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Abstract: We examine the question how string theory achieves a sum over bulk geome-
tries with fixed asymptotic boundary conditions. We discuss this problem with the help of
the tensionless string onM3×S3×T4 (with one unit of NS-NS flux) that was recently un-
derstood to be dual to the symmetric orbifold SymN (T4). We strengthen the analysis of [1]
and show that the perturbative string partition function around a fixed bulk background
already includes a sum over semi-classical geometries and large stringy corrections can be
interpreted as various semi-classical geometries. We argue in particular that the string
partition function on a Euclidean wormhole geometry factorizes completely into factors
associated to the two boundaries of spacetime. Central to this is the remarkable property
of the moduli space integral of string theory to localize on covering spaces of the conformal
boundary ofM3. We also emphasize the fact that string perturbation theory computes the
grand canonical partition function of the family of theories

⊕
N SymN (T4). The boundary

partition function is naturally expressed as a sum over winding worldsheets, each of which
we interpret as a ‘stringy geometry’. We argue that the semi-classical bulk geometry can
be understood as a condensate of such stringy geometries. We also briefly discuss the effect
of ensemble averaging over the Narain moduli space of T4 and of deforming away from the
orbifold by the marginal deformation.
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1 Introduction

The AdS/CFT correspondence has provided us with a unique glimpse into the properties
of quantum gravity and consistency of the correspondence is still surprising from a variety
of angles.

There are essentially two classes of proposals that seem to have qualitatively different
properties. On the one hand, there are ‘top down’ constructions derived from string theory,
such as the duality between type IIB string theory on AdS5× S5 and N = 4 SYM or
the duality between string theory on AdS3× S3×T4 and a deformation of the symmetric
orbifold CFT SymN (T4) [2, 3]. On the other hand, there are ‘bottom up’ constructions
of dual pairs, which start from a semiclassical gravity theory. Since it is not known how
to quantize gravity in higher dimensions, these examples are all low-dimensional. The
prime example is JT-gravity [4, 5], whose boundary dynamics is given by the Schwarzian
theory [6–8]. The Schwarzian theory in turn describes the infrared dynamics of the SYK
model [9, 10] that is also described by a double-scaled matrix model [11, 12]. The main
difference is that the duality in these cases is between a gravity theory and an ensemble of
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Z(S1 t S1) = + + . . .

Figure 1. The gravitational computation of the partition function with two boundary circles in
a two-dimensional theory of gravity. The presence of the wormhole geometry generically destroys
factorization of the answer and leads to an ensemble dual on the blue boundary.

CFTs. There has been recently also a proposal for an exotic U(1)-gravity theory in three
dimensions, that is described holographically by free bosons averaged over the moduli space
of Narain lattices [13, 14].

The averaged examples behave more intuitively from a gravity point of view. They nat-
urally involve a sum over all bulk geometries, including also Euclidean wormhole geometries
that are responsible for much of the recent progress on the information paradox [15, 16].
Inclusion of wormhole geometries spoils factorization of the boundary partition function
on disconnected boundaries and leads to the ensemble interpretation [17, 18]. See figure 1.
The typical member of the ensemble in those dualities also generically seems to exhibit
chaos. The dual gravitational theory captures only the averaged signal and it is an im-
portant open problem to explain where the random noise comes from in the gravitational
description. See [19–26] for recent progress on this.

It has been a subject of debate how to relate these two classes of proposals. The
bulk properties of the stringy examples of the correspondence away from their supergrav-
ity regime are much more alien to us, which is mainly due to our lack of understanding
and computational power of string theory (or M-theory). In particular, for such stringy
examples of holography, there cannot be a non-zero wormhole correction to the partition
function, since it would be inconsistent with a single boundary theory.1 In the supergravity
approximation, the stringy examples AdS5× S5 and AdS3× S3×T4 admit Euclidean worm-
hole solutions [27–29], in tension with a single local boundary CFT. This already indicates
that string theory modifies the ‘sum over geometries’ prescription in a non-trivial way.

In this paper, we revisit the question directly within string theory. Our example is
the symmetric orbifold CFT SymN (T4). This precise theory is conjectured to be dual to
‘tensionless’ string theory on AdS3× S3×T4 [30–32], see also [33, 34] for earlier work. The
string background is supported only by one unit of NS-NS flux (and no R-R flux). This
duality has been subjected to very stringent tests: not only has the full spectrum been
matched with the symmetric product orbifold [30], but also some correlators [31, 32, 35]
(including higher genus correlators [36, 37]) have been compared.

While this model is under very good control, it also has some downsides. The first
of these is the non-geometric and non-local nature of the theory. A small tension means

1By a wormhole solution we mean here and in the following a connected bulk manifold whose conformal
boundary is disconnected.
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that strings are very floppy and generically can wind around asymptotic regions or cycles
of the geometry with little cost of energy. The generic state of the theory has lots of
winding strings. This is in particular true for the graviton and thus there does not seem
to be a local notion of geometry. However, it is somewhat premature to disregard classical
geometry entirely. When treating the string perturbatively, we start with a sigma model on
a fixed background and of course the string should ‘feel’ the background geometry. Thus,
we can still ask questions about sums over geometries. While the concept of a background
geometry is not very well-defined in the regime in which we are working, the concept
of a worldsheet theory is. For a large background, these are equivalent — any classical
background gives rise to a worldsheet theory. Thus, we will essentially replace the notion
of summing over geometries by sums over different worldsheet theories.

While questions such as ‘which manifolds should we sum over to obtain the boundary
partition function?’ have a clear answer in this framework, the result is somewhat difficult
to interpret from a semiclassical gravity point of view. Indeed, the answer to this question
that we shall advocate in this paper is that the string partition function is independent of the
background bulk manifold, large stringy corrections around the given background ensure that
all the other semi-classical bulk geometries are automatically taken into account. This even
extends to wormhole geometries. So instead of figure 1, the correct answer in the tensionless
string is to take either of the two geometries and consider all the stringy excitations on it
— the result will be the same! In this sense, the two contributions in figure 1 should not
be included separately, since we would count the same state multiple times. We already
conjectured this to be the case in [1].

This answer was already anticipated long ago from a purely boundary perspective in
free N = 4 SYM [38]. There it was seen that the thermal partition function of free N = 4
SYM exhibits a phase transition due to an exponential number of light strings. This is the
Hawking-Page transition emulated by a large number of stringy corrections. However, a
bulk description was missing at the time.

This proposal seems counterintuitive at first glance. The action of a classical back-
ground is of order O(G−1

N ), whereas quantum corrections around it should be of order 1
in GN. This seems to make it impossible for the above statement to be true. This naive
argument is circumvented as follows. It is true that the, say, torus partition function of a
single string is of order one, but only as long is that string is ‘short’. The contribution can
be enhanced by a factor of N by taking a string that either winds N times around a cycle
or asymptotic region of the geometry or N strings that each wind once around it. In the
example at hand there can be a very large quantum correction to the classical result due
to strings that effectively wind G−1

N times such cycles. This is essentially the Hagedorn
transition, since the very large number of light strings can lead to a macroscopic contribu-
tion. These are heavy enough to backreact on the geometry and change it effectively into
a different geometry.2

This still does not explain intuitively why the wormhole partition function factorizes.
The answer that we find to this question is perhaps a bit disappointing. Naively, one could

2In [39, 40], the question was examined in vector and matrix models and a similar result was found.
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Figure 2. The wormholes with perturbative string excitations on top of them. These pictures are
cartoons, since the actual model that we will consider is three-dimensional and instead of the green
worldline curves, we will have worldsheets wrapping the geometry. It turns out that the model
realizes only the possibility in the right picture: there are no perturbative string excitations that
connect the two asymptotic regions, but only separate string excitations that stay close to the two
boundaries.

have expected that there are string configurations like the first picture of figure 2 that
stretch between the two boundaries and cause a correlation between the two boundary
theories, thus leading to non-factorization. However, such strings actually do not exist in
the model. It turns out that all the strings of the model stay close to the boundary of the
space as in the second picture of figure 2. Since the geometry is asymptotically AdS, they
actually stay asymptotically far out and do not explore the bulk. This picture makes it
intuitively clear how factorization is achieved. One could even say that there is no bulk,
since an observer in such a stringy universe would have no way of detecting it.

We should mention that the actual mechanism that achieves this ‘localization’ of the
string worldsheets to the boundary is quite surprising and works thanks to an actual
localization in the moduli space of Riemann surfaces. The string path integral localizes
to such Riemann surfaces that cover the boundary holomorphically, which reduces the
integral over the moduli space to a sum. This localization principle was discussed and
proved in [31, 32, 36, 37] for correlation functions in global AdS3. We extend the proof to
arbitrary higher genus worldsheets and all (possibly singular) hyperbolic three manifolds,
which are the manifolds that can serve as background geometry for the string (modulo some
technical issues that will be explained). Even though the main focus of this work lies on
partition functions, we explain that our proof also goes through for correlation functions,
in which case the worldsheet localizes on certain ramified covers of the boundary.

We will not be able to compute the actual value of the string partition function, but
explain the general mechanisms behind the independence of the string partition function
on the bulk geometry in this model. Even after the localization property has been demon-
strated, this is non-trivial because the sphere partition function of the worldsheet theory
does not follow the localization principle and is not confined to the boundary of the bulk.
Thus, the typical string configuration actually looks roughly like in figure 3. It is therefore
not true that the quantum corrections around the background know nothing of the back-
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Figure 3. A typical string configuration for string theory on the wormhole geometry.The small
strings in the middle are spheres, whereas the winding strings close to the boundary are genus g ≥ 1
surfaces.

ground. We argue that their dependence on the bulk geometry is such that they cancel the
sphere partition function and the combined string partition function is independent of the
chosen bulk manifold. It is also interesting that the sum over all possible covering maps of
the boundary can arise in very different manners for different bulk manifolds.

We have just explained that the tensionless string of this model does not ‘see’ the bulk.
It is therefore surprising that actually all classical bulk manifolds make an appearance in
the boundary theory. For this, it is crucial to work in a grand canonical ensemble, where
the number of strings is not fixed, since this is the natural ensemble of string perturbation
theory. The dual ‘CFT’ is hence actually

⊕
N SymN (T4) with an appropriate chemical

potential conjugate to N held fixed. When tuning this chemical potential to special values,
the grand canonical partition function is dominated by very large N and classical geometry
seems to emerge as a condensate of the winding strings. We confirmed this explicitly
only for geometries with a single torus boundary such as thermal AdS, since the simplest
wormhole geometry has genus 2 boundaries, which makes explicit computations difficult.
The emergence of classical geometries as condensates of ‘stringy’ geometries (i.e. winding
strings) becomes physically clearer once we average the boundary CFT over a suitable set
of parameters. As an example, we discuss this for the Narain moduli space of T4. Using
the results of [13, 14], the averaged string partition function is then expressed as a sum
over ‘micro-geometries’, i.e. geometries that fill in worldsheets (or connect them by ‘micro-
wormholes’). Such geometries have a very large number of sheets that meet asymptotically
at the boundary of the bulk. When these geometries align properly, they can form an
emergent macroscopic geometry in the classical sense.

Outline. The following is an outline of the paper. In the remaining part of the introduc-
tion, we first explain our philosophy on how we (approximately) compute string partitions
with fixed boundary conditions using string perturbation theory. We then discuss in sec-
tion 1.2 some of the ideas of this paper with the help of a very simple toy model in two
bulk dimensions, where instead of worldsheets, the boundary is covered by worldlines. This
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model exhibits already some (but not all!) features of the tensionless string and is techni-
cally much simpler to treat. The remaining part of the paper is roughly divided into two
parts which can be read more or less independently.

Sections 2–5 are more technical and their main goal is to establish the independence
of the string partition function on the bulk geometry. Of those, section 2 reviews the
computation of the partition function of the symmetric orbifold and section 3 reviews
and develops the formulation of the tensionless string on different bulk manifolds. We
use this formalism to demonstrate that the string path integral does indeed localize in
the moduli space of Riemann surface. We explore the consequences of this property in
section 5 and explain how to introduce the grand canonical potential from the bulk point
of view. These sections make use of some technology from the theory of Riemann surfaces
and hyperbolic manifolds. For the benefit of the reader, we collected the relevant material
in appendices A, B, C, D and E. Appendix F contains a discussion of the topologically
twisted partition function of the sigma model on T4 that is a part of the worldsheet theory.

Section 6 is more physical in nature and discusses the physical interpretation of classical
geometries emerging as condensates from ‘stringy geometries’. We also discuss the effect
of introducing an ensemble average in the symmetric orbifold and the ‘micro-geometries’
that we mentioned above.

We summarize our main findings in section 7 and discuss open problems and future
directions.

Suggested reading. To simplify the reading process, we have depicted the dependencies
of the various sections in figure 4. We suggest that the reader can jump directly after the
introduction to section 6 and check back on the other sections as needed. Appendices
contain background information and are included to make the paper self-contained. They
are mostly not necessary to understand the main text.

1.1 Computing string partition functions

Here, we make some comments about computing the full non-perturbative string path
integral with fixed boundary conditions from the bulk point of view. We discuss this
using string perturbation theory. The question should properly be addressed within string
field theory, but to make computation feasible we use string perturbation theory as an
approximation. We will treat spacetime as Euclidean.

The problem in string perturbation theory is that we treat the background geometry as
fixed and consider stringy excitations around the background. Let us fix some asymptotic
boundary conditions of the bulk spacetime manifolds (such as asymptotically AdS). Then
to compute the string partition function with these boundary conditions, we should in
principle sum over all bulk manifolds with the appropriate boundaries and include stringy
corrections around those bulk geometries:

Zstring(N ) =
∑

bulk saddle geometries M with ∂M = N
Zstring(M) . (1.1)

Here, Zstring(M) is the perturbative string partition function around the background M
and Zstring(N ) is the string partition function with fixed boundary conditions. This is
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Figure 4. The basic organization of the paper. Arrows indicate strong logical dependencies and
we recommend to read the relevant sections first. Dashed lines indicate weaker dependencies.

essentially how we would compute a semiclassical gravity partition function. There are
several problems with this:

1. String theory also includes non-perturbative objects (in gstring) and they should in
principle also be included in the string partition function on a fixed manifold M.

2. In general, we expect some backreaction of the string on the geometry. Thus, when
including very heavy string excitations in the partition function, they can change the
background geometry. Hence we should only include ‘light’ string excitations around
a fixed background.

3. String theory contains also other massless fields besides the metric. Thus, the sum
over geometries should rather be a sum over supergravity backgrounds.

4. The background geometriesM should be saddles, i.e. satisfy the supergravity equa-
tion of motion. These equations get α′ corrected and in principle there could be
also be also background values for all the massive string modes. The more correct
statement would be to sum over different worldsheet sigma-models with the correct
asymptotic boundary condition.

5. In the gravitational path integral, we should sum over all bulk manifolds, whether
they are saddles or not. Of course, saddle geometries lead to a dominant contribution.
In string perturbation theory, we do not know even in principle how to include non-
saddle geometries, since these do not correspond to consistent worldsheet theories.
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Figure 5. The SN -bundles in the toy model for N = 2 and N = 3.
.

These issues make it clear that (1.1) can at best be an approximation (or at least the
definition of Zstring(M) is not straightforward).

In the example that we consider in this paper, we will argue that (1.1) fails much more
profoundly. For the tensionless string on a manifoldM3× S3×T4 the sum over manifolds
is superfluous. It is already fully contained Zstring(M), as long as we include also heavy
string excitations. We are lucky that in this instance the answer we compute turns out
to be exact and no effect of backreaction has to be taken into account. So instead of the
sum in (1.1), we have Zstring(N ) = Zstring(M) for any bulk manifold M with ∂M = N .
Indications for this in other models were also found in [39–41].

1.2 A simple toy model

Some of the physical intuition for the setup in this paper can be understood from a very
simple toy model. Let us consider a quantum mechanical model with a one-dimensional
Hilbert space. The unique state in this model is taken to have energy E0. We now consider
N copies of the model and gauge the obvious SN -symmetry that permutes the copies. This
gauging implements physically the intuition that the different copies are indistinguishable.

Let us compute the partition function of this theory. The N -fold product of the original
theory has still a one-dimensional Hilbert space and the unique state is invariant under the
SN symmetry. Thus, the partition function is simply

ZN = tr
(
e−βH

)
= e−βNE0 . (1.2)

Let us see how this simple result arises from a path integral point of view. The Euclidean
quantum mechanics is considered on a thermal circle of length β. The N copies of the
model can be viewed as N separate thermal circles. Gauging of SN sums over all possible
joinings of these circles. Such joinings are mathematically given SN -bundles, whose fibers
are given by N points that can be permuted when going around the circle. We displayed
the possibilities for N = 2 and N = 3 in figure 5. In general such a bundle is determined
by a partition of N that labels the lengths of the connected components of the bundle.
These SN -bundles have nontrivial symmetry factors that one needs to take into account.
For a partition N =

∑∞
m=1Nmm, the symmetry factor is∏

m

1
Nm!mNm

, (1.3)

which accounts for the fact that we can perform a cyclic relabelling of the covering within
each connected components and permute identical components. We then have

ZN = e−βNE0
∑

partitions N=
∑

m
Nmm

∏
m

1
Nm!mNm

= e−βNE0 . (1.4)
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βbulk

worldline

Figure 6. We fill the boundary thermal circle with a bulk spacetime. On this bulk spacetime, we
let free particles propagate. In the picture, the worldline represents the second covering space of
figure 5.

The last identity follows from the fact that partitions label conjugacy classes of SN and
the size of these conjugacy classes is N ! times the symmetry factor (1.3).

Grand canonical ensemble. We now want to interpret this system holographically. For
this, the path integral point of view is useful. We view the covering spaces of the boundary
circle as particles that propagate near the boundary of the Euclidean bulk spacetime. This
is depicted in figure 6. In this sense, our very simple toy model is dual to free particles in
the bulk. Hence the spacetime theory would be a QFT on AdS2. In a QFT, the number
of particles in the background is usually not fixed. Thus, we would like to consider both
sides of the ‘holographic correspondence’ in the grand canonical ensemble, where N is not
fixed. Instead, we fix a corresponding fugacity variable p. The boundary grand canonical
partition function reads

Z =
∞∑
N=0

pNZN =
∞∑
N=0

pNe−βNE0 = 1
1− pe−βE0

. (1.5)

Worldline action. We now argue that this model can indeed be taken seriously by
constructing a worldline action for the particle. Let us choose polar coordinates to describe
the bulk. For definiteness, let us take the bulk to have a flat metric

ds2 = dr2 + r2dφ2 , (1.6)

where 0 ≤ r ≤ β
2π and 0 ≤ φ ≤ 2π. Then we take the length of the worldline as its action:

Sworldline = E0

∫
dτ
√
Gµν∂τXµ∂τXν . (1.7)

where X(τ) = (r(τ), φ(τ)) are the embedding coordinates in spacetime and Gµν is the
spacetime metric. Of course, the equations of motion of this theory allow only for straight
worldlines, but one could cure this by adding a very steep Mexican hat-type potential that
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=

Figure 7. The indistinguishability of different bulk manifolds. Since the red worldline stays close
to the boundary, different topologies are not distinguishable for it.

confines the worldline to the boundary region of the bulk. Then possible worldlines are
labelled by their topological winding number near the boundary of spacetime. This can be
viewed as an (approximate) type of localization: only worldlines that cover the boundary
isometrically are allowed to contribute to the partition function. Hence the length of the
worldsheet is dβ for some integer d ≥ 1. The connected partition function of this model
is simply3

Zconn
bulk =

∞∑
d=1

1
d

e−βdE0 = − log
(
1− e−βE0

)
. (1.8)

We can further refine this partition function by counting the winding number. We will do
this here in an ad-hoc manner and simply posit that

Zconn
bulk =

∞∑
d=1

pd

d
e−βdE0 = − log

(
1− pe−βE0

)
=⇒ Zbulk = 1

1− pe−βE0
, (1.9)

in agreement with what we found in the boundary theory.

Bulk independence. We see that the bulk result didn’t depend a lot on the details of
the bulk. We could have equally well chosen a different bulk manifold, such as a genus 1
surface with a circle removed. We only cared about the properties of the bulk manifold
near its boundary (thanks to the Mexican hat potential). This is essentially because of
our choice of potential that pushes the worldline out towards the boundary of the bulk. In
pictures, this is figure 7.

Condensation. One might say that the ‘bulk’ theory essentially knows nothing about
the bulk, since all the degrees of freedom seem to be localized near the boundary. This
is not entirely true. These worldline geometries do reflect some parts of the classical
geometry. For this, we notice that the grand canonical partition function has a pole at
p = eβE0 . We shall argue that the meaning of this pole is the following. When tuning
p close to eβE0 , worldline geometries with large N dominate the definition of the grand
canonical partition function (1.5). This means that the typical bulk picture features an

3We are suppressing some details here that are not important to understand the physics. There are
one-loop determinants around the classical solutions that should be taken into account for a complete
description.
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extremely large number of worldlines. On the pole, these worldlines essentially reconstruct
the classical bulk geometry, or in a precise sense that we discuss in section 6.2 the bulk
geometry is a condensate of the worldlines. In our toy example, we do not know anything
about the effective spacetime theory, so we cannot say which classical bulk geometry this
should be. In the string theory example that we examine in this paper, we see all bulk
geometries emerging that satisfy the classical equations of motion. The location of the pole
in p is related to the on-shell spacetime action of the geometry. The residue is essentially
the one-loop determinant around that geometry (that is trivial in our toy example). This
allows one to reconstruct the grand canonical partition function also alternatively from all
the classical partition functions.

Euclidean wormholes. One can consider our toy model also on wormhole geometries.
It is clear that what we said for the bulk independence continues to hold for wormhole
geometries. If several boundaries are present, we can introduce different chemical potentials
for the various boundaries and the grand canonical partition function simply factorizes into
its constituents. In particular, the multi-boundary grand canonical partition function in
out model is simply

n∏
i=1

1
1− pie−βiE0

. (1.10)

The poles in this partition function should again correspond to different bulk ‘geometries’.
However, they clearly only account for disconnected geometries. For the string the situation
is much more complicated, since (saddle) wormholes are only expected for genus ≥ 2
boundaries. We have not been able to determine whether the Euclidean wormholes leave
some imprint on the grand canonical wormhole partition function. See the discussion in
section 6.3.

Averaging. In this final paragraph, we modify our theory a bit. We want to introduce an
average of theories, but with our simple theory with a single state, this is not possible.4 We
replace our simple quantum mechanical theory with another quantum mechanical theory X.
We will assume that X itself has some parameters over which we can average (for example
the SYK model). We then take N copies of X and gauge the permutation symmetry. For
a single realization, we can again express the boundary partition function as a sum over
all possible covering maps of the boundary circle. But we can now interpret the partition
functions on the covering maps themselves using holography. Once we average over the
parameters of the theory, they are computed holographically by filling in the covering
geometry in all possible ways, thus leading to a sort of ‘micro-geometry’ consisting of N
sheets. This includes wormholes that connect different disconnected components of the
covering space. The model that is constructed in this way is in some sense stringy, since it
has exponentially more geometries (in N) then X itself. Moreover, these ‘micro-geometries’
can align themselves to lie on top of each other and form one macroscopic geometry. This
leads to a more concrete picture of the condensation process.

4Averaging over E0 would essentially average over the size of the bulk, which is not what we want.
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2 Partition function of symmetric orbifolds at higher genus

Let us review the partition function of the symmetric orbifold SymN (X) for some base
theory X, following [42, 43].

