ

[
Ŷ

(
Ω + 1

2µ
Υ̂
Ω

)]
(4.10b)

where Υ̂ := Υ + 2∂φΩ + Ω∂φP. In the tilde-slicing surface charges are integrable:

δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
(
Ỹ δΥ̃ + T̃ δP + W̃ δΩ̃

)
, (4.11)

where
Ω̃ := Ω̂ + 1

µ

∂φΩ
Ω . (4.12)

The transformation laws are

δξΩ̃ ≈ T̃ + 1
2µ∂φW̃ , δξP ≈ −W̃ , (4.13)

δξΥ̃ ≈ Ỹ ∂φΥ̃ + 2Υ̃∂φỸ −
2
µ
∂3
φỸ . (4.14)

Also, for later use we record that equations of motion imply

∂vΥ̃ ≈ U∂φΥ̃ + 2Υ̃∂φU −
2
µ
∂3
φU . (4.15)

11Note that integrability requirement does not completely fix Y -ambiguity; there are other Y -terms
which together with an appropriate slicing can yield integrable charges. In essence the Y -term (4.7) is a
minimal choice.
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4.2 Algebra of symmetry generators in the integrable slicing

The algebra of boundary symmetry generators in W , Y and T slicing is given in (3.15)
and (3.16). The algebra in the hatted or tilde -slicing where Ŵ , Ŷ, T̂ or W̃ , Ỹ, T̃ are
treated as field independent functions, is different. To account for the field dependence
of the transformation from the original slicing to these new slicing one need to use the
adjusted Lie bracket [23, 85].

Null boundary symmetry algebra in the hatted-slicing:[
ξ(T̂1, Ŵ1, Ŷ1), ξ(T̂2, Ŵ2, Ŷ2)

]
adj. bracket

= ξ(T̂12, Ŵ12, Ŷ12), (4.16)

where

T̂12 = ∂φ
(
Ŷ1T̂2 − Ŷ2T̂1

)
, (4.17a)

Ŵ12 = Ŷ1∂φŴ2 − Ŷ2∂φŴ1, (4.17b)
Ŷ12 = Ŷ1∂φŶ2 − Ŷ2∂φŶ1. (4.17c)

The algebra is exactly the same as what was obtained in section 3 of [24] for s = 0.

Null boundary symmetry algebra in the tilde-slicing:

[ξ(T̃1, W̃1, Ỹ1), ξ(T̃2, W̃2, Ỹ2)]adj. bracket = ξ(T̃12, W̃12, Ỹ12), (4.18)

where
W̃12 = 0, T̃12 = 0, Ỹ12 = Ỹ1∂φỸ2 − Ỹ2∂φỸ1. (4.19)

This is a A2 ⊕ Witt algebra; the Witt part is generated by Ỹ , the A2 denotes local
u(1)⊕ u(1) algebra on the null cylinder and is generated by W̃, T̃ .

4.3 Charge algebra in the integrable slicing

As discussed and may be explicitly seen in (4.11), the tilde-slicing leads to integrable charges
P, Ω̃, Υ̃, respectively associated with T̃, W̃, Ỹ generators. According to the fundamental
theorem of the covariant phase space method [9, 10], the algebra of charges is the same
as the algebra of symmetry generators (4.18), (4.19), possibly up to central terms. Since
we have the explicit form of the charges and their transformations (4.13), (4.14) we can
compute the charge algebra and explicitly confirm the stated theorem:

δξ2Qξ1 = {Qξ1 , Qξ2} = Qξ12 +Kξ1,ξ2 (4.20)

where the central extension term Kξ1,ξ2 is

Kξ1,ξ2 = 1
16πG

∫ 2π

0
dφ

[(
W̃1T̃2 −

1
µ
Ỹ1∂

3
φỸ2 + 1

4µW̃1∂φW̃2

)
− (1↔ 2)

]
. (4.21)
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The charge algebra in terms of Ω̃, Υ̃ and P is

{P(v, φ),P(v, φ′)} = 0, {Ω̃(v, φ),P(v, φ′)} = 16πGδ(φ− φ′), (4.22a)

{Ω̃(v, φ), Ω̃(v, φ′)} = 8πG
µ

∂φδ(φ− φ′), (4.22b)

{Υ̃(v, φ), Ω̃(v, φ′)} = 0, {Υ̃(v, φ),P(v, φ′)} = 0, (4.22c)

{Υ̃(v, φ), Υ̃(v, φ′)} = 16πG
(

Υ̃(v, φ′)∂φ − Υ̃(v, φ)∂φ′ −
2
µ
∂3
φ

)
δ(φ− φ′). (4.22d)

In the large µ limit, as expected, we obtain the Heisenberg ⊕ Diff(S1) algebra [24]. There
are three central terms in the charge algebra (4.22), two of which are proportional to 1/µ
and hence appear due to the presence of the CS term.

The algebra in the above slicing is not yet in our final convenient form. One of the
central terms can still be removed through another change of slicing:

S := Ω̃ + 1
4µ∂φP= Ω + 1

2µΩ

(
Υ + 2∂φΩ + 1

2Ω∂φP
)
. (4.23)

In this slicing the charge expression yields

δQξ = 1
16πG

∫ 2π

0
dφ (Ỹ δJ + T̃δP + W̃ δS) (4.24)

where
J := Υ̃, T̃ := T̃ + 1

4µ∂φW̃, (4.25)

and variation of S gives the simple form

δξS = T̃. (4.26)

The null boundary symmetries algebra in the new tilde-slicing is

[ξ(T̃1, W̃1, Ỹ1), ξ(T̃2, W̃2, Ỹ2)]adj. bracket = ξ(T̃12, W̃12, Ỹ12),
W̃12 = 0, T̃12 = 0, Ỹ12 = Ỹ1∂φỸ2 − Ỹ2∂φỸ1.

(4.27)

In this slicing the algebra becomes a Heisenberg ⊕ Virasoro algebra:

{S(v,φ),S(v,φ′)}= 0, {S(v,φ),P(v,φ′)}= 16πGδ(φ−φ′), {P(v,φ),P(v,φ′)}= 0,

(4.28a)

{J (v,φ),S(v,φ′)}= 0, {J (v,φ),P(v,φ′)}= 0, (4.28b)

{J (v,φ),J (v,φ′)}= 16πG
(
J (v,φ′)∂φ−J (v,φ)∂φ′−

2
µ
∂3
φ

)
δ(φ−φ′). (4.28c)

In terms of Fourier modes of the charges,

X n := 1
16πG

∫ 2π

0
dφ X (v, φ)einφ, (4.29)
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after “quantizing the charges” upon replacing {·, ·} → −i[·, ·], we obtain

[Sn,Sm] = 0, [Sn,Pm] = i

8Gδm+n,0, [Pn,Pm] = 0, (4.30a)

[J n,Sm] = 0, [J n,Pm] = 0, (4.30b)

[J n,Jm] = (n−m)J n+m + 1
4µGn

3δn+m,0. (4.30c)

We note that the Fourier modes Sn,Pn,J n, respectively entropy aspect charge, expansion
aspect charge and angular momentum aspect charge, are in general functions of v. The
zero mode of S is equal to the Wald entropy [10, 66], P0 is proportional to the logarithm
of the expansion of the null vector field generating the null boundary and J 0 is the angular
momentum charge.

