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1 Introduction

Topological defects associated with phase transitions in the early Universe have been the
subject of intense study (see e.g., ref. [1]). Cosmic string is such a topological defect
associated with U(1) symmetry breaking. One of the most important examples is the
cosmic string in the axion model [2–4], which solves the strong CP problem by utilizing
the Nambu-Goldstone boson accompanying the breaking of the global U(1) Peccei-Quinn
(PQ) symmetry. As an interesting phenomenological feature of the cosmic string, it can
exhibit the superconductivity [5]. For example, when the symmetry breaking field couples
to chiral fermions with non-vanishing U(1)QED charges, the cosmic string shows supercon-
ductivity. The bosonic superconducting string is also possible if the cosmic string induces
the spontaneous breaking of U(1)QED inside the string while U(1)QED is unbroken outside
of the string.
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Recently, the superconductivity of the cosmic strings has gathered renewed attention
in the axion models [6–8]. As discussed in ref. [6], the axion string becomes the chiral su-
perconductor in which the KSVZ fermions carry the current traveling in only one direction
along the string in the KSVZ axion model [9, 10]. Once such a chiral superconducting
string forms a closed loop, it stops shrinking at some point when the kinetic energy of the
carrier fermions becomes non-negligible compared to the weight of the string loop. Such
a stable configuration is called a Vorton [11–15]. If the Vorton has a lifetime of cosmolog-
ical timescale, it contributes to the dark matter density and may significantly affect the
cosmology of the axion models.

In this paper, we study the stability of the fermion which carries the superconducting
current on the string (see also refs. [16–18] for earlier works). We find that the carrier
particle immediately decays in a curved string in typical axion models. Accordingly, the
lifetime of the string loop is not far from that of the carrier particles in the vacuum. Thus
the Vorton cannot be long-lived.

The organization of this paper is as follows. In section 2, we briefly review the axion
model and the associated superconducting string. In section 3, we discuss the decay rate
of the charge carrier when the strings are curved. In section 4, we discuss the fate of the
Vorton. The final section is devoted to our conclusions.

2 Axion and superconducting string

In this section, we briefly review the superconductivity of the global string associated with
the PQ-symmetry breaking.

2.1 KSVZ axion and global string

Throughout this paper, we consider the KSVZ axion model [9, 10], which consists of a
complex scalar field φ and Nf KSVZ fermions, ψ, of the fundamental representation of
the SU(3)c gauge group of QCD.1 We will take Nf = 1 for successful cosmology (see later
discussion). The U(1) PQ-symmetry is defined by the phase rotations,

φ→ φ′ = eiαφ , ψL → ψ′L = e−iαψL , ψR → ψ′R = ψR , (2.1)

where ψL,R = PL,Rψ and α is a rotation parameter. The PQ-symmetry allows couplings
between φ and ψ,

L = ∂µφ
∗∂µφ+ ψ̄iγµ∂µψ − V (φ) + yψφψ̄PLψ + h.c. , (2.2)

V (φ) = λ

4 (|φ|2 − v2
PQ)2 , (2.3)

where yψ(> 0) is a Yukawa coupling constant, λ(> 0) the quartic coupling constant, and
vPQ is a parameter with a mass dimension one.

At the vacuum, the PQ-symmetry is spontaneously broken by the VEV of φ,

〈φ〉 = vPQ , (2.4)
1In this paper, we use the convention for the four-component fermion in ref. [19].
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where we take vPQ > 0. From the Yukawa coupling, the KSVZ fermion obtains a mass,

mψ = yψvPQ . (2.5)

In the broken phase, the PQ-symmetry is realized as a shift symmetry of the axion, a,

a/fPQ → a′/fPQ = a/fPQ + α, ψL → ψ′L = e−iαψL , ψR → ψ′R = ψR , (2.6)

where the axion resides in φ as,

φ = vPQ e
ia/fPQ , fPQ =

√
2vPQ . (2.7)

Due to the QCD anomaly, the axion obtains a non-trivial scalar potential, and the effective
θ-angle of the QCD is erased at the minimum of the axion potential.

Associated with the PQ-breaking, there are the global cosmic string configurations
which have non-trivial topological numbers in π1(U(1)) (see e.g., ref. [1]). For a straight
cosmic string, the string configuration is given by,

φ = vPQh(ρ)einwϕ , (2.8)

where (ρ, ϕ, z) is the cylindrical coordinate along the straight string in the z-direction. The
integer nw ∈ π1(U(1)) is the winding number. For a scalar potential in eq. (2.3), the field
equation of h is given by,

h′′(ρ) + h′(ρ)
ρ
− n2

w

ρ2 h(ρ)− 1
2m

2
φ(h(ρ)2 − 1)h(ρ) = 0 , (2.9)

with boundary conditions,

h(ρ) ∝ ρ|nw| , (ρ→ 0) , (2.10)
h(ρ)→ 1 , (ρ→∞). (2.11)

Here, mφ denotes the mass of the modulus component of φ, mφ =
√
λvPQ.2

Unlike the Abrikosov-Nielsen-Olesen (ANO) local string [20], the tension of the global
string is logarithmically divergent since the angular gradient of φ is not compensated by the
gauge field. Nonetheless, those strings are expected to be formed at the phase transition in
the early Universe, where the divergence is cut off by a typical distance between the strings
of the order of the Hubble length, H−1. That is, the string tension µ at the formation is
roughly given by,

µ ∼ 2πv2
PQ log mφ

H
. (2.12)

We assume that the PQ-breaking takes place after the end of inflation. In the following
analysis, we take Nf = 1, otherwise, the KSVZ axion potential has a discrete ZNf (Nf > 1)
symmetry which is broken by the VEV of the axion. Thus, the model with Nf > 1 suffers
from the domain-wall problem, while the model with Nf = 1 is free from this problem.3

2Asymptotically, h(ρ) =
√

1− 2n2
w/(mφρ)2 for mφρ� 1.