2.1 Setup

We consider a Riemann surface Σg of genus g. Because of the conformal anomaly, the
partition function does not only depend on the moduli of the surface, but also on an
explicit metric. Let us fix the hyperbolic metric, i.e. the metric with constant negative
curvature −1 on Σg (or a flat metric in the case g = 1) and write

Σg = H2/ΓF
g , (2.1)

for some discrete (Fuchsian) subgroup of ΓF
g ⊂ PSL(2,R) and H2 the upper half plane.5

ΓF
g is determined up to overall conjugation. The upper half plane with the Poincaré metric

induces the hyperbolic metric on Σg.

2.2 Grand canonical ensemble

It is convenient to compute partition functions in a grand canonical ensemble. Holograph-
ically, the grand canonical ensemble corresponds to the situation where the number of
strings in the background is not kept fixed. We will discuss this in section 5 and 6 in de-
tail. From a CFT point of view, we are computing the generating function of the partition
function

ZSym(X) =
∞∑
N=0

pNZSymN (X) , (2.2)

where we suppressed the dependence on the moduli of the surface. Here p = e2πiσ is the
corresponding fugacity. We set by convention ZSym0(X) = 1.

In general, the genus g partition function of a permutation orbifold with group SN on
a genus g surface can be written as follows:

ZSym(X)
(
H2/ΓF

g

)
= exp

 ∑
subgroups H of ΓF

g

up to conjugation

p[ΓF
g :H]

[ΓF
g : H]ZX

(
H2/H

) , (2.3)

where ZX is the partition function of the seed theory X. Here, we assumed that the theory
X is bosonic, see the discussion below for the case with fermions.

Relation to covering maps. More geometrically, the sum over subgroups of π1(Σg) up
to conjugation can be viewed as a sum over all possible unbranched connected covering

5The discussion also holds for g = 1, in which case the universal covering space is C and the relavant
group Γ1 = Z× Z acts by translations.
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surfaces of the original theory. [ΓF
g : H] is the degree of the corresponding covering map:

ZSym(X)(Σg) = exp


∞∑

Nc=1

pNc

Nc

∑
connected covering surfaces
Σ̃Nc(g−1)+1 of degree Nc

ZX
(
Σ̃Nc(g−1)+1

)
 . (2.4)

It does not matter whether the sum also extends over infinite coverings, because the denom-
inator ensures that they do not contribute. The exponential generates also disconnected
covering surfaces and inserts the correct combinatorial symmetry factors. Here and in the
following we use Nc to refer to the degree of connected covering maps and N to refer to the
degree of disconnected covering maps. In this form, the formula even holds true without
specifying a constant curvature metric, because there is a natural metric on the covering
surface that is the pull back of the metric on the base space along the covering map. Enu-
merating subgroups of a Fuchsian group ΓF

g systematically is quite difficult, but counting
the number of terms is possible. We have collected some relevant facts in appendix C.
There we also explained the role of the symmetric group in this construction.

Fermions. Finally, let us consider the case where X contains fermions and we want to
compute the partition function of the symmetric orbifold on Σg with a fixed spin structure.
Such a spin structure on the base surface corresponds to a spin bundle S, whose pullback
along the covering map induces a natural spin structure on the covering surface. This is
the spin structure wich enters the right hand side of eq. (2.4).

3 Tensionless string theory on locally AdS3 backgrounds

In this section, we set up the general framework to describe the tensionless string on
Euclidean backgrounds of the form M3 × S3 × T4, where M3 is a hyperbolic 3-manifold,
i.e. a space that is locally Euclidean AdS3. This section is partially a review and is based
on [30, 32, 37]. We employ the hybrid formalism [44] that continues to be well-defined in
the tensionless limit. We start with global AdS3, in which case the space has PSL(2,R)×
PSL(2,R) symmetry (or in the Euclidean case PSL(2,C) symmetry).

3.1 The hybrid formalism

The hybrid formalism starts with the following worldsheet theory:

PSU(1, 1|2)k ⊕ top. twisted T4 ⊕ ghosts . (3.1)

Here, PSU(1, 1|2)k is the WZW model on the supergroup PSU(1, 1|2). The T4 sigma model
has N = 4 supersymmetry and is topologically twisted and hence contributes c = 0 towards
the central charge. Finally, the ghost sector consists of the usual bc ghosts of the bosonic
sector and an additional ρ-ghost that replaces the βγ-ghost. It is a timelike free boson
with screening charge and contributes c = 28 towards the central charge.

The parameter k corresponds to the amount of NS-NS flux in the background and
the tensionless string is obtained for k = 1. We will make this choice in the remainder of
the paper.
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BRST cohomology. The BRST operator is relatively complicated to write down in
these variables, but we shall not have need of its explicit form. The hybrid string is
formulated as an N = 4 topological string. Thus, there is a topologically twisted N = 4
algebra on the worldsheet whose supercharges we denote by

conformal weight 1: G+ , G̃+ , (3.2)
conformal weight 2: G− , G̃− , (3.3)

since as usual due to the topological twist, the conformal weights of the supercharges are
shifted. This theory actually has two BRST operators given by G+

0 and G̃+
0 . The physical

state subspace of the Hilbert space is identified with the double cohomology (similarly for
the right-movers):

G+
0 |Φ〉 = 0 , G̃+

0 |Φ〉 = 0 , |Φ〉 ∼ |Φ〉+G+
0 G̃

+
0 |Ψ〉 . (3.4)

Physical states are moreover the top components of spin 1
2 multiplets of the R-symmetry

of the algebra. This is necessary for the integrated vertex operator∫
G−Ḡ−Φ (3.5)

to be an su(2) singlet. The second cohomology achieves the restriction of physical states
to the small Hilbert space, which in the RNS formalism is often imposed by hand.

Correlation functions. Correlation functions are defined as in the N = 4 topological
string [44, 45]

∫
Mg

〈3g−3∏
i=1
|G−(µi)|2

[∫
G̃+ ¯̃G+

]g−1 ∫
JJ̄

n∏
i=1

∫
G−Ḡ−Φi

〉
. (3.6)

Here J is the Cartan-element of the R-symmetry SU(2) (that has conformal weight 1).
G−(µ) is the usual pairing between Beltrami differentials and conformal fields of weight 2.
For the N = 4 algebra, there are many inequivalent ways of doing the topological twist.
They are related by rotating the supercharges. Effectively, one just replaces some of the
G− by G̃− or equivalently, some of the G̃+ by G+. It was explained in [32] that (for
k = 1) there is a unique choice up to equivalence that is non-vanishing. The amplitudes
are defined by

∫
Mg

〈g−1∏
i=1
|G−(µi)|2

3g−3∏
i=g
|G̃−(µi)|2

[∫
G̃+ ¯̃G+

]g−1 ∫
JJ̄

n∏
i=1

∫
G̃− ¯̃G−Φi

〉
. (3.7)

Compared to the previous formula, some supercharges G− have been replaced with G̃−

(and similarly for the right-movers). The result is independent on the precise choice of
these switches (up to normalization).
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3.2 Free field realization

The formalism simplifies considerably for k = 1, since there is a free field realization
of PSU(1, 1|2)1 in terms of symplectic bosons and free fermions [30, 46]. We follow the
conventions of [32]. The free fields have the following defining (anti-)commutation relations:

[ξαr , ηβs ] = εαβδr+s,0 , {ψαr , χβs } = εαβδr+s,0 . (3.8)

Here, ξα and ηβ are spin-1
2 symplectic bosons and ψα and χβ are usual spin-1

2 fermions.
α, β take values in {+,−} and are SU(2) spinor indices. These free fields generate the
superalgebra u(1, 1|2)1. The generators of this superalgebra are identified with the bilinears

J3
m = −1

2(η+ξ−)m −
1
2(η−ξ+)m , K3

m = −1
2(χ+ψ−)m −

1
2(χ−ψ+)m , (3.9a)

J±m = (η±ξ±)m , K±m = ±(χ±ψ±)m , (3.9b)

Sαβ+
m = (χβξα)m , Sαβ−m = −(ηαψβ)m , (3.9c)

Um = −1
2(η+ξ−)m + 1

2(η−ξ+)m , Vm = −1
2(χ+ψ−)m + 1

2(χ−ψ+)m . (3.9d)

It is also convenient to define the combinations Z = U + V and Y = U − V . The
superalgebra u(1, 1|2)1 contains the algebra su(1, 1|2)1 as a subalgebra that consists of
all the currents except for Y . su(1, 1|2)1 in turn is obtained as a central extension of
psu(1, 1|2)1, the central generator being Z. Thus, we essentially need to set Z = 0 in order
to recover psu(1, 1|2)1 from u(1, 1|2)1. This is done by introducing the following BRST
operator:

Q = cZ , (3.10)

where we introduce a new bc ghost system with h(b) = 1 and h(c) = 0. Note that
[Q, Y (z)] = ∂c(z). Thus Q has the effect of removing both Y and Z from the free field
realization. Fortunately the Z–Z OPE does not have a central term and hence we have
indeed Q2 = 0.

Representations. Representations of psu(1, 1|2)1 are straightforward to describe in the
free field representation. We will be brief here, for more details see [30, 32]. Unflowed
representations are identified with the R-sector representation of the free fields.6 Positive
modes of the free fields annihilate the primary state |m1,m2〉. Zero modes of the symplectic
bosons act as

ξ+
0 |m1,m2〉 =

∣∣∣∣m1,m2 + 1
2

〉
, η+

0 |m1,m2〉 = 2m1

∣∣∣∣m1 + 1
2 ,m2

〉
, (3.11)

ξ−0 |m1,m2〉 = −
∣∣∣∣m1 −

1
2 ,m2

〉
, η−0 |m1,m2〉 = −2m2

∣∣∣∣m1,m2 −
1
2

〉
. (3.12)

6The spin structures of the symplectic bosons and the fermions are coupled since the supercharges Sαβγ

have to be single-valued.
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The sl(2,R) spin of the representation is given by j = m1−m2. On top of this, the fermions
span a 22 = 4-dimensional Clifford module. We define

χ+
0 |m1,m2〉 = ψ+

0 |m1,m2〉 = 0 (3.13)

so that the four states are obtained by action of χ−0 and ψ−0 . The four states consist of
two R-symmetry su(2) singlets and an su(2) doublet. Evaluating the zero mode Z0 on the
states leads to

Z0 =


m1 −m2 − 1

2 , su(2) doublet ,

m1 −m2 − 1
2 ±

1
2 , su(2) singlets .

(3.14)

Thus, the only possible BRST invariant representation of psu(1, 1|2)1 has the bosonic
subrepresentations (j = 0,1)⊕ (j = 1,1)⊕ (j = 1

2 ,2) [30].

Spectral flow. More representations are obtained from acting with spectral flow on the
symplectic bosons. There are two independent spectral flow symmetries that we denote by
σ(+) and σ(−).

σ(±)(ξ∓r ) = ξ∓
r± 1

2
, σ(±)(η±r ) = η±

r∓ 1
2
, (3.15a)

σ(±)(ψ∓r ) = ψ∓
r∓ 1

2
, σ(±)(χ±r ) = χ±

r± 1
2
. (3.15b)

Unspecified actions are trivial. The composition σ = σ(+) ◦ σ(−) is the usual spectral flow
action on psu(1, 1|2)1; it leaves the generators Y and Z invariant. There is also the opposite
composition σ̂ = σ(+) ◦ (σ(−))−1. The existence of these spectral flow automorphism
allows one to define spectrally flowed representations that are obtained by composing the
unflowed representations with the spectral flow automorphism. Focussing on the spectral
flow automorphism σ, this allows one to define the corresponding vertex operators7,8

V w
j,h(x, z) . (3.16)

Here, w ∈ Z≥1 is the amount of spectral flow.9 We traded the labels m1 and m2 for the
more physical labels of sl(2,R) spin j and spacetime conformal weight h. The additional
label x corresponds to the position of the vertex operator in spacetime. We take x to be
complex (and the corresponding variable for the right-movers is the complex conjugate),
which specifies the reality of the theory and implies that we are working in Euclidean AdS3.

Due to the existence of the second spectral flow operator σ̂, the same psu(1, 1|2)1
representation actually appears multiple times in the free field representation. Indeed, by
spectrally flowing with respect to σ̂, one replicates the same representation of psu(1, 1|2)1.
In particular, we can look at the spectrally flowed images of the vacuum representation.

7We suppress here again the right-movers, the vertex operator would be properly denoted by
V w
j,h,h̄

(x, x̄, z, z̄).
8These vertex operators are affine primary (in a spectrally flowed sense) with respect to the sl(2,R)1

subalgebra. It will not be important for us what the precise properties of the vertex operators are with
respect to the su(2)1 subalgebra and we may take them to be affine primary (in the unflowed sense).

9We can restrict to w ≥ 1, since only these fields correspond to fields in spacetime.
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This leads to copies of the vacuum representation of psu(1, 1|2)1, but they are not in the
vacuum w.r.t. the free fields. In particular, we shall make use of the field W (u) that is
obtained by twice flowing the vacuum representation w.r.t. σ̂ [32]. Focussing on the bosons,
it has defining OPEs

ξα(z)W (u) ∼ O(z − u) , ηα(z)W (u) ∼ O((z − u)−1) . (3.17)

String correlators. Let us now discuss how the prescription for correlators in the hybrid
formalism (3.7) combines with the free field realization. It was discovered in [32], that the
replacement G− → G̃− effectively shifts the sl(2,R) spin j of the vertex operators down
by 1 unit. It does not matter how we distribute these shifts on the vertex operators. This
potentially violates the conservation of the Y -current of the free field realization. In order
to get a non-zero result for the correlator one has to insert n+ 2g − 2 additional W -fields.
Thus, one is lead to study the correlators

〈2g−2∏
α=1

W (uα)
n∏
i=1

V wi
ji,hi

(xi, zi)
〉

(3.18)

in the PSU(1, 1|2)1 WZWmodel. Conservation of the U(1) current Y imposes the condition

∑
i

ji = 2− 2g − n

2 . (3.19)

These correlators are the main object of study in the hybrid formalism. Even though we
are mainly interested in studying the partition functions, we see that we have to insert
at least one vertex operator satisfy this constraint (except for g = 1). Thus, we will keep
most parts of this paper general and they also apply to correlation functions.

Until now, we have not properly implemented the gauging of the U(1)-current. Besides
introducing a pair of bc-ghosts with BRST operator (3.10), we also have to integrate over the
moduli space of flat U(1)-bundles over the Riemann surface, as indicated by the presence
of g zero modes of b. The moduli space of line bundles on the Riemann surface is the
Jacobian, defined by

Jac(Σg) = Cg/(Zg ⊕ΩZg) , (3.20)

where Ω is the period matrix. We have collected some background on Riemann surfaces in
appendix B. The isomorphism between the moduli space of line bundles and the Jacobian
is given by the Abel Jacobi map.

The prescription of the correlation functions for the hybrid string (3.7) already incor-
porates g additional integrals besides the moduli space integrals. We can interpret these
integrals as an integral over the Jacobian. Of these g integrals, g− 1 integrals are charged
under the U(1)-current of the compactification manifold. This is exactly as it has to be:
because the T4 sigma-model is topologically twisted, its charge conservation is anomalous.
Thus to get a non-trivial partition function we have to insert charged operators in the
correlator. This is precisely achieved by the description (3.7).
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3.3 Orbifolds

We now want to reduce this theory from global Euclidean AdS3 to a quotient space AdS3/Γ
for a discrete group Γ ⊂ PSL(2,C). We do not necessarily require Γ to act properly discon-
tinuously, which means that the quotient space can have orbifold singularities. Consistency
of the theory seems to require the deficit angles to have the form 2π(1−M−1) forM ∈ Z≥2.
Groups Γ that act properly discontinuously are known as Kleinian groups and we collected
some background material in appendix A.

Spin structure. There is a small subtlety here since we are considering a supersym-
metric theory. We also want to specify a spin structure on the target manifold. This is
essentially achieved by lifting Γ ⊂ PSL(2,C) to a subgroup of SL(2,C). The different
liftings correspond to the different spin structures. In the following, we consider the spin
structure part of the spacetime geometry and hence always work with the lift Γ ⊂ SL(2,C).
This lift is discussed further in the context of uniformizations in appendix D.

Action on worldsheet fields. Being a subgroup of SL(2,C), the action of Γ on the
various fields in the worldsheet theory is described by the action of the generators Ja0 . Thus,
we are essentially taking a usual orbifold in CFT. In particular, Γ does not act on the fields
W (uα). Γ does however act on the vertex operators V wi

ji,hi
(xi, zi) and correspondingly, one

can define twisted vertex operators. They are not needed to discuss partition functions.
We will only consider untwisted vertex operators in this paper. The partition function is
obtained in the special case when we chose wi = 1 and hi = 0 for all vertex operators. In
this case the vertex operators correpond to the vacuum of the dual CFT and are hence
actually independent of x. Note that it is not possible to choose n = 0, since it would be
impossible to satisfy the constraint (3.19) (except for g = 1).

Twisted sectors. When computing the orbifold correlators, we are effectively performing
a gauging by a discrete subgroup Γ ⊂ SL(2,C). This gauging is achieved by summing over
all principal Γ-bundles over the Riemann surface Σ. We can write

〈· · · 〉 = 1
|Γ|

∑
Γ-bundles ρΓ

〈· · · 〉ρΓ
, (3.21)

where in 〈· · · 〉ρΓ
all fields have twisted boundary conditions. Γ-bundles are specified by a

homomorphism
ρΓ : π1(Σg) −→ Γ , (3.22)

that tells us how the fields are twisted when we move around the cycles of Σg and hence
we simply identify ρΓ with the bundle. π1(Σg) depends of course on a choice of base
point. Changing the base point results in an overall conjugation of the homomorphism
and specifies the same bundle. Thus Γ-bundles are in 1-to-1 correspondence with the
set Hom(π1(Σg, z0),Γ)/Γ, which we will just write by Hom(π1(Σg),Γ). In the following
all homomorphisms from π1(Σg) are understood up to overall conjugation. This is the
analogue of the more well-known situation at genus 1, where one has to sum over all
twisted boundary conditions. Since π1(T2) = Z2, we have

Hom(π1(T2),Γ) ∼= 〈a, b ∈ Γ | ab = ba , (a, b) ∼ (gag−1, gbg−1)〉 , (3.23)
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where the group elements a and b are the images under the homomorphism ρΓ of the α-
and β-cycle of the torus.

Recall that we also perform a U(1)-gauging via the BRST operator Q (3.10) to reduce
the free theory to PSU(1, 1|2)1 and correspondingly integrate over all flat U(1)-bundles
that can also be specified by a homomorphism ρU(1) : π1(Σg) −→ U(1). Actually, we do
not need any reality and consider the homomorphism into the complexified group ρC× :
π1(Σg) −→ C× consisting of all complex numbers excluding zero.10 It is convenient to
combine these two homomorphisms as follows

ρ ≡ ρΓ ⊗ ρC× : π1(Σg) −→ Γ× C× ⊂ SL(2,C)× C× . (3.24)

Normalization. We should also mention that the orbifold has another effect — it mul-
tiplies the partition function by |Γ|−1. Since the orbifold group is infinite, this factor is
naively zero. However, we expect that upon regularization, we can get a non-zero value.
Since we will in any case not be able to determine the precise value of the partition function
(or correlation functions), we will not discuss this factor further. For simple geometries it
can be calculated explicitly [1].

3.4 Summary

Let us summarize the most important features of the formalism. The form of the string
partition function/correlation function (3.7) is basically dictated by demanding charge
conservation. The g additional integrals can be interpreted as integrals over the Jacobian
and implement precisely the gauging that reduces the free fields to psu(1, 1|2)1.

The natural prescription for the string correlation function in the free-field realization
takes the following schematic form:

∑
Γ-bundles ρΓ

∫
Mg,n

∫
Jac(Σg)

〈2g−2+n∏
α=1

W (uα)∂H(z)
g−1∏
β=1

e−iH(vβ)
n∏
i=1

V wi
ji,hi

(x,zi)
〉
ρΓ⊗ρC×

.

(3.25)
Here, we have suppressed insertions of the ghosts σ and ρ (but they are needed to obtain
a non-vanishing correlator). We have also suppressed right-movers. The insertion of the
fields W (uα) is necessary in the free-field realization. ∂H is the R-symmetry U(1) current
of the internal CFT on T4. Since the internal CFT is topologically twisted, the U(1) charge
conservation is anomalous which necessitates the inclusion of these terms. We also have
inserted the ∂H-current, which comes from the J-current in (3.7) and is needed for a non-
vanishing correlator, see appendix F. We have not been very precise about these terms.
Since we will not be able to compute them fully, we only need the qualitative structure.
The summation over Γ-bundles reduces the theory from global AdS3 to AdS3 /Γ. The
integrand does depend on the locations of uα and vβ , but does so in a trivial free way. The
spins ji satisfy the following constraint:∑

i

ji = 2− 2g − n

2 . (3.26)

10There is more freedom in the abelian case and several homomorphisms can correspond to the same
bundle. See appendix B.3.
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In the following, we demonstrate that the integrand localizes in the total space Mg,n ×
Jac(Σg).11 Thus, the correlation functions reduce to a discrete sum instead of integrals.

4 Localization

We now show that the worldsheet partition function localizes on covering surfaces of the
boundary. Our argument generalizes the argument of [31, 32, 36, 37] and proceeds in
several steps. Readers only interested in the result may skip to section 4.3.

4.1 The argument

Insertion of ξ±. The strategy is to consider the expressions

λ±(z) =
〈
ξ±(z)

2g−2+n∏
α=1

W (uα)
n∏
i=1

V wi
ji,hi

(xi, zi)
〉
ρ

. (4.1)

The subscript ρ means that we compute the correlation function with twisted boundary
conditions that are specified by the homomorphism

ρ = ρΓ ⊗ ρC× : π1(Σg) −→ Γ× C× ⊂ SL(2,C)× C× , (4.2)

as described in section 3.3. We stress that SL(2,C)×C× (and not GL(2,C)) is the correct
group once we remember that there are also the free fermions ψ± (and χ±) that have
twisted boundary conditions in the path integral, see the free field realization (3.9). Those
twisted boundary conditions are specified by the homomorphism ρC× .

It is sometimes useful to combine λ = (−λ−, λ+), which takes values in the two-
dimensional holomorphic vectorbundle S ⊗ Eρ, where S is a fixed spin structure and Eρ
is the flat bundle determined by ρ. For a fixed spin structure S on the worldsheet, any
other spin structure can be obtained by tensoring with a Z2-bundle. Viewing Z2 ⊂ C×

as a subgroup, we can combine the necessary sum over spin structures with the sum (or
integral) over non-trivial U(1)-bundles. We will see below that there is a natural spin
structure S, but for now we keep it arbitrary. To summarize, let us collect the properties
of λ±(z):

1. λ(z) is a section of the holomorphic vectorbundle S ⊗ Eρ.

2. Both components of λ(z) have single zeros at z = uα.

3. λ(z) has only poles near zi. More precisely, the behaviour is

λ+(z) = O
(

(z − zi)−
wi+1

2

)
, (4.3a)

(λ−(z) + xiλ
+(z)) = O

(
(z − zi)

wi+1
2

)
. (4.3b)

This follows from translating the representations described in section 3.2 into OPEs.
This is done explicitly in [32].