On central charges of the charge algebra. There are two kinds of central terms
in our case, one is 1/(8G) which appears in the Heisenberg part and is µ independent.
The other comes from the CS term and appears in the Virasoro part. The former is
also present in the 3d Einstein gravity analysis [24]. The central term in the Virasoro
algebra (4.30) is coming from the gravitational (diffeomorphism) anomaly in the presumed
dual 2d CFT [79, 80, 86]. To see this, let us first note (3.12) and that Virasoro part is
associated with “super-rotations”. Next, recall the asymptotic symmetry analysis of TMG
with Brown-Henneaux boundary conditions yields two left and right Virasoro algebras with
central charges [77, 78], cL = 3`

2G + 3
2µG , cR = 3`

2G −
3

2µG . The difference of the left and right
Virasoro algebras generate super-rotations, which is a Virasoro algebra at central charge
cL − cR = 3

µG , which exactly matches the central charge in (4.30c).

4.4 Non-conservation of charges and generalized conservation equation

As discussed integability and conservation of surface charges are known to be closely re-
lated to each other. This latter has been noted e.g. in Wald-Zoupas [87] and also in the
Barnich-Troessaert [23] analyses and more recently in [27]. Here we revisit integrability
and conservation in presence of central charges. To this end, we study “time evolution” of
the charges. Our charges are functions of light-cone time coordinate v, as they are given
by integrals over φ on integrands which are functions of v, φ. ∂v is not among the genera-
tors of the tilde-slicing in which the charges are integrable.12 Nonetheless, one can locally
introduce another appropriate “time coordinate” ṽ more closely related to the tilde-slicing:
ξ(T̃, W̃, Ỹ ) = ξ(1, 0, 0) := ∂ṽ.

The Hamiltonian evolution equation with respect to ṽ for a generic charge QI(ξ) is

d
dṽQ

I(ξ) = δ∂ṽQ
I
ξ + ∂ṽQ

I
ξ , δ∂ṽQ

I
ξ := {QI(ξ), QI(∂ṽ)} (4.31)

12∂v is a vector corresponding to T = 1, Y = W = 0, for which T̃(v)≈∂vS, W̃ (v)≈ − ∂vP, Ỹ (v) = U .
∂vS, ∂vP are related to the other fields and their φ derivatives using the on-shell conditions. That is, ∂v is
field-dependent in the tilde-slicing. While one cannot define the charge associated with ∂v, the corresponding
charge variation is well-defined.
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The ∂ṽQI
ξ term takes into account the explicit ṽ dependence which in part comes from

symmetry generator ξ. Using (4.20) in the tilde-slicing (4.28) for ξ1 = ξ(T̃, W̃, Ỹ ) arbitrary
and ξ2 = ∂ṽ, one has

d
dṽQ

I
ξ = 1

16πG

∫ 2π

0
dφ W̃ + ∂ṽQ

I
ξ. (4.32)

Following [27], we name this equation as generalized charge conservation equation (GCCE).
This equation shows that due to the central term in the Heisenberg part the charge associ-
ated with ξ = ξ(0, W̃, 0) while integrable, is not conserved, whereas the charge associated
with ξ = ξ(T̃, 0, Ỹ ) are both integrable and conserved.

The other central charge in the Virasoro part of the algebra (4.30) does not appear
in the GCCE (4.32), as this equation captures evolution in ṽ. One can see the effects of
this other central charge by studying “evolution” in φ̃ direction, such that ∂φ̃ = ξ(0, 0, 1)
in the tilde-slicing. Similarly one could have locally defined another r̃ coordinate such that
r̃∂r̃ = ξ(0, 1, 0) in the tilde-slicing. The “evolution” in ln r̃ would again involve the central
charge in the Heisenberg part. All in all, the central charges yields a non-conservation in
the associated charges. This matches with the usual statement that central charges are
“anomalies” for conserved charges.

4.5 Non-expanding backgrounds, example of BTZ

So far we discussed the most general solution phase space and charges in the VCT sector.
An important subspace arises when the background is non-expanding χ = 0, where χ is
defined in (3.6a). Note that this is consistent with the equations of motion (4.2). An
important example in this class is when the null surface is a Killing horizon, like the cases
in Einstein gravity discussed in [26]. The phase space of the non-expanding sector cannot
be directly derived from the generic case, as in the vanishing expansion limit, P (3.9) and
the change of slicing to T̂ (3.14) become ill-defined. We need to revisit our charge analysis
for such cases keeping T untouched.

While for the background χ = 0, one may allow generic perturbations for which χ 6= 0.
For χ = 0 field variations (3.13) generated by the null boundary symmetry ξ (3.12) take
the form

δξΩ = ∂φ(Ŷ Ω)
δξU = ∂vŶ + Ŷ ∂φU − U ∂φŶ ,
δξη = −Ŵη + 2η∂vT + Ŷ ∂φη + 2ηκT − 2Uη∂φT
δξχ = 0

δξτ = T∂vτ − τ∂vT + τU∂φT − T∂φ(τU) + ∂φ(Ŷ τ)− 2ω∂φT
Ω − ∂φ

(
∂φT

Ω

)
δξΥ = Ŷ ∂φΥ + 2Υ∂φŶ + Ω∂φŴ + 2ΩTTlφ,
δξκ = Ŷ ∂φκ+ ∂v (∂vT − U∂φT + κT )− U∂φ (∂vT − U∂φT + κT )

(4.33)

where Ŵ, Ŷ are defined as in (3.14). Note that the null boundary symmetry generators
cannot take us to a nonzero χ values. Nonetheless we may still allow δχ 6= 0, while
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computing the charge variations (2.19). One has

16πGδQvrTMG

∣∣
r=0 ≈ Ŵ δ

(
Ω + 1

µ

Υ
2Ω

)
+ Ŷ δ

{
Υ + 1

µ

[
−2τχ+

(
Ω2

`2
+ Υ2

4Ω2

)]}

+ Tδ

[
−2∂φ

(
χ

Ω

)
+ 2ωχ

Ω

]
+ 1
µ

[
δU δξ(τ Ω)− δξU δ(τ Ω) + 1

2Ω2 (δξΩ ∂φδΩ− δΩ ∂φδξΩ)

+ 1
4η2 (δξη ∂φδη − δη ∂φδξη)

]
.