3If we allow flavor dependent PQ charges of ψ’s, it is possible to avoid the domain wall number for Nf > 1.

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
7

In the model with Nf = 1, the axion dark matter density is dominated by the axions
produced by the decay of the string-wall network at the QCD phase transition in the
case that the PQ breaking takes place after inflation. The simulations suggest the axion
abundance exceeds the observed dark matter density for fPQ > O

(
1011)GeV [21–24]. To

avoid cosmological and astrophysical constraints, we consider the range of the axion decay
constant in,

fPQ = 108 − 1011 GeV , (2.13)

where the lower bound comes from the astrophysical constraints [25–28].
In the case that the PQ-breaking takes place after inflation, the KSVZ fermions are

in the thermal-equilibrium. Since they become heavy due to the PQ-breaking and get the
mass yψvPQ, they need to decay into the SM particles to avoid the cosmological problems.
The KSVZ fermions can decay well before the Big-Bang Nucleosynthesis if, for example,
ψR has the same quantum number as the down-type quark, dR, in the SM.4 In this case,
the decay operator is given by,

OD = yDHSMψ̄RqL + h.c. , (2.14)

where HSM and qL are the Higgs and the quark doublets in the SM. The corresponding
decay rate is given by,

ΓD = |yD|
2

16π mψ . (2.15)

Here, we consider the decay rate into only one generation of the quark doublets for
simplicity.

Note that ψ has the same gauge charges with dR. In this case, the KSVZ fermion has
the QED charge qψ = −1/3. We may instead assign ψR the same quantum number with
the up-type quarks, uR. In this case, the QED charge of ψ is given by qψ = 2/3, although
the change of the charge does not affect the following arguments.

2.2 Superconductivity of axion string

Around an infinitely long string, the Dirac equation of the fermion coupling to the string has
the zero mode solutions which are normalizable in the transverse plane of the string [29, 30].
The normalizable fermion zero mode can propagate along the string as a massless mode.
When the fermion zero mode has non-trivial gauge charges, it carries the superconducting
current [5]. Recently, ref. [6] revisited the string superconductivity in the KSVZ axion
model. It showed that the axion strings generically exhibit the chiral superconductivity.
We here briefly review the fermion zero modes and the superconductivity of the string.

We consider the Dirac equation around the straight cosmic string along the z-axis,[
iγµ∂µ −mψh(ρ)

(
eiϕPL + e−iϕPR

)]
ψ = 0 . (2.16)

4As defined in eq. (2.1), ψR is neutral under the PQ symmetry.
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where ρ =
√
x2 + y2 and ϕ is the azimuthal angle on the (x, y) plane. Here, we assume

the winding number of the string is nw = 1. For now, let us assume that ψ depends only
on the transverse coordinate (x, y). Then, the Dirac equation is reduced to,

iγ1
(
∂1 + i(iγ1γ2)∂2

)
ψL = mψh(ρ)e−iϕψR , (2.17)

iγ1
(
∂1 + i(iγ1γ2)∂2

)
ψR = mψh(ρ)eiϕψL . (2.18)

The explicit solution which is normalizable in the transverse plane is given by [30],

ψ0(x, y) = Nη exp
(
−
∫ ρ

0
mψh(ρ′)dρ′

)
, η =


0
1
i

0

 , (2.19)

which satisfies5

iγ1γ2ψ0
L = −ψ0

L , iγ1γ2ψ0
R = ψ0

R , ψ0
R = −iγ1ψ0

L , ∂ϕψ
0
L,R = 0 . (2.20)

The normalization constant N will be determined later. The zero-mode configuration in
eq. (2.19) is localized at around the core of the cosmic string with a finite size of O(m−1

ψ ).
Interestingly, the normalizable transverse zero modes lead to the “massless” propaga-

tion modes along the cosmic string. Let us the assume,

ψ0(t, x, y, z) = α(t, z)ψ0(x, y) . (2.21)

then, the Dirac equation in the four-dimensional spacetime is reduced to,

(γ0∂0 + γ3∂3)α(t, z)η = 0 , (2.22)

or

(∂0 + ∂3)α(t, z) = 0 , (2.23)

since γ0γ3η = η. The general solution of this equation,

α(t, z) = α(t− z) , (2.24)

corresponds to the “massless” chiral fermion which moves at the speed of light in the
positive z-direction. Note that both the particle ψ0 and the anti-particle, ψ0 c = iγ2ψ

0∗,
move in the same direction along the string. They also have the same chirality in the
longitudinal two-dimensional spacetime, i.e., γ0γ3ψ0(c) = ψ0(c).

When the straight string is placed in a constant electric field in the z-direction, Ez, the
fermion zero modes are induced on the string. The resulting current on the string grows
in the applied time ∆t as [5],

J =
q2
ψ

2πEz∆t , (2.25)

which is a characteristic of a superconducting wire. This current is persistent and remains
even after the electric field is turned off.6

5It is convenient to note ∂1 ± i∂2 = e±iϕ(∂ρ ± iρ−1∂ϕ).
6In ref. [5], it is considered the vector-like charge carrier on the string. For detailed discussion on the

chiral nature of the superconducting string, see e.g., refs. [31–33].
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pz = E (� m )

Figure 1. Schematic pictures of the decay of the fermion zero mode in the curved string. The
curvature radius of the curve is O

(
m−1
φ

)
. For the zero mode with |pz| � mψ, it escapes from the

string at the curve and decays via the decay operator. For the zero mode with |pz| < mψ, it decays
through the quantum tunneling.

