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1 Introduction

Revealing the origin(s) of fermion masses and explaining the structure of quark and lepton
mixing are among the deepest long-standing questions in particle physics. Looking for an
organising principle behind the observed patterns of fermion masses and mixing, flavour
symmetries have been proposed and extensively studied in the last several decades (see
ref. [1] for a recent review). In spite of a significant theoretical effort resulting in many
models able to describe certain pieces of the flavour puzzle, there is arguably no fundamen-
tal theory of flavour. Still, the concept of symmetry is admittedly among the best tools we
have to search for such a theory.

While in the pure bottom-up approach flavour symmetries are introduced as a new in-
gredient, in the top-down perspective they may arise from a UV completion of the Standard
Model (SM), perhaps string theory. Today a theory of flavour fully derived from string
theory represents a formidable unsolved problem, due to the huge number of possible so-
lutions, and we might be led to consider a more modest approach where the large freedom
related to a bottom-up procedure is mitigated by some guiding principle. In particular, in
ref. [2], modular invariance arising in many string compactifications has been proposed as
a candidate for flavour symmetry in the lepton sector.

In the simplest case, modular invariance arises from the compactification of a higher
dimensional theory on a torus or an orbifold. Size and shape of the compact space are
parametrised by a modulus τ living in the upper-half complex plane, up to modular trans-
formations. These can be interpreted as discrete gauge transformations, related to the
redundancy of the description. The low-energy effective theory, relevant to the known
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particle species, has to obey modular invariance and Yukawa couplings become functions
of τ . The framework has a big conceptual advantage. In a generic bottom-up approach,
realistic flavour symmetries require an ad-hoc symmetry breaking sector, with Vacuum
Expectation Values (VEVs) of scalar multiplets — the flavons — carefully tailored in size
and orientation. In minimal schemes based on modular invariance, flavons are not needed
and the scalar sector can be completely replaced by the moduli space. Moreover the ac-
tion of modular invariance in generation space occurs through a well-defined set of finite
groups. Continuous groups and many discrete groups are not allowed, thus reducing the
arbitrariness of the construction.

The proposal has been accompanied by several significant developments and activity
in model building (for a review, see [1] and references therein). Recently, the proposed
framework of modular invariant supersymmetric theories of flavour has been extended to
incorporate (in a non-trivial way) several moduli [3]. The latter might be needed to describe
different sectors of a theory, i.e. quarks, charged leptons and neutrinos. Moreover, the role
of modular invariance as flavour symmetry has been intensively investigated in the last two
years from a top-down perspective [4–7], resulting, in particular, in the concept of eclectic
flavour symmetries [8–12]. A top-down construction incorporating several moduli has been
very recently formulated in refs. [13, 14].

Despite the appealing aspects, realistic realisations of the framework have still to face
several difficulties. In the vast majority of phenomenologically viable modular invariant
models constructed so far, the observed hierarchies, in particular those between the charged
lepton masses, are achieved by tuning free parameters entering the superpotential. More-
over, even if the requirement of modular invariance represents a severe constraint at the
level of the Yukawa couplings of the (supersymmetric) theory, it allows in general a much
larger freedom at the level of kinetic terms [2, 15]. Non-minimal kinetic terms are allowed,
with corresponding free parameters that affect the prediction of fermion masses and mix-
ing angles. Finally, so far the modulus is mainly treated as a free parameter, varied to
optimise the agreement with the data. In concrete models, the preferred value of τ often
occurs in the vicinity of the self-dual point τ = i (see, e.g. refs. [2, 16–26]), where one of
the generators of the modular group remains unbroken. In CP invariant realisations, it
has been realised that CP violation can be explained by a small departure of the modulus
from this special point, where CP is unbroken [2, 19]. It remains to be understood how
the dynamics drives the modulus in the vicinity of, but not exactly on, the self-dual point.

In this article, we aim to address the question of whether the lepton mass hierarchies
can originate from modular invariance alone, with the Lagrangian parameters being O(1)
quantities. Some attempts to explain mass hierarchies avoiding fine tuning have been
made in refs. [27, 28]. In the former study, new fields singlet under both the SM gauge
group and finite modular group, but carrying non-trivial modular weights, have been in-
troduced, whereas in the latter work expansions of modular forms around fixed points
τ = i, τ = ω ≡ e2πi/3 and τ = i∞ have been employed, and a semi-analytic study of the
fermion mass matrices has been performed.1 We go beyond previous works discussing in

1Models of lepton masses and mixing angles with τ sitting exactly at these fixed points have been
discussed in refs. [18, 29–33].
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detail the structure of the modular invariant theory near τ = i, which is motivated by
phenomenological models.

At this point, the theory has a residual Z4 symmetry (cf. ref. [24]). We show that the
action of this symmetry can be realised linearly, even when τ 6= i. In particular, ε ≈ τ − i
behaves as a (small) spurion with Z4 charge +2. Thus, in a vicinity of τ = i, we have a
Z4 symmetric theory broken by ε. Similar considerations apply to other fixed points as
well. We show that the residual Z4 symmetry can be exploited to reduce the rank of the
charged lepton mass matrix at τ = i, with small non-vanishing masses arising from a small
departure from the self-dual point.

As we will see in explicit models, when a minimal Kähler potential is adopted, the
constraints coming from modular invariance realised near τ = i can be too restrictive to
allow full agreement with the experimental data. We are thus led to discuss non-minimal
candidates of Kähler potential, their pattern around τ = i and their impact on the pre-
dictions for masses, mixing angles and CP-violating (CPV) phases. The presence of extra
inputs related to a more general Kähler potential is expected to reduce the predictabil-
ity of our setup. Nevertheless, our analysis suggests that the arbitrariness coming from
the Kähler potential can be partially tamed precisely by mass matrices of reduced rank.
Moreover, in the models discussed in this paper, a non-minimal Kähler potential allows to
obtain full agreement with the data, without being the dominant source of the observed
hierarchies. Further constraints on the Kähler potential and consequent improvement in
predictability could come by extending the modular group to an eclectic flavour symmetry,
where modular invariance is enhanced by a traditional finite flavour symmetry [9].

The article is organised as follows. In section 2, we review the formalism of supersym-
metric modular invariant flavour theories. Next, in section 3, we zoom in on their structure
near τ = i and discuss linear realisation of the associated residual Z4 symmetry. Further,
in section 4, we present examples of modular invariant models at level 3 where flavour hier-
archies are generated by a small departure from τ = i. Finally, we draw our conclusions in
section 5. Appendix A discusses the most general form of the Kähler potential quadratic
in the modular forms of level 3 and weight 2.

