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1 Introduction

A precise theoretical understanding of the neutral- and charged-current Drell-Yan pro-
cesses [1] in Standard Model perturbation theory is essential to the success of the Large
Hadron Collider physics program. It is therefore unsurprising that significant resources
have been allocated, over the course of a multi-generational effort, to bring the higher-order
corrections to the Drell-Yan scattering processes under control. The total cross section in
pure Quantum Chromodynamics (QCD) was successfully calculated through to next-to-
next-to-next-to-leading order in the strong coupling constant for both the neutral- and
charged-current processes [2–8]. On the electroweak side, neutral gauge boson production
and decay has been calculated through to next-to-next-to-leading order in pure Quantum
Electrodynamics (QED) [9, 10], but full electroweak (EW) corrections are known only at
next-to-leading order [11–19]. Due to the size of the next-to-leading order electroweak
corrections, it has long been of interest to calculate the mixed EW-QCD corrections of
relative order ααs as well. Indeed, many partial results in this direction have been put
forth over the last decade [20–27], but a complete calculation in the regime of large lepton
pair invariant mass is not available yet.

Despite the significant attention these two-loop EW-QCD calculations have received, it
has long remained a challenge to include the non-factorizable two-loop virtual corrections.
For many years, the primary technical problem was the evaluation of the massive two-loop
box-type master integrals which emerge from the most complicated Feynman diagrams
(see [28–30] for various results). Recently, some of us successfully evaluated the complete
set of two-loop box-type master integrals relevant to the non-factorizable corrections as
linear combinations of standard multiple polylogarithms in the physical regions of phase
space [31]. In this paper, we take an important step towards complete relative order ααs
corrections by elucidating the treatment of γ5 for the box-type diagrams and deriving
the most complicated unknown parts of the order α2αs two-loop helicity amplitudes for
qq̄ → `+`−. Here, we do not include contributions involving the top-quark, light fermionic
loops, or bb̄ initial states, and focus on the region of phase space with center-of-mass energy
above all two-particle thresholds.

As has been known since the earliest higher-order studies of the Drell-Yan process, it
is important to have a solid understanding of the γ5 problem of dimensional regulariza-
tion [32–36] if one wishes to calculate all Feynman diagrams at a given order, including
those where a W or Z connect the initial- and final-state fermion lines. As will be dis-
cussed in detail in what follows, care must be taken in practical calculations to consistently
include scheme-dependent higher-order-in-ε terms, see also [37] for a recent review. In
order to establish confidence in our results, we carried out two independent calculations,
one where ’tHooft-Veltman-Breitenlohner-Maison’s (HVBM’s) γ5 scheme [32–34, 38] was
employed and one where Kreimer’s γ5 scheme [39–42] was employed. For our calculations,
Kreimer’s γ5 scheme was practically superior because it does not require the introduction
of finite counterterms to restore the chiral symmetry of the Standard Model.

This article is organized as follows. In sections 2.1–2.4, a general discussion of the sub-
tleties involved with the application of dimensional regularization in the presence of chiral
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couplings is given, both for HVBM’s γ5 scheme and Kreimer’s γ5 scheme. In sections 2.5–2.7
our renormalization scheme for the coupling constants, the wavefunctions, and the particle
masses is described. In section 2.8, we discuss the finite renormalizations we perform in
HVBM’s γ5 scheme. In section 3.1, we define the scattering process we consider more
precisely. In section 3.2, supplemented by appendix A, we describe our general approach
to the form factor decomposition of the amplitude, and, in sections 3.3 and 3.4, we give
further technical details of the numerator algebra scripts we used to carry out our Feynman
diagram calculations in the different γ5 schemes. In section 3.5, we elucidate the infrared
structure of the one- and two-loop scattering amplitudes we calculate and define hard scat-
tering functions which, at leading order in the parameter of dimensional regularization,
encode physical information about the kernel of the virtual corrections which remains after
infrared subtraction. In sections 4.1–4.3, supplemented by appendices B.1 and B.2, explicit
results for the one-loop Standard Model corrections to the Drell-Yan process are given, to-
gether with a detailed comparison to the original literature. In sections 5.1–5.3, we give
details specifically relevant to the two-loop mixed EW-QCD calculation. In section 6.1, we
provide a recipe to pass from our form factors to scattering amplitudes for states of definite
helicity and, in section 6.2, visualizations of our final results for the order ααs, order α2,
and order α2αs polarized hard scattering functions. Finally, in section 7, we summarize
our findings.

2 Regularization and renormalization

2.1 Universal features of dimensional regularization

In this section, our aim is to review some background and motivation for the more techni-
cal, scheme-dependent discussions of chiral couplings in dimensional regularization which
follow in sections 2.2 and 2.3. The simultaneous dimensional regularization of ultraviolet
and infrared divergences [38, 43–46] has proven to be an essential tool for the calculation
of higher-order perturbative scattering amplitudes in gauge theories. For a gauge theory
Lagrange density defined in four spacetime dimensions, the method purports to provide
a prescription for the continuation of all off-shell Feynman rules from four to d dimen-
sions. All higher-order correlation functions and scattering amplitudes in the model under
consideration are then taken to be meromorphic functions of d in a complex domain con-
taining the point d = 4. Accordingly, the Fourier integrals which appear at higher orders
in perturbation theory are continued from four dimensions to d = 4− 2ε dimensions as

∫ d4ki

(2π)4 −→
(
µ2
)ε ∫ d4−2εki

(2π)4−2ε , (2.1)

where ε is the parameter of dimensional regularization and µ is the ’tHooft scale, a unit of
mass introduced to maintain a dimensionless action. The ultraviolet and infrared singular-
ities of higher-order correlation functions and scattering amplitudes manifest themselves as
poles in ε which ultimately cancel only in higher-order corrections to physical observables.
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While some of the prescribed continuations of the Lorentz and Dirac algebra such as

gµνgµν = 4− 2ε , (2.2)
{γµ, γν} = 2gµν 1 , (2.3)

and γµγµ = 1
2g

µν {γµ, γν} = gµνgµν = 4− 2ε (2.4)

feel very natural, other aspects of the program are far more subtle and require careful
explanation. Before proceeding to a discussion of these subtleties, we state a universal
identity for the d-dimensional contraction of two Dirac matrices with n d-dimensional
Dirac matrices interspersed which will be useful later on:

γµγν1 · · · γνnγµ = 2
n∑
i=1

(−1)i+nγνiγν1 · · · γνi−1γνi+1 · · · γνn + (4− 2ε)(−1)nγν1 · · · γνn . (2.5)

This identity is simply obtained by repeatedly applying eq. (2.3) to move the γµ factor to
the left until it is finally possible to apply eq. (2.4). The reader can easily check for the
first few values of n that the well-known textbook results (see e.g. [47]) are all encoded in
eq. (2.5).