11Of course, this space is not a direct product, but we continue to denote it like this for notational
simplicity.
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The existence of such a holomorphic section is extremely constraining. Of course, we
could simply have identically λ ≡ 0, but this also implies the vanishing of the full partition
function. This follows by considering the OPE limit z → zi. The leading term in the
OPE is

ξ+(z)V wi
ji,hi

(x,zi) = (z − zi)−
wi+1

2 V wi
ji− 1

2 ,hi+
1
2
(x,zi) (4.4)

and thus the leading term in the singularity of λ+(z) captures the correlation function of
the primaries itself. Vanishing of λ would hence imply vanishing of the full correlator. So
let us assume that λ 6≡ 0 and see what it implies.

Construction of a meromorphic 1-form. Given this data, we can construct a mero-
morphic 1-form ω(z) with twisted U(1) boundary conditions as follows. More precisely, ω
is a meromorphic section of K ⊗ LρC× , where K is the canonical bundle and LρC× the flat
line bundle determined by the restriction of ρ to the C× subgroup. The poles of ω(z) are
precisely given by the insertion points z = zi (and are single poles) and ω(z) has single
zeros at all the z = uα (and no other zeros). We set

ω(z) =
√
λ−(z)∂λ+(z)− λ+(z)∂λ−(z) . (4.5)

To show that this is indeed a well-defined 1-form, we check the following properties:

1. λ−(z)∂λ+(z)− λ+(z)∂λ−(z) is a meromorphic section of the line bundle K2 ⊗L2
ρC×

.
For this, one simply has to check that the SL(2,C)-part of the homomorphism ρ

cancels out in this combination. Moreover, even though we have not used a covariant
derivative, this expression transforms covariantly.

2. λ−(z)∂λ+(z)−λ+(z)∂λ−(z) has (at most) double poles at z = zi and no other poles.

3. λ−(z)∂λ+(z)− λ+(z)∂λ−(z) has (at least) double zeros at z = uα.

4. λ−(z)∂λ+(z)− λ+(z)∂λ−(z) has precisely these zeros and poles with all double mul-
tiplicity. The line bundle K2 ⊗ L2

ρC×
has degree 2 deg(K) = 4g − 4 (LρC× is flat

and hence does not contribute to the degree). The number of zeros minus the num-
ber of poles of any meromophic section of this bundle is hence 4g − 4 (counted
with multiplicity). We found a maximal list of poles and a minimal list of zeros for
λ−(z)∂λ+(z)− λ+(z)∂λ−(z) and this argument shows that this list is complete.

5. λ−(z)∂λ+(z)− λ+(z)∂λ−(z) possesses a well-defined square root. This follows from
the fact that all its zeros and poles are second order and thus taking the square root
is well-defined up to an overall sign.

This shows all the desired properties. There is a small caveat: the square root is only
guaranteed to be a section of K ⊗ LρC× ⊗ LZ2 , where LZ2 is a Z2-bundle that squares to
the trivial line bundle. We will resolve this problem below and show that LZ2 is absent
when choosing a suitable spin structure.

ω(z) is a simple quantity, since we can apply the technology of line bundles and divisors
to it. Note first that the existence of such a meromorphic section ω(z) is very constraining.
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It is a meromorphic differential with n poles, but 2g − 2 + n prescribed zeros. By the
Riemann-Roch theorem, this is generically impossible and thus non-vanishing of ω(z) im-
poses a non-trivial constraint. We can quantify this very precisely. Fix any meromorphic
1-form ω̃ ∈ K ⊗ LρC× (⊗LZ2). We suppress the Z2-factor in the following. Then the ratio
ω(z)/ω̃(z) is a meromorphic function on the Riemann surface. Correspondingly, it’s divisor
is principal. The divisor of ω(z) is

D = −
n∑
i=1

zi +
2g−2+n∑
α=1

uα . (4.6)

Thus, we need that the divisor D − K − D(LρC× ) to be principal. By the Abel-Jacobi
theorem, this is equivalent to the statement that the image under the Abel-Jacobi map
vanishes. This specifies the line bundle LρC× uniquely and shows that there is exactly one
line bundle for which ω(z) can be non-vanishing. The Abel-Jacobi map can be evaluated
more explicitly for LρC× , which is explained in appendix B.3.

Constructing γ(z). As a next step, we construct a map γ(z) that will turn out to be a
branched covering map from the worldsheet to the boundary. We define it as

γ(z) ≡ −λ
−(z)
λ+(z) . (4.7)

γ(z) has again a number of properties that are straightforward to check:

1. γ(z) is a (multi-valued) function on the Riemann surface Σg. π1(Σg) acts on it by
Möbius transformations.

2. ∂γ(z) 6= 0 and ∂(γ(z)−1) 6= 0 for all z 6= zi. This follows from

∂γ(z) = λ+(z)∂λ−(z)− λ−(z)∂λ+(z)
λ+(z)2 = ω(z)2

λ+(z)2 . (4.8)

Zeros of ∂γ(z) originate either from zeros of ω(z) or from poles of λ+(z). In both
cases, they cancel out by our previous analysis. The argument for γ(z)−1 is analogous.

3. γ(z) = xi +O((z − zi)wi) for i = 1, . . . , n.

The second property means that γ(z) maps into CP1 and is branched over the zi. To
state the first point more clearly, let us uniformize the worldsheet Riemann surface using a
Fuchsian uniformization Σg = H2/ΓF

g .12,13 We have then π1(Σg) ∼= ΓF
g . γ(z) can be viewed

as a single-valued map from the upper half plane H2 to CP1. It is an equivariant map in
the following sense:

γ(g(z)) = ρΓ(g)(γ(z)) (4.9)
12For worldsheet genus 1, the uniformization is C/(Z×Z), but all the following arguments are unchanged.
13In order to be consistent with our notation, we denote by ΓF

g ⊂ PSL(2,R) the genus g Fuchsian
uniformization group and by Γ ⊂ SL(2,C) the orbifold group.
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for z ∈ H2 and g ∈ π1(Σg). Here ρΓ(g) ∈ SL(2,C) acts on γ(z) via Möbius transformations.
Such a map is known as a (branched) developing map on the Riemann surface.14 It defines
a branched complex projective structure on the surface Σg. We have collected some facts
about (branched) complex projective structures in appendix E.

Reconstructing λ±(z). Using (λ+(z), λ−(z)) we have constructed the two quantities
ω(z) and γ(z). The two are actually equivalent to the original data, since we can recover

λ(z) = ω(z)√
∂γ(z)

(
γ(z)

1

)
. (4.10)

The square root of ∂γ(z) is well-defined, because ∂γ(z) has no zeros and all poles are double
poles away from z = zi. The quantities ω(z) and γ(z) are far more convenient, since they
separate the C×-part and the SL(2,C)-part of the problem. Thus, we will continue to work
with them without losing any information.

Spin structure. We have been slightly cavalier with the square root, they could in
principle introduce signs in both ω(z) and

√
∂γ(z) around the cycles of the Riemann

surface. This does not happen, provided that we choose the correct spin structure on the
worldsheet. Let us see this in more detail. ∂γ(z) satisfies

∂g(z)(∂γ)(g(z)) = (∂ρ(g))(γ(z))∂γ(z) , (4.11)

for g ∈ Γ, where we view group elements sometimes as Möbius transformations. We are
trying to define a square root of this transformation behaviour. We know how to take
the square root of (∂ρ(g))(γ(z)) — this is dictated by the lift of Γ from PSL(2,C) to
SL(2,C). For

ρ(g)(z) = az + b

cz + d
, (∂ρ(g))(z) = 1

(cz + d)2 , (4.12)

we can define the square root to be√
(∂ρ(g))(z) ≡ 1

cz + d
. (4.13)

To make sense of
√
∂γ(z), we also need to define a square root

√
∂g(z). This is analogous

to the above situation:
√
∂g(z) is not well-defined for ΓF

g ⊂ PSL(2,R), but only once we
lift it to Γ̃F

g ⊂ SL(2,R), which defines a spin structure on the worldsheet. This is explained
also in appendix D.2. We thus conclude that every such map γ(z) naturally induces a spin
structure on the worldsheet. With these definitions,

1√
∂γ(z)

(
γ(z)

1

)
(4.14)

is by construction a section of S−1 ⊗ Eρ and hence ω is a section of K ⊗ LρC× , thus
eleminating the possibility of an additional Z2 bundle that could appear in the square
root. In the beginning of this section, we fixed a spin structure S. We now see that
this is not arbitrary and we should identify S with the induced spin structure so that the
formula (4.10) becomes correct.

14Other names are deformation or geometric realization.
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Localization in moduli space of Riemann surfaces. We again note that the exis-
tence of such a map γ(z) is extremely constraining. Viewing γ(z) as a map on the upper
half-plane, we can look at its Schwarzian

S(γ)(z) = ∂3γ(z)
∂γ(z) −

3(∂2γ(z))2

2(∂γ(z))2 , (4.15)

which defines a meromorphic quadratic differential on the Riemann surface. It is holomor-
phic away from z = zi because ∂γ(z) 6= 0. Near z = zi, it has a double pole

S(γ)(z) = − w2
i − 1

2(z − zi)2 +O((z − zi)−1) . (4.16)

It is also periodic around the cycles of the Riemann surface because the Schwarzian deriva-
tive is invariant under Möbius transformations. Thus S(γ)(z) is indeed a meromorphic
section of K2.

From here, we already see that there will be a further localization in the parame-
ters of the problem. Let us first discuss the case wi = 1 for all vertex operators, where
the Schwarzian is a holomorphic quadratic differential. The homomorphism ρΓ depends
on 6g − 3 complex parameters (for g ≥ 2), corresponding to the choice of the matrices
ρ(α1), . . . , ρ(αg), ρ(β1), . . . , ρ(βg). The −3 comes from the fact that the matrices have to
obey a single constraint:

g∏
I=1

[ρ(αI), ρ(βI)] = 1 . (4.17)

Another 3 parameters are redundant, because they correspond to overall conjugation.
Thus, the representation variety Hom(π1(Σg), SL(2,C)) (up to overall conjugation) has
complex dimension 6g − 6. Most ρΓ’s will not be associated to a map γ(z). Such maps
are in 1-1 correspondence with quadratic differentials S(Γ)(z) (again up to overall compo-
sition with a Möbius transformation). The (complex) dimension of the space of quadratic
differentials is only 3g − 3. Thus, we conclude that there are 3g − 3 constraints that have
to be obeyed in order for such a map to exist. This shows that when ρΓ is fixed, there
are only discrete points in the moduli space of Riemann surfaces for which λ±(z) can be
non-zero. If we also want to integrate over the positions of the vertex operators, then there
are additional constraints because we also want to require γ(zi) = xi. This leads to n

further constraints and thus the string integrand localizes in Mg,n.
In the case with poles, one has to be careful, because the correspondence between

meromorphic quadratic differentials that satisfy (4.16) and developing maps γ is no longer
1–1. Instead, the quadratic differentials have to satisfy an extra condition, that is called
integrability [47]. This condition ensures that γ has trivial monodromy around the insertion
points.15 This imposes n conditions on the quadratic differential. Another n conditions
are imposed by requiring that the solution γ(z) satisfies γ(zi) = xi.16 Thus the space

15If we would compute correlation functions with twisted vertex operators, then we would specify non-
trivial monodromy around the insertion points.

16Of course these are actually n − 3 constraints because Möbius transformations of the xi are invisible
for the Schwarzian. We already took Möbius transformations into account and in order to have a uniform
presentation we count them as n constraints.
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of quadratic differentials with these properties is 3g − 3 − n. Comparing again with the
dimension of Hom(π1(Σg), SL(2,C)), we see that 3g − 3 + n conditions have to be obeyed,
which shows that generically λ±(z) can only exist on isolated points inMg,n. Due to the
non-abelian nature of the problem, this locus is much harder to quantify than for the case
of line bundles.

Relation to covering maps. Ideally, we would like to conclude that the map γ(z) is a
covering map to the boundary surface. This is almost true, but unfortunately our input is
not enough to decide this question.

The missing part in establishing this is to show that γ(z) only maps to the region
of discontinuity Ω of the boundary. See appendix A for an explanation of the region of
discontinuity. For global AdS3, this problem is non-existent, since Ω = CP1. If this were
the case, then we could compose with the canonical covering map π : Ω −→ ΣG in order to
construct a covering map (here ΣG is the boundary Riemann surface of genus G). In the
unbranched case (i.e. when wi = 1 for every i), it is known that the following conditions
are equivalent [48]:

1. γ(z) 6= CP1

2. γ is a covering map on its image.

3. ρΓ(π1(Σg)) acts discontinuously on the image (i.e. γ(z) maps into Ω).

Unfortunately, there are situations where neither of these conditions is satisfied. See [47]
for an explicit counterexample.

Thus, while this argument shows that a non-trivial λ(z) can only exist when both
the U(1)-bundle localizes and the complex structure of the Riemann surface localizes, we
cannot exactly predict the localization locus. However, when the worldsheet is a covering
surface of the boundary, we can explicitly construct such a section λ(z), see e.q. (4.10)
(this holds for arbitrary correlators).

Physically, there is reason to believe that only the covering maps should appear in the
localization locus. If a map does not satisfy these conditions, then there is a point z∗ on
the worldsheet such that γ(z∗) 6∈ Ω. In a small neighborhood of z∗, we can still view Γ(z)
as a map from the worldsheet to the boundary surface, but the map is undefined at z = z∗.
In fact, the behaviour of γ(z) is very similar to an essential singularity: in an arbitrarily
small neighborhood of z∗, the map takes every possible value in CP1 infinitely many times
(with the possible exception of up to two points according to Picard’s theorem). A good
analogy is the “covering map” CP1 −→ CP1 given by γ(z) = e

1
z . While γ(z) satisfies

∂γ(z) 6= 0 (and ∂(γ(z)−1) 6= 0) everywhere, it is undefined at z = 0 and has an essential
singularity there. Of course, we know that CFT correlators on the sphere cannot have
essential singularities which is why this issue does not arise. For non-trivial boundaries,
this is not automatic, but we still find it reasonable that CFT correlators are free from
essential singularities in this sense. We could view such a map γ(z) also as a covering
map of infinite degree. Covering spaces are suppressed by a factor of the degree in the
partition function of the symmetric orbifold, see eq. (2.4). Thus, also from this point of
view, it is natural that these non-covering maps do not contribute. We shall assume this
in the following.
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4.2 Special cases

The discussion simplifies considerably when either the worldsheet or the boundary surface
has genus 1. We discuss these cases here separately. We restrict to the unbranched case.

Boundary genus 1. In this case, we can conjugate ρΓ and let it map into the affine group.
Thus, γ(z) defines in this case a complex affine structure (following the terminology of [48].)
It is a known result that such an affine structure only exists when also the worldsheet has
genus 1. This implies that in spaces with a boundary torus, all higher genus corrections
have to vanish. This was already conjectured to be the case in [1].

This result is simple to prove, so let us repeat the proof here. If ρΓ maps in the group
of affine transformations, ∂γ(z) only transforms muliplicatively around the cycles of the
Riemann surface. Hence ∂γ(z) is an element of a line bundle K ⊗ L. The line bundle L
captures the multiplicative factors by which ∂γ(z) transforms. Since L is again specified
by a homomorphism (the projection of ρΓ to the rotational subgroup of the affine group),
L is a flat line bundle. Thus, deg(K ⊗ L) = 2g − 2. As such ∂γ(z) has 2g − 2 more zeros
than poles. But we have seen that ∂γ(z) has no zeros and hence g ≤ 1.

In the case where both worldsheet and boundary have genus 1, localization on covering
maps is easy to prove explicitly. We uniformize the worldsheet torus as usual as C/(Z⊕Zτ).
There are three different cases:

1. The boundary torus is obtained by Schottky uniformization: T2 = (CP1 \{0,∞})/Z.
The group action in the boundary identifies the boundary coordinate x ∈ CP1 as

x ∼ e2πitx , (4.18)

where t is the boundary modular parameter. Thus, we search for a map γ(z) (viewed
as a meromorphic map on C) that satisfies ∂γ(z) 6= 0, ∂(γ(z)−1) 6= 0 and

γ(z + 1) = e2πictγ(z) , γ(z + τ) = e−2πidtγ(z) , (4.19)

for two integers c and d. Consider f(z) = γ(z)
∂γ(z) . f(z) is clearly periodic and is thus

an elliptic function. f(z) has no poles, since the only possible poles are located at the
poles of γ(z) and cancel out. This implies that f(z)is bounded and hence constant.
Thus γ(z) = B exp (2πiAz). We can now solve for the periodicity conditions. The
first implies that A = ct − a for some integer a. The second periodicity condition
implies the relation

(cτ + d)t = aτ + b (4.20)

for integers a, b, c, d. Notice that the exponential map automatically maps in Ω =
CP1 \ {0,∞} and thus we can construct a well-defined map from the worldsheet to
the boundary torus. Thus the localization locus indeed corresponds to all covering
surfaces of the boundary torus.

2. The boundary torus is obtained by the following quotient:

x ∼ e
2πitm
M

+ 2πin
M x (4.21)
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for m ∈ Z and n ∈ ZM . The corresponding bulk geometries are conical defects. The
maps with these periodicity conditions are again exponential maps and one finds the
same localization locus as before.

3. The boundary torus is obtained from the standard uniformization

x ∼ x+ 1 ∼ x+ t . (4.22)

Thus, we search now for a map satisfying ∂γ(z) 6= 0, ∂(γ(z)−1) 6= 0 and

γ(z + 1) = ct− a+ γ(z) , γ(z + τ) = −dt+ b+ γ(z) (4.23)

for four integers a, b, c, d. (∂γ(z))−1 is an elliptic function without poles and hence
constant. Thus γ(z) = Az for some A. The first periodicity condition implies A =
ct− a and the second leads to the same condition

(cτ + d)t = aτ + b (4.24)

as above.

Worldsheet genus 1. This case is also similar to the previous one. Let us assume
that the boundary has genus G ≥ 2, since we already analyzed the genus 1 case. Since
π1(Σg) is abelian, also the image ρΓ(π1(Σg)) is abelian. We may hence use an overall
conjugation and conjugate the image ρΓ(π1(Σg)) into the affine group. Abelian (Kleinian)
subgroups of SL(2,C) are precisely given by the three cases that we discussed above.17

We thus learn again that γ(z) takes one of the simple forms that we described above. In
any case, the image of γ(z) is CP1 with either one or two points removed. However, for
a boundary with genus G ≥ 2, the limit set has necessarily infinitely points. Thus, we
conclude that the image of γ does not lie in the region of discontinuity Ω of the boundary.
So while the worldsheet partition function indeed localizes, the localizing surface here does
not correspond to a covering map. This exemplifies the problem that we encountered in
the last subsection.

Worldsheet genus 0. Finally, let us also comment on the genus 0 case. In this case,
our argument completely trivializes. Since π1(Σ0) is the trivial group, there are no non-
trivial Γ-bundles over which we could sum and no non-trivial moduli in which the partition
function could localize. In fact, one can see that the existence of λ± does not impose
any constraints.18 Thus, we expect the sphere partition function to be generically non-
vanishing.

17There are also a couple of other possibilities, that are excluded by inspection such as the order 2 abelian
subgroup generated by inversion x 7→ − 1

x
.

18We consider a two-point function with w1 = w2 = 1, since this the lowest number of fields where the
formalism makes sense.
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4.3 Worldsheet partition functions

We can now say something about the full worldsheet correlation function (with the ad-
ditional operator insertions that appear in (3.25)). It should take the following qualita-
tive form:〈2g−2+n∏

α=1
W (uα)∂H(z)

g−1∏
β=1

e−iH(vβ)
n∏
i=1

V wi
ji,hi

(x,zi)
〉

(Σg,n,Lg)

=
∑

(Σ′,L′)
δ(6g−6+2n)(Σg,n − Σ′)δ(2g)(Lg − L′)

×
〈2g−2+n∏

α=1
W (uα)∂H(z)

g−1∏
β=1

e−iH(vβ)
n∏
i=1

V wi
ji,hi

(x,zi)
〉′

(Σ′,L′)

. (4.25)

Here, the notation emphasizes the dependence of the correlator on the Riemann surface
Σg (or the punctured Riemann surface Σg,n) and the line bundle Lg that specifies the
periodicity properties of the free fields. The prime on the correlator on the r.h.s. indicates
that the delta function is factored out. Let us be summarize what we have exactly shown:

1. We have shown that the correlation function vanishes, except when (Σg,n, Lg) coin-
cides with special (punctured) Riemann surfaces with corresponding line bundles.

2. From counting dimensions, we have shown that these special Riemann surfaces are
isolated points in theMg,n×Jac(Σg). Thus, the sum appearing on the r.h.s. is indeed
a discrete sum.

3. Whenever Σ′ is a ramified cover of the boundary surface with ramification indices
specified by spectral flow, there exists a pair (Σ′, L′) that satisfies all the constraints
and that should appear in the sum.

4. We have not shown that all the surfaces that satisfy the constraints we have ana-
lyzed are ramified covers and in general this is not true. But we have argued that
nonetheless only such surfaces should appear in the partition function and assume
this in the following to be the case.

5. We have only shown that the correlation function vanishes generically. As such it is
a distribution with point-like support in Σg,n × Jac(Σg,n). Such distributions are a
finite sum of δ-functions and derivatives [49, Theorem 6.25]. It is natural to assume
that no derivatives appear. This is the case for genus 0 correlators for global AdS,
which under much better analytic control [31, 32], but we do not know an argument
for this in our more general setting. We shall assume this in the following.

Let us in the following normalize the delta function such that∫
Mg,n

δ(6g−6+2n)(Σg,n − Σ′)f(Σg,n) = f(Σ′) , (4.26)∫
Jac(Σg)

δ(2g)(L− L′)f(L) = f(L′) . (4.27)
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for any functions f . We view the delta-functions as top-forms on the respective spaces
so that no measure is necessary. The primed correlator appearing in (4.25) should in
particular be understood as a function on moduli space.

Remaining correlator. Let us now discuss the remaining correlator. As we already
stressed, we do not know how to compute it, but we know a few qualitative properties
that it should satisfy. The first is a simple counting argument for the degrees of freedom.
It was already explained in [30, 33] that the tensionless string has only four transverse
oscillators and these correspond roughly to the oscillators of T4. In other words, the
remaining correlation function should essentially only capture the topologically twisted
partition function of T4. This topologically twisted partition function has a direct relation
with the untwisted partition function (evaluated on a specific metric), provided that the
insertion points vβ are chosen judiciously. This is explained in appendix F.

Spin structure. The question remains with which spin structure the T4 partition func-
tion should be evaluated. The natural guess (that is confirmed in the specific example of
a torus in [1]) is to take the induced spin structure on the worldsheet that we discussed
in section 4.1, since there is no other distinguished spin structure on the worldsheet. This
spin bundle in fact coincides with the pull-back bundle γ∗S of the spin bundle on the
boundaries that is defined by lifting Γ ⊂ PSL(2,C) to SL(2,C) as discussed in section 3.3.

Full integrand. The upshot of this is that the worldsheet integrand should take the
following form:

I =
∑

(γ,L′)
δ(6g−6+2n)(Σg,n − Σγ)δ(2g)(Lg − L′)Zclassical(Σγ)ZT4(Σγ , γ

∗S) , (4.28)

where S is the spin structure of the boundary component to which γ maps and Σγ the
covering surface.