2 Modular invariant models

In this section we shortly review the formalism of supersymmetric modular invariant theo-
ries [34, 35] applied to flavour physics [2]. The theory depends on a set of chiral supermul-
tiplets ϕ comprising the dimensionless modulus τ ≡ ϕ0/Λ (Im τ > 0) and other superfields
ϕi (i ≥ 1). Here Λ represents the cut-off of our effective theory, and can be interpreted as
the relevant mass scale of an underlying fundamental theory. In the case of rigid super-
symmetry, the Lagrangian L ,2 is fully specified by the Kähler potential K(ϕ, ϕ̄), a real
gauge-invariant function of the chiral multiplets and their conjugates, by the superpotential
W (ϕ), a holomorphic gauge-invariant function of the chiral multiplets, and by the gauge
kinetic function f(ϕ), a dimensionless holomorphic gauge-invariant function of the chiral

2Up to terms with at most two derivatives in the bosonic fields.
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superfields. Neglecting gauge interactions, we have:

L =
∫
d2θd2θ̄ K(ϕ, ϕ̄) +

∫
d2θ W (ϕ) +

∫
d2θ̄ W (ϕ̄) . (2.1)

The Lagrangian is invariant under transformations γ of the homogeneous modular group
Γ = SL(2, Z):

τ → γτ = aτ + b

cτ + d
, ϕi → (cτ + d)−kiρ(γ̃)ijϕj (i, j ≥ 1) , (2.2)

where a, b, c, d are integers obeying ad − bc = 1. Such transformations are generated by
the two elements of Γ:

S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
. (2.3)

The matrix ρ(γ̃) is a unitary representation of the group ΓN = Γ/Γ(N), obtained as a
quotient between the group Γ and a principal congruence subgroup Γ(N), the positive in-
teger N being the level of the representation. The level N is kept fixed in the construction,
and γ̃ represents the equivalence class of γ in ΓN . In general ρ(γ̃) is a reducible repre-
sentation and all superfields belonging to the same irreducible component should have the
same weight ki, here assumed to be integer.3 In the following, we denote by (ϕi, ψi) the
spin-(0, 1/2) components of the chiral superfields ϕi (i ≥ 1).4 The terms bilinear in the
fermion fields read [37]:

LF = LF,K + LF,2 , (2.4)

with:5

LF,K = iKj
i ψj σ̄

µDµψ
i , LF,2 = −1

2
[
Wij −Wl(K−1)lmKm

ij

]
ψiψj + h.c. , (2.5)

where lower (upper) indices in K and W stand for derivatives with respect to holomorphic
(anti-holomorphic) fields. When the scalar fields in eq. (2.5) take their VEVs, we can move
to the basis where matter fields are canonically normalised, through a transformation:

ψi → (z−1/2)ijψj , (2.6)

where the matrix (z1/2)ij satisfies: Kj
i = [(z1/2)†]jl(z1/2)li.6 We can identify the fermion

mass matrix as:

mkn =
[
Wij −Wl(K−1)lmKm

ij

]
(z−1/2)ik(z−1/2)jn , (2.7)

where VEVs are understood. In the previous equation, the second term in the square
bracket vanishes when supersymmetry is unbroken and the VEV of Wl is zero. When we

3We restrict to integer modular weights. Fractional weights are in general allowed, but require a suitable
multiplier system [8, 36].

4The distinction between superfields and their scalar components should be clear from the context.
5The covariant derivative is Dµψi = ∂µψ

i +
(
K−1)i

m
Km
kl∂µϕ

kψl.
6Notice that this transformation mixes holomorphic and anti-holomorphic indices, and there is no more

fundamental distinction between upper and lower components of the matrix (z1/2).
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turn on supersymmetry breaking effects, the first term is expected to dominate over the
second one, provided there is a sufficient gap between the sfermion masses mSUSY and
the messenger/cutoff scale M . This holds both for vector-like and for chiral fermions.
Indeed, up to loop factors or other accidental factors, the VEVs of Wl, Wij and Km

ij are
of the order of mSUSYM , M and 1/M , respectively, when fermions are vector-like. When
chiral fermions are considered, Wij and Km

ij are both depleted by v/M with respect to the
vector-like case, v denoting the gauge symmetry breaking scale. Thus we have a relative
suppression between the two contributions of order mSUSY/M , which can be made tiny (cf.
ref. [17]). If we work under this assumption, the mass matrix is well approximated by:

mkn = Wij (z−1/2)ik(z−1/2)jn . (2.8)

The supersymmetry breaking terms neglected here can be useful to give masses to light
fermions, which otherwise would remain massless in the exact supersymmetry limit. We
will come back to this point when discussing concrete models, in section 4. Due to the
conservation of the electric charge, the equality of eq. (2.8) holds separately in any charge
sector. By focusing on the lepton sector (Ec, L) and by assuming that the neutrino masses
arise from the Weinberg operator, we have:

W = −Eci Yeij(τ)LjHd −
1

2ΛL
Li Cνij(τ)LjHuHu , (2.9)

where Hu,d are the Higgs chiral multiplets and ΛL is the scale where lepton number is
broken. The general relation (2.8) specialises into:

me =
(
z
−1/2
Ec

)T
Ye (τ)

(
z
−1/2
L

)
vd , mν =

(
z
−1/2
L

)T
Cν (τ)

(
z
−1/2
L

)
v2
u/ΛL , (2.10)

where we have absorbed the renormalisation factors for Hu,d in the definition of their
VEVs. In section 4, we will also comment on the special limit where z−1/2

Ec,L are universal,
i.e. proportional to the unit matrix. The mass matrices obtained in this case will be
referred to as “bare” matrices and denoted by m(0)

e,ν . An important consequence of modular
invariance is the special functional dependence of Ye(τ) and Cν(τ) on the modulus τ . Under
a transformation of Γ, the chiral multiplets (Eci , Li, Hu,d) transform as in eq. (2.2), with
weights (kEci , kLi , kHu,d) and representations (ρEc(γ̃), ρL(γ̃), 1). For the superpotential W
to be modular invariant, Ye(τ) and Cν(τ) should obey:

Ye(γτ) = (cτ+d)ke ρ∗Ec(γ̃) Ye(τ)ρ†L(γ̃) , Cν(γτ) = (cτ+d)kν ρ∗L(γ̃) Cν(τ)ρ†L(γ̃) , (2.11)

where the weights ke,ν are matrices satisfying: (ke)ij = kEci + kLj + kHd and (kν)ij =
kLi + kLj + 2kHu . Thus Ye(τ) and Cν(τ) are modular forms of given level and weight.
Since the linear space of such modular forms is finite dimensional, the choices for Ye(τ)
and Cν(τ) are limited. If neutrino masses originate from a type I seesaw mechanism,
eqs. (2.9) and (2.10) hold with the identification:

Cν(τ)
ΛL

= −(Yν(τ))T M(τ)−1 Yν(τ) , (2.12)
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where Yν(τ) andM(τ) denote the matrix of neutrino Yukawa couplings and the mass ma-
trix of the heavy electroweak singlets N c, respectively. Notice that there is no dependence
on the renormalisation factor (z−1/2

Nc ) of the heavy modes. In some cases Ye(τ) and/or Cν(τ)
are completely determined as a function of τ up to an overall constant, thus providing a
strong potential constraint on the mass spectrum, eq. (2.10).