As has been clear from its inception [38, 44], it is technically challenging to handle chiral
couplings in dimensional regularization. This is primarily because there is no canonical way
to continue the usual four-dimensional definition of γ5,

γ5 = −i γ0γ1γ2γ3 , (2.6)

into d dimensions. It was emphasized in [38] by ’tHooft and Veltman that one cannot
expect to maintain the usual anticommutation relation

{γµ, γ5} = 0 (2.7)

and, at the same time, work with traces of Dirac matrices which enjoy all of the usual
mathematical properties. In particular, a cyclic Dirac trace was explicitly assumed along-
side eq. (2.7) in the algebraic proof that the trace of γµγνγργσγ5 must either vanish in
dimensional regularization or be subject to a modified set of algebraic rules (see e.g. [48]
for a review). ’t Hooft and Veltman influenced most later authors to modify the γ5 anti-
commutation relation, but, as was pointed out by Kreimer [39], retaining eq. (2.7) while
abandoning the cyclicity of the Dirac trace is another path towards mathematical con-
sistency. It would at this stage be reasonable to expect a concrete prescription for the
d-dimensional continuation of classical trace formulae involving γ5 such as

tr {γµγνγργσγ5} = −4i εµνρσ (2.8)

in some refined dimensional regularization scheme.
In fact, there is no d-dimensional replacement for γ5 or the Levi-Civita tensor, εµνρσ,

in the dimensional regularization schemes we consider; rather, one simply accepts that
eq. (2.6), eq. (2.8), and the familiar properties

γ2
5 = 1 and γ†5 = γ5 (2.9)
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remain unchanged in d dimensions. That γ5 and εµνρσ are intrinsically four-dimensional
objects inevitably forces one to distinguish a four-dimensional subspace and sacrifice some-
what for what concerns the construction of a manifestly Lorentz-covariant formalism. In
this work, it is frequently convenient to explicitly distinguish the four-dimensional and
(−2ε)-dimensional subspaces of d-dimensional Lorentz indices in perturbative calculations.
Following [48], we write

kµ = k̄µ + k̂µ (2.10)
and γµ = γ̄µ + γ̂µ , (2.11)

where bars denote four-dimensional objects and hats denote (−2ε)-dimensional objects.
Similarly, we write the usual four-dimensional identities,

εµνρσ εµνρσ = −24 , (2.12)
εµνρα εµνρβ = −6 ḡαβ , (2.13)

εµναδ εµνβη = −2 (ḡαβ ḡδη − ḡαη ḡβδ) , (2.14)

εµαδκ εµβηλ = ḡαλḡβκḡδη − ḡαλḡβδ ḡηκ − ḡαη ḡβκḡδλ
+ ḡαβ ḡδλḡηκ + ḡαη ḡβδ ḡκλ − ḡαβ ḡδη ḡκλ , (2.15)

εαδκτ εβηλχ = −ḡαχḡβτ ḡδλḡηκ + ḡαχḡβτ ḡδη ḡκλ + ḡαχḡβκḡδλḡητ − ḡαχḡβδ ḡητ ḡκλ
− ḡαχḡβκḡδη ḡλτ + ḡαχḡβδ ḡηκḡλτ + ḡαλḡβτ ḡδχḡηκ − ḡαη ḡβτ ḡδχḡκλ
− ḡαλḡβκḡδχḡητ + ḡαβ ḡδχḡητ ḡκλ + ḡαη ḡβκḡδχḡλτ − ḡαβ ḡδχḡηκḡλτ
− ḡαλḡβτ ḡδη ḡκχ + ḡαη ḡβτ ḡδλḡκχ + ḡαλḡβδ ḡητ ḡκχ − ḡαβ ḡδλḡητ ḡκχ
− ḡαη ḡβδ ḡκχḡλτ + ḡαβ ḡδη ḡκχḡλτ + ḡαλḡβκḡδη ḡτχ − ḡαλḡβδ ḡηκḡτχ
− ḡαη ḡβκḡδλḡτχ + ḡαβ ḡδλḡηκḡτχ + ḡαη ḡβδ ḡκλḡτχ − ḡαβ ḡδη ḡκλḡτχ , (2.16)

using ḡµν to denote the four-dimensional metric tensor.
In both schemes we consider, eqs. (2.12)–(2.16) force us to apply eq. (2.10) to split

indices, ḡµνkµi kνj = ki ·kj− k̂i · k̂j . Split loop momenta lead to well-known technical compli-
cations: in sufficiently-complicated Feynman diagrams, Dirac traces produce d-dimensional
Feynman integrals with numerator insertions of k̂i · k̂j . Fortunately, general approaches
which involve the introduction of dimensionally-shifted Feynman integrals [49–51] have
been worked out at one loop [52] and at two loops [53]. For the convenience of the reader,
we provide details of a modern formulation of these developments in section 2.4 below.

As reviewed in [54], many authors have in the past adopted the so-called naive γ5
scheme of [35] (see also [55]) for one-loop electroweak calculations. The naive scheme
amounts to a set of ad hoc rules for γ5 manipulations designed to lead to correct results
while avoiding the technical complications which might arise in a more mathematically-
rigorous handling of chiral couplings. Historically, this was justified at the one-loop level
by checking a posteriori that the relevant Ward identities check out. Naturally, in order to
calculate with confidence at higher orders in Standard Model perturbation theory, we feel
that it is of considerable importance to adopt a mathematically consistent framework. It
should be stressed that the naive γ5 scheme is equivalent to Kreimer’s γ5 scheme (introduced
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below) for what concerns the calculation of the fermion self-energies and vertex form factors
considered in this paper. As we shall see in what follows, the Feynman diagrams of box type
are really the only ones in 2→ 2 scattering processes with sensitivity to the γ5 problem.

