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1 Introduction

The infinite Lie algebra ĝl(∞) and its fermionic representation plays a key role in the
construction of solutions for the Kadomtsev-Petviashvili (KP) hierarchy [2]. This role was
emphasized by the Kyoto school [3], and led to the introduction of several reductions of
the KP hierarchy associated to subalgebras of ĝl(∞). This algebraic approach was further
formalized by Kac and Wakimoto, and extended to associate a hierarchy of differential
equations to any Kac-Moody algebra [4, 5]. These works illustrate the efficiency of the
algebraic approach for integrable hierarchies.1

Another indisputable success of the algebraic approach is in the study of 2D Conformal
Field Theories (CFT) where most physical quantities are determined by the symmetry
algebras [8]. This formidable success led Frenkel and Reshetikhin to propose an extension
of the vertex operator technique employed in 2D CFT to some quantum integrable systems
using their quantum affine algebra of symmetries. Indeed, algebraically, a vertex operator

1For a brief introduction, see the excellent reviews [6, 7] or the reference book [5].
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is simply an intertwiner between a Fock (or level one) representation F of the algebra and
its tensor product V⊗F with a level zero representation V. For the original vertex operator
of a free boson, the algebra is a Heisenberg algebra, it becomes an affine Lie algebra in
Wess-Zumino-Witten models. In the case of quantum affine algebras, the Frenkel-Jing [9]
construction provides the level one representation while the level zero representation is the
usual highest weight representation acting on the quantum spins. This vertex operator
technique has been applied, for instance, to the diagonalization of the infinite XXZ spin
chain Hamiltonian in [10]. To avoid the confusion with exponentials of free fields, the
vertex operator is often called intertwining operator, or simply intertwiner, in this context.

In [11], Awata, Feigin and Shiraishi (AFS) applied the vertex operator technique for
a different algebra called quantum toroidal gl(1) (or Ding-Iohara-Miki) algebra [12, 13].
They have shown that, quite remarkably, the matrix elements of the intertwiner repro-
duce the refined vertex of the topological string theory [14–16]. This observation led to
a number of important results in this field. For example, we can mention the extension
of the topological vertex technique to various theories [17–24] and observables [25–27], the
derivation of proofs for the q-deformed AGT correspondence [28–30], or the description of
the fiber-base duality [30–33].

In this paper, we investigate the role played by quantum algebras in the well-known
relation between self-dual topological strings and integrable hierarchies [34]. Refined topo-
logical strings depend on two parameters (q, t−1), they are identified with the parameters
(q1, q2) of the quantum toroidal gl(1) algebra. In the self-dual limit t→ q (or q1q2 → 1), the
original formulation of topological strings is recovered, the parameter q is identified with
the exponentiated string coupling constant egstr and the algebra reduces to the quantum
W1+∞ algebra [35, 36]. The latter is equivalent to the ĝl(∞) algebra mentioned earlier
upon a linear transformation of the generators [37–39], it is thus naturally expected to be
involved in the relation with integrable hierarchies, which was indeed observed in [34].

In the melting crystal picture developed by Okounkov, Reshetikhin and Vafa [40], the
self-dual topological vertex is interpreted as the generating function of plane partitions
weighted by the number of boxes. In [1], Nakatsu and Takasaki have shown that this
generating function, once properly deformed by extra time dependencies, provides a tau
function for the KP hierarchy. Although the role played by the quantum W1+∞ algebra
in this setup has already been described in [1], we revisit here their derivation with an
extra emphasis on certain algebraic structures. Specifically, we underline the role of two
particular objects, the first one being the AFS intertwining operator introduced previously,
and the second one is an operator associated to the framing factors of the topological vertex
that we call framing operator for short. Algebraically, it realizes the action of a certain
automorphism T in the Fock module of the algebra. As we shall see, these two objects are
deeply related to the SL(2,Z) subgroup of automorphisms. Both are essential ingredients
underlying the Nakatsu-Takasaki derivation.

The main motivation for our study is the search for a deformation of integrable hi-
erarchies that would correspond to the refinement of topological strings in their A-model
formulation. Naively, it would seem difficult as the fermionic structure disappears from
the Fock representation, and only a bosonic formulation subsists. Yet, the presence of the
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quantum toroidal algebra hints for the preservation of an integrable structure. It brings
us to the second part of our paper in which we attempt to refine the Nakatsu-Takasaki
derivation. The definition and properties of the two previous algebraic objects are easily
extended to the quantum toroidal case, and we manage to write the generating function in
the canonical form

〈∅| e−
∑

k
1
k
τkJkg |∅〉 , (1.1)

where Jk are the modes of a Heisenberg algebra, |∅〉 the vacuum of the Fock space and τk the
(rescaled) times of the hierarchy. Unfortunately, we were unable to show that g is a group-
like element of GL(∞), that would imply that the generating function is a tau function
of an integrable hierarchy. And, in fact, it cannot be group-like as a perturbative analysis
indicates that the Hirota equation is no longer satisfied in the refined case. Nevertheless,
we are confident that this result is bringing us closer to the definition of refined hierarchies.

The organization of the paper is very straightforward: the first part deals with self-
dual topological strings and the quantum W1+∞ algebra while the second part presents
the refined case corresponding to the quantum toroidal algebra. The appendix contains
the proofs for several identities used in the main text.

2 Integrable structure of the melting crystal model

2.1 Quantum W1+∞ algebra

2.1.1 Definition

The quantum W1+∞ algebra can be presented in many ways and found under different
names, e.g. quantum torus algebra in [1], trigonometric Sin-Lie algebra in [37, 41],. . . Here,
we use a presentation in terms of generators Wm,n with integer indices, and two central
elements (c1, c2), that satisfy the commutation relations

[Wm,n,Wm′,n′ ] = (qm′n − qmn′)
(
Wm+m′,n+n′ + c1

δm+m′

1− qn+n′ − c2
δn+n′

1− qm+m′

)
. (2.1)

In fact, this algebra is a central extension by the element c2 of the quantum algebra used
in [1] (up to a rescaling of the generators). In application to integrable hierarchies, we
consider mostly the representation of levels (1, 0), in which case the two algebras coin-
cide. However, the presence of a second central element is important in the description of
automorphisms. A second motivation for the introduction of two central charges is their
interpretation in the algebraic engineering of topological strings amplitudes. Indeed, in
this context, the two levels are identified with the label of the degenerating cycles in the
toric diagram of the Calabi-Yau [42, 43]. They also correspond to the charge of the branes
in the (p, q)-brane web construction [44, 45].

The algebra has the group of automorphisms GL(2,Z) [38], but we will be only inter-
ested in the SL(2,Z) subgroup generated by the transformations S and T . These transfor-
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mations act as follows on the generators,

S : Wm,n → q−(m+1)nW−n,m, (c1, c2)→ (c2,−c1),

T : Wm,n → q−n
2/2
(
Wm−n,n + c1

δm−n − qn
2/2δm,0

1− qn (1− δn,0)− c1
δn,0

1− qm (1− δm,0)
)
,

(c1, c2)→ (c1,−c1 + c2).
(2.2)

2.1.2 Dirac module

The quantum W1+∞ algebra has a representation of levels (1, 0) on the Fock space F of
a Dirac fermion. We refer the reader to [39] for a recent review of this representation.
The Fock space is built from a vacuum state |∅〉 annihilated by the positive modes of the
fermionic fields2

ψ(z) =
∑

r∈Z+1/2
z−r−1/2ψr, ψ̄(z) =

∑
r∈Z+1/2

z−r−1/2ψ̄r, {ψr, ψ̄s} = δr+s. (2.3)

Due to the bosonization formulas ψ̄(z) =: eφ(z) :, ψ(z) =: e−φ(z) :, and : ψ̄(z)ψ(z) := ∂φ(z)
involving the bosonic field

φ(z) = Q+ J0 log z −
∑
k∈Z×

1
k
z−kJk, [Jk, Jl] = kδk+l, [Q, J0] = 1, (2.4)

the Fock space F has an alternative construction obtained by the action of the negative
modes J−k on the vacuum state |∅〉. The vacuum is annihilated by positive modes Jk, and
the normal ordering naturally consists in moving these modes to the right. The Fock space
F can be decomposed according to the values of the zero mode J0 into F =

⊕
k∈ZFk.