Unfortunately, such property does not extend to the Kähler potential K and to the
renormalisation factors (z−1/2

Ec,L ). Minimal choices of K, appropriate for a perturbative
regime, can receive large non-perturbative corrections in the region of the moduli space we
will consider. Without a control over the non-perturbative dynamics, in a generic point of
the moduli space the factors (z−1/2

Ec,L ) remain unknown. If we allowed for completely arbi-
trary (z−1/2

Ec,L ), under mild conditions any mass matrix could be predicted. From eq. (2.10)
we see that, given Ye(τ) and (z−1/2

L ), we could reproduce any desired matrix me, by se-
lecting a particular (z−1/2

Ec )T :(
z
−1/2
Ec

)T
= me

(
Ye (τ) vd

(
z
−1/2
L

))−1
. (2.13)

An arbitrary matrix me would result in a completely unconstrained lepton mixing matrix.
Similar considerations would apply to the neutrino mass matrix mν .

The loss of predictability associated to the Kähler corrections may however be less
severe than eq. (2.13) might suggest, for two reasons. First, note that the above solu-
tion requires a non-singular Ye(τ). A singular Ye(τ) can only give rise to a singular me.
Correspondingly, a hierarchical Ye(τ) can only correspond to a hierarchical me, unless
the eigenvalues of the matrix (z−1/2

Ec )T in eq. (2.13) come in very large ratios. Although
we cannot exclude the latter possibility, here we focus on the class of models where the
corrections associated to the Kähler potential do not alter the “bare” limit by more than
about one order of magnitude. Hence a singular or nearly singular Ye(τ) will tame the
loss of predictability associated with the Kähler potential. Needless to say, a hierarchical
Ye(τ) is needed to reproduce the mass spectrum in the charged lepton sector. Different
considerations apply to the neutrino sector, where a singular Cν(τ) might not be a good
first order approximation of the data.

A second constraint on the effect of the Kähler corrections arises in the vicinity of the
fixed points of Γ, τ = i, τ = −1/2 + i

√
3/2 and τ = i∞, invariant under the action of the

elements S, ST and T , respectively. In the following, we will assume the modulus to be
in the vicinity of the point τ = i, as suggested by several models to correctly reproduce
the data. The invariance under S provides a constraint on the possible form of the Kähler
potential at τ = i and in its vicinity.

3 Residual symmetry near τ = i

The residual symmetry of the theory at τ = i is the cyclic group Z4 generated by the
element S, whose action on the chiral multiplets ϕi in τ = i can be read from eq. (2.2):

ϕi → σijϕj , σij = ikiρ(S̃)ij (i, j > 0) , (3.1)

– 6 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
2

where σ is unitary, σ2 is a parity operator and σ4 = 1. To analyse the neighbourhood of
τ = i, we expand both the Kähler potential and the superpotential in powers of the matter
fields ϕi (i > 0):7

W =
∑

i1,...,in

Yi1,...,in(τ) ϕi1 . . . ϕin + . . .

K = ϕi z
i
j(τ, τ̄)ϕj + . . .

. (3.2)

In the vicinity of τ = i, it is possible to cast the theory as an ordinary Z4 invariant theory,
where the symmetry acts linearly on the fields, slightly broken by the spurion (τ−i). When
we depart from τ = i, the S elements acts on the fields as:

τ → −1
τ
, ϕi → (−τ)−kiρ(S̃)ijϕj (i, j > 0) . (3.3)

We perform the field redefinition:
τ = i

i+ ε/2
i− ε/2

ϕ̃j =
(

1− i ε2

)−kj
ϕj

(3.4)

mapping the upper-half complex plane into the disk |ε| < 2. In the linear approximation:

ε = (τ − i) +O
(
(τ − i)2

)
. (3.5)

Under the S transformation in (3.3), the new fields transform as:ε→ −εϕ̃i → σij ϕ̃j
. (3.6)

We see that the action of the Z4 symmetry is linear in the new field basis, even when
τ 6= i. In particular ε behaves as a spurion with Z4 charge +2. In the new field basis, the
coefficients of the field expansion (3.2) read:

Ỹi1,...,in =
(

1− i ε2

)ki1 +...+kin
Yi1,...,in

z̃ij =
(

1 + i
ε̄

2

)ki
zij

(
1− i ε2

)kj . (3.7)

The invariance of the theory under Z4 requires Ỹi1,...,in(ε) and z̃ij(ε, ε̄) to satisfy:

Ỹi1,...,in(ε) = σj1i1 . . . σjnin Ỹj1,...,jn(−ε)

z̃ij(ε, ε̄) = σ†ik z̃kl(−ε,−ε̄) σlj
. (3.8)

In particular, setting ε = 0, the above equations express the necessary conditions for the
invariance of the theory at the symmetric point τ = i. By expanding z̃ij(ε, ε̄) in powers of ε

7Electrically neutral multiplets whose scalar component acquires a VEV, like Hu,d, might mix in the
kinetic term with the modulus τ . The mixing is parametrically suppressed by v/Λ and will be ignored in
the following.
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Observable Best-fit value with 1σ error

me/mµ 0.0048+0.0002
−0.0002

mµ/mτ 0.0565+0.0045
−0.0045

NO IO

δm2
[
10−5 eV2

]
7.42+0.21

−0.20

∆m2
[
10−3 eV2

]
2.480+0.026

−0.028 −2.461+0.028
−0.028

r ≡ δm2/|∆m2| 0.0299+0.0009
−0.0009 0.0301+0.0009

−0.0009

sin2 θ12 0.304+0.012
−0.012 0.304+0.013

−0.012

sin2 θ13 0.02219+0.00062
−0.00063 0.02238+0.00063

−0.00062

sin2 θ23 0.573+0.016
−0.020 0.575+0.016

−0.019

δ/π 1.09+0.15
−0.13 1.57+0.14

−0.17

Table 1. Best-fit values of the charged lepton mass ratios and the neutrino oscillation parameters
with the corresponding 1σ errors. For the charged lepton mass ratios we have used the values given
in ref. [38], averaged over tan β as described in the text, whereas for the neutrino parameters we
have used the results obtained in refs. [39, 40] (with Super-Kamiokande atmospheric data).

we see that the terms of first order vanish, up to possible non-diagonal terms relating fields
with opposite value of σ. We conclude that in a neighbourhood of the fixed point τ = i,
and in the absence of any information about the Kähler potential, the theory reduces to
a linearly realised Z4 flavour symmetric theory, in the presence of a (small) spurion with
charge +2.

4 Models

In this section, we present two models making use of the results of the previous sec-
tion to account for the observed hierarchies in the lepton spectrum, namely the smallness
of the charged lepton mass ratios, me/mτ and mµ/mτ and of the neutrino mass ratio
r ≡ δm2/|∆m2|, where δm2 ≡ m2

2−m2
1 and ∆m2 ≡ m2

3− (m2
1 +m2

2)/2 (with the standard
neutrino labelling). The hierarchies will be naturally accounted for by the small breaking
of Z4, |ε| � 1, i.e. by the closeness of the modulus τ to the Z4 symmetric point τ = i,
while the parameters in the superpotential will be O (1), and the corrections to the mini-
mal Kähler will not be larger than O (1). In table 1, we collect the best-fit values of the
leptonic parameters with the corresponding 1σ uncertainties. For the charged lepton mass
ratios we use the results of ref. [38], where for mµ/mτ we take an average between the
values obtained for tan β = 10 and tan β = 38. For the neutrino oscillation parameters
we employ the results of the global analysis performed in refs. [39, 40]. In what follows,
when fitting models to the data, we use five dimensionless observables that have been mea-
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L Ec
1 Ec2 Ec3 Hu Hd

SU(2)L ×U(1)Y (2,−1/2) (1,+1) (1,+1) (1,+1) (2,+1/2) (2,−1/2)

Γ3 3 1 1 1′ 1 1

k 1 3 3 3 0 0

Table 2. Assignment of representations and modular weights in Model 1.