Classical part. We have included a factor Zclassical(Σγ) in the ansatz for the inte-
grand (4.29). Such a factor necessarily is present because of the conformal anomaly. The
central charge of the (not topologically twisted) sigma model on T4 is c = 6 and conse-
quently ZT4(Σγ , γ

∗S) depends on the metric on the worldsheet. This metric dependence is
cancelled by Zclassical(Σγ). However, this property does not determine Zclassical(Σγ) com-
pletely. Comparing thermal AdS3 with the BTZ black hole and the conical defect, it was
seen in [1] explicitly that Zclassical does depend on the precise background. However, we
should expect that Zclassical does actually not depend on the moduli of the worldsheet and
we have

I = Zclassical
∑

(γ,L′)
δ(6g−6+2n)(Σg,n − Σγ)δ(2g)(Lg − L′)ZT4(Σγ , γ

∗S) . (4.29)

One argument for this is modular invariance. This expression is modular invariant. If
the classical part would also depend on the moduli, then it would need to do so in a way
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that preserves modular invariance, which is typically impossible for a ‘classical’ partition
function. This independence is also observed in simple examples [1].19

5 Background independence

After having established that the worldsheet partition function of the tensionless string
localizes in the moduli space of Riemann surfaces, we want to go a step further and argue
that the string partition function is actually independent of the precise geometry in which
we place the string, but depends only on the boundary geometry.

5.1 Some topology

Before we start, let us review some concepts of the fundamental group. Let us fix a
geometry AdS3/Γ an orbifold group Γ. Let us denote the boundary surface by ΣG, which
we assume for now to be connected. The boundary is obtained as Ω/Γ, where Ω ⊂ CP1 is
the region of discontinuity of the action of Γ on CP1. Ω is an intermediate covering space
of ΣG. Thus, we have the hierarchy of coverings

Σ̃G −→ Ω −→ ΣG , (5.1)

where Σ̃G = H2 for G ≥ 2. The covering map Ω −→ ΣG is given by identifying points in
the orbits of the group action. Such a covering space is called regular (or normal). Γ is
the group of deck transformations of this covering map, i.e. the group of automorphisms of
Ω which leave the covering map unchanged. Regularity implies that there is a short exact
sequence of groups [50, Proposition 1.40]20

1 −→ π1(Ω) −→ π1(ΣG) −→ Γ −→ 1 . (5.2)

In particular, there is a canonical projection map p : π1(ΣG) −→ Γ.
For disconnected boundaries, the relevant groups are strictly speaking no longer groups

because we can define a fundamental group for every connected component on the bound-
ary. In this case there is a projection p : π1(Σ(i)

Gi
) −→ Γ for every component Σ(i)

Gi
of

the boundary.

5.2 Sum over covering maps

In this subsection, we explain how string theory on different backgrounds can be equivalent.
Twisted sectors of the orbifold partition function with orbifold group Γ are labelled by (not
necessarily injective) homomorphisms

ρ : π1(Σg) −→ Γ , (5.3)
19These cases are a bit special because the worldsheet torus can cover the boundary torus with an

arbitrarily high degree and the classical part depends on the degree of the covering map. This issue does
not arise for the higher genus situations.

20We are not precise about the base points here. All statements should be understood with a fixed
base point.
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up to overall conjugation. We used to denote this homomorphism by ρΓ in the last section,
but since ρC× will not appear again, we simply denote it by ρ.

We also argued that the worldsheet partition function localizes on covering surfaces.
Covering surfaces in a given twisted sector are specified by injective homomorphisms ι :
π1(Σg) −→ π1(ΣG) such that p ◦ ι = ρ. In case the boundary is disconnected, ι could
map into the fundamental group of any component. To understand this, suppose that we
have given an injective homomorphism ι : π1(Σg) −→ π1(ΣG) with the property p ◦ ι = ρ.
The image of ι defines a subgroup of π1(ΣG) and hence a covering space. However, such
a homomorphism actually specifies a marked covering space, i.e. a covering space together
with canonical generators for the fundamental group. These canonical generators are given
by the images under ι of the generators of π1(Σg). Thus, we will actually count identical
covering spaces, but with different markings several times. This is appropriate if we want
the partition function to be a function on Teichmüller space and not on moduli space. Let
us also recall that we understand all homomorphisms ι : π1(Σg) −→ π1(ΣG) up to inner
automorphisms, i.e. overall conjugation.

In a commutative diagram, we can summarize the situation as follows:

π1(Σg)

1 π1(Ω) π1(ΣG) Γ 1
p

ι ρ , (5.4)

where the horizontal maps are exact. Thus, the worldsheet partition function naturally is
of the following form for a connected boundary

Zworldsheet =
∑

ρ:π1(Σg)−→Γ

∑
ι:π1(Σg)−→π1(ΣG)

injective, p◦ι=ρ

Zι . (5.5)

For a disconnected boundary, the change is very minimal. Since the worldsheet can cover
either boundary, we get an additional sum over boundary components:

Zworldsheet =
∑
i

∑
ρ:π1(Σg)−→Γ

∑
ι:π1(Σg)−→π1(Σ(i)

G )
injective, p◦ι=ρ

Zι . (5.6)

5.3 Examples

Let us exemplify this structure with some examples.

Cusp geometry. This is a particularly simple case that actually was not discussed in [1].
In this case, the boundary of the space is a single torus and the orbifold group is Z ⊕ Z,
acting on the boundary by identification of x ∼ x+1 ∼ x+ t. In this case Ω = C and hence
π1(Ω) = {0} is the trivial group. So, p is simply the identity map, which implies that ρ = ι.
Thus, out of the two sums that are present in (5.5), actually only the sum over twisted
sectors is present. In every twisted sector, the partition function localizes on exactly one
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configuration. This configuration already appeared in our discussion in section 4.2. In this
case, ρ = ι is a homomorphism from Z2 to Z2 and hence naturally identified with an integer
2× 2 matrix.

Thermal AdS3. In this case Ω = CP1 \ {0,∞} and the short exact sequence of funda-
mental groups reads

1 −→ π1(Ω) ∼= 〈α〉 −→ π1(ΣG) ∼= 〈α〉 ⊕ 〈β〉 −→ Z ∼= 〈β〉 −→ 1 . (5.7)

Here, we wrote 〈α〉 for the abelian group {nα |n ∈ Z}. α and β are the generators of
the spatial and temporal homology cycle in the boundary torus. The map from π1(Ω) to
π1(ΣG) is then the obvious inclusion map and the second map is the projection map that
sends α 7→ 0 and β 7→ β. Homomorphisms ι are still naturally identified with 2× 2 integer
matrices. Under the identification Z2 ∼= 〈α〉 ⊕ 〈β〉 both in the boundary and the bulk, we
can write

ι =
(
a b

c d

)
, p ◦ ι =

(
c d
)
. (5.8)

Thus, twisted sectors are naturally labelled by the two integers (c, d) and the localization
in each twisted sector is labelled by two integers (a, b). This is precisely the structure
that was observed in [1]. For the Euclidean BTZ black hole black hole, the situation is
analogous, except that the role of α and β is interchanged and hence p ◦ ι =

(
a b
)
.

Conical defect in thermal AdS3. This case is very similar. The short exact of funda-
mental groups is now

1 −→ π1(Ω) ∼= 〈α〉 −→ π1(ΣG) ∼= 〈α〉 ⊕ 〈β〉 −→ Z⊕ ZM ∼= 〈β〉 ⊕ 〈θ〉 −→ 1 . (5.9)

The first map is now the embedding α 7→ (Mα, 0). θ is the additional generator of order
M . Under the same identification of ι with a 2× 2 matrix as before, we have

p ◦ ι =
(
a mod M b mod M

c d

)
. (5.10)

Handlebodies. Moving on to a single higher-genus boundary, our description becomes
less explicit. The orbifold group is a Schottky group ΓS

G of genus G and as such is a free
group with generators B1, . . . , BG. The fundamental group of the boundary surface is
generated by α1, . . . , αG, β1, . . . , βG with the usual relation

∏
I [αI , βI ] = 1. According

to the short exact sequence (5.2), the fundamental group of the domain Ω is the smallest
normal subgroup of π1(ΣG) that contains α1, . . . , αG. The surjection π1(ΣG) −→ ΓS

G

simply sends αI 7−→ 1 and βI 7−→ BI . This defines the handlebody that belongs to this
marking. For any different marking of the boundary surface, we obtain a different handle-
body. Unfortunately, describing homomorphisms ρ : π1(Σg) −→ ΓS

G is quite complicated
and we will not be more explicit than this.
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5.4 Grand canonical ensemble

Until now, we have not discussed how the chemical potential of the grand canonical en-
semble enters the worldsheet theory. In the boundary theory, we have discussed it in
section 2.2. In general, the boundary of the hyperbolic 3-manifold in question might have
several components. In this case, from a boundary point of view, we can actually introduce
several chemical potentials. From a worldsheet point of view, these chemical potentials en-
ter in a slightly assymmetric way. We first discuss the ‘diagonal’ chemical potential (by
this we mean the average of all boundary chemical potentials) and postpone the others to
section 5.5. There are two ways of introducing it, which seem to be equivalent. Basically,
the chemical potential can be introduced by adding the spacetime identity vertex operator
on the worldsheet. This corresponds to the zero mode of the dilaton in spacetime and
hence the chemical potential can also be identified with the string coupling constant. We
begin with the latter formulation.

Identification with string coupling. The fugacity p = e2πiσ is closely related to the
string coupling constant. Consider adding the topological term

λ

4π

∫ √
γR (5.11)

to the worldsheet action. Here γ is the worldsheet metric and R the corresponding Ricci
scalar. This can be evaluated using the Gauss-Bonnet theorem and naively equals λ(2−2g).
However, the Riemann surface is punctured and one has to be a bit careful about the
insertions of vertex operators, where the metric becomes singular. We want to exclude the
insertion points from the integration. Near these insertions, the metric is determined by
the condition that the worldsheet is a holomorphic cover of the boundary theory.

To analyze what happens close to the insertion, let us choose local coordinates such
that a vertex operator is inserted close to zi = 0 and the corresponding insertion in the
boundary is also xi = 0. The covering map behaves locally like

γ(z) = aiz
wi +O(zwi+1) . (5.12)

Thus, the metric behaves as

ds2 ∝ |∂γ(z)|2dz dz̄ = A|z|2wi−2dz dz̄ +O(|z|2wi−1) . (5.13)

For a metric of the form ds2 = eφ(z,z̄)dz dz̄, we have
√
γR = −∆φ(z, z̄) . (5.14)

In our case, φ(z, z̄) = (wi − 1) log |z|2 + regular terms, thus leading to
√
γR = −4π(wi − 1)δ(2)(z) + finite. (5.15)

Integrating over the full Riemann surface leads by the Gauss-Bonnet theorem to the Euler
characteristic. Thus, after excising the singular points (or alternatively integrating only
over the regular part of the curvature), we obtain

λ

4π

∫
Σg\{z1,...,zn}

√
γR = λ

(
2− 2g +

n∑
i=1

(wi − 1)
)
. (5.16)
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The Riemann-Hurwitz formula connects the degree Nc = deg(γ), the worldsheet and
boundary genus and the ramification indices as follows:

2− 2g = Nc(2− 2G)−
n∑
i=1

(wi − 1) . (5.17)

Thus, we can express the parentheses in terms of the degree Nc of the relevant covering
map and the boundary genus G as follows:

λ

4π

∫
Σg\{z1,...,zn}

√
γR = λNc(2− 2G) . (5.18)

This is exactly what we want: this term in the action weighs different covering maps ac-
cording to their degree, which is analogous to the situation in the symmetric orbifold (2.4).
For this to work literally, we have to identify

λ(2− 2G) = 2πiσ . (5.19)

In terms of the string coupling constant, we have

p = g2G−2
string , (5.20)

where p = e2πiσ and gstring = e−λ. Here we assume that there is only one boundary surface
or that all boundary surfaces have the same genus. If this is not the case, the situation can
be corrected by including off-diagonal chemical potentials, see section 5.5.

The spacetime identity operator. Alternatively, the grand canonical partition func-
tion is obtained by adding the following term to the worldsheet action [51]:

δS = 2πiσ
∫

Σ
I(z, z̄) . (5.21)

Here, I(z, z̄) is the worldsheet operator that corresponds to the spacetime identity. Note
that δS is a an SL(2,C) singlet and as such is a marginal operator that we can add to
the worldsheet theory. I(z, z̄) is actually quite easy to construct, its unintegrated version
corresponds to the vertex operator

I(0)(z, z̄) = V w=1
j,h=0(x, x̄, z, z̄) (5.22)

Since h = 0, the r.h.s. does not depend on x and gives hence a well-defined operator
I(0(z, z̄). The worldsheet conformal weight also vanishes. Thus, I(0)(z, z̄) corresponds to
an unintegrated vertex operator on the worldsheet. To obtain the integrated version, we
apply the descent formalism. For the N = 4 topological string, one applies the twisted
supercharges G̃−−1

¯̃G−−1 to I(0)(z, z̄). One needs to pick G̃−−1 and not G−−1 to preserve conser-
vation of the various ghost currents of the full worldsheet theory. Since we want the vertex
operator to have also vanishing Z-charge (see section 3.2), we need to pick also j = 1

2 .
Applying G̃−−1 lowers the value of the sl(2,C) spin by one unit and hence the integrated
vertex operator has j = −1

2 . This leaves the constraint (3.19) unchanged.
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The integrated vertex operator I =
∫
G̃−−1

¯̃G−−1I
(0)(z, z̄) plays then the role of the

spacetime identity. Up to normalization, it survives the orbifold, since it is an sl(2,C)
singlet. As such, it is a central term of the operator algebra. Since all it’s OPEs are trivial,
it simply produces an eigenvalue when inserted in a correlator,

〈
I

2g−2+n∏
α=1

W (uα)
n∏
i=1

V wi
ji,hi

(xi, zi)
〉

= λ

〈2g−2+n∏
α=1

W (uα)
n∏
i=1

V wi
ji,hi

(xi, zi)
〉
. (5.23)

To determine this eigenvalue, one can invoke various consistency conditions. First of all, the
eigenvalue λ cannot depend on either ji, hi, xi or zi, since these quantities can be changed
by acting with an element in the chiral operator algebra on the vertex operators and I
should be central in this operator algebra. Similarly, we could consider any descendant
vertex operator that is obtained by the action of the chiral operator algebra.

From general properties of OPEs, it follows that the eigenvalue λ should be additive
in the involved quantum numbers. Adding another unintegrated identity vertex operator
should not change the result (since we can pull out the vertex operators one after another).
This has the effect of adding both one more W and a V . When the boundary theory
is a sphere, every vertex operator V wi

ji,hi
(xi, zi) contributes 1

2wi to the eigenvalue [51, 52].
Since I is a SL(2,C) singlet under the orbifold, this should not change in the topologically
non-trivial situation. These arguments together show that V wi

ji,hi
(xi, zi) contributes 1

2wi to
the eigenvalue of I and each W contributes −1

2 , thus giving in total

λ = A

2

(
n∑
i=1

wi − (2g − 2 + n)
)
, (5.24)

where we allowed for an arbitrary normalization A of I. We set A = (1 −G)−1, where G
is the boundary genus so that21

λ = 1
2− 2G

(
2− 2g +

n∑
i=1

(wi − 1)
)
. (5.25)

This fits with the sphere result of [51]. Of course, this constant only makes sense when
the corresponding correlator is non-vanishing, otherwise the statement is void. For this a
covering map from the worldsheet to the boundary has to exist.

From the Riemann Hurwitz formula (5.17), we conclude that λ = Nc = deg(γ), i.e. the
eigenvalue of the spacetime identity operator is again the degree of the associated covering
map.22 Thus we see that adding the identity operator is equivalent to changing the string
coupling. This makes sense because both these operators can be identified with the dilaton
zero mode. Since the string coupling is easier to introduce, we will continue to work with
the string coupling.

21We assume that G 6= 1. For G = 1, both the parenthesis and the prefactor vanish so that the ratio can
still be non-trivial, but is more subtle to define.

22This statement makes again sense for a boundary torus.
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Sphere partition function. We saw that the chemical potential p of the grand canonical
ensemble is essentially mapped to the string coupling constant on the worldsheet according
to p = g2G−2

string . It is important to keep in mind that the whole discussion only applies for
worldsheet genera g ≥ 1. There is also a non-vanishing sphere partition function that we
need to treat separately. We do not know how the sphere partition function is computed
in general, because the volume of the residual Möbius symmetry is difficult to regularize.
However, we expect it to capture the ‘classical part’ of the string partition function. We
thus expect that

Z0 ∝ Ibulk(H3/Γ) ∝ vol(H3/Γ) (5.26)

is proportional to the volume of spacetime. Here Ibulk(M) is the spacetime on-shell action
evaluated on hyperbolic manifold M.23 This volume is anomalous and has to be regular-
ized. The regularization depends on the boundary metric (and not only on its conformal
class), which gives rise to the conformal anomaly. This computation is standard, see [53, 54].
We normalize H3 by setting the Ricci scalar to −6. The constant of proportionality is then
essentially given by the central charge of the boundary theory

Z0 = c

6π vol(H3/Γ) ≡ −c Ibulk(H3/Γ) , (5.27)

so that eZ0 captures the conformal anomaly of a central charge c CFT. We normalize
Ibulk(H3/Γ) such that it precisely accounts for the conformal anomaly of a c = 1 CFT. As
we shall see below, we should take c = 6, the central charge of a single T4, since the effect
of the grand canonical potential is already incorporated in the string coupling g−2

string that
multiplies the sphere partition function.

5.5 Discrete torsion and more chemical potentials

We constructed the ‘diagonal’ chemical potential above. In general, we can however have
different chemical potentials at the boundaries of the bulk. From a worldsheet perspective,
these additional chemical potentials can be introduced by considering non-trivial discrete
torsion. We first recall the concept of discrete torsion and then apply it to our situation.

Discrete torsion. For an orbifold CFT, the genus g partition function takes in general
the following form

1
|Γ|

∑
ρ:π1(Σg)→Γ

ε(ρ)Zρ , (5.28)

where Γ is again the orbifold group and homomorphisms ρ up to conjugation specify Γ-
bundles. ε(ρ) is a phase depending on the Γ-bundle over which we sum. It is constrained
through various consistency conditions and in general allowed values are classified by the
Schur multiplier of the orbifold group — the cohomology group H2(Γ,U(1)). Given a
2-cocycle φ ∈ H2(Γ,U(1)), one can define [55–57]

ε(ρ) =
g∏
I=1

φ(ρ(αI), ρ(βI))
φ(ρ(βI), ρ(αI))

, (5.29)

where α1, . . . , αg, β1, . . . , βg are a canonical homology basis of the worldsheet, see (B.1).
23Such a local spacetime action does not exist in this regime. When we talk about the spacetime effective

action, we mean the supergravity action which applies in the regime k � 1 and continue it to k = 1. This
seems to give the correct results, but is not a very satisfying procedure.
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Schur multiplier for Kleinian groups. Let us discuss the Schur multiplier for Kleinian
groups, i.e. the orbifold groups Γ that reduce H3 to H3/Γ. Let us assume thatM∼= H3/Γ
is a non-singular manifold.24 The group cohomology of Γ can be computed by noticing that
H3/Γ is an Eilenberg-MacLane spaceK(Γ, 1), meaning that π1(H3/Γ) = Γ and πn(H3/Γ) =
0 for n > 1. It is known that the group cohomology coincides with the usual singular
cohomology of its corresponding Eilenberg-MacLane space. Hence the Schur multiplier
can be interpreted more geometrically as the singular cohomology group H2(H3/Γ,U(1)).

From a worldsheet action point of view, an element B ∈ H2(H3/Γ,U(1)) is a two-form
with dB = 0 (up to exact forms). Hence we can add the following topological term to the
worldsheet action:

2πi
∫

Σ
g∗B , (5.30)

where g : Σ −→ H3 is the embedding coordinate of the string in H3/Γ. If B ∈ H2(H3/Γ,Z),
then this term is in 2πiZ and hence has no effect in the path integral. Thus, inequivalent
topological terms are indeed classified by the cohomology group H2(H3/Γ,U(1)). We ex-
plain in appendix A that H2(H3/Γ,U(1)) ∼= U(1)R is torsion free. It is naturally related to
the torsion free homology group H2(H3/Γ,Z) ∼= ZR. R can be computed in terms of Γ and
the boundary genera of the manifoldM, see eq. (A.7).

In the following, we will discuss some very natural generators of H2(H3/Γ,Z), namely
the boundary components of H3/Γ. Let ∂H3/Γ = Σ(1) t · · · t Σ(n) be the boundary
components of the space. Then each Σ(i) defines a cocycle in [Σ(i)] ∈ H2(H3/Γ,Z). Of
course,

∑n
i=1[Σ(i)] is the boundary of H3/Γ and is thus null-homologous. This is the

only relation in homology and thus we obtain n − 1 generators of homology (and hence
cohomology), exactly the number of missing chemical potentials. In the examples we
consider, these generators fully generate the second (co)homology group, but we discuss in
appendix A an example with an additional generator for H2(H3/Γ,Z).25

Identification with off-diagonal chemical potentials. We are now arguing that ad-
ditional chemical potentials that can be introduced for multiple boundaries can indeed be
identified with the discrete torsion parameters. Let us pick as generators of H2(H3/Γ,Z)
the fundamental classes [Σ(1)], . . . , [Σ(n−1)]. We are omitting the last boundary to keep
the generators independent (we have [Σ(n)] = −[Σ(1)]− · · · − [Σ(n−1)]). As we mentioned,
there could be more generators that do not originate from the boundaries which we shall
ignore. Let now B(1), . . . , B(n−1) the corresponding generators of H2(H3/Γ,Z) such that∫

Σ(i) B(j) = δij for i = 1, . . . , n− 1. Then we can consider the topological terms

Stop = 2πi
n−1∑
i=1

σi

∫
Σ
g∗B(i) . (5.31)

We can evaluate this term on the configurations that appear in the path integral. Let us
assume that the worldsheet Σ covers the boundary Σ(i) holomorphically (for i = 1, . . . , n−

24Otherwise we have to employ orbifold cohomology in the following discussion.
25We do not understand the meaning of additional generators of H2(H3/Γ,Z) in general. However, for

the conical defect, H2(Γ,U(1)) has an additional torsion generator and its effect can be absorbed in the
definition of the boundary chemical potential [1]. Thus, it has no physical effect in this case.
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1), then the term evaluates to

Stop = 2πi deg(γ)
n−1∑
j=1

σj

∫
Σ(i)

B(j) = 2πi deg(γ)σi . (5.32)

If it covers instead Σ(n), we obtain

Stop = 2πi deg(γ)
n−1∑
i=1

σi

∫
Σ(n)

B(i) = −2πi deg(γ)
n−1∑
i=1

σi . (5.33)

This confirms that these terms indeed correspond to the off-diagonal chemical potentials.