HVBM’s γ5 scheme [32–34, 38] and Kreimer’s γ5 scheme [39–42] are the two variants
of dimensional regularization we work with in this paper. The precise treatment of γ5
in these schemes has a profound impact on both the Feynman rules and the handling of
Dirac traces which we discuss at greater length in sections 2.2 and 2.3.1 Indeed, four-
dimensional Dirac trace identities which rely on γ5 manipulations must be, depending on
the γ5 scheme, either carefully reformulated or abandoned. Consider, for example, the
algebraic proof given in [47] that the trace of an odd number of Dirac matrices must be
zero. For n odd, we have

tr {γν1 · · · γνn} = tr {γ5γ5γν1 · · · γνn} (γ2
5 = 1)

= (−1)ntr {γ5γν1 · · · γνnγ5} (anticommutation relation (2.7))
= −tr {γ5γ5γν1 · · · γνn} (n odd, trace cyclicity)
= −tr {γν1 · · · γνn} (γ2

5 = 1) , (2.17)

which implies tr {γν1 · · · γνn} = 0 as desired. As should by now be clear, the above proof
is valid only in four spacetime dimensions; different lines of reasoning must be adopted
in d = 4 − 2ε dimensions. As we shall see, in HVBM’s γ5 scheme, eq. (2.5) facilitates a
simple proof of the proposition by induction, whereas, in Kreimer’s γ5 scheme, the trace
of an odd number of Dirac matrices is argued to be zero in d dimensions by appealing to
a mathematical property of the infinite-dimensional Dirac algebra [39].

2.2 HVBM’s prescription for γ5 in dimensional regularization

In HVBM’s scheme, chiral couplings are treated in a consistent way in d dimensions by
retaining the four-dimensional definition of γ5, eq. (2.6), at the expense of its anticommu-
tation relation with the standard Dirac matrices. In place of eq. (2.7), one can write

{γµ, γ5} = 0 for µ = 0, 1, 2, and 3 (2.18)
and [γµ, γ5] = 0 in the (−2ε)-dimensional subspace, (2.19)

with the understanding that, as reviewed in e.g. [48], the (−2ε)-dimensional subspace is
in fact infinite dimensional. For our purposes, we find an equivalent formulation which
utilizes eq. (2.11) to express the content of eqs. (2.18) and (2.19) as

{γ̄µ, γ5} = 0 (2.20)
and [γ̂µ, γ5] = 0 , (2.21)

where {γ̄µ, γ̂ν} = 0 , (2.22)

to be much more transparent and practically useful.
1It actually turns out that the algebraic form of the standard family of Dirac trace identities which

generalizes eq. (2.8) is the same in both schemes, but this requires some explanation.
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As advertised above, this modification of the anticommutation relation has an immedi-
ate impact on the form of the Standard Model Feynman rules in dimensional regularization.
As an example of particular relevance to this work, let us consider the axial part of the
coupling of the Z boson to the light quarks and leptons in four dimensions:

−e afZµψ̄f γµγ5 ψf , (2.23)

where af is a function of the electroweak gauge boson masses and the isospin of fermion
f . Suppose now that we wish to consider interaction (2.23) in d dimensions. Due to the
fact that we can no longer avail ourselves of eq. (2.7), (2.23) will fail to be Hermitian
in d dimensions. We can, however, preserve the Hermiticity of the interaction if we first
rewrite (2.23) as

−e afZµψ̄f
1
2 [γµ, γ5]ψf (2.24)

in four dimensions before giving up eq. (2.7) in favor of eqs. (2.18) and (2.19) [48].
HVBM’s γ5 scheme allows for a very familiar treatment of the usual families of Dirac

traces. As pointed out already in [38], the trace of an even number of Dirac matrices with
d dimensional indices may be conveniently evaluated using the recursive formula

tr {γν1 · · · γνn} =
n−1∑
i=1

(−1)i+1gν1νi+1tr
{
γν2 · · · γνiγνi+2 · · · γνn

}
, (2.25)

valid for even n, with termination criterion

tr {1} = 4 . (2.26)

Eq. (2.25) is derived in a manner very similar to that of eq. (2.5), but by repeatedly applying
eq. (2.3) to move the γν1 factor all the way to the right. Finally, the cyclic property of the
trace is required to identify the final term, −tr {γν2 · · · γνnγν1}, with the original expression
on the left-hand side.

The trace

tr {γν1 · · · γνnγ5} (2.27)

for even n may be evaluated in much the same way by replacing γ5 by the covariant version
of its definition,

γ5 = − i

4!ε
µνρσγµγνγργσ , (2.28)

and then evaluating the resulting trace of n+4 Dirac matrices using eqs. (2.25) and (2.26).
As expected, the trace of an odd number of Dirac matrices is still zero in d dimensions.

As mentioned above, this can be proven by induction on the trace of eq. (2.5). Let us
consider the argument for n = 1. On the one hand, by trace cyclicity and eq. (2.4),
we have

tr {γµγν1γµ} = (4− 2ε)tr {γν1} . (2.29)
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On the other hand, applying eq. (2.3) before eq. (2.4), we have

tr {γµγν1γµ} = (−2 + 2ε)tr {γν1} . (2.30)

Subtracting eqs. (2.29) and (2.30), we see that, indeed, tr {γν1} must be zero.
Now, trace cyclicity and eq. (2.4) generically reduce the trace of the left-hand side of

eq. (2.5):

tr {γµγν1 · · · γνnγµ} = (4− 2ε)tr {γν1 · · · γνn} . (2.31)

However, we must simplify the trace of the summand of the first term on the right-hand
side of eq. (2.5) using the induction hypothesis before we can finish the proof: it is easy to
see that

tr
{
γνiγν1 · · · γνi−1γνi+1 · · · γνn

}
= (−1)i−1tr {γν1 · · · γνn} (odd n) (2.32)

is a valid identity under the assumption tr
{
γν1 · · · γνn−2

}
= 0. eq. (2.32) provides the

desired reduction of the right-hand side of the trace of eq. (2.5),

tr {γµγν1 · · · γνnγµ} = 2
n∑
i=1

tr {γν1 · · · γνn} − (4− 2ε)tr {γν1 · · · γνn}

= (2n− 4 + 2ε)tr {γν1 · · · γνn} (odd n). (2.33)

Finally, the difference of eqs. (2.31) and (2.33) implies that

tr {γν1 · · · γνn} = 0 (odd n) (2.34)

by induction.
Similarly, eq. (2.28) and the line of reasoning used to establish eq. (2.34) together

reveal that

tr {γν1 · · · γνnγ5} = 0 (odd n). (2.35)

HVBM’s prescription for γ5 has the very unfortunate drawback that the Standard
Model’s chiral symmetry is violated in all bare perturbative calculations involving chiral
couplings. As was originally pointed out by Breitenlohner and Maison in [32–34] and
reviewed in [48], it is possible to restore the chiral symmetry of the Standard Model as
part of the renormalization program by introducing various finite counterterms on top of the
usual divergent ones. Let us emphasize here that, in general, one expects all interactions
in the Standard Model to require finite counterterms at some order in perturbation theory,
not just those which explicitly involve γ5. Furthermore, these finite counterterms must
generically be calculated beyond O