L̃1 L̃2 L̃3 Ẽc1 Ẽc2 Ẽc3 H̃u H̃d ε

Z4 1 −1 −1 −1 −1 −1 0 0 2

Table 3. Z4 charges (mod 4) in Model 1.

sured with a good precision, i.e. two mass ratios,8 mµ/mτ and r, and three leptonic mixing
angles, sin2 θ12, sin2 θ13, sin2 θ23. Regarding the Dirac CPV phase, δ, values between π

and 2π (approximately) are currently allowed at 3σ for both neutrino mass spectrum with
normal ordering (NO) and that with inverted ordering (IO). Moreover, in ref. [18], it has
been shown that under the transformation τ → −τ∗ and complex conjugation of couplings
present in the superpotential, CPV phases change their signs, whereas masses and mixing
angles remain the same. In fact, this reflects CP properties of modular invariant mod-
els [19] (see also [41]). As a consequence, the Dirac phase δ is not particularly constraining
for our fits, and we do not include it in the list of input observables, regarding the obtained
values as predictions.

4.1 Model 1: Weinberg operator and inverted ordering

We work at level 3, and the relevant finite modular group is Γ3. In this subsection, we
assume that neutrino masses are generated by the Weinberg operator. The field content
of the model along with the assignment of Γ3 representations and modular weights k is
shown in table 2. The corresponding charges under Z4, obtained using eq. (3.1), are shown
in table 3. We work in a real basis for the elements of Γ3 where ρ(S̃) = diag (+1,−1,−1)
for the irreducible three-dimensional representation.

The quantum number assignments have immediate consequences for the charged lepton
mass spectrum:

1. At τ = i, the charged lepton mass matrix me has rank one. This follows from the Z4
charges in table 3, forcing

me =

α 0 0
β 0 0
γ 0 0

 . (4.1)

8In the models presented below, me = 0 by construction, so we do not include the ratio me/mµ here.
See subsection 4.3 for possible ways of generating non-zero me.
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2. For a generic τ 6= i, me has rank two. While Z4 alone would allow me to have rank
three, the underlying modular invariance forces the coefficients of the first and second
rows of me to be proportional, thus reducing the rank. In fact, modular invariance
requires the coupling of Ec1 and Ec2 to L to be proportional to the same modular form
multiplet, namely, the triplet of weight four. The Kähler corrections cannot modify
the rank condition. Thus, in the considered model, the electron has zero mass.

For τ ≈ i+ ε, with |ε| � 1, we obtain the prediction

me : mµ : mτ = 0 : O(ε) : 1 . (4.2)

Concerning the neutrino mass spectrum, from the charges of the lepton doublets Li in
table 3, we deduce that mν in τ = i takes the following general form:

mν =

0 a b
a 0 0
b 0 0

 . (4.3)

This matrix has rank two and two degenerate non-zero eigenvalues. Notice that, while a
generic Z4 model would not account for the values of the parameters a and b, here the un-
derlying modular invariance fixes the relative values, before Kähler corrections. With the
Z4 assignment of table 3, we are implicitly using the basis where S is diagonal for the irre-
ducible triplet of Γ3 and we find a/b = Y3(i)/Y2(i), where Y (2)(τ) ≡ (Y1(τ), Y2(τ), Y3(τ))T
denotes the weight-two triplet of modular forms. On the other hand, generic Kähler cor-
rections could mix L2 and L3, as they have the same Z4 charge (see eq. (3.8)), leading to
arbitrary a/b, as in generic Z4 models. For τ ≈ i + ε, the rank of mν becomes three, and
we obtain the neutrino mass spectrum with inverted ordering of the form

m1 : m2 : m3 = 1 : (1 +O(ε)) : O(ε) , (4.4)

and, in particular,
r = O(ε) . (4.5)

Clearly, both qualitative relations (4.2) and (4.5) are phenomenologically intriguing. They
are consequences of modular invariance alone, and are thus independent from the param-
eters in the superpotential or the Kähler potential (provided these are non-hierarchical by
themselves). In subsection 4.3, we discuss two possible mechanisms to generate a naturally
small electron mass.

While this model successfully accounts for the observed mass hierarchies (with a non-
vanishing electron mass still to be generated), it is not satisfactory when it comes to the
mixing angles. The point is that in order for eq. (4.3) to lead to a reasonable leading order
approximation, the tau lepton should correspond to a linear combination of L2 and L3,
while eq. (4.1) forces the tau lepton to be mainly L1. Indeed, the prediction for the mixing
angles at τ = i is

sin2 θ13 = cos2 θe12 , sin2 θ12 = 1
2 , sin2 θ23 = 1 , (4.6)
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where θe12 is an arbitrary angle related to the presence of two vanishing eigenvalues in
me, to be fixed by the Z4 breaking. These predictions imply that in order to generate
the correct mixing angles sin2 θ23 ≈ 0.6 and sin2 θ12 ≈ 0.3, large hierarchical deviations
from the minimal Kähler metrics are required,9 as |ε| � 1 cannot give rise to such large
corrections. This is clearly an unpleasant feature, since it introduces a source of hierarchy in
the Lagrangian parameters. We carried out a full numerical study of the model, after adding
a non-minimal Kähler potential depending on four new real parameters. The outcome
confirms the above qualitative considerations. More precisely, we gauge the degree of
hierarchy related to a non-canonical Kähler potential K by means of the condition number

κ(K) = λmax(z)/λmin(z) , (4.7)

the ratio between the maximum and minimum eigenvalues of zij at the best-fit point. We
find that all Kähler metrics providing a good fit near τ = i turn out to have κ(KL,Ec) very
large, typically in the range 103 ÷ 104. We discuss in the next subsection a seesaw variant
of the present model which allows to mitigate the need of hierarchical Kähler metrics.

4.2 Model 2: seesaw mechanism and normal ordering

The main phenomenological obstructions in the model discussed above are the leading
order predictions for the mixing angles. In this subsection, we show how to evade them
by introducing electroweak singlet neutrinos N c and generating the Weinberg operator
through the type I seesaw mechanism. This widens the class of possible neutrino mass
matrices that can be obtained, if the singlet neutrino mass matrix becomes singular in the
limit τ → i. In this case, for the standard analysis of the seesaw mechanism to be valid,
singlet neutrino masses are required to be large compared to the electroweak scale. In
the example discussed below, this is easily achieved outside of a neighbourhood of τ = i,
provided the overall singlet neutrino mass scale is large enough.