(4.34)

The last two lines may be removed by the Y -term (4.7) without the last term. The
integrable part of the charge is hence given by

Q(Ŵ ) ≈ 1
16πG

∫ 2π

0
dφ Ŵ

(
Ω + 1

µ

Υ
2Ω

)
, (4.35a)

Q(Ŷ ) ≈ 1
16πG

∫ 2π

0
dφ Ŷ

[
Υ + 1

µ

(
Ω2

`2
+ Υ2

4Ω2

)]
, (4.35b)

Q(T ) ≈ 1
16πG

∫ 2π

0
dφ T

[
−2∂φ

(
χ

Ω

)
+ 2ωχ

Ω

]
= 0 . (4.35c)

As we see the charge associated with T is vanishing and is hence a trivial transformation.
We may use this “gauge freedom” to set η = 1.13 The “non-expanding physical solution
phase space” is then described by the two charges:

Ŝ := Ω + 1
µ

Υ
2Ω , (4.36a)

Ĵ := Υ + 1
µ

(
Ω2

`2
+ Υ2

4Ω2

)
, (4.36b)

with the transformation laws

δξŜ ≈ ∂φ(Ŷ Ŝ) + 1
2µ∂φŴ (4.37a)

δξĴ ≈ Ŷ ∂φĴ + 2Ĵ ∂φŶ + Ŝ∂φŴ . (4.37b)

These transformation laws imply the following algebra

{Ŝ(v, φ), Ŝ(v, φ′)} = 8πG
µ

∂φδ(φ− φ′), (4.38a)

{Ĵ (v, φ), Ŝ(v, φ′)} = 16πG Ŝ(v, φ)∂φδ(φ− φ′), (4.38b)

{Ĵ (v, φ), Ĵ (v, φ′)} = 16πG
(
Ĵ (v, φ′)∂φ − Ĵ (v, φ)∂φ′

)
δ(φ− φ′). (4.38c)

The above algebra is a U(1) Kac-Moody algebra with the U(1) current Ŝ, at level 1/(16µG)
and the Virasoro part, which is generated by Ĵ , has vanishing central charge. This is to be

13This may be done setting δξη = 0, η = 1 and solving for T . See section 6.3 of [27] for a similar discussion.
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contrasted with the algebra of the generic case (4.28) where the Virasoro part has a central
charge equal to 3/(µG). Absence of the Virasoro central charge in the non-expanding case
can be traced to the fact that this central charge is arising from ∂2

φP term in (4.5) and
that P vanishes in the non-expanding case. As discussed this central charge is related to
the gravitational anomaly of the presumed dual 2d CFT. One may then check that for the
non-expanding case the diffeomorphism non-invariance of the CS term vanishes for a null
boundary with zero expansion Θ

l
.

It is also interesting to note that upon the redefinition Ĵ → ˆ̂J := Ĵ −µŜ2, the algebra
takes a simpler form as { ˆ̂J , Ŝ} = 0. However, recalling (4.36), ˆ̂J = ( 1

µ`2 − µ)Ω2. At the
chiral point µ` = 1 [88], the algebra degenerates, as Ĵ = µŜ2 and one remains with a
single independent charge.14

An example for the non-expanding cases is when the r = 0 null surface is Killing
horizon of a black hole. These cases were studied in [26] for Einstein gravity in diverse
dimensions. It is readily seen that the “BMS-like slicing” with s = 0 in that work matches
the µ→∞ limit of (4.35).15

BTZ example. As an illustrative example of such backgrounds, we consider the BTZ
black hole background [40] which is a solution in the VCT class. Let us choose r = 0 null
surface to be the outer Killing horizon of the black hole. In our v, r, φ coordinate system
the metric takes the form,

ds2 = − r

`2
(r + 2r+)

(
1−

r2
−

(r + r+)2

)
dv2 + 2 dv dr + (r + r+)2

(
dφ− r+ r−

`(r + r+)2 dv
)2
,

(4.39)

where r± are the horizon radii. In terms of the near r = 0 expansion (3.1), one has

η = 1, Ω = r+ , R1 = 2r+ ,

U = − r−
r+ `

, U1 = −R1 U
Ω2 = 2r−

` r2
+
,

V1 = 2
r2

+ − r2
−

`2 r+
= 2κ , V2 = 1

`2
(1 +

3r2
−

r2
+

),

(4.40)

where κ = κH is the surface gravity and U is the horizon angular velocity. Thus the
quantities appearing in the redefinition of symmetry generators are

Υ = −2r+ r−
`

, χ = 0 , τ = 1 , $ =
r2

+ + r2
−

`2
, ω = −r−

`
. (4.41)

As a simple check, we note that the field equations (4.2a) and (4.2b) are trivially satisfied
while (4.2c) is satisfied as κ = Ω/`2 − ω2/Ω.

14As a side remark we note that at the chiral point µ` = 1, the expression for Υ̃ in generic case (4.5)
takes a much simpler form µΥ̃ = 1

4 P̂
2 + ∂φP̂ − 2τχ, where P̂ := 2µΩ̂ + ∂φP. Thus, the algebra at the

critical point does not degenerate in the generic case due to the −2τχ term.
15Note that P of [26] corresponds to S in this work.
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Therefore the background charges (4.36) are

SBTZ = 2πQ(0, Ŵ, 0) = 2π
4G

(
r+ −

1
µ `
r−

)
Ŵ 0(v) , (4.42)

JBTZ = −Q(0, 0, Ŷ ) = 1
4G

(
r+r−
`
−
r2

+ + r2
−

2`2µ

)
Ŷ 0(v) (4.43)

where Ŵ 0(v), Ŷ 0(v) are the Fourier zero modes of the associated symmetry generators.
SBTZ,JBTZ are respectively proportional to the Iyer-Wald entropy and angular momentum
of BTZ black hole in TMG.16

5 Non-vanishing Cotton Tensor (NVCT) solution phase space and
charges

After the warm-up, illuminating case of vanishing Cotton tensor solution phase space, we
now consider the phase space for generic TMG solutions, when Cotton tensor does not
vanish. This case is important and interesting as it allows for propagating massive chiral
gravitons and hence non-zero fluxes are expected.

5.1 Equations of motion

Our starting point is again metric (3.1) and the conventions sets in section 3. The equations
of motion (2.10) Eµν = 0, for NVCT case to lowest order in r, give

E := Eµµ = −2V2
η2 + 3Υ2

2Ω4 + 2
`2
− Υ∂φη

Ω3η
− (∂φη)2

2η2Ω2 + 2Tφφ
Ω2 = 0 , (5.1)

Ell := lµlνEµν = Tll −
1
µΩ

[
ωTll − ∂φTll + ∂vTlφ − ∂φ(UTlφ)− κTlφ + χTlφ

Ω

]
= 0 , (5.2)

Elφ := qφ
µlνEµν = Tlφ −

1
µΩ

[
∂vTφφ − U∂φTφφ − 2Tφφ∂φU −

χTφφ
2Ω

− Ω∂φ
(Tlφ

Ω

)
− ωTlφ − τΩTll −

χ

2 ΩE
]

= 0 .
(5.3)

As the VCT case, equations Ell = 0 and Elφ = 0 can be treated as equations that determine
κ and U . Unlike the VCT class, second order terms in the metric appear at leading
order in the equations of motion. This is the case for (5.1) where V2 appears. Hence this
equation cannot be used to determine a third leading order term in (3.1). Therefore, the
NVCT solution space is described by four independent functions of v, φ; three of them are
parametrizing the BDoF of the solution space and the last one, which may be taken to be
Tll (or τ), encodes the degree of freedom associated with the massive chiral graviton.