(
ε0
)
to consistently restore chiral symmetry at still

higher orders. We discuss some elementary examples relevant to this article in section 2.8.
For what concerns the particular one- and two-loop calculations considered later on in

this work, Larin’s principle [56] allows us to bypass many finite counterterm computations
for fermion self-energies and vertex form factors involving chiral couplings. Larin pointed
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out that, for these building blocks, chiral symmetry implies the finite renormalizations do
nothing but turn results obtained in HVBM’s γ5 scheme into analogous results obtained in
an anticommuting γ5 scheme. However, as we will discuss in greater detail in section 2.8, the
HVBM scheme requires the insertion of explicit finite counterterms and a careful treatment
also of the higher-order-in-ε terms if box-type Feynman diagrams with chiral couplings
contribute to the two-loop or higher-order corrections of interest (see also [57] for a related
recent study). Overall, one comes away with the feeling that there must exist a pure
dimensional regularization scheme better suited to the study of higher-order perturbative
corrections in the Standard Model. In fact, the arduous and subtle character of perturbative
calculations carried out in HVBM’s γ5 scheme is what led to the development of Kreimer’s
prescription for γ5.

2.3 Kreimer’s prescription for γ5 in dimensional regularization

In Kreimer’s γ5 scheme, chiral couplings are treated in a consistent way in d dimensions
by retaining the four-dimensional definition of γ5, eq. (2.6), at the expense of Dirac trace
cyclicity. Kreimer argued in [39] that Dirac trace cyclicity is not a natural property to
retain in d dimensions, due to the fact that the Dirac algebra necessarily becomes infinite
dimensional. The standard trace of classical linear algebra, tr, is replaced in Kreimer’s
γ5 scheme with one of several possible exotic trace operations which differ only in their
reading point prescriptions. The reading point prescription effectively specifies with which
Dirac matrix to start the non-cyclic trace. In our case, the Lorentz projectors we define in
section 3.4 provide a natural anchor to start all Dirac traces involving the external fermion
lines. In order to clearly distinguish the trace operations in what follows, we will write Tr
rather than tr when using a reading point prescription. While not relevant to the specific
higher-order calculations discussed in this paper,2 we would average over all possible choices
of first entry for internal closed fermion loops. Other reading point prescriptions, such as
one which mandates an average over all possible choices of first entry in all cases, could
have been chosen as well, but we find our choice particularly convenient.

Kreimer’s γ5 scheme has practical advantages over HVBM’s γ5 scheme. Crucially, it
does not force a change of algebraic form for any Standard Model Feynman rule when
considering interactions in d spacetime dimensions. Employing a consistent reading point
prescription then automatically preserves the chiral symmetry of the Standard Model in
bare perturbative calculations and the complete absence of finite counterterms makes renor-
malization straightforward. In addition, although box-type diagrams do ultimately force
the introduction of split loop momenta also in Kreimer’s γ5 scheme, the bulk of the nu-
merator algebra can be carried out before the split enters. This stands in stark contrast to
HVBM’s γ5 scheme, where split loop momenta should be introduced immediately in order
to progress with the necessary algebraic simplifications efficiently (this assertion will be
clarified in section 3.3).

2As explained in section 3.1, we do not consider contributions involving closed fermion loops or top
quarks here.
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As alluded to above, the standard families of odd Dirac traces still vanish identically
when tr is replaced by Tr,

Tr {γν1 · · · γνn} = 0 (2.36)
and Tr {γν1 · · · γνnγ5} = 0 . (2.37)

For the standard families of even Dirac traces, [40] defines

Tr {γν1 · · · γν2n} = 4
∑
σ

(−1)sgn(σ)gνi1νj1 · · · gνinνjn and (2.38)

Tr {γν1 · · · γν2nγ5} = − i

3! εν2n+1ν2n+2ν2n+3ν2n+4

∑
σ

(−1)sgn(σ)gνi1νj1 · · · gνin+2νjn+2
(2.39)

where σ is the set of permutations of the 2m indices which appear in the sums on the
right-hand sides (m = n and m = n+ 2 in (2.38) and (2.39), respectively), subject to the
restrictions

1 = i1 < . . . < im, ik < jk, for all k ∈ {1 . . .m}. (2.40)

As is perhaps not immediate, these definitions are equivalent to the results one would
obtain in HVBM’s γ5 scheme recursively using tr and eqs. (2.25), (2.26), and (2.28). Of
course, eqs. (2.25) and (2.26) must ultimately yield the same answer as eq. (2.38) above, as
a string of plain Dirac matrices knows nothing about γ5. As a corollary, due to eq. (2.28),
one immediately arrives at the same conclusion for the Kreimer trace of a string of Dirac
matrices with a γ5 factor appended (see also [42] for a supplementary discussion).

Despite the fact that Kreimer’s γ5 scheme was introduced a long time ago [39–42],
it has not been universally accepted and embraced as a superior alternative to HVBM’s
γ5 scheme; researchers continue to express doubts about the applicability of Kreimer’s γ5
scheme beyond one loop (see e.g. [54] for a current review of the status of the γ5 problem).
In this article, we present an explicit application of Kreimer’s γ5 scheme to a non-trivial
calculation of two-loop box-type diagrams involving chiral couplings and show that it does
yield physically sensible results. Also worth mentioning is concurrent work by one of us
and others, where the two-loop box contributions to gg → ZZ featuring a closed top-quark
loop have been calculated in Kreimer’s γ5 scheme [58]. The results were compared against
calculations in a more commonly used γ5 scheme and found to agree after ultraviolet and
infrared subtraction. While the exact top mass corrections to gg → ZZ in next-to-leading
order QCD couple the ZZ pair to the massive top quark line and involve anomalous double
triangle contributions, the γ5 dependence of the mixed two-loop EW-QCD corrections to
the Drell-Yan process at the level of Feynman diagrams is significantly more complicated.

2.4 d-dimensional Feynman integrals with four-dimensional scalar numerators

In this section, we describe how we deal with particularly awkward terms which often occur
in the numerators of d-dimensional Feynman integrals in Standard Model perturbation the-
ory: four-dimensional contractions of d-dimensional loop momenta, ḡµνkµi kνj . As mentioned
above, we decompose our loop momenta into four-dimensional and (−2ε)-dimensional com-
ponents, ki = k̄i+ k̂i. This decomposition maps the awkward four-dimensional numerators
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to ordinary inverse propagators and “µ-term” insertions of the form k̂i · k̂j , as introduced
long ago by Bern and Morgan [52]. Below, we review algorithms which allow for a direct
treatment of µ-term insertions at one and two loops with dimensionally-shifted Feynman
integrals. While the two-loop algorithm we review was, to our knowledge, the first to ap-
pear in the literature [53], other approaches such as that of [59] are certainly possible. It
seems that some computational effort is simply unavoidable, as both approaches require
the calculation of auxiliary integration by parts reductions [60–62].3 We found it very
appealing to work with dimensionally-shifted Feynman integrals, as all of the necessary
auxiliary integration by parts identities were already calculated by us some time ago for
numerical cross-checks on our master integrals [29, 31], facilitated by passing to a finite
basis of master integrals [64, 65] through Tarasov dimension shifts [51].