The quasi-Fuchsian wormhole. For the two-sided wormhole that is obtained as
H3/ΓQF

G for ΓQF
G a genus G quasi-Fuchsian group (see appendix A.4 for the relevant defi-

nitions), we can be quite explicit. There is a single generator of H2(H3/ΓQF
G ,Z), which we

can take to be the fundamental class of either boundary component. Thus, the topological
term weighs contributions that cover the left boundary with opposite phases than those
that cover the right boundary. Eq. (5.6) takes the form

Zworldsheet =
(
p

1
2
1 p
− 1

2
2

) 2g−2
2G−2 ∑

ρ:π1(Σg)−→ΓQF
G

∑
ι:π1(Σg)−→π1(Σ(1)

G ),
injective, p◦ι=ρ

Zι

+
(
p
− 1

2
1 p

1
2
2

) 2g−2
2G−2 ∑

ρ:π1(Σg)−→ΓQF
G

∑
ι:π1(Σg)−→π1(Σ(2)

G ),
injective, p◦ι=ρ

Zι . (5.34)

Upon setting the string coupling constant to g2G−2
string = p

1
2
1 p

1
2
2 , we can arrange it that covering

maps mapping to the left (right) boundary are weighted by the fugacities p1 (p2).

5.6 Full string partition function

We shall now restrict the discussion to partition functions and tie various observations
together. Our ultimate goal is to compute the string partition function in the background
AdS3/Γ×S3×T4 in the grand canonical ensemble. Let us first restrict to backgrounds with
a single boundary so that there is no discrete torsion. The grand canonical string partition
function takes the general form

Z̃ = exp

 ∞∑
g=1

g2g−2
stringZg

 = exp

 ∞∑
g=1

p
2g−2
2G−2Zg

 , (5.35)

where Zg is the genus g worldsheet partition function. The localization property implies
that the worldsheet genus takes the form g = Nc(G− 1) + 1 (with the exception of genus
g = 0). To take into account the sphere partition function with g = 0, we proceed as follows.
The sphere partition function in the canonical ensemble should provide a contribution
−6 deg(γ)Ibulk, where the factor 6 comes from the fact that the seed theory of the boundary

– 38 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
3

has central charge c = 6, see eq. (5.27). Thus, in the grand canonical ensemble, the effect
of the sphere partition function is a renormalization

p 7−→ p e−6Ibulk (5.36)

or σ 7−→ σ + 3i
π Ibulk.

Thus, the string partition function becomes

Z = exp

 ∞∑
Nc=1

(
pe−6Ibulk

)n
ZNc(G−1)+1

 . (5.37)

The partition function ZNc(G−1)+1 is in turn obtained by integrating (4.29). We refine (4.29)
by splitting the sum over covering maps as discussed in section 5.2, see eq. (5.5):

Zg = Zclassical, g

∫
Mg

∑
ρ:π1(Σg)−→G

∑
ι:π1(Σg)−→π1(ΣG),

injective, p◦ι=ρ

δ(6g−6)(Σg,Σι)ZT4(Σι, Sι) . (5.38)

Here, we changed the notation slightly and denote by Σι the marked covering surface that
is determined by the homomorphism ι. We integrate over Σg in the expression. Finally, Sι
is the induced spin structure on Σι.

Markings and integration. We should note that the surface Σι comes naturally with
a marking, i.e. a set of generators α1, . . . , αg, β1, . . . , βg of π1(Σg) up to inner automor-
phisms. The ambiguity up to an inner automorphism comes from the fact that we haven’t
chosen a basepoint for π1(Σg) and neither for the boundary. Thus, the same surface ap-
pears several times in the sum of the integrand, since we are also summing over markings.
Recall that the moduli space of Riemann surfaces is related to Teichmüller space as follows:

Mg = Tg/MCG(Σg) , (5.39)

where MCG(Σg) = Out(π1(Σg)) is the mapping class group. We have collected a few
relevant facts in appendix D.1. Tg is the moduli space of marked Riemann surfaces. Hence,
we can denote the result of the integral schematically as

Zg = Zclassical, g
∑

ρ:π1(Σg)−→Γ

∑
ι:π1(Σg)−→π1(ΣG),

injective, p◦ι=ρ

ZT4(Σι, Sι)
/

Out(π1(Σg)) , (5.40)

which means that we pick only one arbitrary marking for each covering surface. If we
combine the two sums into a single sum of arbitrary homomorphisms of π1(Σg) to π1(ΣG),
then this ‘gauging’ by Out(π1(Σg)) is easy to implement. An injective homomorphism
ι : π1(Σg) −→ π1(ΣG) up to conjugation and outer automorphism is fully characterized
by its image ι(π1(Σg)) ⊂ π1(ΣG) up to conjugation. Thus the sum becomes a sum over
subgroups of π1(ΣG) up to conjugation of finite index d. Putting the pieces together, we
obtain for the full string partition function

Z = exp


∞∑

Nc=1

(
pe−6Ibulk

)Nc
Zclassical, Nc(G−1)+1

∑
H⊂π1(ΣG) up to conjugation,

[π1(ΣG):H]=Nc

ZT4(ΣH, SH)

 .

(5.41)
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Here we changed notation again slightly to account for the fact that we are labelling
(unmarked) covering surfaces and their spin structures by subgroups of π1(ΣG) (up to
conjugation).

The classical part. We see that this formula is very close to the partition function of
the symmetric orbifold (2.4). It becomes equal provided that

Zclassical, Nc(G−1)+1 = e6NcIbulk

Nc
. (5.42)

This was observed to be true in cases with a torus boundary in [1], but we do not know a
general argument for this formula. This is partially motivated from the torus case where
this formula can just be computed to be true. In more complicated geometries, we tend to
believe that this formula still has to hold true — essentially because it leads to a consistent
CFT partition function. The requirements on a CFT partition function are very strong,
which make it seem unlikely that any other formula is consistent. Thus we assume in the
following that this formula holds in general. However, it would be important to find a
proof of this fact.

Background independence. In particular, once we make this identification, the back-
ground dependence of the string partition function completely cancels out. Ibulk depends
on the precise orbifold group that we use to engineer the bulk manifold, whereas the sum
over subgroups only depends on the boundary surface, but not on the bulk three-manifold.
While we are not able to give a general proof of this phenomenon, we hopefully elucidated
the mechanism behind it.

Disconnected boundary. Let us now consider the generalization to a disconnected
boundary. We consider for simplicity the case of a wormhole obtained by a quasi-Fuchsian
group, with boundary components two genus G surfaces, that we denote by Σ(1)

G and Σ(2)
G .

The discussion is entirely analogous once we identify g2G−2
string = p

1
2
1 p

1
2
2 with the diagonal

chemical potential, see eq. (5.34). The sphere partition function again renormalizes the
chemical potentials. Since in the canonical ensemble, the sphere partition function should
again lead to the contribution −6 deg(γ)Ibulk, it does not distinguish covering maps that
cover the left- or the right boundary. This means that only the diagonal chemical potential
is renormalized as follows:

p
1
2
1 p

1
2
2 7−→ p

1
2
1 p

1
2
2 e6Ibulk , (5.43)

where p1 and p2 are the fugacities of the left and right boundaries. In order to reproduce the
symmetry orbifold partition function, both terms in (5.6) have the classical contribution
Z

(i)
classical,d(G−1)+1 = d−1e6dIbulk , as in eq. (5.42). Thus, the string partition function on the

wormhole manifestly factorizes,

Zwormhole(p1, p2) = ZSym(p1)ZSym(p2) . (5.44)
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6 Stringy and classical geometry

In this section, we would like interpret our results more geometrically. In the previous
sections, we provided evidence that the worldsheet partition function is independent of the
bulk geometry and actually only depends on the boundary geometry.

6.1 Stringy geometry

We have seen that the symmetric orbifold partition function is naturally expressed in terms
of (possibly disconnected) covering spaces and these are interpreted holographically as the
worldsheet. Thus, there is apparently no such concept as bulk geometry, there is only the
geometry of the covering space, i.e. the worldsheet.

Even though our results defy the intuition of semiclassical gravity, they are still very
geometric — as long as one replaces the concept of a bulk manifold by the collection
of worldsheets, which is a notion of stringy geometry in this concept. The worldsheets
themselves can in good approximation be treated semiclassically.

6.2 Condensation

Sometimes, a collection of these stringy geometries can be interpreted as classical geome-
tries. For this to be meaningful, we want to talk about large N in the symmetric orbifold.
Since we have argued that string theory describes the grand canonical ensemble, N gets
replaced by the fugacity p = e2πiσ. Initially, the grand canonical ensemble is only well-
defined if we take Im σ big enough, since otherwise the definition of the grand canonical
partition function (2.2) does not converge. We define the function (Im σ)min as the mini-
mal chemical potential for which the grand canonical potential is still well-defined. This is
an interesting function on the moduli space of the boundary surface(s). For Im σ close to
(Im σ)min, the grand canonical partition function is dominated by contributions from large
N and we can expect semiclassical bulk geometry to emerge.

Let us consider a bulk background geometry with a torus boundary such as thermal
AdS3 or the Euclidean BTZ black hole. In this case, we can be very explicit and (Im σ)min is
only a function of the boundary modular parameter τbdry. The behaviour of the symmetric
orbifold partition function in the canonical ensemble is known explicitly in a large N

limit [58]:
logZNS

SymN (T4)(τbdry) ∼ Nπ max
(c,d)=1, c+d odd

Im τbdry
|cτbdry + d|2

. (6.1)

The maximum is taken over all coprime pairs of integers whose sum is odd. We con-
sidered the NS spin structure. The expression is manifestly invariant under the relevant
modular group

ΓNS =
{(

a b

c d

) ∣∣∣∣∣ a+ d even, b+ c even, c+ d odd
}
. (6.2)

This translates into

(Im σ)min = 1
2 max

(c,d)=1, c+d odd

Im τbdry
|cτbdry + d|2

. (6.3)
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This function has phase transitions. Conventionally, these terms are interpreted as classical
bulk geometries that dominate the partition function in different regimes. For purely imagi-
nary τbdry, there is a phase transition at τ = i corresponding to the transition between ther-
mal AdS3 ((c, d) = (0, 1)) and the non-rotating Euclidean BTZ black hole ((c, d) = (1, 0)).

This function arises from the symmetric orbifold as follows. The torus partition func-
tion takes the form

ZNS
Sym(T4) = exp

 ∞∑
m,w=1

∑
r∈Z/Zw

pmw

mw
ZT4

[
r+m

2
w
2

](
mτbdry + r

2

) . (6.4)

This is a way of writing a sum over all covering tori, compare to eq. (2.4) for the general
case. The degree of the relevant covering map takes the form Nc = mw. The parenthesis
with entries r+m

2 ∈ 1
2Z/Z and w

2 ∈
1
2Z/Z indicates the spin structure of the T4 partition

function. Intuitively, the parameter w is the winding number of the worldsheet around the
spatial cycle of the boundary torus and the parameter m is the winding number around
the temporal cycle. Close to (Im σ)max, some covering maps are dominating the partition
function. In the example of a boundary torus, these are simple to describe. For the
term (c, d) = (0, 1), the relevant connected covering surface is the torus with modular
parameter τcovering = Nconnτbdry, where Nconn is the degree of the (connected) covering
map. This corresponds to the terms w = 1, r = 1 and m = Nc in the eq. (6.4). Taking
the exponential into account, we get a collection of (possibly disconnected) dominating
worldsheets for every partition N = N1 + N2 + . . . of N . This is simply the untwisted
sector of the symmetric orbifold, which describes N fundamental strings that wind each
once around thermal AdS3, appropriately symmetrized to account for their statistics. For
the other terms, different covers dominate. For instance, in the case of (c, d) = (1, 0), the
relevant covering surface has modular parameter τcovering = τbdry

Nconn
, which is dominant in

the limit τbdry → 0. In general, for every choice of coprime (c, d) with c + d odd, there is
exactly one dominating connected covering surface of every degree.26

We remark that for each degree there are only finitely many covering surfaces, and thus
for every finite degree (i.e. any finite N), there are some classical geometries that the stringy
geometries fail to distinguish. In the grand canonical ensemble, all the different geometries
are resolved eventually. This qualitative feature should also hold for more complicated
bulk/boundary geometries.

Poles from bulk geometries. What we just observed experimentally in the symmetric
orbifold is expected to hold true generally. Assume that the canonical boundary partition
function is dominated by a semiclassical single bulk geometry. From the general ideas of
holography, we expected that

ZSymN (T4) ∼ e−6NIbulk , (6.5)

up to an order 1 quantum correction. Here, we normalized Ibulk as in section 5.4. The
explicit factor of N in the exponent comes from the fact that the Newton-constant satisfies

26The relation between (c, d) and (m,w, r) is in general cumbersome to describe and we omit it. But
there is a very clear geometrical interpretation of the relation which is given by the rules 1–3 below.
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GN ∝ N−1 as follows from the Brown-Hennaux formula [59]. For the grand canonical
partition function, this implies that

ZSym(T4) ∼
1

1− pe−6Ibulk
. (6.6)

Thus, we expect the appearance of a pole at p = e6Ibulk (or at σ = −3i
π Ibulk).

Symmetric orbifold of the monster. This behaviour was also observed in a toy model
— the symmetric product orbifold of the (holomorphic) Monster CFT [60]. Holomorphicity
gives much stronger control in this case and in fact the grand canonical partition function
is determined by Borcherds formula:

ZSym(M) = e−2πiσ

j(σ)− j(τbdry) , (6.7)

where j is the Klein j-invariant. In this case, condensation to thermal AdS3 happens
near σ = τbdry. In fact, it was argued in [60] that this condensation is a Bose-Einstein
condensation — near σ = τbdry, a finite fraction of CFTs is in the ground state. The
formula has also poles whenever σ is related to τbdry by a modular transformation, which
can be interpreted as condensation of black hole geometries. This qualitative behaviour
carries over to the non-holomorphic symmetric orbifold of T4.

Analytic continuation and pole structure. The toy model makes it clear that it is
useful to consider the grand canonical partition function as a meromorphic function in σ.
While the definition of the symmetric orbifold partition function (2.4) only converges for
Im σ > (Im σ)min, it is easy to analytically continue in σ. This is most conveniently done
using the product formula of the symmetric orbifold partition function [61, 62]. Through
analytic continuation, one can actually see that the grand canonical partition function has
additional poles whenever

σ = i Im τbdry
2M2 , (6.8)

where M is an odd positive integer. In fact, the grand canonical partition function has (at
least) the following poles:

σ = i

2M2
Im τbdry
|cτbdry + d|2

(6.9)

for c+ d is odd and M odd.27

Interpretation as bulk geometries. We can interpret all these poles as bulk geome-
tries. Integers M > 1 correspond to conical defect bulk geometries with deficit angle
2π(1 −M−1). The constraint on c + d and M odd comes from the spin structure, since
only in this case there is a bulk spin structure compatible with the given boundary spin
structure [63]. Thus, we argued that whenever the chemical potential approaches a pole,
the tensionless strings form a condensate and the classical bulk geometry emerges.

27These additional poles did not show up in the Monster toy example because the orbifold projection
acts assymmetrically and projects them out.
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cond
ensa

tion

(Im σ)min
grand canonical partition

function converges

Im τbdry

Im σ

Figure 8. The behaviour of the grand canonical torus partition function for purely imaginary
τbdry. Blue lines correspond to poles with M = 1 and red lines to poles with M = 3.

We should note that there can be even more poles for σ in the upper half plane.28

There is a pole in the grand canonical partition function for every scalar state in the CFT
T4 that satisfies ∆ < 1

2 . Such states may or may not be present depending on the precise
shape of the torus. We will see a similar problem appearing for higher genus partition
functions. For these values of the chemical potential, there is a singularity appearing from
a large number of excited tensionless strings. We do not know how to interpret these
singularities from a semiclassical bulk perspective.

The phase diagram of the torus partition function for purely imaginary τbdry takes
the form as depicted in figure 8. Near the edge, stringy geometry condenses into classical
geometry. One can analytically continue below the solid blue line that represents (Im σ)min
to observe also the other condensing geometries.

Residue. The residue of the grand canonical potential can be interpreted as the infinite
N stringy one-loop determinant around the respective background. Let us focus on the
thermal AdS3 pole at σ = i

2 Im τbdry. Writing

ZT4(τbdry) = e−π Im τbdryZT4
qu (τbdry) , (6.10)

we separate out the classical part of the T4 partition function. The residue takes the form

Res
σ= i

2 Im τbdry
ZNS

Sym(T4)

= exp

 ∞∑
m,w=1

′ ∑
r∈Z/Zw

e−πm(w− 1
w ) Im τbdry

mw
ZT4

qu

[
r+m

2
w
2

](
mτbdry + r

w

) . (6.11)

28Formally, there are even more poles in the lower half-plane. However, one can see quite easily that the
poles accumulate on the rationals (this is obvious in the Monster example eq. (6.7)). Thus, it is not clear
to us whether analytic continuation to the lower half-plane is sensible.

– 44 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
3

The prime signifies that the summation over m for the divergent term is omitted — this
is the term with w = 1 and the leading term in ZT4

qu coming from the vacuum. This is
the one-loop determinant of the symmetric orbifold Sym∞(T4). It was computed in this
form from string theory in [30]. Aside from possible convergence issues that we have not
analyzed, we can reconstruct the full grand canonical partition function from the infinite
N one-loop determinants:

ZNS
Sym(T4) =

∑
bulk geometries M3

Zqu(M3)
σ + 3i

π Ibulk(M3)
+ poles from light scalars in T4 , (6.12)

where Zqu(M3) is the suitable one-loop determinant for the respective bulk geometry.
While this is under good control for a torus boundary, we know much less about the analytic
behaviour for higher genus boundaries. There could be branch cuts, higher order poles
etc. By taking suitable contour integrals, one may also reconstruct the finite N canonical
partition function.29 We should note that this ‘Farey tail’ relies on holomorphicity in σ

and not on holomorphicity in the modular parameter and thus does not need to assume
holomorphicity of the partition function or the elliptic genus [64, 65].

Rules for the bulk geometry. Given that the grand canonical ensemble torus partition
function can be interpreted as a sum over bulk geometry, we may try to come up with a
general rule on how to reconstruct the bulk geometry/topology from the respective family
of covering maps. One can analyze the geometry of the covering maps that leads to the
poles (6.9). The relation between condensing worldsheets and bulk geometries is in this
case the following:

1. If every condensing worldsheet wraps a boundary cycle only once, then this boundary
cycle is contractible in the emerging classical geometry.

2. If every condensing worldsheet wraps a boundary cycle exactly M times, then this
boundary cycle is bounded by a disk in the bulk with a conical defect with deficit
angle 2π(1−M−1).

3. For a non-contractible cycle in the emerging bulk geometry, there is no bound in the
condensate for how many times the cycle is wrapped.

The second rule can be motivated from the first, since a string that winds M times around
a conical deficit with deficit angle 2π(1−M−1) can be viewed by unwrapping the geometry
as a string that winds once around the same geometry without deficit angle.

These rules make it geometrically clear that there is exactly one connected covering
map of every degree contributing for the non-singular geometries and one covering map
whose degree is a multiple of M for the conical defect geometries. There is a last geometry
that we have not discussed: the cusp geometry which we mentioned in section 5.3. It has
a somewhat singular role, since it can be understood as the M → ∞ limit of the conical
defects. This means that the potential pole it causes in the grand canonical partition

29For the symmetric orbifold of the Monster CFT, this was already discussed in [60].
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function is σ = 0, which is the accumulation point of poles of the conical defects. Thus, it
is a delicate issue whether it should be included in the sum over bulk geometries. Since it
is obtained as the limit M → ∞ of the conical defects, our rules seem to suggest that is
not associated to any stringy geometry of covering maps.

Higher genus boundary. We expect the behaviour of the higher genus partition func-
tions to be similar, but there are some important qualitative differences. In the higher
genus case, the number of connected covering spaces is (super)exponentially large in the
degree Nc, compared to roughly O(Nc) connected covering spaces in the case of a single
torus boundary.30 It is explained in appendix C that there are O(2Nc(Nc!)2g−2) connected
covering surfaces of degree Nc if g ≥ 2 and Nc � 1. This enormous qualitative difference
is also reflected in the classical geometries: for genus g ≥ 2, there are many more possible
bulk manifolds — not only handlebodies, but also non-handlebody geometries.

Correspondingly, the expected pole structure of the grand canonical partition function
and the function (Im σ)min is much more complicated. Besides the conformal structure, it
also depends on the metric on the boundary surface due to the conformal anomaly. Under
a Weyl transformation, (Im σ)min transforms as

(Im σ)min 7−→ (Im σ)min − 12πS[φ] , (6.13)

where S[φ] is the Liouville action capturing the conformal anomaly of the Weyl transfor-
mation. This ambiguity does not affect the behaviour of the poles and for definiteness, we
might hence fix the hyperbolic metric on the boundary Riemann surface.

The natural guess for the function (Im σ)min is now

(Im σ)min = 3i
π

max
(singular) hyperbolic 3-manifolds compatible

with boundary spin structure M3

Ibulk(M3) , (6.14)

where the maximum is taken over all possibly singular hyperbolic three-manifolds with the
correct conformal boundary. It was claimed that this is not true for higher genus partition
functions if there is a light enough scalar in the spectrum, which happens e.g. for a very
large or small T4 [66, 67]. Such a condensing bulk geometry would no longer have the form
AdS3/Γ× S3 ×T4, but would also involve the internal factors non-trivially. This is similar
to what we observed for the pole structure of the torus partition function, except that the
‘excited geometries’ originating from the T4 excitations can conceivably even be dominant
in the higher genus case.

It is plausible that all the handlebodies themselves can be realized as particular stringy
geometries. In fact, there seems to be a natural class of covering maps associated to every
handlebody. Recall that a handlebody is specified by a choice of Lagrangian sublattice of
H1(ΣG,Z) in the boundary, corresponding to the homology cycles that become contractible
in the bulk. Let us consider the Lagrangian sublattice generated by the standard generators
〈β1, . . . , βG〉, which would be the higher genus analogue of thermal AdS3. In this case, there

30The number of connected covering spaces of degree Nc is actually σ1(Nc), the divisor function, for a
torus boundary.
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is a natural class of covering surfaces that are candidates to form a bulk condensate. In
general, degree N covering surfaces are specified by homomorphisms φ : π1(ΣG) −→ SN ,
see the discussion in appendix C.2. We propose to consider homomorphisms for which
φ(αI) = 1, the identity permutation. The resulting covering maps hence have only their
βI -cycles unwrapped. This is motivated by the rules (1)–(3) above that we observed for a
torus boundary. We do not know whether φ(βI) should satisfy further constraints in order
to contribute to the semiclassical geometry. This assignment is also motivated by the fact
that the βI cycles are the analogue of the thermal cycle in the torus case. If we instead
want to create a conical defect for the α1 cycle, say, then we would require that φ(α1) is
some fixed cyclic permutation of length M .

It is then plausible that also other non-handlebody solutions geometries lead to poles
in the grand canonical partition function. There are however several issues that are un-
clear to us:

1. We do not know whether there exists a well-defined analytic continuation. There
could be more exotic phenomena for higher genus boundaries such as branch cuts etc.

2. In the case of a genus G 6= 1 boundary, we can add a counter term 1
4π
∫
R√g = 2−2G

to the boundary action, where g is the boundary metric. This has the effect of
renormalizing the partition function. At least at the face of it, we can choose these
counterterms independently for all N in the canonical ensemble. Changing these
counterterms can change all the locations of the poles in the grand canonical partition
function simultaneously and it can also change their order.

3. We saw in the case of the torus partition function that the cusp geometry is more
singular than conical defects, since it would be located at accumulation points of the
chemical potential. Such accumulation points should also exist for the higher genus
boundaries. At least some of these correspond to analogues of cusp geometries (that
we define as geometries with codimension 3 singularities).