To be concrete, we augment the field content of table 2 with electroweak singlets
N c ∼ 3 under Γ3, with weight kNc = 1. As before, we denote by Y (2) the weight 2 modular
form triplet, and by Y (4) ≡ (Y (2)Y (2))3S the weight 4 triplet of modular forms. We denote
by 3S and 3A the symmetric and antisymmetric triplet contractions of two Γ3 triplets,
respectively. The superpotential W = We +Wν of the lepton sector reads:

We = −
[
αEc1

(
LY (4)

)
1

+ βEc2

(
LY (4)

)
1

+ γEc3

(
LY (4)

)
1′′

]
Hd , (4.8)

Wν = −κ
([

(N cL)3S + g (N cL)3A

]
Y (2)

)
1
Hu − Λ

(
N cN cY (2)

)
1
. (4.9)

The parameters κ and Λ can be made real without loss of generality, whereas g is complex
in general. In the real basis for 3 of Γ3, this superpotential leads to the following matrices

9The need for non-minimal Kähler metrics stems not only from the leading order predictions for the
mixing angles, but also from the mass spectrum of the model. In the vicinity of τ = i we found, both
numerically and through an approximate analytical study, that mµ/mτ is smaller than r, while data require
the opposite.
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Ye(τ), Yν(τ) andM(τ):

Ye(τ) = 2

αY2Y3 αY1Y3 αY1Y2
βY2Y3 βY1Y3 βY1Y2
γY2Y3 γωY1Y3 γω

2Y1Y2

 , (4.10)

Yν(τ) = κ


 0 Y3 Y2
Y3 0 Y1
Y2 Y1 0

+ g

 0 Y3 −Y2
−Y3 0 Y1
Y2 −Y1 0


 , (4.11)

M(τ) = 2Λ

 0 Y3 Y2
Y3 0 Y1
Y2 Y1 0

 . (4.12)

The matrix Cν(τ) of eq. (2.9) is now given by the seesaw formula of eq. (2.12).
Some analytical considerations easily follow from the previous equations for the “bare”

quantities, i.e. those corresponding to the minimal Kähler potential. We make use of the
following ε-expansion of Y (2):10

Y1 = −ixε , Y2 = y (1 + iε) , Y3 = y∗ (1 + iε) , (4.13)

where, up to an overall constant, x ≈ 1.49087 and y =
√

3/2 + i(3/2−
√

3). To first order
in ε we obtain:

Yν(τ)
κ

=

 0 (1+g)y∗ (1−g)y
(1−g)y∗ 0 0
(1+g)y 0 0

+iε

 0 (1+g)y∗ (1−g)y
(1−g)y∗ 0 −(1+g)x
(1+g)y −(1−g)x 0

 , (4.14)

M(τ)
2Λ =

 0 y∗ y

y∗ 0 0
y 0 0

+iε

 0 y∗ y

y∗ 0 −x
y −x 0

 . (4.15)

Notice that the bare Majorana mass matrix has one eigenvalue proportional to ε, thus
vanishing in the limit τ → i. This corresponds to the case of single right-handed neutrino
dominance, in which one of the electroweak singlet neutrinos is massless in the symmetric
limit.11 Inverting the matrix in eq. (4.15) and using the seesaw relation for the bare light
neutrino mass matrix m(0)

ν we find to O(ε):

m(0)
ν =


2ig2|y|2

x
1
ε −

4g2|y|2
x −

(
1 + g2) y∗ − (1 + g2) y

−
(
1 + g2) y∗ 0 0

−
(
1 + g2) y 0 0

+O(ε) . (4.16)

The leading order form of the charged lepton mass matrix is as in eq. (4.1).
10One can prove, in general, that d

dτ

∣∣
i
Y2,3 = i Y2,3(i). Moreover, we can rephase Y (2) in such a way that

(Y3(i))∗ = Y2(i) ≡ y. In this basis, we find that d
dτ

∣∣
i
Y1 ∈ −iR+.

11As already observed, in order for the standard seesaw analysis to be valid, we must require the product
|ε|Λ (that is the order of magnitude of the lightest right-handed neutrino mass) to be large with respect to
the electroweak scale. For the present model this does not pose any practical restriction, since the best-fit
region (see below) is achieved for values of |ε| ∼ 10−2 ÷ 10−1.
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The leading order predictions for neutrino masses and mixing angles strongly depend
upon the parameter g.

• A neutrino mass spectrum with IO can be realised when |g|2 � |ε|. Then, m(0)
ν has

approximately the same form as in the model with the Weinberg operator considered
in subsection 4.1. We get the neutrino mass spectrum with IO:

m1 : m2 : m3 = 1 : ≈ 1: O(ε) (4.17)

and the predictions for the mixing angles reported in eq. (4.6), in particular,
sin2 θ23 = 1.

• A neutrino mass spectrum with NO can be realised when |ε| � |g|2. In this case,

m(0)
ν =

c(g
2/ε) a b
a 0 0
b 0 0

+O(ε) , (4.18)

with |a|, |b|, |c| being O(1) numbers. Therefore, we have the neutrino mass spectrum
with NO:

m1 : m2 : m3 = O
(
ε2/g2

)
: O

(
ε2/g4

)
: O(1) (4.19)

implying r = O(ε4/g4). The mixing angles are:

sin2 θ12 = O (1) , sin2 θ23 ≈ sin2 θ13 ≈ r1/2 . (4.20)

Again, the leading order prediction for sin2 θ23 is far away from its measured value
and requires significant corrections from the Kähler potential.

To verify the viability of the model we have performed a full numerical study, also
allowing for a non-minimal form of the Kähler potential for the matter fields. In general,
modular invariance allows many terms in the Kähler potential [2, 15]. In the considered
bottom-up approach, there seems to be no way of reducing the number of these terms.
However, this may change if modular symmetry is augmented by a traditional finite flavour
symmetry [9] or, perhaps, if some other top-down principle is in action. In what follows,
to be concrete, we adopt three simplifying assumptions:

• The new terms in K are quadratic in Y (2). This is sufficient to illustrate our results.

• The minimal form (up to overall normalisation) is restored at Im τ → ∞. This
assumption is inspired by the minimal form of the Kähler potential arising in certain
string theory compactifications in the large volume limit, corresponding to Im τ →∞
(see, e.g. [15, 42] and references therein).

• The diagonal entries, already controlled by the minimal Kähler potential, are not
affected by the new terms.
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Under these assumptions and with the assignment of representations and weights given in
table 2, we find:12

K = L†KLL+ Ec†KEcE
c , (4.21)

where

KL = 1
2 Im τ


1 0 0
0 1 0
0 0 1

+ 2 Im τ


0 (α5 + iα6)X12 (α5 − iα6)X13

(α5 − iα6)X∗12 0 (α5 + iα6)X23

(α5 + iα6)X∗13 (α5 − iα6)X∗23 0

 . (4.22)

Here α5 and α6 are real coefficients and

X12 = Y ∗1 Y2 − Y1Y
∗

2 , X13 = Y ∗1 Y3 − Y1Y
∗

3 , X23 = Y ∗2 Y3 − Y2Y
∗

3 . (4.23)

In the Ec sector, we obtain:

KEc = 1
8 (Im τ)3

1 0 0
0 1 0
0 0 1

+ 1
2 Im τ

 0 0 c13X

0 0 c23X

c∗13X
∗ c∗23X

∗ 0

 , (4.24)

where c13 and c23 are complex coefficients and

X = Y ∗1 Y1 + ωY ∗2 Y2 + ω2Y ∗3 Y3 ∼ 1′′ . (4.25)

Noteworthy, the seesaw formula (2.12) does not depend on the renormalisation factor z−1/2
Nc

of the heavy fields N c, so that we will not need to specify the Kähler metric of N c in
what follows.