Since the representation of the generators Wm,n is neutral, we can restrict ourselves to the
subspace F0 of zero charge. Because of this restriction, we will only be able to discuss the
KP hierarchy (not mKP), but it makes the question of refinement simpler.

Symmetric polynomials. The vector space F0 is isomorphic to the space of symmetric
polynomials with infinitely many variables. The isomorphism sends the vacuum |∅〉 to the
trivial polynomial 1, and maps the PBW basis to products of elementary powers sums
pk(x) =

∑
k x

k
i ,

(J−λ1)k1 · · · (J−λn)kn |∅〉 ↔ pλ1(x)k1 · · · pλn(x)kn . (2.5)

Thus, the negative modes J−k act as a multiplication by pk while positive modes Jk act
as k∂/∂pk on symmetric polynomials. This isomorphism is useful in order to define the
Schur basis of states |λ〉, labeled by a partition λ, and obtained as the inverse image of the
Schur polynomials sλ(x) (they form a basis of the ring of symmetric polynomials). These
Schur states coincide with the fermionic PBW basis of F0. In the same way, we define

2There are different conventions for the fermionic modes and we use here half-integer indices. To recover
the convention employed in [1], one should simply replace ψr → ψ∗r+1/2 and ψ̄r → ψr−1/2.
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the Macdonald basis with states |Pλ〉 obtained as the inverse image of the Macdonald
polynomials Pλ(x). We also define the dual states 〈λ| and 〈Pλ| with the scalar product

〈λ||µ〉 = δλ,µ, 〈Pλ||Pµ〉 = 〈Pλ, Pλ〉q,t δλ,µ, (2.6)

where 〈Pλ, Pλ〉q,t is the norm square of Macdonald scalar product [46]. Explicitly,

〈Pλ, Pλ〉q,t =
∏
∈λ

1− qa( )+1tl( )

1− qa( )tl( )+1 , (2.7)

where a( ) = λi − j and l( ) = λ′j − i are the arm and leg length of the box (i, j) in the
Young diagram representing the partition λ = (λ1, λ2, · · · ). We denote λ′ the partition
corresponding to the transposed Young diagram of λ.

Action of the algebra. We denote ρ(D)
u,v the representation of the quantum W1+∞ alge-

bra of levels (1, 0) and weights u, v ∈ C× on the Fock space F0. To get rid of the weights
dependence, we sometimes use the notation W̄m,n = ρ

(D)
1,1 (Wm,n) so that the general repre-

sentation reads

ρ(D)
u,v (Wm,n) = unvmW̄m,n −

1− un

1− qn δm,0(1− δn,0). (2.8)

The action on F0 can be expressed in different ways, the simplest one is in terms of the
fermionic fields,

W̄m,n =
∑

r∈Z+1/2
q−(r+1/2)n : ψ̄m−rψr : . (2.9)

Instead, in the bosonic presentation the modes Jk are identified with the generators W̄k,0
while the other generators define currents represented as vertex operators. Fortunately,
we will not need these expressions here. Finally, the action of the generators Wm,n on the
Schur basis can be written explicitly. When m 6= 0, these operators add or remove strips
of |m| boxes to the Young diagram labeling the states [39]. On the other hand, the action
of the modes W0,n is diagonal and read

ρ(D)
u,v (W0,−k) |λ〉 = φk(λ, s) |λ〉 , φk(λ, s) = −(1− qk)qks

∑
(i,j)∈λ

q−(i−j)k − 1− qks

1− q−k . (2.10)

The r.h.s. is independent of the weight v, but depends on the weight u = q−s through
the variable s. The eigenvalues φk(λ, s) are coupled to the time evolution of the hierarchy
in [1, 47].
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Framing operator. In addition to the generators W̄m,n, it is necessary to introduce the
following operators acting on the Fock space F0,3

J0 =
∑

r∈Z+1/2
: ψ̄−rψr :, L0 =

∑
r∈Z+1/2

r : ψ̄−rψr :, W0 =
∑

r∈Z+1/2
r2 : ψ̄−rψr : . (2.11)

These operators act diagonally on the Schur states, with the eigenvalues given by

J0 |λ〉 = 0, L0 |λ〉 = |λ| |λ〉 , W0 |λ〉 = κ(λ) |λ〉 . (2.12)

Here |λ| denotes the number of boxes in the Young diagram of λ and κ(λ) = 2
∑

(i,j)∈λ(j−i).
As we shall see, the insertion of the operator QL0 inside a bosonic correlator is interpreted
as the introduction of a Kähler parameter Q. In the same way, the insertion of the diagonal
operator q−nW0/2 introduces a framing factor q−nκ(λ)/2. This factor is related to the Chern-
Simons factor at level n in the dual 5D N = 1 gauge theory,

ZCS(n) =
∏

(i,j)∈λ
vnq(i−j)n = vn|λ|q−nκ(λ)/2. (2.13)

The extra dependence in the weight v can be removed using the operator v−nL0 , it is
usually absorbed in the definition of the instanton counting parameter [27].

It has been observed in [27] that framing factors follow from the action of the auto-
morphism T in the algebraic framework. Thus, we expect the operator W0 to be somehow
associated to this automorphism. To formulate this relation, it is more convenient to intro-
duce the combination W̃0 = (W0 +L0)/2, and we will call framing operators the operators
of the form qαW̃0 for α ∈ R. The shift by L0 is related to the presence of the parameter v
in the Chern-Simons factor (2.13) that will be set to v = q−1/2 later on. Then, using the
free fermion realization, one can show that

qαW̃0W̄m,nq
−αW̃0 = qαm

2/2W̄m,n+αm. (2.14)

When α is an integer, the r.h.s. coincides with the representation of the generators ST αS−1·
Wm,n. In this case, the adjoint action of qαW̃0 realizes the S-dual action of the automor-
phism T α on the Fock space F0. Very remarkably, this formula also makes sense for α ∈ R,
somehow extending the automorphism to non-integer values. The relation (2.14) has been
derived in [1, 47, 48] and called a shift symmetry, but the connection with the action of
the automorphisms appears to be new.

3These operators can be obtained using the expansion at q = eε → 1 (small strings coupling limit) of

W̄0,n =
∑

r∈Z+1/2

q−n(r+1/2) : ψ̄−rψr := J0 − nε
(
L0 + 1

2J0

)
+ 1

2n
2ε2
(
W0 + L0 + 1

4J0

)
+O(ε3).

They correspond to the zero-modes of the currents of spin one, two (a.k.a. Virasoro) and three of the W1+∞

algebra that appears in the degenerate limit q → 1. Note that there is a small mismatch with respect to
the definitions given in [1, 47, 48] as we introduced shifts by zero modes of lower spin for later convenience.
Our operator W0 coincides with the cut-and-join operator of ref. [49].