3 Stability of fermion zero mode in curved string

In the above discussion, we considered the straight cosmic string. In general, however,
the cosmic strings are curved. Macroscopically, cosmic strings have a curvature radius of
O
(
H−1) (see e.g., refs. [21, 22]). They also have microscopic curvatures induced by the

thermal fluctuations. In this section, we consider the decay of the fermion zero mode in a
curved string.

3.1 Schematic picture of zero mode decay

For a zero mode in a straight cosmic string, its decay is prevented by the energy conserva-
tion and the longitudinal momentum conservation. The initial energy and the momentum
in the z-direction are Ei = pzi = E, respectively. Thus, the energy and the longitudi-
nal momentum conservation leads to, Ef = pzf = E, and hence, the phase space of the
transverse momentum of the final state is vanishing. For a zero mode in a curved string
with finite string core size, on the other hand, it is expected that the fermion zero mode
decays into the SM particles through the decay operator since the longitudinal momentum
conservation is broken by the curvature of the string (see refs. [18, 34] for related works).

For example, let us consider a curved string with its curvature radius is comparable to
the string core size, i.e., O

(
m−1
φ

)
(see figure 1). In this case, the zero mode with |pz| � mψ

simply goes out of the string and behaves as a massive free fermion [5] (see the appendix A).
Thus, it immediately decays into the SM particles through the decay operator. For the
zero mode with |pz| < mψ, on the other hand, it does not go out of the string due to the
energy conservation. Even in this case, it is expected that the fermionic zero mode decays
into the SM particles through the off-shell fermion, i.e., the quantum tunneling.

Let us emphasize that the fermion zero mode is stable even on a curved string when
the core radius of the string is vanishing, i.e., mφ → ∞. In this limit, the straight string
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picture is valid at any point on the string even if it is curved with a finite curvature radius.7

Thus, the fermion zero mode is trapped inside the two-dimensional spacetime along the
string. Hence, even the fermion zero mode with E � mψ cannot escape from the string
and moves along the string.

3.2 Decay of fermion zero mode in curved string

To discuss the decay rate of the zero mode in a curved string, let us consider a slight mod-
ulation on a straight string along the z-axis. We consider a modulation in the y-direction
in which the position of the string center is given by

(x, y, z) = (0, f(z), z) . (3.1)

We consider that the maximal value of |f | is much smaller than the string core size m−1
φ ,

so that the modulation can be treated perturbatively. In the following, we consider a time-
independent modulation. The curve in eq. (3.1) modulates the string profile function h(ρ),

h(ρ)→ h(ρ) + δh(ρ, ϕ, z) , δh(ρ, ϕ, z) = y

ρ

dh(ρ)
dρ

× f(z) , (3.2)

for |f | � m−1
φ . The modulation couples to the fermion via the Yukawa coupling,

OM = mψδh(ρ, ϕ, z)ψ̄(eiϕPL + e−iϕPR)ψ , (3.3)

which originates from eq. (2.2).
The quantized KSVZ fermion field in the presence of a straight string along the z-axis

with a length Lstr and a winding number nw = 1 is given by

ψ̂ = 1√
Lstr

∑
n>0

(
e−iEn(t−z)u(ρ) b̂0n + eiEn(t−z)v(ρ) d̂0

n
†
)

+
∑

(bounded massive modes) +
∑

(unbounded modes) . (3.4)

The first line denotes the zero-mode contribution of energy En = 2πn/Lstr (n > 0). The
wave functions u(ρ) and v(ρ)are given by,

u(ρ) = Nη exp
(
−
∫ ρ

0
mψh(ρ′)dρ′

)
, v(ρ) = iγ2u(ρ)∗ ,

∫
dxdy|u(ρ)|2 = 1 , (3.5)

where h(ρ) is the profile function of a straight string in eq. (2.9). The normalization
constant N is fixed by the third condition in eq. (3.5).8 The second and the third terms
represent the massive bounded modes in the string and the unbounded continuous modes,
respectively [17, 35, 36]. The creation operators of the zero modes satisfy,

{b̂0n, b̂
0†
n′} = δnn′ , {d̂0

n, d̂
0†
n′} = δnn′ . (3.6)

7In other words, the fermion zero mode does not have injection momentum onto the potential wall made
by the curve of the string for mφ →∞.

8The normalization constant is approximately given by N ' mψ/
√

2π for mφ � mψ.

– 7 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
7

ψ0

qL

HSM

δh

ψ∗

Figure 2. The Feynman diagram corresponding to the leading order contribution to the zero mode
decay into the quark and the Higgs in eq. (3.10).

The unbounded continuous mode asymptotically behaves as a massive free particle with a
mass mψ away from the string.

In the limit of Lstr →∞, the quantized field becomes

ψ̂ =
∫ ∞

0

dE

2π
(
e−iE(t−z)u(ρ) b̂0(E) + eiE(t−z)v(ρ) d̂0(E)†

)
+
∫

(bounded massive modes) +
∫

(unbounded modes) , (3.7)

with the creation/annihilation operators,

{b̂0(E), b̂0(E′)†} = (2π)δ(E − E′) , {d̂0(E), d̂0(E′)†} = (2π)δ(E − E′) . (3.8)

Here, b̂0(E) and d̂0(E) correspond to
√
Lstr b̂

0
n and

√
Lstr d̂

0
n, respectively.

Now, let us calculate the matrix element of the decay process of the fermion zero mode
by using the quantized field in eq. (3.7). In the presence of the modulation, the matrix
element for the decay process is given by

T̂ = 〈0|âqâHTei
∫
d4x[OM+OD]b̂0(E)†|0〉 . (3.9)

Here, âq and âH are the annihilation operators of the quark and the Higgs doublets,
respectively. The state |0〉 denotes the ground state with a global string with nw = 1.
In the Born approximation (figure 2), the amplitude becomes,

T̂ ' −y∗DmψūqPR

∫
d4x

∫
d4x′δh(x)〈0|Tψ(x′)ψ̄(x)|0〉P (ϕ)u(ρ)e−iE(t−z)eipfx

′
. (3.10)

Here ūq is the wave function of qL in the final state, P (ϕ) = eiϕPL+e−iϕPR, and pf denotes
the sum of the final state four-dimensional momenta.