16As a side remark, we note that these expressions can be written as SBTZ = (S+ − S−
µ`

)Ŵ 0(v), JBTZ =
(J − M

µ`
)Ŷ 0(v), where S± are the entropy of the outer and inner horizon and J,M are angular momentum

and mass of a BTZ black hole of horizon radii r± in the usual Einstein AdS3 gravity.
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5.2 Null boundary symmetries and surface charges

The null boundary preserving diffeomorphisms which generate symmetries of the solution
phase space are given by (3.12). These generate field variations (3.13) over the solution
phase space. The algebra of the symmetry generators are given in (3.15), (3.16).

To compute the charge variations associated with the symmetry generating diffeomor-
phisms we use the general equation in section 2.2. The density of surface charge variation
can be rewritten as

16πGQvrLW ≈ 16πGQvrGR + 1
µ

(
δΓαφβ∇αξβ + 1

`2
hφαξ

α
)
− 2
µ

(
δTφαξα + ξβT α[βhφ]α

)
≈ Ŷ δ

{
Υ̃− 2

µ

[
Tφφ + Ω∂φ

(Tlφ
χ

)]}
+
[
δξ

(
Ω + 1

2µ
Υ̂
Ω

)
− ∂φ

(
ΩT̂Tll
µχ2

)]
δP

− δΩ̂
(
δξP −

2ΩTll T̂
χ2

)
− 2 T̂ Tll δΩ

χ2

(
Ω− 1

µ

Υ̂
2Ω + 1

µ

Ω Tlφ
χ

)

+ 1
µ

[
δU δξ(τ Ω)− δξU δ(τ Ω) + 1

2Ω2 (δξΩ ∂φδΩ− δΩ ∂φδξΩ)

+ 1
4η2 (δξη ∂φδη − δη ∂φδξη) + 2δΩ δξ

(Tlφ
χ

)
− 2δξΩ δ

(Tlφ
χ

)
+ δξΩ

Ω ∂φδP −
δΩ
Ω ∂φδξP

]
. (5.4)

The last three lines of the above equation have been written in a suggestive way, ready to
be absorbed into the Y -ambiguity term

Bλ[δg; g] = −1
8 Γαλβhβα + 1

2 nαl
βδΓαλβ+δΩ

(
lαTαλ
χ
− 1

2Ω∂λP
)
, (5.5)

whose φ component is

2Bφ = −δΩ∂φΩ
2Ω2 − δη∂φη

4η2 + Ωτ δU − δω+2δΩ Tlφ
χ
− δΩ

Ω ∂φP +O(r) . (5.6)

Subtracting off the Y -term, the charge variation becomes

/δQ (ξ) ≈ 1
16πG

∫ 2π

0
dφ
{
W̃ δΩ̃ + Ỹ δJ + T̃ δP

− 2 T̃ Tll ΩδΩ
χ2 + 2 Ω Tll δΩ

χ2 ∂φ

[
Ỹ

(
Ω + 1

2µ
Υ̂
Ω

)]} (5.7)

with
J := Υ̃− 2

µ

[
Tφφ + Ω∂φ

(Tlφ
χ

)]
(5.8)

where Ỹ = Ŷ and with the change of slicing

W̃ := −δξP + 2ΩT̂ Tll
χ2 = Ŵ + 2∂φŶ − Ŷ ∂φP (5.9)

T̃ := δξ

(
Ω + 1

2µ
Υ̂
Ω

)
− ∂φ

(
ΩT̂Tll
µχ2

)

= T̂

Ω

(
Ω− 1

µ

Υ̂
2Ω + 1

µ

Ω Tlφ
χ

)
+ ∂φ

[
Ŷ

(
Ω + 1

2µ
Υ̂
Ω

)]
. (5.10)
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The charge variation (5.7) can also be written as

/δQ(ξ)≈ 1
16πG

∫ 2π

0
dφ
{
W̃ δS+ Ỹ δJ + T̃δP− 2ΩTll δΩ

χ

(
1− Υ̂

2µΩ2 + Tlφ
µχ

)
T

}
(5.11)

where S, T̃ are defined in (4.23), (4.25). As already stated the charge variation is not
integrable which is due to the presence of flux through the boundary. However the change
of slicing is essential to interpret the different elements of the surface charges and their
algebra. We elaborate on these in the rest of the section.

To treat the non-integrable charges, we use the Barnich-Troessaert modified bracket
(MB) method [23]. The charge variation (5.7) is split into two, integrable and non-
integrable, parts /δQ(ξ) = δQI(ξ) + F (δg; ξ) where

QI(ξ) = 1
16πG

∫ 2π

0
dφ

[
W̃ S + Ỹ J + T̃P

]
(5.12)

F (δg; ξ) = − 1
8πG

∫ 2π

0
dφ

( ΩTll δΩ
χ2

){
T̃− ∂φ

[
Ỹ

(
S + 1

4µ ∂φP
)

+ 1
4µW̃

]}
, (5.13)

where the non-integrable is associated to the flux [23]. Indeed, we note that the null
boundary symmetries generating vector field (3.12) on the null surface N takes the form
ξ = T l + Ŷ ∂φ. The flux F is hence through the null surface because l is perpendicular to
N . Moreover, the flux F (5.13) is proportional to Tll at r = 0, which recalling (2.11) and
the metric ansatz (3.1), Tll = Rll. That is the flux is proportional to the Ricci curvature
along the null surface. Assuming the classical null curvature condition Rll ≥ 0 the flux
is always non-positive,17 in line with the usual classical intuition that the flux just passes
inside (inward) through the null surface.

The transformation laws of the integrable parts of the charges are then obtained as,

δξS = T̃ + ∂φ

(
Ω T̂ Tll
2µχ2

)
(5.14a)

δξP = −W̃ + 2Ω T̂ Tll
χ2 (5.14b)

δξJ ≈ Ỹ ∂φJ + 2J ∂φỸ −
2
µ
∂3
φỸ + 2Υ̂∂φ

(
TllT̂
µχ2

)
+
(
TllT̂
µχ2

)
∂φΥ̂− 2Ω∂φ

(
ΩTllTlφT̂
µχ3

)
.

where we did not write T̂ in terms of T̃ and Ỹ for brevity. Also equations of motion for
NVCT case imply that

∂vJ − U∂φJ − 2J ∂φU + 2
µ
∂3
φU − 2Υ̂∂φ

( Tll
µχ

)
− Tll
µχ

∂φΥ̂ + 2Ω∂φ
(ΩTllTlφ

µχ2

)
≈ 0 . (5.15)

The integrable-non-integrable split in (5.12) and (5.13) was somewhat arbitrary. This
arbitrariness can be fixed using the modified bracket (MB) method [23]. Here we skip the
details and interested reader can e.g. see [27] for a quite similar analysis. Going through
the modified bracket analysis reveals that QI(ξ), F (δξ1g; ξ2) (5.12), (5.13) satisfy,{