– 6 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
6

2.1.3 Intertwiner and melting crystal

The AFS intertwiner has been introduced directly in the context of the refined topological
vertex [11]. However, it is relatively easy to perform the self-dual limit t→ q of this object
and obtain the formulation relevant to the unrefined case [33]. Since the quantum toroidal
gl(1) algebra reduces to quantum W1+∞ in this limit, we obtain an intertwiner between
modules of the latter. The automorphisms S and T are then used map these modules
to the Fock space F0, twisting the Dirac representation in the process. As a result, the
intertwiner Φ is defined as the operator F0 ⊗F0 → F0 solving the following equation4

ρ(D)
u11,v11(T ·W )Φ(v) = Φ(v)

(
ρ(D)
u01,v01 ◦ S ⊗ ρ

(D)
u10,v10 ∆(W )

)
, (2.15)

where W denotes any element of the quantum W1+∞ algebra. The co-algebraic structure
of the quantum toroidal algebra trivializes in the self-dual limit and thus the coproduct in
the r.h.s. is the co-commutative one, i.e. ∆(W ) = W ⊗1+1⊗W . The intertwiner depends
on a free parameter v, and the weights of the representations are required to obey the three
constraints v11 = v10, u01 = qvv11, and u11 = −q1/2vv11u10. It is worth mentioning that a
dual intertwiner Φ∗ : F0 → F0 ⊗ F0 is also introduced in [11] even though it will not be
needed here.

The first space F0 in the tensor product F0 ⊗ F0 corresponds to the vertical module
in the language of the toroidal algebra, it is associated to the preferred direction of the
topological vertex and it plays the role of the level zero representation for the vertex
operator. Even in the self-dual limit, the formalism retains this notion of a preferred
direction, and it is useful to introduce a notation to distinguish it. Following our earlier
works [26, 27, 32], we denote with a double ket (e.g. |λ〉〉) the vectors of this module. The
solution of the AFS equation (2.15) is nicely expressed by decomposition on the Schur basis
of the vertical module, each component corresponding to a vertex operator Φλ : F0 → F0,

Φ(v) =
∑
λ

〈〈λ| ⊗ Φλ(v), Φλ(v) = tλ(v) : Φ∅(v)
∏

(i,j)∈λ
η(vqi−j) : . (2.16)

In the second equation, the component Φλ(v) has been decomposed into a normalization
factor tλ, a vacuum contribution and a dressing by vertex operators η(z),

Φ∅(v) =: exp

 ∑
k∈Z×

v−k

k(1− qk)Jk

 :, η(z) =: exp

− ∑
k∈Z×

z−k

k
(1− q−k)Jk

 : . (2.17)

4It may be useful to make a short historical comment about this equation. In 2D CFT, primary operators
of conformal dimension h satisfy the equation [Ln, φh(z)] = (zn+1∂z + h(n + 1)zn)φh(z) with n ≥ 1
under the adjoint action of the Virasoro modes Ln. This equation can be written in the form (2.15), i.e.
(ρ0⊗ρ1 ∆(Ln)) φh(z) = φh(z)ρ1(Ln), where ρ1 is a Fock representation and ρ0(Ln) = −zn+1∂z−h(n+1)zn

is the level zero representation that describes the action of the conformal symmetry on the coordinates (the
coproduct is also co-commutative). In addition, vertex operators of the free boson obey a similar equation
with the Heisenberg algebra [Jn, Vα(z)] = −αznVα(z) where the r.h.s. is trivially a representation of level
zero. This equation is generalized further to Wess-Zumino-Witten models and affine Lie algebras [50].
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The normalization factor simplifies if we impose the extra constraint q−3/4u11v01 = v11v
1/2

among the weights: it no longer depends on v and simply writes tλ = sλ′(q−ρ) with
ρ = (−1/2,−3/2, · · · ).5

Shift symmetries. The key ingredients in the derivation of the tau function from the
melting crystal are a set of relations called shift symmetries in [1, 47, 48]. We have already
encountered one of these relations in (2.14). The other relations are of a different nature:
they follow from the AFS intertwining equation (2.15) by projection on the vacuum of the
vertical module. In order to show this fact, we introduce the vertical decomposition (2.16)
inside the equation (2.15) and project it on the component λ,

ρ(D)
u11,v11(T ·W )Φλ(v) = Φλ(v)ρ(D)

u10,v10(W ) +
∑
µ

Φµ(v)〈〈µ| ρ(D)
u01,v01(S ·W ) |λ〉〉. (2.18)

Then, we observe that the action of the modes Wm,n with m > 0 on the Schur states |λ〉〉 is
to remove strips ofm boxes to the partition λ, and, in particular, these modes annihilate the
vacuum |∅〉〉 [39]. Applying this property to the S-dual modes S ·Wm,n = q−(m+1)nW−n,m
in the previous equation, we obtain an exchange relation for the vacuum component λ = ∅,

ρ(D)
u11,v11(T ·Wm,n)Φ∅(v) = Φ∅(v)ρ(D)

u10,v10(Wm,n), n < 0. (2.19)

This exchange relation reproduces the two missing shift symmetries, as will become clear
once we review the connection between the intertwiner and the melting crystal formalism.

Melting crystal. In [40], Okounkov, Reshetikhin and Vafa (ORV) discovered an intrigu-
ing connection between the topological vertex [14] and plane partitions. They interpreted
the vertex as the generating function of plane partitions with fixed asymptotics given by
the three Young diagrams λ, µ, ν labeling the vertex Cλ,µ,ν . As a result, up to a normal-
ization factor, the topological vertex counts the configurations of an infinite cube with
boxes removed at the corner, effectively describing a melting crystal. This analogy with
the melting crystal follows from the rewriting of the topological vertex as a correlator of
operators acting in the free boson Fock space F0. In order to point out the connection
with the intertwiner Φ(v), we briefly sketch their derivation. It starts from the well-known
formula of the topological vertex written in terms of skew-Schur polynomials

Cλ,µ,ν = q−κ(λ)/2−κ(ν)/2sν′(q−ρ)
∑
η

sλ′/η(q−ρ−ν)sµ/η(q−ρ−ν
′). (2.20)

The argument q−ρ−ν of the skew-Schur functions indicates the evaluation of the polynomial
at (x1, x2, · · · ) = (q−ν1+1/2, q−ν2+3/2, · · · ). The rewriting of the topological vertex is based
on the realization of skew-Schur polynomials as the matrix elements of the operators Γ±(x)
in the Schur basis,

sλ′/η(x) = 〈λ′|Γ−(x) |η〉 , sµ/η(x) = 〈η|Γ+(x) |µ〉 , Γ±(x) = exp

∑
k>0

1
k
pk(x) J±k

 .
(2.21)

5The notation sλ′ (q−ρ) refers to the evaluation of the Schur polynomial sλ′ (x) for the variables
(x1, x2, · · · ) = (q1/2, q3/2, . . .). We assume |q| < 1 for convergence issues.
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We refer the reader to the appendix of ref. [39] for a short derivation of these well-known
formulas. Then, the sum over partitions η in the expression (2.20) of the topological vertex
can be performed using the closure relation of the Schur basis, leading to

Cλ,µ,ν = q−κ(λ)/2−κ(ν)/2sν′(q−ρ)〈λ′|Γ−(q−ν′−ρ)Γ+(q−ν−ρ)|µ〉. (2.22)

In order to build the 3d partitions of the melting crystal, the two operators Γ±(x) need
to be exchanged inside the correlator, it produces an extra factor that is easily computed
from their bosonic expression,