As has been clear at least since the appearance of [52], non-zero one-loop Feynman
integrals with µ-term insertions are of the form

I(1)
n

[
(k̂1 · k̂1)r

]
≡
∫ ddk1
iπd/2

(
k̂1 · k̂1

)r
Dν1

1 · · ·D
νn
n
, (2.41)

where the Di are the independent propagators of the integral family. Crucially, eq. (2.41)
can be rewritten in terms of standard dimensionally-shifted one-loop Feynman integrals
with the same propagator structure. By absorbing the (k̂1 · k̂1)r numerator insertion into
the integration measure, it is shown in [52] that

I(1)
n

[
(k̂1 · k̂1)r

]
= (−1)rΓ(r − ε)

Γ(−ε)

∫ dd+2rk1
iπ(d+2r)/2

1
Dν1

1 · · ·D
νn
n
. (2.42)

Although eq. (2.42) involves dimensionally-shifted integrals in an essential way, its form
does not depend on the number of legs, the complexity of the kinematics, or the details of
the νi, observations which suggest a connection to the dimension shift of Tarasov [51]. Since,
to our knowledge, a manipulation of the Schwinger representation furnishes the simplest
possible proof of Tarasov’s relation, it is natural to expect the Schwinger representation to
also allow for an efficient alternative proof of eq. (2.42). To proceed, it is useful to recall
that the Tarasov dimension shift is derived in the Schwinger parametrization by simply
multiplying and dividing by the first Symanzik polynomial. Furthermore, for an integral
topology with t propagator denominators, the first Symanzik polynomial at one loop has
the especially simple, universal form

U (1)
t = α1 + · · ·+ αt , (2.43)

due to the uniqueness and triviality of the one-loop vacuum (tadpole) integral topology.
The general Schwinger representation is most simply expressed if one first orders the

Feynman propagators such that the ε→ 0 limits of their exponents form a monotonically
decreasing sequence. We assume that, in this limit, the first n+ propagators appear raised

3Note that one can circumvent the discussion of this section altogether by performing a classical
Passarino-Veltman tensor reduction [63] on all one- and two-loop integrals. In fact, we found it very
productive to carry out such an analysis as a comprehensive cross-check of our µ-term implementation.
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Figure 1. The unique (up to internal mass assignment) non-factorizable (left) and factorizable
(right) two-loop vacuum integral topologies.

to positive powers and the remaining n− propagators appear raised to negative powers (we
may assume without loss of generality that the final n− propagator exponents are in fact
non-positive integers). In terms of the Symanzik polynomials of the integral family, U and
F , we have

I(L)
n = e

−iπ
∑n+

j=1 νj
n+∏
i=1

(∫ ∞
0

dαi
ανi−1
i

Γ(νi)

)
n∏

`=n++1

∂|ν`|

∂α
|ν`|
`

(
U −d0/2+ε

e−F/U
)∣∣∣∣∣
αn++1=···=α

n++n−=0

(2.44)

for d = d0 − 2ε, where d0 is an even positive integer (d0 = 4 is of course the main case of
interest to us in this article). In the absence of inverse propagators, the usual result given
in terms of the Symanzik polynomials of the integral topology under consideration, U and
F , is recovered.

Now, as emphasized in [52], generic d-dimensional Feynman propagators at one loop
have the form k̄1 · k̄1 + 2Pext · k̄1 +Pext ·Pext−m2 + k̂1 · k̂1, where Pext denotes some sum of
four-dimensional external momenta and m some particle mass. This form motivates a split
of the loop momentum integral in the derivation of the ordinary Schwinger parametrization
into four-dimensional and (−2ε)-dimensional pieces. Due to the fact that, by construction,
µ-term insertions are expected to lead to Feynman integrals explicitly suppressed by powers
of ε, the authors of [53] deduced that the (−2ε)-dimensional part of the momentum integral
must be proportional to the ε-dependent part of eq. (2.44),∫

d−2εk̂1 e
U(1)
n k̂1·k̂1 ∝

(
U (1)
n

)ε
, (2.45)

and therefore serve as a generating function for all µ-term insertions via differentiation
with respect to U (1)

n . Indeed, by differentiating the right-hand side of the above relation r
times with respect to U (1)

n , we find

(−1)rΓ(r − ε)
Γ(−ε)

(
U (1)
n

)ε−r
, (2.46)

and, by recognizing that the shift ε → ε − r corresponds precisely to a shift d0 → d0 + 2r
in eq. (2.44), immediately recover the form of eq. (2.42) as expected.

Fortunately, the approach described above may be fruitfully applied to the study of
generic µ integrals at the two-loop level as well. This is primarily because there is a
unique non-factorizable two-loop tadpole topology (see figure 1). The main new feature at
the two-loop level is that shifts in the propagator exponents appear alongside the various
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dimension shifts. At two loops, generic non-zero µ-term insertions can be constructed by
taking products of k̂1·k̂1, k̂2·k̂2, and (k̂1−k̂2)2. Due to the uniqueness of the non-factorizable
two-loop tadpole topology, the first Symanzik polynomial of an arbitrary non-factorizable
two-loop integral family is of the form

U (2)
n = Tk2

1
Tk1·k2 + Tk2

2
Tk1·k2 + Tk2

1
Tk2

2
, (2.47)

where Tk1·k2 is the sum of the Schwinger parameters associated to propagators which de-
pend on the dot product k1 · k2, Tk2

1
is the sum of the Schwinger parameters associated to

propagators which depend on k2
1 but not on k1 · k2, and Tk2

2
is the sum of the Schwinger

parameters associated to propagators which depend on k2
2 but not on k1 · k2. It follows

that the two-loop analog of eq. (2.45) ought to be∫
d−2εk̂1 d−2εk̂2 e

T
k2
1
k̂1·k̂1+T

k2
2
k̂2·k̂2+Tk1·k2 (k̂1−k̂2)2

∝
(
U (2)
n

)ε
, (2.48)

a generating function via differentiation by Tk2
1
, Tk2

2
, and Tk1·k2 . As at one-loop, the

above relation suggests that arbitrary two-loop µ integrals may be rewritten as a linear
combination of ordinary Feynman integrals by simply comparing the result of each term of
the prescribed differentiation of the right-hand side of (2.48) with the form of eq. (2.44).