The inclusion of a non-minimal Kähler potential, even within the above restrictive
assumptions, brings in several additional free parameters: α5,6, Re(c13,23) and Im(c13,23).13

Adding them to β/α, γ/α, Re(g), Im(g), Re(τ) and Im(τ), we have a total of 12 dimensionless
input parameters, more than the number of observables. Thus the focus of our analysis
cannot be on predictability. Rather, we are interested in accounting for the mass hierarchies
in terms of the Z4 parameter ε, in the context of a model reproducing all lepton masses and
mixings. While the mass hierarchies alone can be easily accommodated without the need
of hierarchical Lagrangian parameters, some degree of hierarchy turns out to be required
by the need to fix the mixing parameters. Useful parameters to estimate such hierarchies
in the Kähler potential are the condition numbers of eq. (4.7). To establish the possibility
to reproduce all the relevant observables, and the role of Z4 breaking in setting the mass
hierarchies, we have selected several benchmark points with slightly different features. We
show the results of two (pairs) of the benchmark points in tables 4 and 5. In all such
benchmark points, all five dimensionless observables take exactly their experimental best-
fit values (for the time being we set me = 0). In addition, the model predicts a normal
ordered neutrino mass spectrum and the values of the CPV phases. Interestingly, for both
pairs of the benchmark points, the predicted value of δ (the one with minus sign) matches

12We present the full expressions for KL and KEc quadratic in Y (2) in appendix A.
13In our numerical analysis, we have set Im(c13,23) = 0.
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Input parameters

Re τ ±0.0235

Im τ 1.080

β/α 0.1459

γ/α 5.955

Re g −0.1494

Im g ∓0.3169

α5 −0.2071

α6 −0.1437

c13 −0.2656

c23 0.0145

v2
uκ

2/Λ [eV] 0.0189

|ε| ≈ |τ − i| 0.0830

Observables

me/mµ 0

mµ/mτ 0.0565

r 0.0299

sin2 θ12 0.304

sin2 θ13 0.02219

sin2 θ23 0.573

δm2 [10−5 eV2] 7.42

∆m2 [10−3 eV2] 2.480

Predictions

m1 [eV] 0.0062

m2 [eV] 0.0106

m3 [eV] 0.0506

δ/π ±0.92

α21/π ±0.97

α31/π ±0.93

|mee| [eV] 0∑
i
mi [eV] 0.0673

Ordering NO

M1/Λ 0.225

M2/Λ 2.298

M3/Λ 2.524

Table 4. First pair of best-fit points in a vicinity of τ = i found considering the Kähler potential
in eqs. (4.22)–(4.25).

Input parameters

Re τ ±0.0328

Im τ 1.137

β/α 0.2388

γ/α 7.854

Re g −0.2234

Im g ±0.4469

α5 −0.1865

α6 −0.1116

c13 −0.2405

c23 −0.0959

v2
uκ

2/Λ [eV] 0.0191

|ε| ≈ |τ − i| 0.1408

Observables

me/mµ 0

mµ/mτ 0.0565

r 0.0299

sin2 θ12 0.304

sin2 θ13 0.02219

sin2 θ23 0.573

δm2 [10−5 eV2] 7.42

∆m2 [10−3 eV2] 2.480

Predictions

m1 [eV] 0.0063

m2 [eV] 0.0107

m3 [eV] 0.0506

δ/π ±0.91

α21/π ±0.98

α31/π ±0.88

|mee| [eV] 0∑
i
mi [eV] 0.0675

Ordering NO

M1/Λ 0.353

M2/Λ 2.130

M3/Λ 2.483

Table 5. Second pair of best-fit points in a vicinity of τ = i found considering the Kähler potential
in eqs. (4.22)–(4.25).
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its experimental best-fit value. Notice also the interesting result |mee| = 0 which at the
leading order can be seen as a simple consequence of the matrix patterns (4.16) and (4.1).14

Finally, we report in the last column the masses Mi, i = 1, 2, 3, of the heavy neutrinos in
the units of Λ. Although the value of Λ cannot be uniquely fixed, it can be estimated as
(see the first column of the tables) Λ ≈ v2

uκ
2/(0.02 eV) ≈ 1015 sin2 βGeV, where we have

used vu = v sin β, with v = 174GeV, and κ ∼ O(1). This implies that for tan β & 1, the
scale Λ & 5× 1014 GeV. Let us stress once again that in the considered model, M1 ∼ |ε|Λ,
and thus, it is generated by a small departure of τ from i.

Our analysis shows that the mass hierarchies are indeed governed by Z4 breaking,
whereas, in general, Kähler corrections reflect on the lepton mass spectrum through O(1)
changes. For example, in the first pair of benchmark points (see table 4), we verified nu-
merically that Kähler corrections only affect the mass ratios by about a factor of 2;15 on
the other hand, at these points, the Kähler metrics are by themselves somewhat hierar-
chical, as shown by the condition numbers κ(KL) ≈ 12 and κ(KEc) ≈ 16. In the second
pair of benchmark points shown in table 5, the hierarchies in the Kähler metrics are both
reduced (the condition numbers are κ(KL) ≈ 6 and κ(KEc) ≈ 12), and points with even
milder hierarchies may potentially be found. These observations lead us to conclude that
the deviations from the canonical Kähler metric present in the best-fit points, have little
to do with the mass spectrum hierarchies; rather, they are necessary in order to reproduce
the correct PMNS mixing angles.

We have analysed more in detail the dependence of the fitted observables on the param-
eters of the Kähler potential. In figures 1 and 2, we plot the values of the five dimensionless
observables versus α5,6 and c13,23, respectively.16 All other input parameters are fixed to
their best-fit values as in table 4. We see that the parameters α5 and α6 strongly impact
the predictions for the mixing angles and the two mass ratios, r and mµ/mτ , whereas c13
and c23 in KEc mainly affect the predictions for sin2 θ23 and mµ/mτ .

In conclusion, we see that a mass matrix of reduced rank at the self-dual point τ = i

can explain the observed mass hierarchies in terms of O (1) Lagrangian parameters. At
the same time, at least in the model considered here, moderately hierarchical Kähler and
superpotential parameters are needed to fix the mixing angle predictions. Whether or not
this is a general feature of this class of models is a question which definitely requires further
investigation, but is beyond the scope of the present work. On the other hand, in order to
get a fully realistic description of lepton masses we should still generate a non-vanishing
electron mass, without perturbing too much the results achieved so far. We discuss this
point in the next subsection.