Cλ,µ,ν = (−1)|ν|q−κ(λ)/2Z(q)−1(sν′(q−ρ))−1〈λ′|Γ+(q−ν′−ρ)Γ−(q−ν−ρ)|µ〉, (2.23)

where Z(q) is MacMahon’s generating function of plane partitions,

Z(q) =
∑

π∈P.P.
q|π| =

∞∏
n=1

(1− qn)−n. (2.24)

From its bosonic expression (2.17), the intertwiner Φ(v) at v = q−1/2 is identified with the
operator inside the correlators after normal-ordering,

Φν(q−1/2) = tνΓ−(q−ν−ρ)Γ+(q−ν′−ρ) ⇒ Cλ,µ,ν = q−κ(λ)/2−κ(ν)/2〈λ′|Φν(q−1/2)|µ〉.
(2.25)

Once we set v = q−1/2, taking into account the various constraints, only two weights are
free to choose in the intertwining relation (2.15), e.g. u11 and v11, and the others are fully
determined: u10 = −u11/v11, v10 = v11, u01 = q1/2v11, v01 = q1/2v11/u11. In the following,
we denote for simplicity Φν = Φν(q−1/2). In fact, other values of the parameter v can be
considered by insertion of the operator QL0 that acts on the modes as QL0JkQ

−L0 = Q−kJk
and so QL0Φλ(v)Q−L0 = Φλ(Qv). Coming back to the vacuum component, we have found
that Φ∅ = Γ−(q−ρ)Γ+(q−ρ) and thus the exchange relation (2.19) does indeed coincide with
the shift symmetries derived by Nakatsu and Takasaki.

2.2 Derivation of the tau function

The starting point for the construction of the KP tau function is MacMahon’s generating
function that can be written as a sum of Schur polynomials using the Cauchy identity. This
expression is then deformed by the introduction of the time parameters t = (tk) coupled
to the eigenvalues (2.10) of the operator W0,−k,6

Z(q) =
∑
λ

(sλ(q−ρ))2 → Z(q, s, t) =
∑
λ

(sλ(q−ρ))2Q|λ|e
∑

k>0 tkφk(λ,s). (2.26)

We do not indicate the Q-dependence as we can think of it as an extra time parameter
t0 = logQ. To show that the quantity on the right is a tau function of the KP hierarchy,
we need to rewrite it as a bosonic correlator in the canonical form (1.1).

6For convenience, the overall factor Qs(s+1) has been removed with respect to the formula (4.4) given
in [47].
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The first step is similar to the rewriting of the topological vertex in the melting crystal
picture, namely the Schur functions are replaced by bosonic correlators using the formu-
las (2.21), and the time dependence follows from the diagonal action of W0,−k and L0 on
the Schur states,

Z(q, s, t) =
∑
λ

〈∅|Γ+(q−ρ)ρ(D)
q−s,v(e

H(t)) |λ〉 〈λ|QL0Γ−(q−ρ) |∅〉 , H(t) =
∑
k>0

tkW0,−k.

(2.27)
From our previous remark, it is clear that the function Z(q, s, t) does not depend on the
weight v and we take v = 1. The sum over partitions λ is eliminated using the closure
relation of the Schur basis in order to write

Z(q, s, t) = 〈∅|Γ+(q−ρ)ρ(D)
q−s,1(eH(t))QL0Γ−(q−ρ) |∅〉 . (2.28)

In the second step, the extra vertex operators Γ±(q−ρ) are introduced on the left/right
of the correlators. Since these operators are built purely upon either positive or negative
modes, they give no extra contribution. Based on our previous discussion, we now under-
stand that the reason behind this clever trick is to reconstruct the vacuum component of
the intertwiner,

Z(q, s, t) = 〈∅|Φ∅ρ
(D)
q−s,v(e

H(t))QL0Φ∅ |∅〉 . (2.29)

It allows us to use the exchange relation (2.19) for the exponential of the evolution opera-
tor H(t).

ρ
(D)
−u,1(T · eH(t))Φ∅ = Φ∅ρ

(D)
u,1 (eH(t)). (2.30)

Computing the action of the automorphism T on these operators with the help of the
equation (2.2), we can rewrite the amplitude as

Z(q, s, t) = e

∑
k>0 tk

qk

1−qk 〈∅| ρ(D)
−q−s,1

(
e
∑

k>0 tkq
−k2/2Wk,−k

)
Φ∅QL0Φ∅ |∅〉 . (2.31)

The last step consists in transforming the generators Wk,−k into the Heisenberg modes
Jk = W̄k,0. It is done using the framing operators since the specialization of the for-
mula (2.14) at α = 1 and (m,n) = (k,−k) reads qW̃0ρ

(D)
u,1 (Wk,−k)q−W̃0 = u−kqk

2/2Jk. The
framing operator can be introduced on the left/right of the correlator for free since its
action on the vacuum state is trivial. In this way, we find the desired result

Z(q, s, t) = e

∑
k>0 tk

qk

1−qk 〈∅| e
∑

k>0(−qs)ktkJkg |∅〉 , g = qW̃0Φ∅QL0Φ∅qW̃0 . (2.32)

Then, the fact that Z(q, s, t) is a tau function of the KP hierarchy follows from the fact
that g ⊗ g commutes with Ψ =

∑
r ψr ⊗ ψ̄−r. This type of operators were called the

group-like elements of GL(∞) in [7]. This property is sufficient to ensure that Z(q, s, t)
obeys the Hirota equation. Let us stress that the bosonic formula for Φ∅ and the fermionic
realization of the framing operator through (2.11) are essential to show the group-like
property. The fact that the hierarchy is of KP-type follows from the possibility to move the
time dependency to the right of the correlators. We refer to the original papers [1, 47, 48]
for a more thorough discussion that also includes the Lax formalism.

– 10 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
6

We conclude this section with a short remark. One may wonder what would happen
if we considered the other vertical components Φν of the intertwining operator instead of
the vacuum component. In this case, one can show that the exchange relation (2.19) is
satisfied only for the generators Wm,n with the index n < |ν|. As a consequence, we need
to restrict ourselves to the times tk with k > |ν|. Replacing Φ∅ with Φν in the operator g
and turning off the lower times, we find another tau function that reads

Zν(q, s, t) = t2ν
∑
λ

sλ(q−ρ−ν)sλ(q−ρ−ν′)Q|λ|e
∑

k>|ν| tkφk(λ,s)
. (2.33)

This tau function appears to be a particular case of the generating functions considered
in [51]. It is naturally associated to the topological vertex C∅,∅,ν that enumerates plane
partitions with fixed asymptotics ν in one direction [40].