4. We do not know the fate of codimension 1 singular bulk geometries. A particularly
important codimension 1 singular bulk geometry is obtained by orbifolding the Fuch-
sian wormhole by the reflection symmetry. The geometry is described in more detail
in appendix A.4. If such a geometry were to emerge from stringy covering maps, it
would need to do so in a way that treats all cycles symmetrically.31

5. Some geometries only exist for specific choices of the boundary moduli. For example,
if the boundary surface has an involution without fixed points, then we can consider
the quotient of the Fuchsian wormhole by the combined reflection and involution.
If the correspondence between bulk geometries and poles in the grand canonical
partition function holds, then it seems that there must be new ‘exceptional’ poles for
these special values of the moduli.

31This particular bulk geometry is non-orientable in the sense that the reflection symmetry that we use
in the orbifold reverses orientation. Thus, the geometry might not appear for this reason.
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6.3 The wormhole

We have seen that at least in some cases, one can convincingly identify geometries with
a single boundary as a family of covering maps. It is an important problem to extend
this to geometries with disconnected boundaries. In this case, there are two chemical
potentials σ1 and σ2. Of course, the purpose of our discussion of the tensionless string was
to establish that the grand canonical partition function factorizes, both from a bulk and a
boundary perspective and the disconnected grand canonical partition function simply takes
the form Z(1)(σ1)Z(2)(σ2), where Z(i) are the grand canonical partition functions of the two
boundaries. In view of the above discussion the poles of this product grand canonical
potential in (σ1, σ2) are obviously just a reflection of all the disconnected geometries.

We now speculate that even though the grand canonical partition function factorizes,
it might still contain the information about all the classical wormholes. To see wormholes,
it is much more natural to change the basis of the chemical potentials and define

σ1 = σ

2 + θ , σ2 = σ

2 − θ , (6.15)

so that σ is the ‘diagonal’ chemical potential and θ is the ‘off-diagonal’ chemical potential.
We now want to ‘entangle’ the left and right boundaries, since this should create a corre-
lation between the two boundaries. We view this as a version of a stringy ER=EPR [68].
In the present instance, this is naturally done by integrating over θ. From the definition of
the grand canonical ensemble, this has the following effect:

Z̃Sym(T4)(σ) =
∫ 1

0
dθ Z

(1)
Sym(T4)

(
σ

2 + θ

)
Z

(2)
Sym(T4)

(
σ

2 − θ
)

(6.16)

=
∞∑

N1=0, N2=0

∫ 1

0
dθ Z(1)

SymN1 (T4)Z
(2)
SymN2 (T4)e

πiσ(N1+N2)e2πiθ(N1−N2) (6.17)

=
∞∑
N=0

Z
(1)
SymN (T4)Z

(2)
SymN (T4)e

2πiσN . (6.18)

For this to make sense, we want that

Im σ > 2(Im σ)(1)
min , 2(Im σ)(2)

min , (6.19)

so that the series converges uniformly and we are allowed to interchange the sum and the
integral. Here, the superscripts (1) and (2) refer as usual to the left and right boundary.
The resulting expression still has poles for every disconnected geometry that lead to a pole
earlier. The location of the pole in σ is σ(1)

p + σ
(2)
p , where σ(1)

p and σ
(2)
p are two poles of

Z
(1)
Sym(T4) and Z

(2)
Sym(T4), respectively. Thus, these geometries are naturally still interpreted

as the disconnected geometries with bulk action

Ibulk(M(1)
3 tM

(2)
3 ) = Ibulk(M(1)

3 ) + Ibulk(M(2)
3 ) = σ(1)

p + σ(2)
p . (6.20)

However, it could be possible that Z̃Sym(T4)(σ) has poles that are not associated to any of
the disconnected geometries. For example, if Z(1,2)

Sym(T4) has branch cuts, then the integral
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over θ leads to an integral around these branch cuts, which is not associated with any
pole and hence no disconnected geometry. This does not seem to happen for the torus
partition function, because it only has simple poles. But this is expected, since there
is no connected bulk geometry with two torus boundaries.32 It seems a very difficult
problem to explicitly compute Z(1)

Sym(T4) and Z
(2)
Sym(T4) for genus 2 boundaries, do the analytic

continuation and understand the pole structure. Hence we have not been able to determine
whether wormhole geometries can actually appear in the grand canonical partition function.

6.4 An ensemble average

One could introduce an ensemble average in the symmetric orbifold.33 The presumably
easiest way would be by averaging over the Narain moduli space of T4, as was done in [13,
14] for a bosonic sigma-model on T4. This is problematic to do for the partition function
of the symmetric orbifold itself, because the average does not converge.34 One can get a
convergent result for the logarithm of the torus partition function. This is essentially the
quenched free energy [69] (in contrast to the annealed free energy, where one first averages
and then takes a logarithm). For a single torus boundary, this quantity takes the form

logZSym(T4) =
∞∑

m,w=1

∑
r∈Z/Zw

pmw

mw
ZT4

[
r+m

2
w
2

](
mτbdry + r

w

)
, (6.21)

where overline denotes the ensemble average. The averaged T4 partition function can be
interpreted as a sum over bulk geometries. These bulk geometries are geometries that fill
in the covering space and not the original boundary of AdS3. We have learned that the
covering space is to be interpreted as the worldsheet. Thus, averaged connected partition
function can be interpreted as a sum over all fillings of all connected worldsheets. Disre-
garding convergence issues, the same is true for ZSym(T4) itself: it can be interpreted as a
sum over all possible geometries (in the sense of U(1)-gravity [14]) that fills in the possibly
disconnected worldsheet.

Such geometries are topological spaces, where one is allowed to make additional iden-
tifications on the boundary to obtain the correct boundary manifold. For example, the
totally disconnected contribution in thermal AdS3 would be the space

N⊔
i=1

thermal AdS(i)
3

/
∼ , (6.22)

where ∼ identifies all the boundaries of the thermal AdS3 spaces.35 The number of copies
is fixed to N in the canonical ensemble, but is again arbitrary in the grand canonical

32More precisely, there is no hyperbolic 3-manifold that has two tori as conformal boundaries. This is
quite simple to see from a realization of the hyperbolic manifold from a Kleinian group, see e.g. [1] for an
explanation.

33I thank Alex Belin for discussion about this.
34This is because averages 〈ZG1

T4 · · ·ZGn

T4 〉 for a single T4 sigma model only converge for
∑

i
Gi ≤ 2, where

Gi denotes as usual the genus of the surface.
35The reader might feel uneasy about this identification. We perform this identification mainly for the

physical interpretation’s sake, but it doesn’t change any physical quantity that we are computing.
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Figure 9. The two averaged stringy geometries that condense to classical thermal AdS3 for a degree
two covering surface. In this figure, the boundaries of the inner and outer torus are identified.

Figure 10. The t = 0 surfaces of some string geometries with two sheets. The boundary is the
spatial boundary circle of global AdS3.

ensemble. We emphasize however that there are a lot of possible geometries of this sort.
We could replace some of the thermal (6.22) by black holes or could replace pairs (or higher
tuples) of AdS3 spaces by wormholes, etc. We could also replace a pair of thermal AdS3’s
by one thermal AdS3 whose length of the thermal cycle is twice as large, but which has an
additional identification on its boundary torus.

In this averaged form, condensation of such averaged stringy geometries into classical
geometries becomes much clearer. For example, (6.22) is one geometry that for large N
resembles more and more thermal AdS3 itself, because the different copies of thermal AdS3
start to form a continuum. For example, the two condensing stringy geometries for a
boundary torus and N = 2 are depicted in figure 9. It might also help if we picture only
the t = 0 slices of the geometries in figure 9. For this we cut the torus open and look only at
the cut. This yields the first picture in figure 10. The difference between the two geometries
is invisible on the level of the t = 0 slice, their difference lies in whether the blue and red
sheets are interchanged when moving around the thermal circle or not. In the ensemble
average picture, there is also a wormhole geometry that we did not picture in figure 9,
but whose t = 0 surface is the second picture in figure 10. This by far does not exhaust
the list of possible stringy geometries with two sheets. The conical defect geometry is
pictured in figure 11. There are also other geometries that do not exhibit a clear Lorentzian
interpretation. For example, thermal AdS3 t Euclidean BTZ with identified boundaries is
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Figure 11. The t = 0 surface of the stringy conical deficit geometry with M = 2. This geometry
is obtained from the disc {z ∈ C | |z| ≤ 1} by the identification z ∼ −z on the boundary.

such a case. This geometry can be pictured geometrically as two interlocking solid tori,
which is in fact a description of the three-sphere as a Heegaard splitting. We discuss some
further speculations on these geometries in the discussion 7.2.

6.5 Deforming the symmetric orbifold

In the previous subsection, we explored ensemble averaging as a way to let the semiclassi-
cal bulk geometry emerge semiclassically. The averaging process turns on an ‘interaction’
between the different covering spaces, since it allows for wormholes connecting them. How-
ever, there is a more traditional way of turning on such an interaction, namely by deforming
the symmetric orbifold away from its orbifold point. We shall see that the two procedures
are in some ways similar. A large deformation in the moduli space of the symmetric
orbifold is expected to connect the tensionless string to the supergravity regime, where
gravity can be treated semiclassically [70]. This means in particular that the deforma-
tion will need to connect the ‘stringy’ gravity picture that we discussed smoothly with a
semiclassical picture.

Marginal operator. There is a marginal operator in the theory that turns on the de-
formation. Its construction is as follows. The twist field of a transposition has conformal
weight h = 6

24
22−1

2 + 4
2 ·

1
16 = 1

2 . The first contribution is the standard ground state energy
of the twist 2 sector. The second term is the ground state energy of the Ramond sector of
four free fermions, since the relevant spin structure in evenly twisted sectors is the Ramond
sector. The ground states transform in the spinor representation of so(4) that decomposes
under the R-symmetry subgroup su(2) as 2⊕ 2 · 1. In particular, the highest weight state
of the doublet is a BPS state of the N = 4 algebra. Thus it gives rise to a marginal oper-
ator (actually four marginal operators) by taking the level 1

2 superconformal descendants.
Let Ψαα̇ be the BPS field (where α and α̇ are spinor indices of the left- and right-moving
R-symmetry), then the marginal operator is given by

ΦAȦ = εαβεα̇β̇G
βA

− 1
2
Ḡβ̇Ȧ− 1

2
Ψαα̇ (6.23)

Here, capital indices are spinor indices of the outer automorphism group of the N = 4
superconformal algebra.
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Conformal perturbation theory. We now imagine to compute the symmetric orbifold
partition function perturbatively in the deformation parameter. The perturbed partition
function takes the form36

Z
(λ)
Sym(T4) =

〈
e−λ

∫
Σ Φ
〉

=
∞∑
n=0

(−λ)n

n!

〈(∫
Σ

Φ
)n〉

, (6.24)

where we take for definiteness Φ ≡ εAȦΦAȦ the singlet with respect to the diagonal auto-
morphism group.37 Thus, in perturbation theory, we need to compute correlation functions
of twist 2 operators on the torus. They are as usual given by summing over all covering
surfaces of the torus, but now these covering surfaces are branched over n points at n-th
order in perturbation theory. The branch points are simple, i.e. of order 2. Odd orders in
the perturbation theory actually vanish. This can be seen geometrically from the Riemann-
Hurwitz formula (5.17), since for a branched cover the sum

∑
i(wi − 1) over ramification

indices has to be even.

Interactions between covering surfaces. Inclusion of twist fields in correlators ef-
fectly turns on an interaction of the different covering spaces. Let us explain this at the
simplest example of a symmetric orbifold with two copies. In the undeformed theory, there
are four covering spaces in total of which one is disconnected. At second order in conformal
perturbation theory, covering surfaces cover the torus holomorphically with two ramifica-
tion points of order 2. Such a covering surface is of course connected. Schematically, we
can write such a surface as in figure 12. Here, the dashed lines correspond to the branch
points of the covering and in between them are branch cuts.38

Emergence of semi-classical bulk geometry. We now offer a speculative picture on
how the semi-classical bulk geometry emerges at very high order in conformal perturbation
theory. As we just saw, the different sheets of the stringy geometry are independent in the
symmetric orbifold point, but become more and more correlated as we deform the theory.
Because of the independence of the covering surface at the tensionless point in moduli space,
there are also independent bulk geometries for all the different covering surfaces. These are
the multi-sheeted geometries that we constructed in the previous subsection. As we turn
on the interaction between the covering surfaces, we should also turn on an interaction
between the different sheets of the geometry.39 It is plausible that configurations where
the sheets of the micro-geometries align have a much lower action once this interaction is
turned on. Once we make the interaction strong enough, only those bulk geometries with
aligning sheets survive and form semi-classical bulk geometries.

36We evade the question on how to correctly normalize Φ in the grand canonical ensemble.
37The following discussion is independent of this choice.
38It follows from the Burnside formula for covering maps that there are always four covering maps at

every even order in perturbation theory. The surfaces depicted in figure 12 are those originating from the
disconnected covering surface in the undeformed symmetric orbifold. There are also surfaces originating
from the connected covering surfaces.

39Such an interaction is necessarily non-local from the point of view of the ‘micro-geometries’, but can
be local from the point of view of the emergent semi-classical geometry.
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Figure 12. Degree 2 branched covering maps appearing in conformal perturbation away from
the symmetric product orbifold. The left figure shows the surface that appears at second order in
conformal perturbation theory. The right surface appears at higher order in perturbation theory.

7 Summary and discussion

7.1 Summary

Let us summarize the most important points of the paper. We put the fine print in
footnotes.

1. The worldsheet theory of the tensionless string in a background M3 × S3 × T4,
whereM3 is a hyperbolic 3-manifold, localizes on covering surfaces of the boundary
Riemann surface(s) Σ(1) t · · · t Σ(n).40

2. We have argued that the string partition function on different hyperbolic 3-manifolds
with the same boundary Riemann surface(s) Σ(1) t · · · t Σ(n) agree to all orders in
string perturbation theory.41

3. The natural ensemble for string perturbation theory in AdS3/CFT2 is the grand
canonical ensemble. Instead of fixing the number of fundamental strings in the back-
ground, an associated chemical potential is fixed, which on the string side is related
to the string coupling constant.

4. For special values of the chemical potential, the grand canonical partition function
can have poles. These poles can be associated to (possibly singular) on-shell classical

40We have established that the worldsheet theory localizes on a discrete subset of the moduli space
of Riemann surfaces. Covering surfaces are contained in this subset, but we have not been able to show
equality of the two sets. In establishing these facts, we emphasized the role of a complex projective structure
that emerges naturally from the worldsheet theory (branched complex projective structure in the case of
correlation functions).

41We realizedM3 = H3/Γ as a quotient of global hyperbolic space. Different bulk manifolds correspond
to different orbifold groups Γ and different choices of Γ reorganize the sum over covering maps.
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bulk geometries. We argued that the classical bulk geometry should be understood
as a condensate of covering maps. We proposed a set of (incomplete) rules how the
classical geometry and the stringy geometries are related. The full grand canonical
partition function can be recovered by a farey tail sum over classical geometries with
a 1-loop determinant, see eq. (6.12).42

5. The grand canonical partition function can depend on several chemical potentials —
one for each boundary in the geometry. The remaining chemical potentials can be
introduced on the worldsheet via discrete torsion. While wormhole geometries cannot
lead to poles in the full grand canonical partition function because it factorizes,
we speculated that wormholes could become visible as singularities in the chemical
potential once we integrate out the off-diagonal chemical potentials.

6. Averaging over the Narain moduli space of T4 makes the relation between stringy ge-
ometries and classical geometries more manifest. Averaged stringy geometries can be
interpreted as all possible fillings of the worldsheet, which are geometries with multi-
ple sheets that meet at the boundary of AdS3. When tuning the chemical potential to
the critical value, these multiple sheets can condensate to a single classical geometry.
Deforming away from the symmetric orbifold has also the effect of introducing an
interaction between the covering surfaces. We argued that also for strong interac-
tion, the interaction favors those micro-geometries that align properly and leads to
an emerging semi-classical bulk geometry.

7.2 Discussion

Let us discuss some open issues. The first points are technical and the later ones more
conceptual.

The hybrid formalism in the free-field variables. Our main technical goal in this
paper was to compute the string partition function of the tensionless string on various
hyperbolic manifolds. Even though the tensionless string enjoys a free field representation
in the hybrid formalism, its BRST structure is quite complicated and we have not attempted
to fully define the string partition function in these free field variables. In order to put
this and similar computations on a firmer footing, it is indispensable to develop the hybrid
formalism in these variables more rigorously.

Localization to covering maps. We have not succeeded to demonstrate fully that the
string partition function localizes only on covering maps. We gave a simple counterexample
in section 4.2: the worldsheet torus partition function seems in general to be non-zero
also in geometries with higher genus boundaries. However, since the orbifold is infinite,
the inclusion of the order of the orbifold group is rather delicate and can suppress these
contributions. We do not know whether the ‘fake’ covering surfaces that appear have a
deeper meaning or are just a complication of the formalism.

42We did this analysis very explicitly for a torus boundary, where the appearing geometries are SL(2,Z)
family of black holes and conical defects. For more complicated geometries, our assertion is much more
speculative.
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Worldsheet theory from the boundary CFT. The complications of perturbative
string theory are striking, when compared to the simplicity of the result from a dual CFT
point of view. String theory has to deal with lots of additional structures that are not visible
in the final result, such as BRST cohomologies, integrals over Mg,n × Jac(Σg) etc. One
could hope to construct a version of string perturbation theory that does not have all this
additional structure. The idea of reconstructing the worldsheet from the boundary CFT
is an old one, see [71–74] and was recently made concrete for symmetric orbifolds in [75].

Backreaction. One might question the validity of string perturbation theory in our
work. We have trusted string perturbation theory far beyond the regime where it is usually
applicable, since we have considered arbitrary numbers of highly winding strings. We would
expect such heavy string configurations to backreact on the geometry and change it. This
is in fact precisely what we saw, since we can interpret condensates of string configurations
as new classical geometries. Nonetheless, the string perturbative description seems to work
well in that it succeeds to describe the full boundary theory correctly. One potential reason
why this happens is perhaps the fact that the worldsheets (except for the sphere) seem to
stay close to the boundary of the bulk. Thus even though the interior of the bulk geometry
changes, perturbative strings do not get affected by this change.

Non-saddle geometries. Recently, the importance of including non-saddle geometries
in the gravitational path integral has been emphasized [11, 21, 76]. If these appear in the
grand canonical partition function, they are hard to isolate. Let us discuss this for the
boundary torus partition function. The reason is that they are only expected to have an
order 1 action and thus would lead to poles in the grand canonical partition function at
p = 1, i.e. at σ = 0. However, σ = 0 is already an accumulation point of poles of the
partition function. Thus, non-saddle geometries do not seem to naturally appear in the
grand canonical farey tail sum (6.12).

Black hole-string and wormhole-string transition. It has been proposed that black
holes of string size transition into a very long string winding around the horizon [77–
79]. Our results of this paper that this is true very generally in our setting. While all
computations have been done in Euclidean signature, the qualititative picture of winding
strings should be preserved under Wick rotation. In some sense or analysis thus leads to
more general wormhole-string transitions etc.

Bulk emergence. While the condensation of covering maps to classical geometries seems
to work quantiatively, it does not explain how the bulk emerges from the two-dimensional
worldsheets. Ultimately, we should not only see the bulk action emerge, but also more local
notions like bulk reconstruction from entanglement wedges. It remains to be seen whether
this toy model can be used to obtain more fine-grained information.

Ensemble average and chaos. The tensionless string lacks any chaotic behaviour.
Even after ensemble averaging any member of the ensemble is a solvable CFT. In particular,
indicators such as the spectral form factor and out of time order correlators diagnose a
clearly non-chaotic behaviour of the symmetric orbifold [80, 81]. This is in sharp contrast
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with the situation in theories of pure gravity, such as JT-gravity [11]. Thus our analysis
corroborates that the ensemble is a feature of low-energy effective descriptions of the theory.

Baby universes and third quantization. We have seen in section 6.4 that one can
introduce an ensemble average in the symmetric orbifold that seems to make the nature of
the stringy geometries somewhat more manifest. It is interesting that the average of a single
partition function already contains many geometries that feature disconnected wormholes,
even though the asymptotic boundaries of the wormhole are in fact identified, see figure 10.
Perhaps these ‘micro geometries’ can be viewed as baby universes [24, 82–84].43

Deformation away from symmetric orbifold. We have started to analyze the be-
haviour of the symmetric orbifold partition function when deforming away from the sym-
metric orbifold and shown that it turns on an interaction of the covering surfaces. It would
be very interesting to make our speculations about the emergence of the bulk geometry
more concrete.

Effective spacetime theory. The description of the tensionless string is formulated on
the worldsheet. It would be far more enlightening to understand the corresponding space-
time theory. At the tensionless point, such a theory would be highly non-local. Construct-
ing the spacetime theory explicitly would presumably shed further light on the emergence
of a local bulk dual when deforming away from the symmetric product. For vector-models,
the corresponding higher spin spacetime theory was constructed in [85–88].

AdS5 × S5. There is the obvious question how this generalizes to higher dimensional
examples of the AdS/CFT correspondence, most notably AdS5× S5. The dual N = 4
SYM theory possesses a free point that corresponds to tensionless strings in the bulk.
While there is not yet a complete formulation of the corresponding worldsheet theory (see
however [89, 90] for attempts and progress), the question can be studied from the boundary.
This has a long history [38, 91]. We hope that the insights of this paper can be useful also
in higher dimensions.
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A Hyperbolic 3-manifolds

In this appendix, we collect some facts about hyperbolic 3-manifolds. These are locally
Euclidean AdS3 spaces and serve as bulk manifolds in our investigation. Every hyperbolic
3-manifold can be written as a quotient H3/Γ for a discrete subgroup Γ ⊂ PSL(2,C),
where H3 is hyperbolic 3-space. Thus the study of hyperbolic 3-manifolds is equivalent to
studying discrete subgroups Γ ⊂ PSL(2,C) — so-called Kleinian groups.

A.1 Hyperbolic 3-space

We work with the Poincaré ball model, where H3 is identified with the unit ball inside R3,
equipped with the metric

4
∑3
i=1 dx2

i

(1− |x|2)2
. (A.1)

The isometry group is the conformal group PSL(2,C). The boundary of H3 is the Riemann
sphere CP1 and PSL(2,C) acts by Möbius transformations on it.

H2 ⊂ H3 can then be thought of as the equatorial plane x3 = 0, which is preserved
by a subgroup PSL(2,R) ⊂ PSL(2,C). The boundary of H2 inside H3 can be identified
with the equatorial circle R ∪ {∞} of CP1, which is indeed preserved by PSL(2,R). This
equatorial plane corresponds to the t = 0 spacelike surface in global Lorentzian AdS3.

A.2 General properties

While a Kleinian group Γ acts properly discontinuously on H3, it typically does not on
the boundary CP1. Let Ω be the maximal open set in CP1 on which it does act properly
discontinuously. We shall in the following assume that Ω 6= ∅. The complement Λ = CP1\Ω
is called the domain of discontinuity or the limit set. By Ahlfohr’s measure theorem, Λ has
measure zero. The set Λ is however typically very discontinuous and fractal.

Let us furthermore assume that Γ is finitely generated (which is the case in all examples
of interest to us). Then Ahlfohr’s finiteness theorem states that Ω/Γ is a finite union of
punctured Riemann surfaces. Ω itself can have either 1, 2 or infinitely many connected
components.