In the presence of the string, the exact form of the propagator of ψ is not known
even for δh = 0. In the present analysis, we only take account of the unbounded fermion
contributions to the propagator and approximate it by that of the free fermion,

〈0|Tψ(x)ψ̄(x′)|0〉 '
∫

d4p

i(2π)4
mψ + /p

m2
ψ − p2 + iε

e−ip(x−x
′) . (3.11)

Under this approximation, the matrix element is reduced to,

T̂ '−y∗DmψūqPR

∫
d4x

∫
d4x′δh(x)

∫
d4p

i(2π)4
mψ+/p

m2
ψ−p2+iε

eip(x−x
′)P (ϕ)u(ρ)e−iE(t−z)eipfx

′
.

(3.12)
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By integrating over x′, p and t, we obtain,

T̂ ' i(2π)δ(E − Ef )y∗DmψūqPR

∫
d3xδh(x)

e−iϕmψ + e+iϕ/pf
m2
ψ − p2

f + iε
u(ρ)eiEze−ipf ·x . (3.13)

Incidentally, the off-shell fermion zero modes do not contribute to the decay rate in the
Born approximation since

〈0|Tψ(x)ψ̄(x′)|0〉
∣∣∣
zero mode

∝


0 0 0 0
−i 0 0 i

1 0 0 −1
0 0 0 0

 , (3.14)

and hence, 〈0|Tψ(x)ψ̄(x′)|0〉
∣∣∣
zero mode

× P (ϕ)u(ρ) = 0.
To specify the modulation, we consider a periodic curve with a period L, that is,

f(z) =
∞∑

n=−∞
cne
−i 2πn

L
z , (3.15)

cn = 1
L

∫ L/2

−L/2
dzei

2πn
L
zf(z) , (3.16)

with c−n = c∗n.9 In this case, the integration over z results in,

T̂ ' i(2π)2δ(E − Ef )y∗DmψūqPR
∑
n

cnδ(E − pzf − kn)

×
∫
d2x

e−iϕmψ + e+iϕ/pf
m2
ψ − p2

f + iε
sinϕdh

dρ
u(ρ)e−ipf ·x|⊥ , (3.17)

where kn = 2πn/L (n ∈ Z) and the subscript ⊥ denotes the (x, y) space components. For
each a modulation mode, the total invariant mass of the final state satisfies,

0 ≤ p2
f ≤ E2 − (E − kn)2 = 2Ekn − k2

n . (3.18)

Thus, the decay rate of the high energy mode in a slowly curved string, E � |kn|, gets
contributions only from the modes with n > 0. The result also confirms that the decay
rate is vanishing in a straight string, n = 0, where p2

f = 0.
Our main interest is the fate of the fermion zero modes with E . vPQ in a slowly

curved string, kn � mφ. For such a fermion, we find p2
f < m2

ψ, /pfη � mψη, and hence,
the amplitude is reduced to

T̂ ' i(2π)2δ(E−Ef )y∗DūqPR
∑
n>0

cnδ(E−pzf−kn)
∫
d2xe−iϕ sinϕdh

dρ
u(ρ)e−ipf ·x|⊥ . (3.19)

9Strictly speaking, we need to assume δh(z) → 0 for |z| → ∞ to justify the amplitude in eq. (3.9).
This assumption requires a dumping factor at |z| → ∞. However, since the decay rate should not depend
on the shape at |z| → ∞, we estimate the decay rate by using the periodic modulation as it is. In the
appendix C, we confirm that the consistent decay rate is obtained for a non-periodic modulation with
δh(z)→ 0 at |z| → ∞.
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ξ(
m
φ
/m

ψ
)

mφ/mψ

10−6

10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

Figure 3. The numerical estimation of the function ξ(mφ/mψ).

The integrand is highly suppressed for ρ� m−1
φ,ψ. In this region, pf · x|⊥ � 1, and hence,

T̂ ' (2π)3δ(E − Ef )y∗DūqPR
∑
n>0

cnδ(E − pzf − kn)ξ
(
mφ

mψ

)
η , (3.20)

where ξ(mφ/mψ) is defined by,

ξ

(
mφ

mψ

)
= ξ (mφ,mψ) = iN

2π

∫
d2xe−iϕ sinϕdh

dρ
exp

(
−
∫ ρ

0
mψh(ρ′)dρ′

)
. (3.21)

Asymptotically ξ(mφ/mψ → ∞) → 0.54 ×mψ/mφ and ξ(mφ/mψ → 0) → 0.13
√
mφ/mψ

(see figure 3).10 The suppression of the amplitude for mφ/mψ � 1 is reasonable since the
straight string picture becomes valid at any point on the string in this limit.

By dividing the squared matrix element by the total time and the total length of the
string,11 we obtain the decay rate of one fermion zero mode with energy E,

Γ(E)' |yD|2ξ2
(
mφ

mψ

)∑
n>0
|cn|2

∫
d3pq

(2π)32p0
q

d3pH
(2π)32p0

H

(2π)4δ(E−Ef )δ(E−pzf−kn)(p0
q−pzq) .