QI(ξ1), QI(ξ2)
}

MB
:= δξ2Q

I(ξ1) + F (δξ1g; ξ2) (5.16)
17For Rll ≥ 0 we have the usual focusing theorem stating that the expansion Θl is never increasing

in time.
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with {
QI(ξ1), QI(ξ2)

}
MB

= QI([ξ1, ξ2]adj. bracket) +Kξ1,ξ2 . (5.17)

Here F is a field-dependent expression and K is the field-independent central charge,

Kξ1,ξ2 = 1
16πG

∫ 2π

0
dφ

[
W̃1T̃2 −

1
µ
Ỹ1∂

3
φỸ2 − (1↔ 2)

]
. (5.18)

The central term K is the same as (4.21) and the algebra is the same as (4.28). We
therefore, recover the same Heisenberg ⊕ Virasoro algebra as in the VCT case and as
explicitly seen, the flux (5.13) vanishes on-shell for the VCT case.

We should stress that what we call K is a bit different than the one discussed in [23]:
the central extension in [23] can be field-dependent and satisfies a “generalized 2 cocycle
condition”, whereas our K is field independent and satisfies usual 2 cocycle condition
under the modified bracket. In other words, (5.17) defines an algebra with a usual central
extension. Of course, as we have seen in earlier analysis in this paper, being field dependent
or not depends very much on the slicing. In particular, by field-independent K here we
mean that there exists a slicing where Kξ1,ξ2 , which is antisymmetric Kξ1,ξ2 = −Kξ2,ξ1 and
linear in both of ξ1, ξ2, become field independent. Expression (5.18) is an example of such
field-independent K.

As will become more apparent in the next part, the K and F terms carry different
physical and mathematical meanings: presence of K leads to charge non-conservations
which are reminiscent of quantum anomalies, while a non-zero F is due to a classical
flux of charges (or bulk degrees of freedom) through the boundary. Therefore, we will
exclusively call the field-independent K-term, the central charge and the field-dependent
F -term, the flux.

5.3 Chiral massive news and generalized charge conservation equation

To understand better the physical meaning of the central charge K and the F -term flux,
we study more closely the modified bracket equation,

δζQ
I(ξ)−QI([ξ, ζ]adj. bracket)−Kξ,ζ ≈ −F (δξg; ζ) (5.19)

where ζ, ξ are two arbitrary symmetry generators.
We crucially note that (5.19) and in particular the adjusted bracket there, is written

in the tilde-slicing. As in section 4.4, let us rewrite (5.19) for ζ = ζ(1, 0, 0) in the tilde-
slicing and ξ arbitrary. One can always find a local coordinate ṽ such that ∂ṽ = ζ(1, 0, 0).
Recalling (4.27), we have [∂ṽ, ξ]adj. bracket = 0 for any ξ(T̃, W̃, Ỹ ) and therefore, using the
definition (5.19), (4.31) takes the form,

d
dṽQ

I(ξ) := δ∂ṽQ
I(ξ) + ∂

∂ṽ
QI(ξ)≈Kξ,∂ṽ − F (δξg, ∂ṽ) + ∂

∂ṽ
QI(ξ),

Kξ,∂ṽ = 1
16πG

∫ 2π

0
dφ W̃, F (δξg, ∂ṽ) ≈ −

1
8πG

∫ 2π

0
dφΩ Tll

χ2 δξΩ
(5.20)

where we used (5.18). Recalling (5.12), the ∂
∂ṽQ

I(ξ) term is QI(∂ξ/∂ṽ) plus a term coming
from ∂ṽ of S,P or J . Using explicit expressions for S,P or J in terms of fields on
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the solution space and once one chooses the equations of motion for boundary degrees of
freedom, (5.20) is expected to become an identity. One should, however, note that in our
maximal boundary phase space setting, we do not specify dynamics of BDoF.

Equation (5.20) which holds for an arbitrary vector field ξ is the main result of this
section and reveals the physical meaning of the flux and the central terms. In the absence of
genuine flux F and the central term K, we arrive at the identity d

dṽQ
I(ξ) = ∂

∂ṽQ
I(ξ). This

equation, which was dubbed as Generalized Charge Conservation Equation (GCCE) in [27],
relates non-integrability of the charge to its ṽ dependence. GCCE is a generalization and
extension of the “flux-balance equation” in the context of 4d asymptotically flat gravity
and the BMS charges, where the flux is called “Bondi news” [89], see [22, 23] and [90] for
some recent discussions and references. GCCE states how the fluxes which pass through
the boundary are imprinted in the corresponding surface charges. In our case the flux is
associated with the chiral massive gravitons through the null boundary at r = 0 and as we
see from (5.20), the flux vanishes for backgrounds with Tll = 0. This happens for all VCT
backgrounds and a class of NVCT backgrounds that we discuss in the next subsection.

We should stress that the GCCE is different than similar equation in 4d flat space e.g.
discussed in [22, 23, 27], because we not only have the news, the flux term F , but also
there is a field independent central charge contribution which is absent in those analysis.
In the 3d Einstein gravity analysis [24], there is no flux but the Heisenberg central charge
K is also present and sources the non-conversation of charges.

As a last comment, we stress again that the GCCE is written in terms of the time ṽ
and not of the coordinate time v, used to write the metric expansion (3.1). One could not
have performed a similar analysis using the time v, since ∂v is not field-independent in the
tilde-slicing, cf. footnote 12.

5.4 Non-expanding backgrounds, example of warped solutions

In the non-expanding χ = 0 case, as implied by (3.11a), Tll = 0. Moreover, one can
consistently set δχ = 0 in this sector. Therefore, flux (5.13) vanishes and the charges are
expected to be integrable. However, as in the non-expanding VCT case of section 4.5, the
non-expanding case should be studied more carefully as the change of slicing which brings
us to the integrable slicing becomes singular.

In the non-expanding VCT case of section 4.5, the charge P associated with the v
translations generated by T (v, φ), vanishes over the solution phase space. Therefore, it is
pure gauge and it can be used to fix further the gauge. As we will show below, in the
NVCT case this does not necessarily happen, unless Tlφ also vanishes. In general we then
have three tower of charges.

We start the analysis by studying the non-expanding field equations.18 The equation
of motion (5.2) reduces to19

1
µ

[∂vTlφ − ∂φ(UTlφ)− κ Tlφ] = 0 . (5.21)

18See section 6.1 for an exhaustive analysis of equations of motion for non-expanding axisymmetric case.
19If κ ≥ 0, then (5.21) implies that Tlφ is exponentially growing in time. We note that this is a feature

of TMG not shared by 3d Einstein gravity.
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The transformation law for Tlφ is given by

δξTlφ = ∂v(TTlφ)− ∂φ(UTTlφ) + ∂φ(Ŷ Tlφ). (5.22)

The charge variation reads as

16πG/δQvrTMG

∣∣
r=0 ≈ Ŵ δ

(
Ω + 1

µ

Υ
2Ω

)
+ Ŷ δ

{
Υ + 1

µ

[
−2Tφφ +

(
Ω2

`2
+ Υ2

4Ω2

)]}

− 2
µ
T

[
δTlφ +

(
δΩ
Ω −

δη

2η

)
Tlφ
]

+ 1
µ

[
δU δξ(τ Ω)− δξU δ(τ Ω) + 1

2Ω2 (δξΩ ∂φδΩ− δΩ ∂φδξΩ)

+ 1
4η2 (δξη ∂φδη − δη ∂φδξη)

]
.