3 Refinement and quantum toroidal algebra

In this section, we attempt to generalize the construction of a tau function to the refined
melting crystal introduced in the context of topological strings in [15]. The main idea is
to consider a counting function of plane partitions where boxes have a different weight
q = q, t depending on their location,7

Z(t, q) =
∑
π

∏
∈π
q =

∞∏
i,j=1

(1− tiqj−1)−1. (3.1)

Using the Cauchy identity, the double product can be written as a sum over Macdonald
polynomials,

Z(t, q) =
∑
λ

(Pλ(t−ρ))2

〈Pλ, Pλ〉q,t
, (3.2)

it reduces to the expression (2.26) of Z(q) in the limit t = q since Macdonald polynomials
reduce to Schur polynomials and their norm (2.7) tend to one. However, in order to be
able to employ the intertwiner Φ(v), instead of its dual Φ∗(v), it is more convenient to
generalize the formulas (2.26) as

Z(t, q) =
∑
λ

(ιPλ(t−ρ))2

〈Pλ, Pλ〉q,t
→ Z(Q, t, t, q) =

∑
λ

Q|λ|
(ιPλ(t−ρ))2

〈Pλ, Pλ〉q,t
e
∑

k>0 tkΦk(λ,u), (3.3)

where we used the involution ι : pk(x) → −pk(x) acting on the ring of symmetric poly-
nomials by reversing the sign of elementary power sums.8 In order to define properly the
deformed quantities Φk(λ, u), we need to generalize the algebraic description to the refined
case. The relevant algebra is the quantum toroidal algebra of gl(1), it depends on two
parameters (q1, q2) that are identified with the parameters (q, t−1) of the Macdonald poly-
nomials. It reduces to the quantum W1+∞ algebra in the limit t → q which corresponds

7We refer to the appendix A of ref. [15] for the exact prescription.
8Both Pλ(x) and ιPλ(x) have the same Cauchy identity, which provides two different ways of writing the

double infinite product (3.1). Note also that in the limit t = q, ιPλ(x)→ (−1)|λ|sλ′ (x) and the first equality
in (3.3) reproduces again the expression (2.26) of Z(q) upon the replacement λ→ λ′ in the summation.
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to the self-dual limit of the omega-background ε1 + ε2 → 0. Moreover, it also has a repre-
sentation acting on the module F0, called the Fock (or horizontal) representation [52, 53],
which we will review shortly below.

To obtain the bosonic expression (1.1) for the amplitude Z(Q, t, t, q), two main ingre-
dients are needed: an exchange relation generalizing (2.30) and a framing operator that
will play the role of qW̃0 . Like before, the exchange relation will be obtained as a projection
of the AFS intertwining relation [11] on the vacuum component of the intertwiner in the
vertical direction. On the other hand, the framing operator will be constructed by consid-
ering the refined framing factors [15, 54]. We will then show that this operator obeys an
equivalent of the algebraic property (2.14).

3.1 Quantum toroidal gl(1) algebra

3.1.1 Definition

We review briefly here the definition of the quantum toroidal gl(1) algebra. We mostly
follow the notations and conventions of [32], and refer to [27, 42, 43, 55] for more details
on the correspondence with the (p, q)-brane construction of topological strings amplitudes.

The algebra is usually formulated in terms of four Drinfeld currents,

x±(z) =
∑
k∈Z

z−kx±k , ψ±(z) =
∑
k≥0

z∓kψ±±k. (3.4)

They satisfy a set of exchange relations that can be found, e.g. in [27, 32], but we prefer to
work here directly with the modes x±k , ψ

±
±k. The subalgebra generated by the elements ψ±±k

is the analogue of the Cartan subalgebra of quantum affine algebras, it has an alternative
formulation in terms of modes ak defined by exponentiation,

ψ±(z) = ψ±0 exp

±∑
k>0

z∓ka±k

 , (3.5)

and satisfying a twisted Heisenberg algebra. The algebra has only two parameters (q1, q2),
but it is useful to introduce a third one through the relation q1q2q3 = 1. We also introduce
the shortcut notation γ = q

1/2
3 = (q1q2)−1/2. The algebra has two central charges (c, c̄),

the second one entering through the zero modes of the Cartan currents ψ±0 = γ∓c̄. The
modes of the currents satisfy the commutation relations

[ak, al] = (γkc − γ−kc)ckδk+l, [ak, x±l ] = ±γ∓|k|c/2ckx±l+k,

[x+
k , x

−
l ] =


κγ(k−l)c/2ψ+

k+l, k + l > 0
κγ(k−l)c/2ψ+

0 − κγ−(k−l)c/2ψ−0 , k + l = 0
−κγ−(k−l)c/2ψ−k+l, k + l < 0,

(3.6)

with the coefficients

κ = (1− q1)(1− q2)
(1− q1q2) , ck = −1

k

∏
α=1,2,3

(1− qkα). (3.7)
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They form a Hopf algebra with the Drinfeld coproduct

∆(x+
k ) = x+

k ⊗1+
∑
l≥0

γ−(c⊗1)(k+l/2) ψ−−l⊗x
+
k+l,

∆(x−k ) =
∑
l≥0

γ−(1⊗c)(k−l/2) x−k−l⊗ψ
+
l +1⊗x−k ,

∆(ak) = ak⊗γ−|k|c/2 +γ|k|c/2⊗ak, ∆(c) = c⊗1+1⊗c, ∆(c̄) = c̄⊗1+1⊗ c̄.

(3.8)

Automorphisms. The algebra is known to possess the group of automorphisms SL(2,Z)
generated by the elements S and T . The action of the automorphism T on the modes of
the Drinfeld currents can be expressed easily: it leaves the Cartan modes ak invariant and
acts as

T · x±k = x±k∓1, T · (c, c̄)→ (c, c̄+ c). (3.9)

The automorphism S has been uncovered by Miki in [13]. It is of order four, and is defined
uniquely by its action on the modes x±0 , a±1, namely

a1 → (γ − γ−1)x+
0 → −a−1 → −(γ − γ−1)x−0 → a1, (3.10)

and the central elements (c, c̄) → (−c̄, c). The explicit transformation formulas of the
modes x±k and ψ±±k are useful here, but, since they are more complicated, we decided to
confine them to the appendix A to avoid introducing too many notations. Let us only
define the notation bk = S · ak for the S-dual Cartan modes.

Self-dual limit. In the self-dual limit (q1, q2) → (q, q−1), the modes of the quantum
toroidal gl(1) algebra satisfy the commutation relations of the quantum W1+∞ algebra.
The identification goes as follows,

x+
k

1− q1
→ qk/2Wk,1 + δk,0

c2
1− q ,

x−k
1− q2

→ q−k/2Wk,−1 + δk,0
c1

1− q−1 ,

kak

(qk/21 − q−k/21 )(qk/23 − q−k/23 )
→Wk,0 −

c2
1− qk , (c, c̄)→ (c1,−c2).

(3.11)

Thus, the roles of Wk,0, W0,k and Wk,−k is played in the refined case by ak, b−k and T · b−k
respectively.9

3.1.2 Horizontal representation

The role previously devoted to the Dirac representation ρ
(D)
u,v will now be played by the

horizontal representation [52]. This representation has also the levels (1, 0) and acts on
the free boson Fock space F0. It has a weight u ∈ C× and will be denoted ρ(1,0)

u . In this
9These modes correspond to the three patches in [34], as can be seen from their fermionic realization

W̄k,0 =
∮

dz

2iπ z
k : ψ̄(z)ψ(z) :, W̄0,k =

∮
dz

2iπ : ψ̄(z)ψ(ekgstrz) :, W̄k,−k =
∮

dz

2iπ z
k : ψ̄(z)ψ(e−kgstrz) :.
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representation, the Drinfeld currents take the form of vertex operators defined upon the
Heisenberg modes Jk representing the Cartan modes ak,

ρ(1,0)
u (ak) = γk/2

k
(γk−γ−k)(1−qk2 )Jk, ρ(1,0)

u (a−k) = γk/2

k
(γk−γ−k)(1−qk1 )J−k, (k > 0),

ρ(1,0)
u (x±(z)) =u±1 exp

±∑
k>0

zk

k
γ(1∓1)k/2(1−qk1 )J−k

exp

∓∑
k>0

z−k

k
γ(1∓1)k/2(1−qk2 )Jk

 .
(3.12)

Using the isomorphism between F0 and the ring of symmetric polynomials, the action of
the modes ak on the Macdonald states |Pλ〉 corresponds to either a multiplication by the
power sums pk or the derivation ∂/∂pk depending on the sign of k. Since the power sum
p1 coincides with the elementary symmetric polynomial e1, the action of a±1 is deduced
from the Pieiri rules obeyed by Macdonald polynomials,

ρ(1,0)
u (a1) |Pλ〉 =

∑
∈R(λ)

r
(−)
λ ( ) |Pλ− 〉 , ρ(1,0)

u (a−1) |Pλ〉 =
∑
∈A(λ)

r
(+)
λ ( ) |Pλ+ 〉 . (3.13)

We denoted here A(λ) and R(λ) the sets boxes that can be added to/removed from the
Young diagram of λ. The coefficients r(±)

λ ( ) depend on the choice of normalization for
the modes and states, they can be computed explicitly but we will not need their expres-
sion here.