(3.22)

Here, pq,H are the three momenta of the quark and the Higgs doublets. We neglect the
masses of the quarks and Higgs. Throughout this paper, we consider the decay rate of the
in-flight fermion. This is appropriate since we are interested in the decay rate of the fermion
measured from outside of the string. The phase space integration (see the appendix B)
results in

Γ(E) ' 1
24 |yD|

2ξ2
(
mφ

mψ

)
E3

kn<2E∑
n>0

|cn|2F(kn/E) , (3.23)

10Here, the numerical coefficients originate from 0.13 =
√
h′(0)/(2

√
2π) and 0.54 =

∫∞
0 yh′dy/2

√
π

with y = ρmφ.
11The total time and the length are given by Tinterval = (2π)δ(E)|E=0 and Lstr = (2π)δ(pz)|pz=0, respec-

tively.
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where

F(x) = x2(1− x/2) . (3.24)

Let us comment on the case of a sharply curved string, which can appear as kinks and
cusps in the cosmic string (see e.g., ref. [37]). In this case, p2

f can be of O
(
m2
ψ

)
, and hence,

the contribution of the pole of the propagator in eq. (3.17) is significant. This contribution
corresponds to the process in the left panel of figure 1 in which the fermion zero mode
escapes from the string and decays. The decay rate of such a process is also suppressed
for a large mφ due to the factor of dh/dρ in the integrand of eq. (3.17). This suppression
is consistent with the observation that the fermion zero mode does not decay in a straight
string, because the string looks like a straight one at any point in the limit of mφ →∞.

In this analysis, we do not take into account the contributions of the bounded massive
modes to the fermion propagator [17, 35, 36]. The fermion zero mode can also decay
into the SM particles through the mixing with the bounded massive modes due to the
modulation. In the appendix A, we discuss the classical motion of the fermion along the
curved string. In the classical treatment the mixing with the bounded massive modes
should correspond to the oscillation of the fermion around the center of the string. We also
note that we have eventually approximated the propagator in eq. (3.11) by m−1

ψ . Since the
fermion mass inside the cosmic string is smaller than mψ, the actual decay rate could be
enhanced compared to the present estimate. At any rate, the decay rate given in eq. (3.23)
should be regarded as the lower limit of the decay rate.

3.3 Sinuous modulation

As a simple example of the modulation, let us consider a sinuous modulation with

f(z) = ε

mφ
sin
(2πz
L

)
, (3.25)

where ε� 1 and L/2π � m−1
φ . The Fourier coefficients of this modulation are given by

c1 = i
ε

2mφ
, (3.26)

cn = 0 , (n > 1) , (3.27)

where c−n = c∗n. The resultant decay rate is given by

Γ(E) ' π2

24
ε2|yD|2E
m2
φL

2

(
1− π

EL

)
ξ2
(
mφ

mψ

)
. (3.28)

The decay rate is non-vanishing only for E > π/L.
For a sinuous modulation in eq. (3.15), the maximal curvature radius is

R = L2

(2π)2εmφ
. (3.29)
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Figure 4. The modulation of the periodic piecewise circle with the radius R and the period L.
The maximum amplitude of the modulation is given by f(L/4) ' L2/32R for R� L.

In terms of this curvature radius, the decay rate is given by,

Γ(E) ' 1
96ε|yD|

2 E

mφR
ξ2
(
mφ

mψ

)
. (3.30)

Here, we have assumed E � 1/L. This expression suggests that the decay rate in a
curved string with a large curvature radius R is suppressed by a single power of R. In the
appendix C, we calculate the decay rate of the fermion zero mode in a straight string with
a Gaussian modulation. There, we find the same dependence on the curvature radius R
with eq. (3.30).

3.4 Piecewise circle modulation

Next, let us consider a periodic modulation given by a piecewise circle with the curvature
radius R and a period L, i.e., f(z + nL) = f(z) with integers n,

f(z) =


√
R2 − (z − L/4)2 −

√
R2 − L2/16 , (0 < z < L/2) ,

−
√
R2 − (z − 3L/4)2 +

√
R2 − L2/16 , (L/2 < z < L) ,

(3.31)

(figure 4). The modulation is piecewise smooth. The maximum amplitude of the modula-
tion is given by,

f(z = L/4) ' L2

32R , (3.32)

for R� L. Accordingly, the perturbative condition, |δh2| � |δh|, is satisfied for

L�
√

32R
mφ
� R , (3.33)

where the final inequality comes from the assumption, R� m−1
φ .

In this case, the Fourier coefficients for large R are given by,

c2n+1 = iL2

2π3(2n+ 1)3R
, c2n = 0 , (3.34)
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L/2

Figure 5. The approximation of the circular string by taking its segments with a chord length
L/2. For a perturbative analysis, we take a short chord length which satisfies eq. (3.33).

where n is an integer. As a result, the decay rate of the fermion zero mode on a piecewise
circle is given by,

Γ(E) ' |yD|
2E

2832
L2

R2

(
1− 1

EL

84ζ(3)
π3

)
ξ2
(
mφ

mψ

)
. (3.35)

As an application of the decay rate in eq. (3.35), let us consider a closed string loop.
For simplicity, we assume a circular loop with a large radius R compared to the string
core size m−1

φ . To apply the perturbative analysis, we take segments of the ring with the
chord length of L/2 (figure 5). Here, L is taken to satisfy the perturbativity condition in
eq. (3.33). Then, the decay rate for a given L can be approximated by eq. (3.35). For the
optimal lower limit on the decay rate, we take

L '
√

32R
mφ

. (3.36)

Then, we obtain the lower limit on the decay rate of the fermion zero mode on a ring,

Γ(E) & |yD|
2E

72mφR
ξ2
(
mφ

mψ

)
, (3.37)

where we have assumed E � π/
√

32Rm−1
φ .

The above lower limit can be applied to a long string with a curvature radius of R.
In the early Universe, the typical macroscopic curvature radius of the string is O

(
H−1).