14Given the column ordering in eq. (4.1), |mee| is given at the leading order by
(
m

(0)
ν

)
33

= 0 +O(ε).
15For the minimal Kähler potential, i.e. setting α5 = α6 = c13 = c23 = 0, we find mµ/mτ = 0.0520 and

r = 0.0637, whereas the angles sin2 θ12 = 0.228, sin2 θ13 = 0.03751 and sin2 θ23 = 0.256 are far away from
their experimental values.

16For the values of α5,6 (c13,23) beyond the range displayed in the x-axis, the matrix KL (KEc) is not
positive definite, and thus, the corresponding Kähler metric is well-defined only for the displayed range of
α5,6 (c13,23).
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Figure 1. Dependence of the mixing angles and two mass ratios on α5 (left) and α6 (right), fixing
all other input parameters to their best-fit values from table 4. The horizontal dashed lines indicate
the boundaries of the respective 1σ ranges from table 1. The vertical dashed line in the left (right)
panels stands for the best-fit value of α5 (α6) from table 4.

4.3 Generating me 6= 0

Both the models discussed above yield, by construction, me = 0. One can easily concoct
mechanisms to generate the small electron mass without spoiling the other predictions.
We give below two examples, where me is generated by supersymmetry breaking and by
dimension six operators, respectively.

If supersymmetry is broken by some F -term, fermion masses get corrected by the
second term of eq. (2.7), which, as discussed below the same equation, scales as mSUSY v/M

for SM fermion masses (where M is the SUSY breaking messenger scale). For instance, a
Kähler interaction of the form:

K ⊃ 1
Λ2χ

†Eci

[
ai(τ)Hd + bi(τ)H̃u

]
L+ h.c. , (4.26)

where the superfield χ gets a supersymmetry breaking expectation value 〈χ〉 = Fθ2, gives
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Figure 2. Dependence of the mixing angles and two mass ratios on c13 (left) and c23 (right), fixing
all other input parameters to their best-fit values from table 4. The horizontal dashed lines indicate
the boundaries of the respective 1σ ranges from table 1. The vertical dashed line in the left (right)
panels stands for the best-fit value of c13 (c23) from table 4.

a contribution to the charged lepton Yukawa matrix proportional to F/Λ2, which in turn
generically induces an electron Yukawa coupling of the same order.

As a second possibility, one may generate me 6= 0 through the dimension six operator:

(EciLHd)(HuHd), (4.27)

whose Wilson coefficient should be a modular form of the appropriate weight. In order for
this mechanism to work, we need to generalise the weight assignments in table 2. We make
the following requirements:

kL = 1− ku , (4.28)
kEc = 3 + ku − kd , (4.29)

ku + kd 6= 0 . (4.30)
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The first two conditions ensure that the superpotentials discussed in the previous subsec-
tions have weight zero; the last condition implies that the operator (4.27) has different
weight from the corresponding renormalisable Yukawa term,17 so that it couples to a func-
tionally independent modular form multiplet (making the resulting charged lepton mass
matrix of rank three). Such a mechanism thus generates me ∼ vuv

2
d/Λ2, where Λ is the

scale at which the operator in eq. (4.27) is generated.
While in some flavour models, the ratios me/mτ and mµ/mτ are associated to different

powers of the same expansion parameter, we note that here the two ratios are associated
to independent parameters.

5 Conclusion

Supersymmetric modular invariant theories offer an attractive framework to address the
flavour puzzle. The role of flavour symmetry is played by modular invariance, regarded
as a discrete gauge symmetry, thus circumventing the obstruction concerning fundamental
global symmetries. The arbitrary symmetry breaking sector of the conventional models
based on flavour symmetries is replaced by the moduli space. Yukawa couplings become
modular forms, severely restricted by the matter transformation properties. So far this
framework has delivered interesting preliminary results especially in the lepton sector,
where neutrino masses and lepton mixing parameters can be efficiently described in terms
of a limited number of input parameters.

Weak points in most of the existing constructions are the need of independent hier-
archical parameters to describe charged lepton masses, the reduced predictability caused
by a general form of the Kähler potential, and the absence of a reliable dynamical mech-
anism to determine the value of τ in the vacuum. As a matter of fact, in several models
reproducing lepton masses and mixing parameters, the required value of τ is close to i, the
self-dual point where the generator S of the modular group and CP (if the Lagrangian is
CP invariant) are unbroken. A small departure of τ from i suffices to generate sizeable
CP-violating effects in the lepton sector.

For these reasons, we were led to analyse more in detail the vicinity of τ = i. Our
goal was to show that a small deviation from the self-dual point can be responsible for
the observed mass hierarchy me � mµ � mτ and δm2 � ∆m2. At τ = i, the theory
has an exact Z4 symmetry, generated by the element S of the modular group. In the
neighbourhood of τ = i, the breaking of Z4 can be fully described by the (small) spurion
ε ≈ τ − i, that flips its sign under Z4. We explained how to exploit this residual Z4
symmetry in order to obtain lepton mass matrices having reduced rank at τ = i. This
can be easily done with a suitable assignment of modular weights and representations for
matter fields. There is a twofold advantage in this strategy. First, mass ratios that are
forced to vanish at τ = i by the Z4 symmetry are expected to acquire small values ∝ |ε|n
(n > 0) near the self-dual point. Second, the reduced rank of the mass matrices can tame

17Curiously, the same condition can be exploited to make the Higgs µ-term vanish at τ = i. The Higgs µ-
term, being a Γ3 singlet modular form of weight ku+kd, vanishes by eq. (3.3) at τ = i if ku+kd 6= 0 (mod 4),
since all Γ3 singlets have ρ(S̃) = 1.
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the contribution from a non-minimal Kähler potential, provided the metrics of the matter
fields do not display large hierarchies.

To see whether this strategy can be successfully realised or not, we built a concrete
model at level 3, where neutrinos get masses through the type I seesaw mechanism. The
model predicts a normal mass ordering. The number of parameters exceeds the number
of fitted observables and we cannot claim predictability. However, with τ being near i,
mass ratios and mixing angles are reproduced with input parameters nearly of the same
order of magnitude and matter kinetic terms display only a moderate hierarchy. We saw
that the main contribution to the mass hierarchy can be induced by the singular mass
matrix at the Z4 symmetric point. In the model we considered, the Kähler potential and
the other Lagrangian parameters are crucial in order to correctly reproduce the values of
the mixing angles. While the Z4 symmetry plays a fundamental role in all our discussion,
we notice that our model could not have been realised in the context of a Z4 flavour
symmetry alone. In particular, the electron mass vanishes in the models we have considered
due to the correlations among generic Z4-invariant operators provided by the underlying
modular invariance. Also the leading order values of the mixing angles are dictated by Z4.
We have discussed possible sources of a non-vanishing electron mass. While the models
we formulated have clearly room for improvement, we consider them as a good starting
point to naturally accommodate the observed fermion mass hierarchies within a modular
invariant framework.