Finally, using Miki’s automorphism, we can also determine the action of the modes bk
on the Macdonald states [32]. It is used here to define the quantities Φk(λ, u) coupled to
the times tk,

ρ(1,0)
u (b−k) |Pλ〉 = Φk(λ, u) |Pλ〉 ,

Φk(λ, u) = (−1)kγku−kck

 ∑
(i,j)∈λ

q
−(i−1)k
1 q

−(j−1)k
2 − 1

(1− q−k1 )(1− q−k2 )

 |Pλ〉 . (3.14)

Since this action is diagonal, it does not depend on the choice of normalization for the
Macdonald states. These operators are proportional to the Macdonald operators known to
act diagonally on the polynomials Pλ. In the self-dual limit,

kΦk(λ, q−s)
(qk/21 − q−k/21 )(qk/23 − q−k/23 )

→ −(−1)kq−k/2
[
φk(λ, s) + 1

1− q−k
]
, (3.15)

and the deformed amplitude Z(Q, t, t, q) reduces to the tau function (2.32) (up to a rescaling
of the times parameters). Note, however, that the second term in the bracket is respon-
sible for an extra exponential factor in the formula (2.32), it will not be present in the
refined case.

3.1.3 Intertwiner and exchange relation

The intertwiner constructed by Awata, Feigin and Shiraishi in [11] intertwines the repre-
sentation of levels (1, n+1) and the tensor product of two representations with levels (0, 1)
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and (1, n). Here, we only need to consider the case n = 0. Moreover, the representations
of levels (1, 1) and (0, 1) can be obtained from the horizontal representation (1, 0) using
the automorphisms S and T described above. From the analysis of the transformation of
representations performed in [32], the AFS intertwining equation can be rewritten in the
form

ρ(1,0)
uv (T · e)Φ(v) = Φ(v)

(
ρ(1,0)
v ◦ S ⊗ ρ(1,0)

u ∆(e)
)
, (3.16)

for any element e of the quantum toroidal gl(1) algebra. The solution of this equation has
been found in [11], it can be expanded over the vertical components as a sum of vertex
operators,

Φ(v) =
∑
λ

Φλ(v)〈〈Pλ| , Φλ(v) = tλ : Φ∅(v)
∏

(i,j)∈λ
η(vqi−1

1 qj−1
2 ) :,

with Φ∅(v) = exp

−∑
k>0

vk

k(1− qk2 )
J−k

 exp

∑
k>0

q−k3 v−k

k(1− qk1 )
Jk

 . (3.17)

The operator η(z) = ρ
(1,0)
1 (x+(z)) coincides with the representation of the current x+(z)

given in (3.12). The normalization factor tλ is not important here as we only consider the
vacuum component, and we can always set t∅ = 1. In the melting crystal formalism, the
vacuum component corresponds to

Φ∅(v) = Γ−(vt1/2−ρ)Γ+(v−1γ−2q−1/2−ρ). (3.18)

To derive the exchange relation, we exploit the fact that S ·x−k annihilates the vacuum
state |∅〉〉 in the vertical channel. This fact follows from the application of Miki’s automor-
phism to map the vertical representation of levels (0, 1) to the horizontal one, since the
vertical action of x−k annihilates the vacuum [32]. However, to derive an exchange rela-
tion for the modes b−k, there is small difficulty coming from the fact that their coproduct
involves an infinite sum. For instance, for b−1 = (γ − γ−1)x−0 , we have

(γ − γ−1)−1∆(b−1) =
∑
k≥0

γk(1⊗c)/2x−−k ⊗ ψ
+
k + 1⊗ x−0 . (3.19)

Here, the AFS equation (3.16) does simplify into an exchange relation because the vertical
action of all the terms x−−k ⊗ ψ

+
k vanishes. After the projection of the resulting equation

on the vertical vacuum component, we find

ρ(1,0)
uv (T · b−k)Φ∅(v) = Φ∅(v)ρ(1,0)

u (b−k) (3.20)

for k = 1. The proof for higher k > 0 follows from the same properties. Since it is a little
technical, we kept it in appendix A. This exchange relation implies for H(t) =

∑
k>0 tkb−k,

ρ(1,0)
uv (T · eH(t))Φ∅(v) = Φ∅(v)ρ(1,0)

u (eH(t)),

ρ(1,0)
uv (eH(t))Φ∅(v) = Φ∅(v)ρ(1,0)

u (T −1 · eH(t)).
(3.21)

The second exchange relation is also derived in appendix A, it is obtained from the AFS
relation (3.16) applied to e = T −1 · b−k
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3.2 Deforming the tau function

To avoid cluttering the formulas, we omit the dependence in the variables (q, t) in this
section. In order to construct the bosonic expression for the amplitude Z(Q, t) defined
in (3.3), we need the expression of the matrix elements of the intertwiner Φ(v) in the
Macdonald basis,10

〈∅|Φ∅(q1/2v) |Pλ〉 = v−|λ|γ−|λ|ιPλ(t−ρ), 〈Pλ|Φ∅(q1/2v) |∅〉 = v|λ|γ−|λ|ιPλ(t−ρ). (3.22)

These formulas are used to replace the Macdonald polynomials in (3.3) with bosonic cor-
relators. Then, the time dependence is produced using the diagonal action (3.14) of the
modes b−k on the Macdonald basis. Finally, the summation of the Young diagrams λ is
performed using the closure relation of the Macdonald basis, and we find

Z(γ−2Q, t) = 〈∅|Φ∅(v)ρ(1,0)
u (eH(t))Φ∅(Qv) |∅〉 . (3.23)

Note that this quantity is actually independent of v, and the dependence in u can be
eliminated by a rescaling of the times tk → uktk. The second intertwiner can be replaced
by Φ∅(Qv) = QL0Φ∅(v)Q−L0 where L0 is the Fock space operator introduced in (2.11).
Since Macdonald polynomials, just like Schur polynomials, are homogeneous polynomials
of degree |λ|, it acts diagonally on the Macdonald basis, L0 |Pλ〉 = |λ| |Pλ〉.11

We proceed to move the time dependence to the left. The first step is performed using
the exchange relation (3.21), it gives

Z(γ−2Q, t) = 〈∅| ρ(1,0)
uv (T · eH(t))Φ∅(v)Φ∅(Qv) |∅〉 . (3.24)

For the next step, we need to define the framing operator. In the refined case, the framing
factor is modified into fλ = qn(λ′)t−n(λ) with n(λ) =

∑
(i,j)∈λ(i−1) and n(λ′) =

∑
(i,j)∈λ(j−

1). It prompts us to define the framing operator F as a diagonal operator on the Macdonald
states, with eigenvalues

F |Pλ〉 = Fλ |Pλ〉 , Fλ =
∏

(i,j)∈λ
qi−1

1 qj−1
2 = q

n(λ)
1 q

n(λ′)
2 . (3.25)

In the limit t = q, this operator tends to q−W0/2, the shift L0 is missing because we treat
the v-dependence differently here. Like the operator qW̃0 in the self-dual case, the operator
F is deeply connected to the automorphism T , i.e.