Starting at two loops, a subtle complication can arise in our formulation due to the
fact that we prefer to write all numerator polynomials as linear combinations of power
products of inverse propagators and particle masses. If a propagator depending on e.g. k1
alone appears in the numerator of a Feynman integral alongside an explicit insertion of
k̂1 · k̂1, it will not work to use the above line of reasoning to eliminate the explicit k̂1 · k̂1
factor. This is simply because the k2

1 = k̄1 · k̄1 + k̂1 · k̂1 term of the propagator itself depends
on k̂1 · k̂1. In practice, we found it most convenient to temporarily delay rewriting all scalar
products of the form ki · pj in terms of inverse propagators. Due to the fact that the ki · pj
scalar products live in four dimensions, (2.48) may be applied to eliminate all explicit µ
terms before rewriting the remaining scalar products as linear combinations of propagators.

To clarify the procedure described above, we consider a non-trivial two-loop µ integral
from integral family A of [29, 31] which may be directly rewritten using the technology
of [53]:

[
D7 (k̂1 · k̂1)2

]

=
∫ ddk1ddk2(

iπd/2
)2 (k2 − p1 − p2)2(k̂1 · k̂1)2

k2
1k

2
2(k1 − k2)2(k1 − p1)2(k1 − p1 − p2)2 , (2.49)

where we have introduced the notation D7 ≡ (k2− p1− p2)2 from [29, 31] on the left-hand
side for later convenience. Note that, in this example, there is no clash between the explicit
factor of (k̂1 · k̂1)2 in eq. (2.49) and the implicit factor of k̂2 · k̂2 present in

D7 = k̄2 · k̄2 − 2(p1 + p2) · k̄2 + (p1 + p2)2 + k̂2 · k̂2 . (2.50)
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The Schwinger parameter subsets of interest are

Tk2
1

= α1 + α4 + α6, Tk2
2

= α2 + α7, and Tk1·k2 = α3 , (2.51)

and differentiating the right-hand side of eq. (2.48) twice with respect to Tk2
1
gives ε(ε− 1)

times an insertion of

(Tk2
2

+ Tk1·k2)2(
U (2)

6

)2 = α2
2 + α2

3 + α2
7 + 2α2α3 + 2α2α7 + 2α3α7(

U (2)
6

)2 (2.52)

into eq. (2.44) specialized to our two-loop example.
The factor in the denominator induces the dimension shift 4− 2ε→ 8− 2ε. Powers of

Schwinger parameters associated to the propagator denominators induce positive shifts in
the corresponding propagator exponents, and, for h powers of parameter i, an overall factor
of (−1)hΓ(νi + h)/Γ(νi). Powers of the Schwinger parameter associated to the numerator
also induce positive shifts in the exponent, but only an overall factor of h! from the action
of the derivatives in eq. (2.44). Due to the fact that α7 is merely an auxiliary parameter
set to zero at the end of the calculation, the insertion of α2

7 gives a vanishing contribution
for the specific example considered. We find:

[
D7 (k̂1 · k̂1)2

]
= 2ε(ε− 1)


8−2ε

[D7]

+

8−2ε

[D7] +

8−2ε

[D7]

−

8−2ε

−

8−2ε . (2.53)

The integrals on the right-hand side of eq. (2.53) can be straightforwardly evaluated
in Feynman parameters to all orders in ε due to the fact that they are iteratively one loop.
After some simplifications, we obtain

[
D7 (k̂1 · k̂1)2

]

= (5− 2ε)Γ2(ε)Γ2(1− ε)Γ(2ε)Γ(1− 2ε)Γ(2− ε)
Γ(6− 3ε)Γ(3− 2ε)Γ2(−1 + ε) , (2.54)

where we have set (p1 +p2)2 = −1. To check eq. (2.54) and our treatment of the two-loop µ
terms, we invite the reader to first integrate out k2 in integral (2.49) above and then treat
the µ-term insertion in the context of the remaining integration over k1 (i.e. by applying
eq. (2.42)). Finally, let us stress again that a numerator insertion of D7(k̂2 · k̂2)2 would not
be directly covered by our method.
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To be clear, factorizable two-loop µ integrals also appear in our calculations. They
could be evaluated as products of one-loop µ integrals, but we prefer to treat them along
the lines described above. In the factorizable case, (k̂1− k̂2)2 → k̂1 · k̂1 + k̂2 · k̂2 and we have∫

d−2εk̂1 d−2εk̂2 e
T
k2
1
k̂1·k̂1+T

k2
2
k̂2·k̂2 ∝

(
Tk2

1
Tk2

2

)ε
(2.55)

for our generating function. This is nothing but a degenerate case of eq. (2.48) above
with Tk1·k2 set to zero. Note that, while we believe that it should be possible to make
a similar construction to handle µ-term insertions in d-dimensional Feynman integrals at
higher loops, more effort would be required to identify the underlying vacuum topologies.

2.5 MS renormalization of α and αs

In this work, we renormalize both α and αs in the MS scheme. Due to our neglect of all
fermion masses, this choice is particularly convenient for our calculation of the two-loop
mixed EW-QCD corrections to the neutral-current Drell-Yan process. As explained in
section 3.1, we neglect the gauge-invariant subset of Feynman diagrams with closed fermion
loops and any contributions involving top quarks throughout this work. This includes in
particular the two-loop Standard Model vacuum polarization diagrams featuring a single
quark loop and a single gluon exchange. As a corollary, the form of the contributing two-
loop Feynman diagrams (see section 5.1) immediately implies that the order ααs corrections
to the electric charge renormalization constant must vanish identically.

Throughout this work, we follow the convention of [20] for fixed-order results. There-
fore, quantities in Standard Model perturbation theory are written in the form

Z =
∞∑

m,n=0
Z(m,n)

(
α

4π

)m (αs
4π

)n
(2.56)

to all orders in the coupling constants. In this notation, neglecting contributions with
closed fermion loops which are proportional to the number of light leptons (nl) or light
quarks (nq) or involve the mass of the top quark (mt), we have

δZ(1,1)
e

∣∣∣∣∣
n`,nq→0;mt→∞

= 0 , (2.57)

for the order ααs corrections to the electric charge renormalization constant.
Since the tree-level Drell-Yan amplitude is of order α, the trivial renormalization of

the strong coupling constant

(4π)εe−γEεαbare
s = αs (2.58)

is all that is required for our order α2αs two-loop calculation. On the other hand, the one-
loop electric charge renormalization constant does make an appearance. It has been known
since the work of [66] in the standard on-shell scheme where the charge renormalization
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constant is fixed order-by-order in the Thomsen limit (see e.g. [67] for a review). In the
MS scheme it is given by,

δZ(1,0)
e

∣∣∣∣∣
n`,nq→0;mt→∞

= − 7
2ε , (2.59)

the pole part of eq. (5.40) of [66] once one discards the first, fermionic term inside the
bracket. For notational convenience, we shall suppress the qualifiers provided on the left-
hand sides of eqs. (2.57) and (2.59) throughout the rest of this work. When necessary,
appropriate caveats will be provided in the text.