Hyperbolic 3-manifolds are rigid, which means that for each boundary geometry and
topological type, there is at most one hyperbolic structure. As a consequence, the sum
over geometries in 3d gravity is indeed a sum and thus not contain continuous pieces.

A.3 (Co)homology of 3-hyperbolic manifolds

In the main text, we need some basic aspects of the topology of hyperbolic manifolds. In this
discussion, we assume the manifoldM = H3/Γ to be smooth and do not allow singularities.
We determine the integer (co)homology groups in terms of the Kleinian group Γ and basic
geometric invariants of the boundary. We have of course the basic groups

H0(M,Z) ∼= H0(M,Z) ∼= Z (A.2)
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and H3(M,Z) ∼= H3(M,Z) ∼= 0, since the manifold is non-compact (we will assume in the
following that it has at least one boundary). Higher (co)homology groups also vanish. By
the Hurewicz theorem, we have

H1(M,Z) ∼= π1(M)ab ∼= Zr ⊕ Γtor . (A.3)

Here, Γtor is the torsion subgroup of the abelianization of π1(M) ∼= Γ (that is not necessarily
the torsion subgroup of Γ). r is the rank of the abelianization of Γ. By the universal
coefficients theorem, we have

H1(M,Z) ∼= Zr , H2(M,Z) ∼= ZR ⊕ Γtor , H2(M,Z) ∼= ZR . (A.4)

We will determine the rank R below. H2(M,Z) has no torsion, since otherwise by the
universal coefficients theorem, the torsion would also appear in H3(M,Z). Next, we deter-
mine the rank R of H2(M,R).44 We have the long exact sequence of (relative) homology
groups

0 −→ H3(M, ∂M;R) ∼= R −→ H2(∂M,R) ∼= Rn −→ H2(M,R) ∼= RR

−→ H2(M, ∂M;R) ∼= Rr −→ H1(∂M,R) ∼= R
∑

i
2Gi −→ H1(M,R) ∼= Rr

−→ H1(M, ∂M,R) ∼= RR−→ H0(∂M,R) ∼= Rn −→ H0(M,R) ∼= R −→ 0 . (A.5)

Here, n is the number of boundaries. We used Poincaré-Lefschetz duality, which is the
generalization of Poincaré duality to orientable manifolds with boundary,

Hk(M,R) ∼= H3−k(M, ∂M,R) , Hk(M,R) ∼= H3−k(M, ∂M,R) (A.6)

to express the relative homology groups in term of known quantities. Because the alter-
nating sum of the ranks of the group has to vanish in any exact sequence, we can calculate
R from this and obtain

R = n+ r −
∑
i

Gi − 1 = r − 1−
∑
i

(Gi − 1) . (A.7)

Thus, everything is expressible in terms of the group Γ and the Euler characteristics of the
boundary surfaces.

For our discussion, we also need H2(M,U(1)). From the universal coefficients theorem,
it follows that

H2(M,U(1)) ∼= U(1)R . (A.8)

A.4 Examples

Here we discuss examples of Kleinian groups. These are essentially the bulk manifolds for
the uniformizations of the boundary surfaces that we reviewed in appendix D.

44It is more convenient to use real coefficients here, since we already determined all the torsion parts.
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Schottky groups. Since the boundary of H3 is CP1, it is natural to consider the quo-
tient space H3/ΓS

G, where ΓS
G is a genus G Schottky group. The resulting 3-manifold is a

handlebody and can be thought of as the interior of a Riemann surface when embedded in
3-space.

The characteristic feature of handlebodies is that some homology cycles of Riemann
surface become contractible in the bulk. The αI cycles of the boundary can be identified
with the circles CI bounding the fundamental domain. They can be seen to be contractible
in the bulk. Topologically, this yields a classification of handlebodies: for every Lagrangian
sublattice of H1(ΣG,Z) (i.e. a G-dimensional sublattice with trivial induced intersection
form), there is a corresponding handlebody where these cycles can be contracted. However
for genus G ≥ 2 surfaces, there are also other bulk manifolds.

Handlebodies can be interpreted as Euclidean continuations of multiboundary
Lorentzian wormholes. This analytic continuation can be performed in different ways
leading to different physical interpretations [53].

Fuchsian groups. We can also act with a Fuchsian group on H3. Since the Fuchsian
group ΓF

G fixes the extended real line R ∪ {∞} ⊂ CP1, the domain of discontinuity Ω
equals the union of the upper and lower half-plane. Consequently, the boundary Ω/ΓF

G

of the resulting hyperbolic 3-manifold coincides with two copies of the Riemann surface
ΣG = H2/ΓF

G. Thus the resulting geometry is a Euclidean wormhole connecting the two
copies of the surface. The metric can be written down very explicitly [27, 92]

ds2
H3/ΓF

G
= dχ2 + cosh2 χ ds2

ΣG , (A.9)

where ds2
ΣG is the hyperbolic metric on the Riemann surface. χ ∈ R parametrizes the

location along the throat of the wormhole. The thinnest part of the throat is located at
χ = 0. The solution is reflection symmetric χ 7→ −χ. We could further quotient by this
isometry to obtain a geometry with a single boundary. It is singular, because the {χ = 0}
surface is fixed, but we can get a non-singular geometry by assuming that the Riemann
surface ΣG has a non-trivial involution (automorphism of order 2) without fixed points
and by composing it with the reflection χ 7→ −χ. The resulting geometry has only a
single boundary, but is not a handlebody. In fact, this geometry is very simple from a
topological point of view. The wormhole is homotopy equivalent to the Riemann surface
ΣG and thus the geometry obtained by further dividing out the Z2 action is homotopy
equivalent to ΣG/Z2. Depending on whether the involution is orientation preserving or
reversing, ΣG/Z2 is either a Riemann surface of genus G+1

2 (for this G has to be odd), or
it is the non-orientable Klein bottle of genus G. In the two cases, the non-trivial homology
groups are45

orientation preserving involution: H1(M,Z) ∼= ZG+1 , H2(M,Z) ∼= Z , (A.10a)

orientation reversing involution: H1(M,Z) ∼= ZG ⊕ Z2 , H2(M,Z) ∼= 0 , (A.10b)

45Since χ 7→ −χ also reverses the orientation, the whole manifold is orientable when the involution is
orientation-reversing and vice-versa.
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respectively. This shows that the resulting manifold is not equivalent to a handle-body.
The reader can easily verify that the formula (A.7) holds in both cases. Moreover, the
first case gives an example with H2(M,Z) 6= 0, which means that an additional chemical
potential can be introduced in the theory using discrete torsion, see section 5.5. However,
in this case M is also non-orientable and it is not clear to us whether one can formulate
the worldsheet theory on a non-orientable target space.

Quasi-Fuchsian groups. We can similarly consider the manifold H3/ΓQF
G for ΓQF

G a
quasi-Fuchsian group, see also appendix D.4. In this case the resulting hyperbolic manifold
can be thought of as a Euclidean wormhole connecting two genus G surfaces with possibly
different moduli.

B Some facts about Riemann surfaces

In this appendix, we will briefly recall some facts about Riemann surfaces. This appendix
is mostly meant for reference and to fix conventions. We shall denote by Σg a Riemann
surface (with no restrictions on the genus).

B.1 Differentials

We fix canonical generators of π1(Σg), α1, . . . , αg, β1, . . . , βg, satisfying
∏g
I=1[αI , βI ] =

1. We often view these generators as elements of H1(Σg,Z), where they have canonical
intersection products:

αI ∩ αJ = βI ∩ βJ = 0 , αI ∩ βJ = δIJ , (B.1)

for I = 1, . . . , g. Let ω1, . . . , ωg be the corresponding dual basis of H(1,0)(Σg,C):∫
αI

ωJ = δIJ ,

∫
βI

ωJ = ΩIJ , (B.2)

where ΩIJ is the period matrix. It satisfies

Ω = ΩT Im Ω > 0 . (B.3)

A change of generators α1, . . . , αg, β1, . . . , βg is an element of Aut(π1(Σg)) and induces
an automorphism of H1(Σg,Z). Such an automorphism preserves the intersection product
and can thus be identified with an element of Sp(2g,Z). It acts on the period matrix by
fractional linear transformations:

Ω 7→ (AΩ +B)(CΩ +D)−1 ,

(
A B

C D

)
∈ Sp(2g,Z) . (B.4)

B.2 Divisors

A divisor is a formal finite sum of points on the surface:

D =
∑
i

nizi , ni ∈ Z , zi ∈ Σ . (B.5)
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The group of divisors is the free abelian group on the points of the surface. For a meromor-
phic function f on Σ, define the principal divisor as (f) =

∑
z ordz(f)z, where ordz(f) is

the order of vanishing of f at z (negative when f has a pole at z). Since (fg) = (f) + (g),
principal divisors form a subgroup of all divisors and we can form equivalence classes
D ∼ D + (f), which are the divisor classes. The degree of a divisor is

|D| =
∑
i

ni ∈ Z , (B.6)

which is well-defined also on divisor classes since |(f)| = 0. One can define divisors also for
1-forms etc., since the order of vanishing is always a well-defined concept for any tensorfield.

A particularly important divisor is the canonical divisor K, given by the divisor of
any meromophic one-form. The equivalence class is well-defined, since the ratio ω1/ω2
of any two one-forms is a meromorphic function. The degree of the canonical divisor is
|K| = 2g − 2.

A divisor D on a Riemann surface determines a line bundle O(D), whose sections are
the space of meromorphic functions on Σ which vanish at least as fast at zi as prescribed
by the divisor D.

B.3 Classification of line bundles

Here, we sketch the classification of line bundle on Riemann surfaces, since this plays a role
in section 4. Line bundles form a group with respect to the tensor product. Topologically,
line bundles are just classified by their first Chern class (which is a group homomorphism
from the line bundles to the H2(Σg,Z) ∼= Z), which coincides with the degree of the
corresponding divisor. We are however interested in the analytic classification. We can
restrict ourselves to line bundles with vanishing first Chern class, since any line bundle
of degree d can be obtained by tensoring the flat line bundle with a fixed line bundle of
degree d. Line bundles with vanishing first Chern class carry a connection with vanishing
curvature and are hence flat. They can be characterized by a homomorphism

ρ : π1(Σg) −→ C× , (B.7)

that describes the holonomy of the bundle. Since the target group is abelian, such a homo-
morphism can be also understood as a homomorphism from H1(Σg,Z) into C×. We can in
turn identify H1(Σg,Z) with Z2g by employing the canonical basis α1, . . . , αg, β1, . . . , βg.
Thus, we can set ρ(αI) = e2πisI and ρ(βI) = e2πitI . Most of these parameters are actually
redundant. Consider the following quasiperiodic function in z:

exp
(
−2πi

∑
I

sI

∫ z

z0
ωI

)
. (B.8)

This function can be viewed as a holomorphic transformation between line bundles with
different multipliers around the cycles. By definition, its holonomies around the α-cycles
remove the phases given by sI completely. Thus, we can set sI = 0. There are also some
identifications on the parameters tI . We have of course tI ∼ tI+1 because of the exponential
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map. We can also use the same quasiperiodic function with sI ∈ Z (so that its holonomies
around the αI -cycles are still trivial). This has the effect of changing tI 7→ tI − ΩIJsJ . In
summary, the parameters tI form the space

Jac(Σg) = Cg/(Zg ⊕ΩZg) . (B.9)

This is a g-dimensional complex torus — the so-called Jacobian. This is the moduli space
of flat line bundles on Σg. It carries a natural complex metric and has volume

vol(Jac(Σg)) = det Im Ω . (B.10)

The same can also be seen by using the Abel-Jacobi map, that maps injectively (for
g ≥ 1) Σg −→ Jac(Σg):

u : Σg −→ Jac(Σg) , (B.11)

z 7−→
∫ z

z0
ω . (B.12)

Note that since the integration path is unspecified, the result is only well-defined as an
element of the Jacobian. z0 is an arbitrary reference point on Σg. This map extends natu-
rally to divisors by linearity. For a flat line bundle, the associated divisor has degree 0 and
is hence independent of the choice of z0. The Abel-Jacobi map now yields a isomorphism
between line bundles (or their divisors) and the Jacobian. A divisor D is hence principal
if and only if

|D| = 0 and u(D) = 0 . (B.13)

B.4 Spin structures

In this work, we consider fields with half-integer spin on the Riemann surface Σg. They
are sections of a spin bundle S. S satisfies S2 = K. The degree of any spin structure is
|S| = g − 1. Consequently, 2 u(S) = u(K). Since the Jacobian is a real 2g-dimensional
torus, there are 22g ways to choose u(S) ∈ Jac(Σg) such that 2 u(S) = u(K), corresponding
to the 22g spin structures on the Riemann surface. Notice that for two spin bundles S1 and
S2, S1 ⊗ S−1

2 is a flat line bundle on Σg and satisfies 2 u(S1 ⊗ S−1
2 ) = 0 ∈ Jac(Σg). Thus

given a fixed spin structure, we obtain any other spin structure by tensoring with such a
special flat line bundle with structure group Z2 ⊂ C×.

Spin structures can be further divided into even and odd spin structures according to
whether they have an even or odd number of holomorphic sections (or alternatively via
theta-characteristics). There are 2g−1(2g + 1) even spin structures and 2g−1(2g − 1) odd
spin structures.

B.5 Riemann-Roch theorem

The Riemann-Roch theorem is a statement about the number of holomorphic sections of
a line bundle L. Denoting the space of sections by H0(Σg, L), the theorem states that

dim H0(Σg, L)− dim H0(Σg,K ⊗ L−1) = |L|+ 1− g . (B.14)
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For example, we frequently make use of the following well-known statements (valid for g ≥
2):

dim H0(Σg,K) = g , (B.15a)
dim H0(Σg,K

2) = 3g − 3 . (B.15b)

For a spin bundle S, the Riemann-Roch theorem makes no predictions. The dimension of
sections of S is generically 1 for an odd spin structure and 0 for an even spin structure,
but can jump on subloci ofMg [93].

C Subgroups of the fundamental group and covering spaces

This appendix is more algebraic in nature and describes how to efficiently list the subgroups
of the fundamental group of Riemann surfaces. The fundamental group is generated by
α1, . . . , αg, β1, . . . , βg with

∏
I [αI , βI ] = 1, as described in appendix B.1.

C.1 Regular covering spaces

Connected covering spaces of degree Nc of the genus g Riemann surface are in one-to-one
correspondence to subgroups of π1(Σg) up to conjugacy. (We are not interested in covering
spaces of punctured spaces and hence consider conjugate subgroups to be equivalent).

Regular (or normal) covering spaces are those for which the corresponding subgroup H
of π1(Σg) is normal. In this case G = π1(Σg)/H is a finite group of order Nc. The covering
space ΣNc(g−1)+1 enjoys a group action of G and ΣNc(g−1)+1/G = Σg. Starting from degree
3, not all covering spaces are regular.

C.2 Relation to homomorphisms to SN
A different useful perspective to think about covering spaces is to label them by group
homomorphisms

φ : π1(Σg) −→ SN , (C.1)

whose image acts transitively on {1, . . . , N}. If we drop the transitivity condition than we
also get disconnected covering spaces. This is because a covering space can be understood
as a fibration with fibre {1, . . . , N} and structure group SN that permutes the different
sheets. A covering space that is obtained by relabelling {1, . . . , N} is equivalent and thus
we are again interested in group homomorphisms up to conjugacy.

Such group homomorphisms are much more managable since we only have to specify
them on the generators. We only have to ensure that the relation

g∏
I=1

[φ(αI), φ(βI)] = 1 (C.2)

is satisfied. The relation to subgroups of π1(Σg) is obtained by setting

Hφ = Stab({1}) , (C.3)

which by the orbit-stabilizer theorem is an index N subgroup (which is not necessarily
normal).

– 63 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
3

index number of subgroups up to conjugacy

2 4 · 2x − 1
3 6 · 6x + 3 · 3x − 6 · 2x + 1
4 8 · 24x + 4 · 12x + 8 · 8x − 8 · 6x − 8 · 4x − 4 · 3x + 8 · 2x − 1

Table 1. The number of subgroups of the fundamental group of a Riemann surface of a given index.
Here, x = 2g − 2. The structure

∑
a | d! naa

x for na integers persists also at higher index orders.

C.3 Number of subgroups

Let us next discuss the number of subgroups of a fixed degree. This question is answered
by Hurwitz theory. The number of disconnected covering surfaces of degree N of a genus
N surfaces is given by Burnside’s formula:46

Hdisc(N, g) =
∑
R

(dimR

N !

)2−2g
, (C.4)

where the sum extends over all irreducible representations of the symmetric group SN .
Here, H stands for Hurwitz. In this formula, covering surfaces with non-trivial automor-
phism group are weighted by the inverse order of their automorphism group. To find the
number of connected coverings one can form the Hurwitz potential:

Hdisc
g (q) = 1 +

∞∑
d=1

Hdisc(N, g)qd . (C.5)

Then the connected covering surfaces can be obtained by taking a logarithm, which passes
to the connected Hurwitz potential:

Hconn
g (q) = logHdisc

g (q) =
∞∑

Nc=1
Hconn(Nc, g)qNc . (C.6)

The actual number of connected covering spaces is then given by NcH
conn(c, g). The factor

of the automorphism group also appears in the symmetric orbifold partition function (2.4).
For low values of Nc , these values are listed in table 1. The asymptotics d→∞ is easy to
describe (for genus g ≥ 2), since the sum in Burnside’s formula is completely dominated
by the smallest representations — the trivial and alternating representation. Thus, we get

Ndisc(d, g) ∼ N conn(d, g) ∼ 2 (d!)2g−2 . (C.7)

Passing to the connected Hurwitz numbers does not change the asymptotics.

C.4 Enumerating subgroups

Actually enumerating subgroups is difficult. We do so for illustration for low indices.
46This is just the genus g partition function of two-dimensional gauge theory with gauge group SN . This

gauge theory counts covering spaces, because every covering space can be viewed as a fibre bundle where
the fiber consists of N points, as discussed in C.2. Since gauge theory counts the number of SN -bundles, it
counts the number of covering spaces.
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Index 2. For index 2, the situation is simple, because every subgroup is normal. Con-
sequently, every index 2 subgroup is obtained as the kernel of a surjective homomorphism
φ : π1(Σg) −→ Z2. Such a homomorphism is entirely determined by specifying it on its
generators. For every generator, there are 2 choices and in total there are hence 22g − 1
such homomorphisms. We need to subtract one to account for the fact that the trivial
homomorphism is not surjective.

Index 3. For index 3 subgroups, the situation is much more difficult, because most
subgroups are actually not normal. We proceed by constructing all homomorphisms φ :
π1(Σg) −→ S3. Let us first disregards the transitivity condition. If the image of the
homomorphism lies actually in Z3, then the covering space is regular. Let us now look
at a general homomorphism into S3 and discuss the constraint (C.2). For any choice of
φ on the generators, the product in (C.2) is an even permutation. If the image of the
homomorphism lies not in Z3, then there is at least one generator that is mapped to a
transposition. By changing the transposition, one changes the resulting permutation in
the product of (C.2). Thus one sees that when the image of the homomorphism lies not
in Z3, exactly 1

3 of the choices satisfy the constraint (C.2). If the image lies in Z3, the
constraint is trivially satisfied. Hence the number of homomorphisms φ : π1(Σg) −→ S3 is
given by

1
3(62g − 32g) + 32g . (C.8)

Relabeling would divide this number further by 6. The second term corresponds to the
regular covering spaces. This way of counting quickly becomes complicated.

Index 4. Let us only mention here that there are different regular covering spaces for
degree 4 coverings, corresponding to the cases where the image of φ lies in Z2×Z2 or in Z4.

D Uniformization

In this appendix, we survey the existing (simultaneous) uniformizations of Riemann sur-
faces. In the main text, we use these sometimes for the worldsheet and sometimes for
the boundary surfaces. In the main text, we use g as the worldsheet genus and G as the
boundary genus. To keep notation in this appendix uniform, we use g in the following.

D.1 Teichmüller space and the mapping class group

We start by recalling some facts about the structure of the moduli space of Riemann
surfaces. The dimension of the moduli space of Riemann surfacesMg is dim(Mg) = 3g−3
for g ≥ 2 (and = 1 for g = 1). Deformations of the complex structure are parametrized by
Beltrami-differentials µzz̄, which form the tangent space TΣgMg. The cotangent space is in
turn naturally identified with the space of quadratic differentials (i.e. holomorphic sections
of K2). The structure of the moduli spaceMg itself is quite complicated:

1. Mg is not compact, but can be compactified in a canonical way by including nodal
Riemann surfaces (the Deligne-Mumford compactification Mg). In this work, the
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integrands of string path integrals are supported only in the interior of the moduli
space and all our statements are independent of the compactification.

2. Mg has the structure of an orbifold that keeps track of the automorphism groups of
the Riemann surfaces. The moduli spaces M0 and M1 are unstable because they
have a continuous automorphism group. All Riemann surfaces with g ≥ 2 have finite
automorphism group (whose order is bounded by 84(g− 1)). Riemann surfaces with
non-trivial automorphism groups lead to orbifold singularities in Mg.

3. Mg naturally carries a Kähler metric, the so-called Weil-Petersson metric. It can be
described as follows. For two tangent-vectors (Beltrami differentials) at Σg ∈ Mg,
define an inner product as follows:

〈µzz̄|νzz̄ 〉 =
∫

Σg
d2z
√
γ µzz̄ν

z
z̄ . (D.1)

This inner product depends on the choice of the metric on the surface γab. The Weil-
Petersson metric is defined by choosing the unique metric with constant negative
curvature on Σg (see uniformization theorems below).

4. Mg is not simply connected. Its universal covering space is Teichmüller space Tg. On
Tg, the mapping class group MCG(Σg) acts and Tg/MCG(Σg) ∼=Mg. The mapping
class group consists of all the orientation-preserving homeomorphisms of Σg modulo
those that are continuously connected to the identity and is isomorphic to the outer
automorphism group of the fundamental group of a genus g surface (by the Dehn-
Nielsen-Baer theorem):

MCG(Σg) ∼= Out(π1(Σg)) . (D.2)

The mapping class group for genera g ≥ 2 is not well-understood. Any outer auto-
morphism on π1(Σg) induces an outer automorphism on its abelianization H1(Σg,Z).
Generators of the mapping class group preserve the intersection product on H1(Σg,Z)
and one obtains a surjection

MCG(Σg) −→ Sp(2g,Z) . (D.3)

The kernel of this morphism is non-trivial for genera g ≥ 2 and is called the
Torelli subgroup Tor(Σg). It is sometimes useful to consider the Torelli space
Ug = Tg/Tor(Σg), that can be described as the space of Riemann surfaces together
with a choice of canonical homology cycles.

For g = 1, most of these assertions become trivial. We have T1 = H2, the upper half-plane.
The Weil-Petersson metric on T1 coincides with the Poincaré upper half plane metric. The
mapping class group for genera g = 1 is the well-known modular group SL(2,Z) ∼= Sp(2,Z)
and since the fundamental group is abelian, the Torelli subgroup is trivial. Consequently,
T1 and U1 coincide.
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For genus 2 and 3, the situation is similar. While the Torelli subgroup is non-trivial,
the Torelli space Ug is still simple to describe. The period mapping Σ 7→ ΩΣ embeds the
Torelli space in the Siegel upper half plane

Hg = {Ω ∈ Cg×g |ΩT = Ω , Im Ω > 0} . (D.4)

For g = 2 and 3, this is actually an isomorphism and thus Ug ∼= Hg. The period map ceases
to be surjective for g = 4 and the image becomes much harder to describe. The moduli
space of Riemann surfaces is then given byMg

∼= Hg/Sp(2g,Z) in these genera.