(5.23)

Using the same Y -term as (4.7) without the last term, the charge variation becomes

/δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
{
Ŵ δŜ + Ŷ δĴNVCT −

2
µ
T

[
δTlφ +

(
δΩ
Ω −

δη

2η

)
Tlφ
]}

, (5.24)

where

ĴNVCT := Υ + 1
µ

(
Ω2

`2
+ Υ2

4Ω2 − 2Tφφ

)
. (5.25)

As we see unlike the non-expanding VCT case of subsection 4.5, in the NVCT case we do
not necessarily lose a tower of charge. The T part of the charge variation (5.24) implies
that there are two distinct Tlφ = 0 and Tlφ 6= 0 cases that we discuss below.

Non-vanishing Tlφ. As discussed, we expect the charges to be integrable in non-
expanding cases. To see this explicitly, we introduce a change of slicing as T̂ := 1

µTTlφ for
which the surface charge variation (5.24) can be written as

δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
(
Ŵ δŜ + Ŷ δĴNVCT + T̂ δP̃

)
, (5.26)

where

P̃ := ln
(

η

Ω2T 2
lφ

)
. (5.27)

Transformation laws are

δξŜ ≈ ∂φ(Ŷ Ŝ) + 1
2µ∂φŴ + T̂ (5.28a)

δξP̃ ≈ Ŷ ∂φP̃− Ŵ − 4∂φŶ (5.28b)

δξĴNVCT ≈ Ŷ ∂φĴNVCT + 2ĴNVCT∂φŶ + Ŝ∂φŴ − T̂∂φP̃− 4∂φT̂ (5.28c)

The above indicate that the charge algebra is not a direct sum of Heisenberg and Virasoro
algebras. As in the case discussed in the end of section 4.3, upon another change of slicing
the algebra takes the form of direct sum of Heisenberg ⊕ Virasoro.
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By making a change of slicing,

W̃ = Ŵ − Ŷ ∂φP̃ + 4∂φŶ , T̃ = T̂ + 1
µ
∂φ

[1
4Ŵ + Ŷ

(
µŜ + 1

4∂φP̃
)
− ∂φŶ

]
, (5.29)

one can show that the charge variation can be written as

δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
(
W̃ δS̃ + Ŷ δJ̃NVCT + T̃ δP̃

)
, (5.30)

where charge densities are given by

S̃ = Ŝ + 1
4µ∂φP̃, J̃NVCT = ĴNVCT + S̃∂φP̃ + 4∂φS̃ + 1

µ
∂2
φP̃ . (5.31)

Transformation laws,

δξS̃ ≈ T̃, δξP̃ = −W̃ , (5.32a)

δξJ̃NVCT ≈ Ŷ ∂φJ̃NVCT + 2J̃NVCT∂φŶ −
8
µ
∂3
φŶ. (5.32b)

imply that the algebra for the Fourier mode of the charges, cf. (4.30), upon quantisation
{·, ·} → −i[·, ·], take the form

[S̃n, S̃m] = 0, [P̃n, P̃m] = 0 (5.33a)

[S̃n, P̃m] = i

8Gδm+n,0, (5.33b)

[J̃ NVCT
n , P̃m] = 0, [J̃ NVCT

n , S̃m] = 0, (5.33c)

[J̃ NVCT
n , J̃ NVCT

m ] = (n−m)J̃ NVCT
n+m + 1

µG
n3δn+m,0. (5.33d)

In this slicing we obtain a Heisenberg ⊕ Virasoro algebra, but the central charge of the
Virasoro is 4 times that of (4.30). We note, however, such central charges do depend
on the choice of Y -term and one can change the central charge up to a numerical factor;
see [11, 12] for some examples where this can happen. We expect similar option to exist
here and upon an additional term to our Y -term we expect to be able to set the central
charge equal to that of (4.30).

One can examine the µ→∞ limit. Since the analysis is similar to those we presented
in the previous section, we skip the details and quote the final result: P̃ charges vanish, we
lose one tower of charges and the T transformation becomes a trivial gauge. We end up
with a situation like in the VCT case, of course as expected. See section 6.1 for examples
of such backgrounds.

Vanishing Tlφ. In this case one of the surface charges, associated with T transformation,
vanishes and as in the case discussed in section 4.5 the corresponding generator becomes
pure gauge. One can fix the gauge e.g. by setting η = 1, δξη = 0. The non-zero charges,
which are of course integrable take the form

δQ(ξ) ≈ 1
16πG

∫ 2π

0
dφ
(
Ŵ δŜ + Ŷ δĴNVCT

)
, (5.34)
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with the charge transformations,

δξŜ ≈ ∂φ(Ŷ Ŝ) + 1
2µ∂φŴ (5.35a)

δξĴNVCT ≈ Ŷ ∂φĴNVCT + 2ĴNVCT∂φŶ + Ŝ∂φŴ . (5.35b)

The charge algebra is exactly the same as the one for non-expanding VCT case (4.38). The
angular momentum aspect charge ĴNVCT reduces to Ĵ for Tφφ = 0 and hence we recover
the results in section 4.5. Nonetheless, Tφφ need not be zero for this case. The warped
TMG solutions that we discuss next, belong to this subspace of solution phase space.

Warped example. The metric describing the spacelike stretched black holes for ν2 > 1
is given in Schwarzschild coordinates by [58]

ds2 = −N2 dt2 + `2 dr̂2

4N2R2 +R2(dθ +Nθ dt)2 (5.36)

where ν = µ`
3 and20

R2 = 1
4 r̂
[(
ν2 + 3

)
(r− + r+)+4ν

√
(ν2 + 3) r−r+ + 3

(
ν2 − 1

)
r̂

]
N2 =

(
ν2 + 3

)
(r̂ − r−)(r̂ − r+)

4R2

Nθ = −2νr̂+
√

(ν2 + 3) r−r+
2R2 .