2.6 On-shell electroweak gauge boson wavefunction and mass renormalization

In this section, we review the on-shell renormalization of the electroweak gauge bosons in
a generalized ’tHooft-Feynman gauge. Our conventions for the electroweak sector of the
Standard Model Lagrange density and Feynman rules are identical to those of [66], upon
which the useful resources [54, 67, 68] were modeled. Our electroweak gauge boson renor-
malization constants are also defined with exactly the same renormalization conditions,
but we have chosen to factor the squared electroweak gauge boson mass, m2

v, out of the
mass renormalization constants, Zm2

v
, to render them dimensionless.

As usual, a particularly convenient choice for the gauge parameter renormalization
constants is

Zξγ = Zγγ , Zξz = ZZZ , and Zξw = ZW± (2.60)

because it simplifies the all-orders form of the electroweak gauge boson kinetic terms in
the renormalized Lagrange density. Subsequently, our generalized ’tHooft-Feynman gauge
is defined by setting all of the renormalized gauge parameters to one at the outset,

ξγ = ξz = ξw = 1 . (2.61)

This is justified because, due to eqs. (2.60), the gauge parameters in this scheme receive
no radiative corrections.

Apart from the exactly-transverse photon-photon self-energy,

−iΣµν
γγ(q) = −i

(
gµν − qµqν

q2

)
Σ̄γγ

(
q2
)
, (2.62)

the electroweak gauge boson self-energies naturally decompose into a sum of transverse
and longitudinal components:

−iΣµν
γZ(q) = −i

(
gµν − qµqν

q2

)
Σ̄γZ

(
q2
)
− iq

µqν

q2 ΣL
γZ

(
q2
)
, (2.63)

−iΣµν
ZZ(q) = −i

(
gµν − qµqν

q2

)
Σ̄ZZ

(
q2
)
− iq

µqν

q2 ΣL
ZZ

(
q2
)
, (2.64)

and − iΣµν
W+W−(q) = −i

(
gµν − qµqν

q2

)
Σ̄W+W−

(
q2
)
− iq

µqν

q2 ΣL
W+W−

(
q2
)
. (2.65)
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The longitudinal components of the self-energies, ΣL
V V ′ , are unphysical and need not be

calculated explicitly.
Working in d dimensions, we see that the relevant Lorentz projectors for the transverse

gauge boson self-energies can be cleanly summarized as(
PTV V ′

)
µν

= i

3− 2ε

(
gµν −

qµqν
q2

)
. (2.66)

For all of the Lorentz projection operators considered in this work, a sum over the available
open Lorentz and spin indices is always implied for their action on Feynman diagrams.
We find the following results for the transverse projections of the Fourier-transformed
electroweak gauge boson kinetic terms, L̃µνV V ′ , of order α:(

PTV V ′
)
µν
L̃µνγγ =

(
PTV V ′

)
µν

(
−i δZ(1,0)

γγ

(
q2gµν − qµqν

))
= δZ(1,0)

γγ q2 , (2.67)(
PTV V ′

)
µν
L̃µνγZ =

(
PTV V ′

)
µν

(
− i2

((
δZ

(1,0)
γZ + δZ

(1,0)
Zγ

)
q2 −m2

zδZ
(1,0)
Zγ

)
gµν

)
= 1

2
((
δZ

(1,0)
γZ + δZ

(1,0)
Zγ

)
q2 −m2

zδZ
(1,0)
Zγ

)
, (2.68)(

PTV V ′
)
µν
L̃µνZZ =

(
PTV V ′

)
µν

(
−i
(
δZ

(1,0)
ZZ

(
q2gµν − qµqν

)
−m2

z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

)
gµν

))
= δZ

(1,0)
ZZ q2 −m2

z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

)
, and (2.69)(

PTV V ′
)
µν
L̃µνW± =

(
PTV V ′

)
µν

(
−i
(
δZ

(1,0)
W±

(
q2gµν − qµqν

)
−m2

w

(
δZ

(1,0)
W± + δZ

(1,0)
m2
w

)
gµν

))
= δZ

(1,0)
W± q

2 −m2
w

(
δZ

(1,0)
W± + δZ

(1,0)
m2
w

)
. (2.70)

Analyzing eqs. (2.67)–(2.70) and taking into account the renormalization conditions
of [66], we see immediately that

δZ(1,0)
γγ = −dΣ̄(1,0)

γγ
(
q2)

dq2

∣∣∣∣∣
q2=0

, δZ
(1,0)
Zγ =

2Σ̄(1,0)
γZ

(
q2)

m2
z

∣∣∣∣∣
q2=0

,

δZ
(1,0)
γZ = −

2Σ̄(1,0)
γZ

(
q2)

m2
z

∣∣∣∣∣
q2=m2

z

, δZ
(1,0)
ZZ = −dΣ̄(1,0)

ZZ

(
q2)

dq2

∣∣∣∣∣
q2=m2

z

,

δZ
(1,0)
m2
z

= Σ̄(1,0)
ZZ

(
q2)

m2
z

∣∣∣∣∣
q2=m2

z

, δZ
(1,0)
m2
w

=
Σ̄(1,0)
W+W−

(
q2)

m2
w

∣∣∣∣∣
q2=m2

w

. (2.71)

Apart from light fermion and top quark contributions which we consistently neglect
throughout this work, explicit expressions for the one-loop self-energies and counterterms
relevant to the higher-order corrections of interest to us will be provided to all orders in
ε in section B.2. Note that we do not provide an explicit expression for δZ(1,0)

W± because it
plays no role in the renormalization of any of the Feynman diagrams we calculate.