ρ(1,0)
u (T · b−k) = (−1)k+1u−kγk/2 Fρ(1,0)

u (ak)F−1, k ∈ Z,

ρ(1,0)
u (T −1 · b−k) = (−1)ku−kγk/2 F−1ρ(1,0)

u (a−k)F, k ∈ Z.
(3.26)

10Since pk(t±ρ) = ±1/(tk/2−t−k/2) with |t|±1 > 1 for convergence, we need to replace Pλ(tρ)→ ιPλ(t−ρ)
in the expression (4.13) of ref. [11] when |t| < 1.

11We can also see L0 as the representation of the grading operator d for the quantum toroidal algebra
(see [32])

ρ(1,0)
u (d) =

∑
k>0

J−kJk =
∑

r∈Z+1/2

r : ψ̄−rψr := L0.
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The derivation of these two identities is a bit involved as it makes use of Miki’s automor-
phism, it is presented in appendix A. Using the first identity, and the horizontal represen-
tation (3.12) of the modes ak, we can write the partition function in the form

Z(γ−2Q, t) = 〈∅| e
∑

k
1
k
τkJkg |∅〉 , with g = F−1Φ∅(v)Φ∅(Qv)F−1, (3.27)

and the rescaled times τk = (−uv)−k(1 − qk2 )(1 − qk3 )tk. This equation is the main result
of this section. Unfortunately, we were not able to show that the operator g is a group
like element of GL(∞). Group like elements form a monoid, and we can examine the
decomposition of g into its elementary factors. The vacuum component of the intertwiner
is still a group like element, despite the asymmetry between positive and negative modes
as any operator of the form : e

∑
k∈Z× tkJk : is group-like. On the other hand, we could not

show that F is group-like, and strongly suspect that it is not from a perturbative analysis
of the Hirota equation. As we shall explain in the next section, it is likely that the operator
Ψ has to be replaced by a different operator.

We conclude with another remark. Using the second exchange relation in (3.21) to-
gether with the second identity in (3.26), the exponential of H(t) can be moved to the
right in the correlator instead,

Z(γ−2Q, t) = 〈∅| ge−
∑

k>0 τ̄kJ−k |∅〉 , (3.28)

with τ̄k = (−u/Qv)−k(1− qk1 )(1− qk3 )tk. Unlike in the case of the KP hierarchy, the times
variables are not equal but they obey a simple scaling relation,

τ̄k = 1− qk1
1− qk2

Qkv2kτk. (3.29)

4 Discussion

Our main result is the observation of a relation between the tau function of an integrable
hierarchy, the intertwining operator of a quantum algebra, and the framing operator. The
fundamental role of the SL(2,Z) group of automorphisms in this description has been em-
phasized as it is deeply related to both intertwiner and framing operator. Our observation
offers the possibility to extend the correspondence between topological strings theory and
integrable hierarchies in several new directions. The most obvious one is to consider more
involved toric diagrams by exploiting the gluing rules of the topological vertex [27, 42, 43].
The next simplest toric diagram describes the resolved conifold and the corresponding
time-deformed amplitude was shown to be a tau function of a different reduction of the
Toda hierarchy called the Ablowitz-Ladik hierarchy [48, 56]. This result could be repro-
duced within our algebraic formalism provided that we introduce the dual intertwiner Φ∗,
also constructed in [11], that is expected to enjoy a similar exchange relation.

The trinion theories TN provide another set of interesting toric diagrams [57–59].12

The algebraic object obtained by gluing intertwiners according to these diagrams is also
12The author would like to thank E. Pomoni for drawing his attention to this family of theories.
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an intertwiner but it involves representations of the quantum toroidal algebra with higher
levels, namely (N,N), (N, 0) and (0, N). The intertwining relation projected on the vertical
component is expected to produce an exchange relation similar to (3.21). Furthermore, the
framing operator can be easily generalized to representations (0, N) by taking the tensor
product of the (0, 1) framing operator defined in this paper. Thus, our construction should
apply in this case as well, and the corresponding time-deformed amplitude should be the
tau function of an integrable hierarchy in the self-dual limit.

The second part of the paper is an attempt to define a refined tau function from the
natural deformation of the algebraic objects, lifting them from the quantum W1+∞ algebra
to the quantum toroidal gl(1) algebra. We ended up with the bosonic expression (3.27)
for the refined amplitude, but we were unable to show that the refined framing operator
entering in the operator g is a group-like element for GL(∞). Since the Dirac fermion
plays no role in the representation theory of the quantum toroidal algebra, we suspect that
the Casimir operator Ψ =

∑
r ψr ⊗ ψ̄−r is replaced by a different operator, just like in the

Kac-Wakimoto construction. At the moment, it is not clear what this operator should be.
In this respect, the Kac-Wakimoto construction for the toroidal algebra realized in [60]
might be a good source of inspiration.

As an intermediate step in the deformation of the fermionic structure, one could focus
on the q = 0 limit in which Macdonald polynomials reduce to Hall-Littlewood polynomials.
In [61], Jing introduced certain vertex operators as a t-deformation of the Dirac fermion.
These operators might be used to deform the Hirota equation, or the Lax formalism.

The algebraic description of topological string theory has been extended to different
algebras and geometric backgrounds. Some of these algebras should possess an SL(2,Z)
subgroup of automorphisms, like the quantum toroidal gl(p) algebras [18], their elliptic
deformations [19, 62] or even the fully deformed algebra of [23]. In all these cases, we
expect our construction to apply, producing tau functions of different integrable hierarchies
in specific limits.

Going in the other direction, one might try to build a vertex operator from known
integrable hierarchies. For instance, the quantum algebra associated to BKP, CKP and
DKP hierarchies [6, 63] are known to be orbifolds of the quantum W1+∞ algebra [39]. This
approach should meet with the earlier attempt of Foda and Wheeler to build a B-type
topological vertex [64, 65]. We hope to be able to report on this problem soon.

Finally, we have been working here with the A-model formulation of topological strings.
In the B-model, the connection with the KP hierarchy can also be seen using the Hermitian
matrix model. In this context, the refinement is well-understood as the matrix model is
replaced by a beta-ensemble [66].13 It would be instructive to reproduce our derivation on
the other side of the mirror.
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13Note that the fermionic description is lost for both A and B models after the refinement.
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A Proofs

A.1 Reminder on Miki’s automorphism

This reminder is a brief summary of the appendix A in [32] that is itself based on the
original paper [13]. We denote by y±(z) = S · x±(z) and ξ±(z) = S · ψ±(z) the image of
the Drinfeld currents under Miki’s automorphism. Just like the original currents in (3.6),
the S-dual currents can be decomposed in terms of modes

y±(z) =
∑
k∈Z

z−ky±k , ξ±(z) =
∑
k≥0

z∓kξ±±k = ξ±0 exp

±∑
k>0

z∓kb±k

 , (A.1)

with y±k = S · x±k , bk = S · ak and ξ±±k = S · ψ±±k. Since S is an automorphism, these new
modes satisfy the same commutation relations as the original algebra, e.g.