(5.37)

This is a stationary-axisymmetric black hole geometry with a Killing horizon at r̂ = r+
generated by

ζH = ∂t + ΩH∂θ

with horizon angular velocity ΩH and surface gravity κH ,

ΩH = 2
2νr++

√
(ν2 + 3) r−r+

, κH = (ν2 + 3)(r+ − r−)
2`(2νr++

√
(ν2 + 3) r−r+)

. (5.38)

Upon the coordinate transformation

dv = dt+ `

2N2R
dr̂ , dφ = dθ − `Nθ

2N2R
dr̂ , dr = `

2R dr̂ (5.39)

metric (5.36) takes the form

ds2 = −N2 dv2 + 2 dv dr +R2 (dφ+Nθ dv)2 (5.40)

Expanding in powers of r, we therefore get

η = 1, U = −ΩH , Ω = 1
ΩH

,

κ = κH , ω = Υ
2Ω = −(ν − `κH)

`ΩH

, τ = 2ν − `κH

`ΩH

(5.41)

20The warped solution is not “circular” in the sense that it does not have (t, θ) → (−t,−θ) symmetry.
This is due to the presence of the CS term in the action. Nonetheless, if we also change µ → −µ, we get
back a solution. This fact is also seen in our charges.
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This is a NVCT background which has vanishing Tll, Tlφ and a non-zero but constant Tφφ:

Tφφ = 2(1− ν2)
`2Ω2

H

. (5.42)

The charges for the warped TMG background are

Ŝ = 2π
4G

(2ν + `κH

3νΩH

)
Ŵ0(v) ,

Ĵ = 1
8G

(
`2κ2

H + 4`νκH − ν2 − 3
3`νΩ2

H

)
Ŷ0(v) .

(5.43)

See section 6.1 for more examples in the Tll = 0, Tlφ = 0 class. It is also interesting to note
that ν = 1(µ` = 3) is special in the sense that Tφφ = 0 and we are hence in the VCT sector.
One may check that in this case the solution reduces to a BTZ black hole discussed in the
previous section.

6 Axisymmetric solutions and an example with non-zero flux

As reviewed in the introduction, solutions to TMG, unlike the Einstein gravity case, has
not been completely classified. For our analysis we only need to consider solutions near
an r = 0 null surface. While for general case the equations of motion are quite cumber-
some, assuming axisymmetry they become more manageable. Assuming ∂φ to be a Killing
vector, we may simply drop φ dependence in all the functions and we remain only with v
dependence. In this case, (3.11) simplifies to

Tll = − 1
Ω(∂2

vΩ− κ∂vΩ), Tlφ = 1
Ω∂v(Ωω), Tφφ = −2Ω(∂v + κ) τ − 2

(
ω2 − Ω2

`2

)
. (6.1)

The equations of motion (5.2) and (5.3) take the form

∂v(ΩTlφ)− κ(ΩTlφ) = Ω(µΩ− ω)Tll (6.2a)

∂vTφφ −
∂vΩ
2Ω Tφφ = (µΩ + ω)Tlφ + τΩTll . (6.2b)

Equations (6.2) can be viewed as two second order equations for four variables, Ω, κ, ω, τ .
Note that U , η have dropped out of the equations. For example, one may solve ω, τ as
functions of Ω, κ which parameterise the phase space. Moreover, as (5.15) implies, for the
axisymmetric case ∂vJ = 0 on-shell, and hence J = J0 = const. for the axisymmetric
cases. This is of course expected as J denotes the angular momentum aspect charge and
for the axisymmetric case it is only allowed to have a zero-mode, the angular momentum.

6.1 Vanishing flux case

An interesting special case is axisymmetric Tll = 0 solutions. In this case

Ω = Ω0 = const, or Ω = A

∫ v

e+
∫ v

κ + Ω0, (6.3)

where A,Ω0 are integration constants. This is a statement of the focusing theorem for this
class of TMG solutions: for A < 0, κ > 0 and Ω is ever-decreasing.
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Generic Ω. One can hence rewrite (6.2) as

∂2
v(Ωω)− κ ∂v(Ωω) = 0 (6.4a)

5ω2 + 4κ τΩ + 4Ω∂vτ − 2τ∂vΩ− 3Ω2

`2
+ 2µΩω = const. (6.4b)

They can be readily integrated as,

Tlφ = T 0
lφ

Ω0
A

∂vΩ
Ω , ω = Ω0ω0

Ω + T 0
lφ

Ω0
A

(1− Ω0
Ω ) (6.5a)

Tφφ = 2T 0
lφ

Ω0
A

[
µΩ− Ω0

3Ω − T
0
lφ

Ω0
A

]
+ c
√

Ω . (6.5b)

Equation (6.4b) can be solved for τ(v). The solution phase space is hence completely
specified by κ(v),U(v), η(v) and six constants of motion. Note that (6.5a) allow solutions
with non-vanishing Tlφ and that the CS coefficient µ appears in the equation for Tφφ (and
not in that of Tlφ).

For this case, the surface charges (5.12) are

S = 2π
4G

(
Ω + ω

µ

)
W̃0(v) , J = J0 Ỹ0(v) , P = 1

8G ln
(

η

(∂vΩ)2

)
T̃0(v) . (6.6)

Hence the solution space is spanned by three v-dependent BDoF.

Constant Ω. For the constant Ω case, (6.2a) implies ω = ω0 = const. or Tlφ = ∂vω =
T 0
lφ e
∫ v

κ. For the former case, (6.2b) implies Tφφ = const and for the latter, and one can
also simply integrate Tφφ equation as 2Tφφ − 2µΩω − ω2 = const.

The warped solution discussed in section 5.4 corresponds to constant Ω, ω, Tφφ and
χ = 0, Tll = Tlφ = 0 case.

6.2 Non-vanishing flux case

The simplest solutions with non-vanishing flux would be Tll 6= 0, Tlφ = Tφφ = 0. However, a
straightforward analysis shows that equations of motion (6.2) do not admit such a solution.
Since the analysis when either Tlφ or Tφφ vanishes does not simplify compared to the generic
case, when all three Tll, Tlφ, Tφφ are non-vanishing, we consider the latter. Equations of
motion (6.2a) and (5.15) imply that

∂2
v(ω + µΩ) + 2∂vΩΩ ∂vω − κ∂v(ω + µΩ) = 0 (6.7a)

J = J0 = const. (6.7b)

The metric for this solution is described by

ds2 = −V dv2 + 2η dv dr +R2 (dφ+ U dv)2 , (6.8)

with η = η(v),

V (v, r) = rV1(v) + r2V2(v) +O(r3) (6.9a)
U(v, r) = U(v) + rU1(v) +O(r2) (6.9b)
R2(v, r) = Ω(v)2+rR1(v) +O(r2) (6.9c)
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and

U1 = −2ηω
Ω2 , V1 = 2ηκ− 2∂vη , V2 = η2

Ω2

[
ω2 + 3Ω2

`2
−2κτΩ− 2Ω∂vτ

]
. (6.10)

ω, κ are given in terms of Ω as given in (6.7). The solution space is hence described by
Ω(v),U(v), η(v).

For this case, the charges (5.12) are

S = 2π
4G

(
Ω + ω

µ

)
W̃0(v) , J = J0 Ỹ0(v) , P = 1

8G ln
(

η

(∂vΩ)2

)
T̃0(v) (6.11)

and the flux (5.13) is given by

F (δg; ξ) = − 1
4G

(TllΩδΩ
(∂vΩ)2

)
T̃0(v) , (6.12)

where Tll is given in terms of Ω, κ in (6.1). Note one can consistently take the vanishing flux
limit of charges (6.11) and recover charges of the axisymmetric vanishing flux case (6.6).