Thus, the lower limit of the decay rate is

Γ(E) & |yD|
2E

72mφ
ξ2
(
mφ

mψ

)
H

κ
, (3.38)

where we assume R = κ/H with κ . O(1). Therefore, we find that the high energy modes,

E &
72mφκ

|yD|2
ξ−2

(
mφ

mψ

)
, (3.39)

cannot survive the cosmic time.
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3.5 Thermal modulation

Finally, let us roughly estimate the fermion decay rate in the presence of thermal fluc-
tuations at the cosmic temperature T � vPQ. Along the straight string, there are two
translational massless moduli fields, δφx,y(t, z) (see e.g., ref. [38]). These moduli fields
correspond to the Nambu-Goldstone modes associated with spontaneous breaking of the
translational symmetry in the transverse dimension due to the cosmic string. The moduli
fields are thermalized with the SM thermal bath through the coupling to the gluons. The
thermal fluctuation of the moduli fields is roughly given by

δφx,y ∼ T sin(Tz) , (3.40)

where the typical momentum of the thermal fluctuation is of O(T ). Since the moduli fields
are the modulation of the string configuration, δh, the above fluctuation corresponds to

f(z) ∼ T

mφvPQ
sin(Tz) , (3.41)

where we approximate dh(ρ)/dρ ∼ mφ. Here, we neglect the time-dependence of the moduli
fluctuation, which does not affect the order of magnitude estimate of the decay rate for
T � E. By substituting the fluctuation into eq. (3.28), we obtain,

Γ(E) ∼ 1
96
|yD|2T 4E

m2
φv

2
PQ

ξ2
(
mφ

mψ

)
. (3.42)

Thus, the decay of the fermion zero mode caused by thermal fluctuation becomes smaller
than the Hubble expansion rate at a temperature lower than,

T . 20 mφ

|yD|ξ

(
vPQ
E

)1/2( vPQ
MPl

)1/2
∼ 4×105 GeV× 1

|yD|ξ

(
mφ

109 GeV

)(
vPQ

109 GeV

)1/2(vPQ
E

)1/2
.

(3.43)

Here, MPl is the reduced Planck scale. Below this temperature, the decay of the fermion
zero mode induced by the thermal fluctuation becomes ineffective.

4 Fate of Vorton

4.1 Vorton radius

As discussed in ref. [6], the superconductivity of the axion string may have significant effects
on the cosmological evolution of the axion string network. In particular, the formation of
the stable configuration, the Vorton, may contribute to the dark matter density. We review
how the Vorton is stabilized by considering a string loop with a length Lloop and a total
QED charge, Q, carried by the fermion zero modes. Here, we assume that the length of the
string loop is much longer than its core size of O(m−1

φ ). If there is no charge dissipation
nor leakage, Q of the string loop is conserved. Due to the Fermi statistics, the total charge
is related to the Fermi momentum of the fermion zero modes, εF , via,

Q = 1
2πNcqψεFLloop , (4.1)
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where Nc = 3 is the color factor. Here, we approximate the distribution of the fermion
zero modes by the Fermi-Dirac distribution at the zero temperature. The total energy of
the fermion zero modes trapped in the string loop is

EQ = 1
4πNcε

2
FLloop = πQ2

Ncq2
ψLloop

. (4.2)

The total energy of the string is given by the sum of the fermion energy and the weight of
the string loop,

E(Lloop) ∼ µLloop + πQ2

Ncq2
ψLloop

, (4.3)

with µ being the string tension,

µ ' 2πv2
PQ log(mφLloop) . (4.4)

The string loop shrinks by emitting the axions. As Lloop decreases, the Fermi momen-
tum increases due to the charge conservation. When Lloop decreases, the kinetic energy of
the fermion zero modes and the string tension balances and the string loop is stabilized for

Lloop ∼
√

1
2Nc log(mφLloop)

Q

qψvPQ
. (4.5)

The corresponding stable configuration is called the Vorton. Notably, the Fermi momentum
in the Vorton does not depend on the total charge, and is given by,

εF ∼ 2π
√

2 log(mφLloop)
Nc

vPQ > vPQ . (4.6)

In this paper, we do not discuss the formation and the evolution of the Vortons in
detail. Instead, we consider a Vorton with a typical total charge formed at the cosmic
temperature Tform with a loop length O

(
H−1),

Q ∼
(
MPl
vPQ

)1/2

. (4.7)

according to ref. [6]. Here we take the T ∼ mφ ∼ vPQ. If there is no charge leakage, the
radius of the Vorton is expected to be,

R ∼ Q

vPQ
∼ 1
vPQ

(
MPl
vPQ

)1/2

. (4.8)

In the following argument, we discuss the fate of the Vorton with the radius of this order.
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4.2 Decay of fermion zero mode in Vorton

As we have discussed in the previous section, the fermion zero mode decays through the
decay operator when the string is curved. As we have also seen in section 3.4, the pertur-
bative analysis can be used to give a lower limit on the decay rate of string loop with a
curvature radius, R� m−1

φ .
Now, let us apply the lower limit on the decay rate in eq. (3.37) to discuss the stability

of the Vorton. By substituting the Vorton radius in eq. (4.8), the lower limit on the decay
rate is,

Γ(E) & |yD|
2vPQ

72mφ

(
vPQ
MPl

)1/2
E ξ2

(
mφ

mψ

)
. (4.9)

This decay rate is much larger than the Hubble expansion rate, H ' T 2/MPl (T . vPQ),
especially for the fermion zero mode with the Fermi momentum, E = εF , unless yD is
highly suppressed for T < vPQ. Thus, we find that the high momentum fermion zero mode
is short lived.