[bk, bl] = −(γkc̄ − γ−kc̄)ckδk+l, [bk, y±l ] = ±γ±|k|c̄/2cky±l+k,

[y+
k , y

−
l ] =


κγ−(k−l)c̄/2ξ+

k+l, k + l > 0
κγ−(k−l)c̄/2ξ+

0 − κγ(k−l)c̄/2ξ−0 , k + l = 0
−κγ(k−l)c̄/2ξ−k+l, k + l < 0.

(A.2)

The expression for the S-dual modes y±k , ξ
±
±k in terms of the original ones has been

obtained by Miki in [13],

y±k = (±)kγ−(c±kc̄)/2σ
−(k−1)
1

(
adx+

0

)k−1
x+
∓1,

y±−k = −(±)kγ(c∓kc̄)/2σ
−(k−1)
1

(
adx−0

)k−1
x−∓1,

ξ±±k = −(∓)k(γ − γ−1)σ−(k−1)
1 γ∓cadx±∓1

(
adx±0

)k−2
x±±1,

ξ±±1 = ±γ∓c(γ − γ−1)x±0 , ξ±0 = γ∓c.

(A.3)

In these formulas, we denoted the adjoint action adAB = [A,B] and σ1 = (q1/2
1 −

q
−1/2
1 )(q1/2

2 − q−1/2
2 ).

A.2 Proof of the refined exchange relations

In order to prove the first exchange relation (3.21), we use the following fact: since ρ(1,0)

is a representation and T an automorphism, if two elements satisfy the exchange relation,
so does their sum, product, commutator,. . .We have already shown that b−1 ∝ x−0 obeys
the exchange relation. In the same way, it is possible to show that the AFS relation (2.15)
with e = x−k produces an exchange relation of the type (3.21) where b−k is replaced by x−k .
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It follows from the coproduct (3.8) and the fact that the modes x−k annihilate the vacuum
in the vertical representation of levels (0, 1). We also notice that c obeys the exchange
relation but c̄ does not since T · c̄ = c+ c̄. Since the expression (A.3) for ξ−−k involves only
sums and products of x−k and c, this operator obeys the exchange relation and so does b−k
for k > 0 after expansion on z. Note, however, that b1 ∝ x+

0 does not satisfy the exchange
relation, and neither does the modes bk for k > 0. The second exchange relation holds
because the action of T −1 simply shifts the modes x−k → x−k+1 in the expression of ξ−−k and
thus the previous arguments hold as well in this case.

A.3 Proof of the algebraic properties for the refined framing operator

We present here the proof of the first identity in (3.26) for k > 0. The other cases, namely
k < 0 and the second identity, can be proven using similar arguments. Furthermore, to
avoid writing overcomplicated expressions, and since we work only in the module F0 acted
on by the representation ρ

(1,0)
u , we omit to indicate the representation of the quantum

toroidal modes. We start with the case k = 1. Once combined with Miki’s transforma-
tion (A.3), the mode expansion (A.1) for ξ−(z) gives at first orders in z,

b−1 = (γ − γ−1)x−0 ⇒ T · b−1 = (γ − γ−1)x−1 . (A.4)

Using the algebraic relations (3.6), this can be written further

T · b−1 = −γ−c/2c−1
1 (γ − γ−1)[a1, x

−
0 ]. (A.5)

The action of the r.h.s. on the Macdonald states can be computed explicitly using the Pieri
rules (3.13) for a1 and the fact that x−0 ∝ b−1 is diagonal (see (3.14)),

a1 |Pλ〉 =
∑
∈R(λ)

r
(−)
λ ( ) |Pλ− 〉 , x−0 |Pλ〉 = Φ1(λ, u)

γ − γ−1 |Pλ〉 . (A.6)

We do not need the explicit expression for the coefficients r(−)
λ ( ). Then, denoting χ =

qi−1
1 qj−1

2 the content of a box = (i, j) ∈ λ, we compute

T · b−1 |Pλ〉 = −γ−1/2c−1
1

∑
∈R(λ)

r
(−)
λ ( ) (Φ1(λ, u)− Φ1(λ− , u)) |Pλ− 〉

= u−1γ1/2 ∑
∈R(λ)

r
(−)
λ ( )χ−1 |Pλ− 〉

= u−1γ1/2Fa1F
−1 |Pλ〉 .

(A.7)

Thus, we have shown the identity (3.26) for k = 1. To simplify the upcoming formulas,
we introduce the rescaled mode α1 = a1/(γ − γ−1), so the previous identity writes x−1 =
u−1γ1/2Fα1F

−1.
Before addressing the general case, we would like to start with a short remark. Using

the algebraic relations (3.6), it is possible to write down

ψ+
k = κ−1γkc/2[x+

0 , x
−
k ], x−k = (−1)kγ−kc/2c−k1 (ada1)kx−0 . (A.8)
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Combining both, we arrive at an expression that will be useful later,

ψ+
k = κ−1(−1)kc−k1 adx+

0
(ada1)kx−0 . (A.9)

In a similar way, we write the modes ξ−−k = −κ−1γ(k+2)c̄/2[y+
−(k+1), y

−
1 ] for k > 1 as a

commutator of the modes y±k using the relations (A.2), and then use Miki’s transforma-
tion (A.3) to write down

y+
−(k+1) = −γc/2γ−(k+1)c̄/2σ−k1 (adx−0 )kx−−1, y−1 = −γ−(c−c̄)/2x+

1 . (A.10)

As a result, we find

ξ−−k = κ−1γ c̄σ−k1 adx+
1

(adx−0 )kx−−1 ⇒ T · ξ−−k = κ−1γc+c̄σ−k1 adx+
0

(adx−1 )kx−0 . (A.11)

Using the identity found previously for x−1 , and the fact that x−0 commutes with F (they
are both diagonal in the Macdonald basis), we have

e
zuad

x−1 x−0 = ezux
−
1 x−0 e

−zux−1 = Fezγ
1/2α1x−0 e

−zγ1/2α1F−1 = Fe
ad
zγ1/2α1x−0 F

−1. (A.12)

Expanding in powers of z, we deduce that

T · ξ−−k = κ−1γ1+k/2σ−k1 u−kadx+
0

(
F
(
(adα1)kx−0

)
F−1

)
, (A.13)

where we have also identified the central charges (c, c̄) with the levels (1, 0). Then, we use
the general result [A,FBF−1] = F [F−1AF,B]F−1, together with the fact that x+

0 also
commutes with F , to write down

T · ξ−−k = κ−1γ1+k/2σ−k1 u−kF
(
adx+

0
(adα1)kx−0

)
F−1. (A.14)

Comparing with the formula (A.9) for the modes ψ+
k , we find that

T · ξ−−k = γ1+k/2(−u)−k Fψ+
k F
−1 ⇒ T · ξ−(z) = γFψ+(−γ−1/2uz−1)F−1. (A.15)

The first identity in (3.26) with k > 0 follows from the expansion of the exponentials,
while the difference of zero modes takes care of the extra factor γ. Applying the same
method to T · ξ+(z), we can prove the following identities that produce the other cases of
the relations (3.26) by expansion,

T · ξ+(z) = γ−1Fψ−(−γ−1/2uz−1)F−1,

T −1 · ξ−(z) = γF−1ψ−(−γ1/2u−1z)F,

T −1 · ξ+(z) = γ−1F−1ψ+(−γ1/2u−1z)F.

(A.16)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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