We close this part by noting that on-shell Tll, and hence the flux, should scales like
1/µ. This is due to the fact that in µ→∞ limit one should recover the Einstein-Λ theory,
the equations of motion of which are Tµν = 0.

7 Discussion and outlook

In this work we have continued studying the Null Boundary Symmetry program started
in [24, 27] for TMG. This is the first such example in which a propagating bulk degree of
freedom is turned on and hence provides a good testing ground for the conjecture made
in [2]: we found (1) three tower of charges, expansion aspect charge, entropy aspect charge
and angular momentum aspect charge, which label BDoF; (2) a non-zero flux through the
null boundary associated with the chiral massive gravitons passing through the boundary,
the chiral massive news.

Our charges are generic functions over the null boundary, the null cylinder spanned
by v, φ. The charge algebra in the fundamental slicing has the same form at any constant
v slice. However, as we discussed and showed explicitly, the charge algebra depends on
the slicing of the solution phase space. In the fundamental slicing we have a Heisenberg
⊕ Virasoro algebra (1.1): angular momentum aspect charge satisfy a Virasoro algebra at
central charge 3/(Gµ) while commuting with the expansion and entropy aspect charges.
The entropy aspect charge and expansion aspect charge satisfy a Heisenberg algebra with
1/(8G) as ~. Let us focus on the algebra of the entropy S0 and the expansionP0, [S0,P0] =
i/(8G), then uncertainties in them should satisfy ∆S0∆P0 ≥ 1/(16G). On the other hand,
as our generalized charge conservation equation (GCCE) shows the change in the entropy
or expansion comes from passage of flux through the null surface. Quantisation of this flux
then implies a quantisation on the entropy or the expansion. It would be desirable to more
closely study this problem.

The algebra has a direct sum form and is invariant under shift of v. These facts
are slicing-dependent and there may exist slicings which these do not happen. As an
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interesting algebraic question, one may classify all such slicings in which these two features
are present. On the other hand, the fact that such v-independent slicings exist, dovetails
with the “corner symmetry” picture [6–8]. Namely, one may take the corner to be at
constant r, v codimension 2 surfaces. Our approach is, nonetheless, more general as it
allows studying GCCE or flux-balance equations, “time variations” of the charges and the
flux (news). Moreover, this picture suggests that if instead of a null boundary we had
computed the charges at timelike boundaries (i.e. constant radius slices in an asymptotic
AdS or flat spacetime), we should get the same charge algebra. It would be interesting to
directly check this.

As discussed, the algebra of charges depends on the slicing. However, physical observ-
ables should be slicing-independent and field-redefinition invariant.21 Therefore, to extract
physical observables one should classify such invariants. The key concept in this direction
is the notion of “solution phase space”. The solution phase space consists of bulk and
boundary sectors which of course interact with each other through the flux-balance equa-
tion or GCCE. In this work we did not specify boundary dynamics and allowed for generic
boundary sources. Dynamics of BDoF may be formulated through a “refined equivalence
principle” [1] which also takes into account the features and properties of the boundary.

In TMG in general the near null surface solution phase space is spanned by four
functions of v, φ, three charges Sn(v),Pn(v),J n(v) and the flux. The former are to be
viewed as particular basis employed to span the boundary phase space part of this solution
space and the flux, which can be parametrised by Ricci scalar along the null surface Rll,
describe the bulk degree of freedom.22 While our analysis about the solution phase space
near a generic null surface is quite general, we should caution the reader that we have
not constructed the full solutions away from this arbitrary null surface. In particular,
in the TMG case, where we deal with third order differential equations of motion, the
“evolution” away from the r = 0 null surface need not necessarily be uniquely specified
by the boundary data available at r = 0; see [84] for a thorough analysis on TMG and
solutions to its field equations.

TMG has two dimensionless parameters, µ`, `/G and three particular regions in the
parameter space has been of interest:

1) Einstein-Λ gravity limit, µ` → ∞ keeping `/G fixed. In this case, as discussed our
analysis reproduces results of [24].

2) Chiral gravity point, µ ` = 1 [88]. This is special in some different ways: the massive
graviton becomes massless, one of the Brown-Henneaux type central charges (cR in
the conventions of section 4.4) vanishes. and the third order TMG field equations

21A proof of the field-redefinition invariance of the perturbative S-matrix in quantum field theories may
be found in chapter 7 of [91]. Field-redefinition invariance of a quantum field theory in general and at
non-perturbative level may be argued from recalling the Hamiltonian path integral formulation in which
one is prescribed to integrate over all possible field configurations in the phase space. For the cases where
the phase space includes boundary degrees of freedom, the same argument implies invariance under bulk
field-redefinitions as well as the boundary slicings.

22Metric near r = 0 (3.1) involves 7 functions of v, φ and there are three equations of motion (5.1), (5.2)
and (5.3) which relate three of them to the other four.
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linearised around AdS3 background “degerates” allowing for a log-mode [74, 76, 92–
97]. It is hence interesting to study our charge analysis at the chiral point. We did
this in part for the VCT case in section 4.5 (see footnote 14). For the NVCT case,
however, µ` = 1 does not seem to yield special features in the charges or algebra.
It would, however, be interesting to study this case more thoroughly. In particular,
in this work we considered a generic expansion around an arbitrary null surface
whereas the log-modes are made manifest through their asymptotic behavior. So,
the first step of such an analysis would be to explore the behavior of log-modes in an
arbitrary location in the interior of the geometry, which may be found using solutions
constructed in [97].

3) Conformal gravity corresponds to µ` → 0, keeping µG fixed [98, 99]. In particular
it was used in [100] as a first evidence for a holographic correspondence between
asymptotically flat spacetimes and an unitary field theory (a chiral conformal field
theory). The asymptotic symmetry group in [100] is precisely (4.30) in the conformal
gravity limit. This is an indication that our results hold for asymptotic boundaries.23

The most general boundary conditions for pure Einstein gravity with or without cosmo-
logical constant, in metric and first order (Chern-Simons) formulations have been studied
in [3, 4] where it was discussed that the BDoF are given by six codimension two functions.
This is different from our results here and in [24] where we find three codimension one
BDoF. It is important to understand precisely how these results are related. Moreover,
it would be interesting to build a Chern-Simon counting of the most general boundary
degrees of freedom for TMG in the spirit of [3, 4], and connect with our results here.

Gravity may be formulated in the vielbein framework. The covariant space formalism
can be used to compute the variation of charges associated to these symmetries. However,
due to the Y -ambiguity the results are not expected to match with the metric deriva-
tion [18–21]. It would be interesting to compare the charges in the metric and dreibein
formulation of Einstein-Λ or TMG. It would also be interesting to discuss the 3d dual
charges defined in [101, 102] and understand whether and/or how they are included in the
maximal phase space discussed in this work.
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