Once the high momentum zero modes decay, the total charge decreases and its radius
shrinks.12 Once it shrinks, then, remaining fermion zero modes on the string obtain high
momenta and the Fermi momentum is again given by eq. (4.6). Thus, the lower limit on
the rate of the charge leakage is given by,

−Q̇
Q

&
|yD|2vPQ
144mφ

(
vPQ
MPl

)1/2
εF ξ

2
(
mφ

mψ

)
= πvPQεF

9mφmψ

(
vPQ
MPl

)1/2
ξ2
(
mφ

mψ

)
× ΓD . (4.10)

The lifetime of the Vorton for mφ � mψ is

τVorton ∼ −
(
Q̇

Q

)−1

. 106 × τD
(

vPQ
109 GeV

)−1/2
(

m3
φ

mψv
2
PQ

)
(4.11)

' |yD|−2 × 10−26 sec
(

vPQ
109 GeV

)−3/2
(

m3
φ

m2
ψvPQ

)
, (4.12)

where we have used εF ∼ vPQ. Therefore, we expect that the Vorton immediately disap-
pears by losing its charge through the decay operator in eq. (2.14).

One caveat is that the Vorton can have magnetic fields up to of O
(
εF /4π2ρ∗

)
, where

ρ∗ = O
(
max[m−1

φ ,m−1
ψ ]
)
represents a typical thickness of the fermion zero mode current.

Since the magnetic fields affect the wave functions of the charged particles, they can also
affect the decay rate. For the decay caused by higher Fourier modes in eq. (3.34), however,
the plane wave approximation for the final state is valid. The decay rate with such higher
Fourier modes is high enough as seen in eq. (3.34). Thus, we do not expect that the
magnetic field makes the Vorton have a cosmological lifetime.

12The circular string loop starts spinning when it emits the SM particles by the decay of the fermion zero
mode. However, the string loop shrinks by emitting the axions even if it is spinning since the axions carry
away the angular momentum of the spinning string loop.
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5 Conclusion

In this paper, we studied the stability of the fermion which carries the superconducting
current in the axion string. In particular, we discussed the effect of the decay operator of
the charge carriers. We found the superconductivity is indeed stable for a straight string
or infinitely small string core size. We also found that the charge carriers decay when the
string with a finite core size is curved. We obtained the lower limit on the decay rate which
is suppressed only by a power law of the curvature radius of the string. As a result, the
charge carriers of the Vorton are not long-lived, and hence, the Vortons that appear in the
axion models do not have a lifetime of the cosmological timescale. Our analysis on the decay
rate of the fermion zero mode can be applied for generic fermionic superconductive strings.

Although we have argued that the Vorton does not contribute to the dark matter
density, the superconductive nature of the global string in the axion model may affect the
cosmology in the axion model. For example, ref. [6] pointed out that the energy density
of the cosmic string can deviate from the scaling law if it exhibits the superconductiv-
ity. Therefore, further study of the effects of the superconductivity of the axion string
is required.

Finally, let us comment on the possibility of the stable Vorton. If the fermions are
stable in the vacuum, the corresponding fermion zero modes in the string are stable. Thus,
for example, if the electron zero mode appears in the string and the charge of the Vorton is
large enough, the Vorton can be stable (see ref. [5] for the O(10) model and see also ref. [7]
in the context of the DFSZ axion model [39, 40]). It is, however, not clear how such a large
charge is achieved in the cosmological evolution for the electron zero modes. We leave the
details of these possibilities for future work.
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A Classical motion of particle along curved string

In this appendix, we discuss the classical motion of the fermion zero mode along the curved
string. Let us consider the case that the center of the string is in two-dimensional space,

(x, y, z) = (0, f(z), z) , (A.1)
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Figure 6. Examples of the classical trajectories of the particle. Here we take mφ = mψ for the red
lines and mφ = 3mψ for the blue line.

where the configuration of the PQ field is given by hf (~r) around the center. We treat the
fermion zero mode as a classical particle whose Hamiltonian is given by,

Hcl =
√
p2
y + p2

z +m2
ψh

2
f (y, z) , (A.2)

where hf = 0 at the center of the string. When the particle travels through the center of
the string, it behaves as a massless particle.

The equations of motion are given by

~̇r = ~p√
|~p|2 +m2

ψh
2
f

, (A.3)

~̇p = −
m2
ψhf

~∇h√
|~p|2 +m2

ψh
2
f

. (A.4)

In figure 6, we show examples of the classical trajectories of the particle. We approximate
hf (y, z) = h(distance between (y, z) and f(z)), where h(ρ) is the profile of the straight
string in eq. (2.9). As we can see from figure 6, if the energy of the particle is high and
the string curve is sharp, the particle can escape from the string. We also see that the
smaller string core size prevents the particle from escaping, even if the particle’s momentum
exceeds the free particle mass. As discussed in section 3.1, once the particle escapes from
the string, it behaves as a free massive particle. Thus, in the presence of the decay operator,
it decays immediately through the decay operator.

Even if the particle is not energetic enough to jump out the string, the classical trajec-
tory of the particle is off from the center of the string core and oscillates about the string
center, once the particle passes the curve. During the oscillation, particle gets a non-zero
mass thorough the VEV of the PQ field as mψ,eff = mψhf (~r). Once the particle obtains
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Classical decay

Perturbative decayΓ
e
ff
/Γ

D

Rmφ
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Figure 7. The ratio of the effective decay rate of the fermion on the string ring to that of the free
fermion ΓD in eq. (2.15). The center of the ring is at the origin and its radius is R. Here we set
mψ = mφ and the initial conditions of the particle are ~r = (R, 0) and ~p = (0,mφ). We approximate
hf (~r) = h(||~r| −R|) where h is the profile in eq. (2.9). For a comparison, we also show the estimate
of the lower limit on the decay rate obtained by the perturbative method (3.37) with the blue line.

the effective mass, the particle will decay into the lighter SM particles through the decay
operator (2.14). To estimate the effective decay rate in-flight, we define:

Γeff(E) = |yD|
2

16π
1
T

∫ T

0
dt
m2
ψh

2
f (y(t), z(t))
Hcl

, (A.5)

where the factor of mψhf/Hcl is the suppression due to the Lorentz boost.
For demonstration, we consider the effective decay rate of a particle trapped in a ring of

the string in figure 7. The figure shows that the perturbative analysis in section 3.2 predicts
a larger decay rate than the classical estimation for a large ring radius. In the perturbative
analysis, we consider the decay of the fermion through the virtual free massive modes.
The present classical treatment, on the other hand, corresponds to the mixing between the
fermion zero mode and the massive bounded mode due to the string curve. Such effects are
neglected in the perturbative analysis. Therefore, the decay processes in the perturbative
analysis and in the classical treatment are independent. In both cases, the decay rates are
suppressed for a large ring radius. Despite the suppression, the either decay rate is too
large to keep the Vorton stable. Note that the classical treatment is not valid for mψ � mφ,
where the quantum mechanical treatment is more important.