Note Added. Few weeks after completion of this work, ref. [43] appeared on the arXiv,
in which the authors performed a systematic study of all fixed points, τS = i, τST = e2πi/3,
and τT = i∞, assuming a minimal form of the Kähler potential. The points τST and τT
enjoy residual Z3 × Z2 and ZN × Z2 symmetries, respectively (where N is the level of
modular forms used in the construction, N = 3 in our work). It is found, in particular,
that fermion mass hierarchies crucially depend on the decomposition of field representations
under the residual symmetry group.
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A Kähler potential quadratic in Y (2)

In the real basis for the Γ3 generators S and T in the 3-dimensional representation
we employ in this work, L∗ and Y (2)∗ transform as triplets, i.e. L∗ → ρ3(γ̃)L∗ and
Y (2)∗ → ρ3(γ̃)Y (2)∗. Thus, we can contract first L∗ with L and Y (2)∗ with Y (2), and after
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that perform contractions of the obtained multiplets. Proceeding in this way, we obtain:

(L∗L)1 = L†L , (L∗L)1′ = L†M1′L , (L∗L)1′′ = L†M1′′L , (A.1)

(L∗L)3S =


L†M

(1)
3S L

L†M
(2)
3S L

L†M
(3)
3S L

 , (L∗L)3A =


L†M

(1)
3AL

L†M
(2)
3AL

L†M
(3)
3AL

 , (A.2)

with the matrices Mr being

M1′ =

1 0 0
0 ω2 0
0 0 ω

 , M1′′ =

1 0 0
0 ω 0
0 0 ω2

 , (A.3)

M
(1)
3S =

0 0 0
0 0 1
0 1 0

 , M
(2)
3S =

0 0 1
0 0 0
1 0 0

 , M
(3)
3S =

0 1 0
1 0 0
0 0 0

 , (A.4)

M
(1)
3A =

0 0 0
0 0 1
0 −1 0

 , M
(2)
3A =

0 0 −1
0 0 0
1 0 0

 , M
(3)
3A =

 0 1 0
−1 0 0
0 0 0

 , (A.5)

and ω = e2πi/3. The same equations hold for
(
Y (2)∗Y (2)

)
r
. Taking further invariant

contractions of the obtained multiplets, we find

KL = (2Imτ)−kL1 (A.6)

+(2Imτ)kY −kL
{
α1Y

(2)†Y (2)1+α2
[(
Y (2)†M1′′Y

(2)
)
M1′+

(
Y (2)†M1′Y

(2)
)
M1′′

]
+α3 i

[(
Y (2)†M1′′Y

(2)
)
M1′−

(
Y (2)†M1′Y

(2)
)
M1′′

]
+α4

3∑
n=1

(
Y (2)†M

(n)
3S Y

(2)
)
M

(n)
3S +α5

3∑
n=1

(
Y (2)†M

(n)
3A Y

(2)
)
M

(n)
3A

+α6

3∑
n=1

i
(
Y (2)†M

(n)
3A Y

(2)
)
M

(n)
3S +α7

3∑
n=1

i
(
Y (2)†M

(n)
3S Y

(2)
)
M

(n)
3A

}
,

where αj , j = 1 , . . . , 7, are real coefficients, which accompany hermitian matrices. (We
have used the fact that M †1′ = M1′′ , M (n)†

3S = M
(n)
3S , and M (n)†

3A = −M (n)
3A .)

One of our assumptions is that the canonical form of KL is restored at Im τ →∞. The
q-expansions of Yi in the real basis read:

Y1(τ) = 1√
3

(
1− 6q1/3 − 18q2/3 + 12q + . . .

)
, (A.7)

Y2(τ) = 1√
3

(
1− 6ωq1/3 − 18ω2q2/3 + 12q + . . .

)
, (A.8)

Y3(τ) = 1√
3

(
1− 6ω2q1/3 − 18ωq2/3 + 12q + . . .

)
, (A.9)
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where q = e2πiτ . Thus, at Im τ →∞

Y1 = Y2 = Y3 ∼
1√
3
, (A.10)

and KL has the following form:

KL ∼
1

2 Im τ
1 + 2

3 Im τ


3
2α1 α4 + iα7 α4 − iα7

α4 − iα7
3
2α1 α4 + iα7

α4 + iα7 α4 − iα7
3
2α1

 , (A.11)

where we have used kL = 1 and kY = 2. To satisfy our assumption of the asymptotic
behaviour of KL, the coefficients α1 = α4 = α7 = 0. Thus, the number of free parameters
in KL is reduced from seven to four. Then, the elements of KL from eq. (A.6) read:

(KL)11 = 1
2 Im τ

+ 2 Im τ
[
2α2|Y1|2 −

(
α2 +

√
3α3

)
|Y2|2 −

(
α2 −

√
3α3

)
|Y3|2

]
, (A.12)

(KL)22 = 1
2 Im τ

+ 2 Im τ
[
−
(
α2 −

√
3α3

)
|Y1|2 + 2α2|Y2|2 −

(
α2 +

√
3α3

)
|Y3|2

]
, (A.13)

(KL)33 = 1
2 Im τ

+ 2 Im τ
[
−
(
α2 +

√
3α3

)
|Y1|2 −

(
α2 −

√
3α3

)
|Y2|2 + 2α2|Y3|2

]
, (A.14)

(KL)12 = 2 Im τ (α5 + iα6) [Y ∗1 Y2 − Y1Y
∗

2 ] , (A.15)

(KL)13 = 2 Im τ (α5 − iα6) [Y ∗1 Y3 − Y1Y
∗

3 ] , (A.16)

(KL)23 = 2 Im τ (α5 + iα6) [Y ∗2 Y3 − Y2Y
∗

3 ] . (A.17)

For the sake of simplicity, we set further α2 = α3 = 0. In this case, the diagonal entries of
KL are not affected by the contributions containing modular forms, on the contrary to the
off-diagonal elements. Thereby, we arrive at the form of KL in eqs. (4.22) and (4.23).

What concerns KEc , with the assignment of representations and weights given in ta-
ble 2, the most general Kähler potential quadratic in Y (2) reads

KEc = 1
8 (Im τ)3


c0

11 c
0
12 0

c0∗
12 c

0
22 0

0 0 c0
33



+ 1
2 Im τ


c11Y

(2)†Y (2) c12Y
(2)†Y (2) c13Y

(2)†M1′′Y
(2)

c∗12Y
(2)†Y (2) c22Y

(2)†Y (2) c23Y
(2)†M1′′Y

(2)

c∗13Y
(2)†M1′Y

(2) c∗23Y
(2)†M1′Y

(2) c33Y
(2)†Y (2)

 , (A.18)

with c(0)
ii being real and c(0)

ij , i 6= j, complex coefficients.
Taking into account that at Im τ → ∞, the invariant combination Y (2)†Y (2) ∼ 1,

whereas X ≡ Y (2)†M1′′Y
(2) and X∗ = Y (2)†M1′Y

(2) decay exponentially, we find

KEc ∼
1

8 (Im τ)3


c0

11 c
0
12 0

c0∗
12 c

0
22 0

0 0 c0
33

+ 1
2 Im τ


c11 c12 0
c∗12 c22 0
0 0 c33

 . (A.19)
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In order to restore the canonical form of KEc in the considered limit, c0
12 = c12 = 0. Fur-

thermore, we set cii = 0 for simplicity. Finally, we can always make c0
ii = 1 by independent

rescalings of Eci , i = 1, 2, 3. Thus, we recover KEc given by eqs. (4.24) and (4.25).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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