D.2 Fuchsian uniformization

For genera g ≥ 2, the universal covering space Σg is the upper half plane H2. Hence we
can write Σg = H2/ΓF

g for some discrete subgroup ΓF
g ⊂ PSL(2,R) that acts properly

discontinuously on the upper half-plane. Such a group is called a Fuchsian group. Since
ΓF
g
∼= π1(Σg), ΓF

g is represented by 2g matrices satisfying{
A1, . . . , Ag, B1, . . . , Bg ∈ PSL(2,R)

∣∣∣∣ g∏
I=1

[AI , BI ] = 1

}
. (D.5)

Such a collection of matrices depends on 6g − 3 real parameters. Since collections of
matrices that are related by an overall conjugation lead to the same Riemann surface, a
Fuchsian group depends on 6g−6 real parameters, which coincides with the 3g−3 complex
parameters of moduli space. The fundamental domain of the Fuchsian uniformization is
given by the 4g-gon that is obtain by cutting the Riemann surface Σg along the cycles
αI and βI . The Fuchsian uniformization does not make the complex structure of moduli
space manifest. However, it naturally realizes the unique metric with constant negative
curvature on Σg. Since the upper half-plane metric on H2 is preserved by the action of
PSL(2,R), it descends to a well-defined metric on Σg with constant negative curvature.

Group cohomology. For our application, the cohomology of Fuchsian groups plays some
role, since we are computing an orbifold with Fuchsian group. Σg is an Eilenberg MacLane
space K(ΓF

g , 1).47 Since the group cohomology can be computed in terms of the (singular)
cohomology of the corresponding Eilenberg MacLane space, we have

Hn(ΓF
g ,M) = Hn(Σg,M) =


M , n = 0, 2 ,
M2g , n = 1 ,
0 , n > 2 .

(D.6)

for any abelian group M . In particular, H2(ΓF
g ,U(1)) = U(1) and thus, there should be a

phase that we can freely choose when orbifolding by a Fuchsian group. The corresponding
cocycle can be written down very explicitly. Let [g]AI and [g]BI denote the number of

47This means that the only non-trivial homotopy group πn occurs for n = 1 and π1(Σg) = ΓF
g by

construction. The reason for this is that πn for n ≥ 2 coincides with the same hopotopy group of its
universal covering space. In this case the universal covering space H2 is contractible, so πn(Σg) for n ≥ 2
vanishes.
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AI ’s (or BI ’s) in g when g is written as a word in the generators. Since the constraint
in (D.5) satisfies [· · · ]AI = [· · · ]BI = 0, this remains also well-defined in the Fuchsian group.
The homomorphisms [ · ]AI and [ · ]BI can be taken as the generators of H1(ΓF

g ,Z). The
generator of H2(ΓF

g ,Z) can be chosen to take the form

ϕ(g, h) =
g∑
I=1

([g]AI [h]BI − [g]BI [h]AI ) . (D.7)

An element for the U(1) cohomology is then given by exp (2πiθϕ(g, h)) for θ ∈ [0, 1).

Spin structure. We can describe spin structures very naturally using Fuchsian uni-
formization. The idea is to identify spin structures with lifts Γ̃F

g of ΓF
g to SL(2,R). There

are 22g such lifts, since we may choose the sign for every generator freely. Any such lift is
compatible with the relation

∏
I [AI , BI ] = 0. Group elements γ acts by Möbius transforma-

tions on the upper half plane. Using the lift to SL(2,R) we can define
√
∂γ(z) consistently

for every group element. If

γ =
(
a b

c d

)
, (D.8)

then
√
∂γ(z) ≡ (cz + d)−1. We can then define spinors to be automorphic forms ψ(z)

satisfying √
∂γ(z)ψ(γ(z)) = ψ(z) (D.9)

on the upper half plane. This hence defines a spin bundle S.

D.3 Schottky uniformization

Another type of uniformization is Schottky uniformization. It applies to all Riemann
surfaces. Here, we let a subgroup of ΓS

g ⊂ PSL(2,C) act properly discontinuously on an
open subset Ω ⊂ CP1. This is a natural uniformization for the context of AdS3, since
the boundary of global Euclidean AdS3 is CP1. A Schottky group ΓS

g is more precisely
characterized by the following properties:

1. ΓS
g is isomorphic to a free group in g generators, whose elements are all loxodromic

PSL(2,C) transformations (meaning that the corresponding Möbius transformation
has two fixed points).

2. A fundamental domain of the Schottky group can be described as follows. Let
C−g, . . . , C−1, C1, . . . , Cg be 2g circles in the complex plane bounding the discs
D−g, . . . , D−1, D1, . . . , Dg such that the discs are all disjoint. Then the generators
for the Schottky group are taken to be B1, . . . , Bg, where BI(C−I) = CI . Moreover,
BI maps the interior of C−I to the exterior of CI . The fundamental domain for the
Schottky group may be taken to be

F = CP1 \ (D−g ∪ · · · ∪D−1 ∪D1 ∪ · · · ∪Dg) . (D.10)
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ΓS
g does not act properly discontinuously on all of CP1. To have a properly discontinuous

action, one has to excise a limit set Λ ⊂ CP1. Λ consists of infinitely many points for
g ≥ 2 and has a complicated fractal structure. We define the open set Ω = CP1 \ Λ. The
Riemann surface is then obtained as Ω/ΓS

g .
Every Riemann surface admits a Schottky uniformization (this is the Koebe retrosec-

tion theorem). The Schottky group naturally depends on 3g complex parameters corre-
sponding to the matrices B1, . . . , Bg. Overall conjugation of the collection B1, . . . , Bg again
leads to the same Riemann surface and thus the parametrization really depends on 3g − 3
complex parameters, in agreement with the dimension ofMg. While Fuchsian uniformiza-
tion gives a natural description of the Teichmüller space Tg, Schottky uniformization gives
a description of an intermediate cover, the so called Schottky space Sg. For g = 1, we have

S1 = H2/(τ ∼ τ + 1) . (D.11)

Schottky uniformization makes the complex structure of the moduli space manifest. How-
ever, since the action of PSL(2,C) on CP1 does not preserve a metric, it does not lead to
a metric on the Riemann surface Σg.

ΓS
g is isomorphic to a free group and as such the group cohomology of ΓS

g is well-known.
It follows in particular that its group cohomology Hn(ΓS

g ,M) is trivial for n ≥ 2. Here, M
is any abelian group.H1(ΓS

g ,M) is isomorphic to the abelianization (ΓS
g)ab ⊗Z M ∼= Mg.

Spin structure. Using Schottky uniformization, we can describe 2g out of the 22g spin
structures on the Riemann surface naturally. They again correspond to lifts of the Schottky
group ΓS

g ⊂ PSL(2,C) to SL(2,C). The remaining spin structures are harder to define, since
its sections involve branch cuts running between the circles CI and C−I . We will not have
need of these additional spin structures.

D.4 Simultaneous uniformization

Finally, we discuss simultaneous uniformization of two Riemann surfaces by quasi-Fuchsian
groups. This is relevant for the context of AdS3 for the Euclidean wormhole. The simplest
case occurs when a Fuchsian group acts on CP1. In this case, the limit set Λ is R ∪ {∞}.
Thus, Ω = CP1 \ Λ = H2 ∪ H2, where H2 is the lower half-plane. Consequently, Ω/ΓF

g =
Σ(1)
g ∪ Σ(2)

g is the union of two Riemann surfaces with identical moduli.48

The statement of simultaneous uniformization generalizes this statement. A quasi-
Fuchsian group ΓQF

g is a discrete subgroup of PSL(2,C), whose limit set equals a Jordan-
curve in CP1 (i.e. a non-intersecting loop on CP1).49 The case of a Fuchsian group is a
special case, since it preserves the Jordan curve R ∪ {∞}. In this case, Ω has always two
components and so Ω/ΓQF

g
∼= Σg ∪Σ′g consists of two Riemann surfaces of the same genus,

but not necessarily the same moduli. The simultaneous uniformization theorem [94] states
that any two Riemann surfaces can always be uniformized in this way and hence the space
of quasi-Fuchsian groups can be identified with two copies of Teichmüller space Tg.

48This depends slightly on the orientation we choose. If we want the two Riemann surfaces to have the
induced orientation of the wormhole geometry, i.e. that ∂(H3/ΓF

g ) = Σ(1)
g + Σ(2)

g in homology, then the
moduli are actually complex conjugate to each other.

49Sometimes this is called a quasi-Fuchsian group of the first kind.
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E (Branched) complex projective structures

In this appendix, we review some facts about complex projective structures on Riemann
surfaces. There are several equivalent definition of this. We will follow the exposition
of [48, 95].

E.1 Complex projective structures

Definition. Let Σg be a Riemann surface of genus g ≥ 2. We choose a Fuchsian uni-
formization of Σg, Σg = H2/ΓF

g , where H2 is the upper half plane and ΓF
g is a Fuch-

sian group, see appendix D.2. A complex projective structure is a holomorphic function
γ : H2 −→ CP1 such that ∂γ(z) 6= 0 for all z ∈ H2. We also require that ∂(γ(z)−1) 6= 0.
Equivalently, γ(z) is locally injective. Moreover, γ(z) has the following automorphic
property:

γ(g(z)) = ρ(g)(γ(z)) (E.1)

for some homomorphism ρ : ΓF
g −→ Γ ⊂ PSL(2,C) and all g ∈ ΓF

g . The map γ is also often
called the developing map. We consider two complex projective structures to be equivalent
if they differ only by an overall composition with a Möbius transformation,

γ̃ = M ◦ γ , ρ̃(g) = M ◦ ρ(g) ◦M−1 (E.2)

for some matrix M ∈ PSL(2,C).

Equivalence to a projective atlas. Often, a complex projective structure is defined
differently as follows. We first choose a coordinate covering {Uα, zα} of the Riemann
surface Σg. zα are the coordinate maps zα : Uα −→ Vα ⊂ CP1 (zα as usual are biholomor-
phisms).50,51 On intersections, we have transition maps

fαβ = zα ◦ z−1
β : zβ(Uα ∩ Uβ) −→ zα(Uα ∩ Uβ) . (E.3)

A complex projective structure is such an atlas for which all the transition functions are
projective maps.

The transition maps satisfy the obvious consistency condition

fαβ ◦ fβγ = fαγ , (E.4)

whereever these maps are defined. Thus, fαβ define the coordinate bundle over Σ. The
group of the bundle is PSL(2,C) and the fibre is CP1. Since the transition maps are constant
(when considered as a mapping from Uα ∩ Uβ into PSL(2,C)) and thus the coordinate
bundle is flat. Specifying a flat coordinate bundle is equivalent to specifying the complex
projective structure.

50We use here CP1 instead of the usual C because it allows us to treat cases more uniformly.
51Alternatively, we can define a complex projective structure on a real surface, since a complex projective

structure in particular induces a complex structure. We take the point of view that the complex projective
structure is subordinate to the complex structure.
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This definition of complex projective structure is equivalent to the previous one. To
see this, we cover a fundamental domain of the Fuchsian realization by open subsets Uα.
We then simply identify

zα = Γ|Uα . (E.5)

thus defining the coordinate maps. One can easily check that this identifies the
two structures.

Examples from uniformization. Uniformizing the Riemann surface Σg either via
Fuchsian, Schottky or some other uniformization leads to a complex projective structure
(or in the case of Fuchsian uniformization even to a real projective structure). As we shall
see, the space of complex projective structures is however much bigger.

The Schwarzian derivative. It is useful to look at the Schwarzian derivative of the
developing map,

S(γ)(z) = ∂3γ(z)
∂γ(z) −

3(∂2γ(z))2

2(∂γ(z))2 . (E.6)

Here, we view γ as map from the upper half-plane and so ∂ is the usual derivative, not a
covariant derivative. Let us recall some crucial properties of the Schwarzian derivative:

1. Invariance under postcomposition with Möbius transformations:

S(g(γ(z))) = S(γ(z)) (E.7)

for g a Möbius transformation.

2. Covariance under precomposition with Möbius transformations:

S(γ(g(z))) = S(γ(z))(∂g(z))2 (E.8)

for g a Möbius transformation.

3. Relation to a second order differential equation. Let f1 and f2 be two linearly inde-
pendent solutions to the differential equation (viewed on H2)

∂2f(z) + 1
2φ(z)f(z) = 0 . (E.9)

Then the ratio γ(z) = f1(z)/f2(z) satisfies S(γ(z)) = φ(z). In fact, we may take

f1(z) = γ(z)√
∂γ(z)

, f1(z) = 1√
∂γ(z)

(E.10)

for a choice of square root.52 The pair f(z) = (f1(z), f2(z)) is a section of a rank 2
vector bundle and satisfies

(∂g(z))−
1
2f(g(z)) = ρ(g)(f(z)) , (E.11)

where ρ is a lift to SL(2,C) of the original homomorphism.
52This is well-defined because ∂γ(z) does not have zeros. Poles of ∂γ(z) are double poles, since also

∂(γ(z)−1) 6= 0.
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Coming back to the Schwarzian derivative of the developing map, we see that φ(z) =
S(γ)(z) is a well-defined quadratic differential on the Riemann surface Σ, thanks to the
first two properties. φ(z) has no poles, because ∂γ(z) 6= 0 for all z ∈ H2.

There is thus a map

{complex projective structures} −→ {holomorphic quadratic differentials} (E.12)

given by taking the Schwarzian of the developing map.
Conversely, given a holomorphic quadratic differential φ(z) on Σg, we can find a cor-

responding complex projective structure as follows. Essentially, one has to solve the differ-
ential equation S(γ)(z) = φ(z) on H2, which leads to the developing map γ(z) (unique up
to composition with Möbius transformation). The properties above imply that γ(z) has
the automorphic property for some homomorphism ρ : ΓF

g 7−→ PSL(2,C) and ∂γ(z) 6= 0,
∂(γ(z)−1) 6= 0. One has to work harder to show that the differential equation indeed always
admits a solution. We refer to [47] for this. This shows that the relation between complex
projective structures and quadratic differentials on Σg is 1-to-1.

Property 3 shows that the homomorphism ρ for a complex projective structure always
lifts to a homomorphism

ρ : ΓF
g −→ SL(2,C) . (E.13)

Parameter counting. It is useful to count the number of complex parameters that
enter these definitions. It is well-known that the dimension of quadratic differentials is
3g − 3, see (B.15b). Thus, also the dimension of complex projective structures is (3g − 3)-
dimensional. However, the definition of the homomorphism ρ involves 6g − 6 complex
parameters: we choose 2g complex matrices for the generators α1, . . . , αg, β1, . . . , βg of
π1(Σ), but they have to satisfy the relation

g∏
I=1

[ρ(αI), ρ(βI)] = 1 . (E.14)

Moreover, two homomorphisms differing by an overall conjugation are considered equivalent
which accounts for another 3 parameters.

Thus, for most homomorphisms ρ, there will not be a developing map and so they do
not define a complex projective structure. From the parameter counting, we see however
that if we allow both the complex structure and the complex projective structure on Σg to
vary, then we get 6g − 6 complex parameters. See property 3 below.

Further properties. Here we list further useful properties of complex projective
structures.

1. If two developing maps γ1 and γ2 lead to the same homomorphism ρ, then γ1 = γ2.
See [48, Theorem 3].

2. The following conditions for the developing map γ are equivalent [48, Theorem 7]:

(a) γ(H2) 6= CP1.
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(b) γ : H2 −→ γ(H2) is a covering map.
(c) ρ(ΓF

g ) acts properly discontinuously on the image γ(H2).

If these conditions are satisfied then, γ descends to a well-defined covering map

γ̃ : Σg −→ γ(H2)/ρ(ΓF
g ) . (E.15)

These are precisely the projective structures in which we are interested in this paper.

3. A group of Möbius transformations is elementary if its action on H3 has either one
fixed point in H3 or one fixed in ∂H3 ∼= CP1. In the first case, it is conjugate to
a group of unitary transformations, whereas in the second case, it is conjugate to a
group of affine transformations.
Any homomorphism ρ : π1(Σ) −→ PSL(2,C) that is liftable to SL(2,C) and whose
image is not an elementary group is realized by a complex structure on Σg subordinate
to some complex structure [95].

E.2 Branched complex projective structures

While complex projective structures are the relevant structure on the worldsheet for com-
puting partition functions, we have to turn to branched complex projective structures for
correlation functions.

Definition. For branched complex structures, we do not require the developing map to
be locally injective. Thus, a branched complex structure is a map γ : H2 −→ CP1 satisfying

γ(g(z)) = ρ(g)(γ(z)) (E.16)

for some homomorphism ρ : ΓF
g −→ Γ ⊂ PSL(2,C) and all g ∈ ΓF

g . γ is branched over
finitely many points z1, . . . , zn on the Riemann surface with ramification indices w1, . . . , wn,
meaning that

∂nγ(zi) = 0 , 0 < n < wi (E.17)

and ∂wiγ(zi) 6= 0. Note that the ramification index is preserved under actions of Möbius
transformations, so that this is well-defined.

The definition in terms of a complex atlas is much less useful in this case and hence
we will work only with the developing map.

Relation to meromorphic quadratic differentials. We can still define the
Schwarzian in this case. The resulting quadratic differential has now quadratic differentials
at zi. A straightforward computation gives

S(γ)(z) ∼ 1− w2
i

2(z − zi)2 +O
(
(z − zi)−1

)
. (E.18)

Hence the Schwarzian gives us a map

{branched complex projective structures with branch locus (z1, w1), . . . , (zn, wn)}

−→
{
meromorphic quadratic differentials with QRes

z=zi
φ(z) = 1− w2

i

2

}
, (E.19)
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where QRes is the quadratic residue. Contrary to the unbranched case, this map is not
1-to-1. We can easily understand this via an example. Consider the case g = 0 with four
punctures, each having wi = 2. Let us take z1 = 0, z2 = 1, z3 = 2 and z4 = 3. In this case,
a generic quadratic differential with the required poles takes the form

φ(z) = −24z2 + 72z − 54
z2(z − 1)2(z − 2)2(z − 3)2 + q

z(z − 1)(z − 2)(z − 3) . (E.20)

However, we do not expect a familiy of maps γ(z) with simple ramifications at zi. Such a
map is necessarily a branched cover of CP1 and as such has degree 3 by the Riemann Hur-
witz formula. Hence we can write it as γ(z) = P3(z)/Q3(z) for two third order polynomials
P3(z) and Q3(z). Counting parameters, such a map depends on 7 parameters. Overall
Möbius transformations make 3 parameters redundant, the other 4 are fixed by requir-
ing the ramifications at zi. Hence we do not get a family of solutions for the Schwarzian
derivative. Instead we have only two discrete solutions q = −10± 2

√
13.

In general, one needs to impose n additional constraints on the quadratic differential
in order for a solution γ to exist. As one can see from this example, this constraint is
quite complicated. The general statement is that there exist n polynomials on the affine
vectorspace of quadratic differentials P1, . . . , Pn with the required poles such that the joint
zero locus can be identified with space of integrable quadratic differentials, i.e. those that
give rise to a developing map γ [47, 96].

Thus, the correct statement is in this case that branched complex projective struc-
tures with given branch locus are in 1-to-1 correspondence with integrable meromorphic
quadratic differentials with the correct poles. For genus g ≥ 2, the space of branched
complex projective structures with given ramification locus has hence again generic dimen-
sion 3g − 3.

F Topologically twisted partition function

In this appendix, we explain the form of topologically twisted partition functions. Our
main example is the sigma-model on T4 that is relevant for the present paper.

F.1 Topological twist

The N = 2 superconformal algebra possesses chiral supercurrents G+ and G− of weight 3
2 .

It also possesses an R-symmetry current J = i∂H with defining OPE

J(z)J(w) ∼ c

3(z − w)2 , (F.1)

where c is the central charge of the theory.
We now topologically twist the theory, which corresponds to a redefinition of the

Virasoro tensor
T̂ = T − 1

2∂J . (F.2)

With respect to this new Virasoro tensor, the supercharges have weight 1 (G+) and 2 (G−).
Moreover, the new central charge vanishes. This ensures that the correlation functions in
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the twisted theory are Weyl-anomaly free. The topological twist leads to an anomalous
U(1)-current. In a correlator, the total charge with respect to the current J has to be
c
3(1 − g) in order to get a non-vanishing result. Thus, the topologically twisted partition
function that we would like to compute is〈g−1∏

j=1
e−iH(zj)

〉
. (F.3)

We suppress here as usual the right-movers. This is still not quite what we want, since
this partition function vanishes identically. One way to see this is that the path integral
still has a zero mode: the insertion of e−iH(z)in the correlation function is a Grassmannian
1-form that should have an a zero at z = zi. Such a one-form does exist and its presence
leads to a vanishing result.

This is exactly the same issue that is present in the naive definition of the correlators
of the N = 4 topological string [44, 45]. It is remedied in (3.7) by the inclusion of the
current J . In our context, this means that we consider the following topologically twisted
partition function: 〈g−1∏

j=1
e−iH(zj)∂H(z)

〉
. (F.4)

F.2 Change of variables

We want to relate this partition function to the untwisted partition function. To do so,
we follow the strategy of [97, 98]. Let us consider a complex fermion ψ and ψ̄ (that are
both spinors) and the topologically twisted versions Ψ (that is a function) and Ψ̄ (that is
a 1-form). We relate the two as follows:

Ψ̄ = Ωψ̄ , Ψ = Ω−1ψ . (F.5)

Here Ω is a holomorphic spinor. For Ω to exist, we need it to be an element of an odd spin
bundle S. Ω has g − 1 zeros which are located at z∗1 ,. . . , z∗g−1 and for simplicity, we are
computing the correlator

〈Ψ̄(z∗1) · · · Ψ̄(z∗g−1)(ΨΨ̄)(z)〉 , (F.6)

which satisfies the anomalous charge conservation. When computing this correlator via a
path integral approach, we simply have to analyze how the measure and the action changes
under this change of variables. In the (Ψ, Ψ̄) variables, Ψ(z) needs to have a first order
pole at z∗i and Ψ̄(z) has a first order zero at z∗i because of the operator insertions. Since
also Ω(z) has a zero at these points, this means that (ψ, ψ̄) is regular at these points. Since
(ΨΨ̄) = (ψψ̄), nothing changes at the additional point. The action in the (Ψ, Ψ̄) variables
translates correctly to the action in the (ψ, ψ̄) variables. Finally, we have to analyze the
relation between the measures. The norms are related according to

‖δΨ̄‖2 = ‖δψ̄‖2|Ω|2 , ‖δΨ‖2 = ‖δψ‖2|Ω|−2 . (F.7)
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In order for this measure to coincide with the standard measure on differentials, we need
to specify the metric according to

gzz̄ = |Ω|4 . (F.8)

Thus, we see that with this choice of metric

〈Ψ̄(z∗1) · · · Ψ̄(z∗g−1)(ΨΨ̄)(z)〉twisted = 〈(ψψ̄)(z)〉untwisted (F.9)

The right-hand side is evaluated with the fixed odd spin structure S. We see again that
the additional insertion of (ψψ̄)(z) is necessary to get a non-vanishing result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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