B Phase space integration

In this appendix, we calculate the phase space integration in eq. (3.22). In the polar
coordinate,

d3pq = |pq|p0
qdp

0
qd cos θqdϕq , (B.1)

d3pH = |pH |p0
Hdp

0
Hd cos θHdϕH . (B.2)
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By defining,

p0
q = 1

2(Ef + E−) , (B.3)

p0
H = 1

2(Ef − E−) , (B.4)

and using

dp0
qdp

0
H = 1

2dEfdE−, (B.5)

the integration over Ef gives Ef = E due to the delta function in eq. (3.22). By neglecting
the masses of the quark and the Higgs doublets, the integration over E− also gives,

E− = (2− cos θH − cos θq)E − 2kn
cos θq − cos θH

. (B.6)

The kinematical constraint on E− is given by −E < E− < E, which is satisfied for a range
of the angles, (

−1 < cos θH < 1− kn
E

)
∧
(

1− kn
E

< cos θq < 1
)
, (B.7)

and (
1− kn

E
< cos θH < 1

)
∧
(
−1 < cos θq < 1− kn

E

)
. (B.8)

Here, kn < 2E. As a result, we find∫
d3pq

(2π)32p0
q

d3pH
(2π)32p0

H

(2π)4δ(E − Ef )δ(E − pzf − kn)(p0
q − p3

q) (B.9)

= 1
4

∫
d cos θHd cos θq|pH ||pq|2(1− cos θq)(cos θH − cos θq)−1 , (B.10)

= 1
24E

3F(kn/E) , (B.11)

where

F(x) = x2(1− x/2) . (B.12)

C Gaussian modulation

In section 3, we considered a periodic modulation. In this section, we consider the decay
of the fermion zero mode in a string with a single Gaussian modulation,

f(z) = ε

mφ
e
− z2

2σ2
z . (C.1)
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In this case, the matrix element becomes,

T ' i(2π)δ(E − Ef )y
∗
Dε

mφ
ūqPR

∫
d3xeiϕ sinϕdh

dρ
u(ρ)e

− z2
2σ2
z eiEze−ipf ·x , (C.2)

' (2π)5/2δ(E − Ef )σze−
σ2
z

2 (E−p3
f )2 y∗Dε

mφ
ūqPRξ

(
mφ

mψ

)
η , (C.3)

where we have used the same approximation in section 3.2. By dividing the squared
amplitude by the total time, the decay rate of the fermion zero mode is given by,

Γ(E)×Lstr'
|yD|2ε2

m2
φ

ξ2
(
mφ

mψ

)
σ2
z

∫
d3pq

(2π)32p0
q

d3pH
(2π)32p0

H

(2π)4δ(E−Ef )(p0
q−pzq)e

−σ
2
z

2 (E−pzf )2
,

(C.4)

where Lstr = (2π)δ(pz)|pz=0.
We take the state normalized so that the number of the fermion zero modes is constant

for a unit length of the string (eq. (3.8)). Thus, the decay rate on average is vanishing for
Lstr → ∞, since most of the fermion zero mode is far away from the modulation on the
string. However, we are interested in the decay rate of the fermion zero mode when it is
passing through the modulation. Thus, instead of the decay rate on average, we should
consider the effective decay rate which is given by dividing Γ(E) by the probability to find
the Gaussian modulation, Pm = O(σz/Lstr). As a result, we find

Γeff(E) ∼ |yD|
2ε2

m2
φ

ξ2
(
mφ

mψ

)
σz

∫
d3pq

(2π)32p0
q

d3pH
(2π)32p0

H

(2π)4δ(E − Ef )(p0
q − p3

q)e
−σ

2
z

2 (E−pzf )2
,

(C.5)

= |yD|
2ε2

8m2
φ

ξ2
(
mφ

mψ

)
σz

∫
dE−d cos θqd cos θH |pH ||pq|2(1− cos θq)

× exp
[
−σ

2
z

2 (E − (|pq| cos θq + |pH | cos θH))2
]
, (C.6)

= |yD|
2ε2

8m2
φ

ξ2
(
mφ

mψ

)
σzE

4G(σzE) , (C.7)

where the integration is given by,

G(x) = −2 + 2e−2x2 +
√

2πx erf(
√

2x)
2x4 ' 1.25

x3

(
1− 4

5x

)
. (C.8)

Thus, for σzE � 1, we find that the effective decay rate is approximately given by,

Γeff(E) ∼ 1
6
|yD|2ε2

m2
φ

E

σ2
z

ξ2
(
mφ

mψ

)
. (C.9)

The maximum curvature radius of the modulation in eq. (C.1) is,

R = ε−1mφσ
2
z . (C.10)
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Thus, in terms of the curvature radius, the effective decay rate scales as,

Γeff(E) ∼ 1
6ε|yD|

2 E

mφR
ξ2
(
mφ

mψ

)
. (C.11)

This reproduces the decay rate for a periodic modulation with a curvature radius R in
eq. (3.30). This analysis justifies the use of the periodic modulation in which we neglect
the damping of δh at |z| → ∞.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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