2.7 On-shell wavefunction renormalization for massless fermion fields

In this section, we review the systematics of on-shell renormalization for massless fermion
fields in the Standard Model. The on-shell scheme for massless fermions is widely used
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in QCD because, due to the scalelessness of the contributing gluon-exchange diagram, the
one-loop quark wavefunction counterterm vanishes identically in dimensional regulariza-
tion. Although we will ultimately take the q2 → 0 limit, it is nevertheless instructive
to begin with the off-shell setup of [66], where the momentum transfer q2 in the Lorentz
decomposition of the fermion self energy

i
(
Σ̄f (q)

)
αβ

= i Σ̄V, f
(
q2
) (
/q
)
αβ

+ i Σ̄A, f
(
q2
) (
/qγ5

)
αβ

(2.72)

is taken to be different from zero.4 In writing eq. (2.72), we have implicitly assumed
Kreimer’s γ5 scheme; analogous calculations in HVBM’s γ5 scheme will be discussed in
section 2.8 and, accordingly, we have written Σ̄f (q) instead of Σf (q) in order to allow for
a side-by-side comparison in the next section.

We employ the notation of [66] for the interactions of the electroweak gauge bosons
with matter. The Z interaction is parametrized by flavor-dependent axial vector and vector
coupling coefficients,

af =
m2
z I

3
f

2mw

√
m2
z −m2

w

and vf = m2
z

2mw

√
m2
z −m2

w

(
I3
f − 2m

2
z −m2

w

m2
z

Qf

)
. (2.73)

The W interaction, on the other hand, is parametrized by a universal coupling coefficient

aw = vw = mz

2
√

2
√
m2
z −m2

w

. (2.74)

We will make extensive use of these aliases throughout the rest of this paper.
At first sight, it might seem counterproductive not to employ eq. (2.74) to eliminate

aw and vw, as they are equal and have no dependence on the fermion flavor. However,
as will become clear later on in this section, it is useful to retain the dependence on aw
and vw at intermediate stages of fermion self-energy and vertex calculations because it
generically allows for a determination of axial vector components from vector components
through chiral symmetry. Actually, the fermion self-energies considered in this section
are particularly simple and have no independent W -exchange Feynman diagrams; all W -
exchange diagrams can be obtained from the Z-exchange diagrams for free by making the
replacements af → aw and vf → vw (see figure 2).

Thus, for the relatively low perturbative orders of interest to us, it suffices to consider
the calculation of the Z-exchange contributions to the vector component of the fermion self-
energy. At this stage, one is faced with a conceptual hurdle. Taken at face value, the self-
energy in the on-shell scheme for massless fermions would seem to be most appropriately
defined as the q2 → 0 limit of the fermion self-energy calculated off-shell.5 Of course, it
also seems that one ought to be able to simply set q2 = 0 in all Feynman diagrams at

4Throughout this section, we suppress the color indices of the quarks to streamline our discussion
and allow for a unified description of propagator corrections at one loop. The two-loop mixed EW-QCD
scattering amplitudes of primary interest to us in this work always come with a color factor of CF , due to
the fact that all contributing Feynman diagrams feature exactly one gluon exchange between quark lines.

5Here, the q2 → 0 limit should be taken before expanding in ε.
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Figure 2. Independent Z exchange diagrams at one and two loops. Due to the absence of fermion
masses, diagrams which feature only gluon and/or photon exchanges vanish identically.

the very beginning, significantly simplifying all subsequent calculations. In fact, as we now
demonstrate at the one-loop level, both approaches are possible and yield the same answer.

If we begin with q2 generic, one can immediately verify that the Lorentz projector of
interest is (

PV
f

)
βα

∣∣∣
off−shell

= − i

4 q2

(
/q
)
βα

(2.75)

and our Kreimer reading point prescription instructs us to begin reading our Dirac traces
from the projector insertion. Therefore, using the Feynman rules of [66] and the anti-
commutation relation satisfied by Kreimer’s γ5, eq. (2.7), the contribution of the one-loop
Z-exchange diagram to the vector component of the fermion self-energy is

Σ̄(1,0)
V, f (q2)

∣∣∣
Z exchange

=−
c1
(
ε, µ2) (a2

f + v2
f

)
4 q2

∫
ddk1

Tr
{
/qγν(/q + /k1)γν

}
(q + k1)2(k2

1 −m2
z)
, (2.76)

for6

c1
(
ε, µ2

)
= eγEε

(
µ2)ε

iπ2−ε . (2.77)

As eq. (2.76) does not depend on γ5, it can be trivially simplified using the contraction
identity and even trace formulae of section 2.2. After carrying out the numerator algebra,
we obtain:

Σ̄(1,0)
V, f (q2)

∣∣∣
Z exchange

=
2 c1

(
ε, µ2) (a2

f + v2
f

)
(1− ε)

q2

∫
ddk1

q2 + q · k1
(q + k1)2(k2

1 −m2
z)
, (2.78)

which can immediately be rewritten as a linear combination of standard scalar integrals
using Passarino-Veltman reduction [63]; the result is

Σ̄(1,0)
V, f (q2)

∣∣∣
Z exchange

=
c1
(
ε, µ2) (a2

f + v2
f

)
(1− ε)

q2

(
(q2 −m2

z)
∫ ddk1

(q + k1)2(k2
1 −m2

z)

+
∫ ddk1
k2

1 −m2
z

)
, (2.79)

6As explained in section 2.5, α is renormalized in the MS scheme.
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where, using Feynman/Schwinger parameters,∫ ddk1
k2

1 −m2
z

= − eγEε

c1 (ε, µ2)

(
µ2

m2
z

)ε
m2
z Γ(−1 + ε) and (2.80)

∫ ddk1
(q + k1)2(k2

1 −m2
z)

= 2 eγEε

c1 (ε, µ2)

(
µ2

m2
z

)ε Γ(ε)Γ(2− 2ε)
Γ(3− 2ε) 2F1

(
1, ε; 2− ε; q

2

m2
z

)
. (2.81)

In writing eq. (2.81), q2 was assumed to be less than m2
z. Modulo minor typos,7 our results

agree as expected with those of [66] through to O
(
ε0
)
in the limit of vanishing fermion

mass.
From eqs. (2.80) and (2.81) it is a simple matter to work out the q2 → 0 limit of

eq. (2.79). From l’Hôpital’s rule, we find:

lim
q2→0

(
Σ̄(1,0)

V, f (q2)
∣∣∣
Z exchange

)
=

2
(
a2
f + v2

f

)
(1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
. (2.82)

The above derivation is certainly valid, but let us stress that attempting to calculate the
q2 → 0 limit of Σ̄V, f (q2) in this way is not recommended at higher orders in perturbation
theory; while we were able to confirm numerically that the correct q2 → 0 limit exists at
order ααs for fixed, finite ε, it is not amenable to analytic evaluation.

In general, our opinion is that it is far simpler to implement the on-shell condition
q2 = 0 from the get-go. Of course, eq. (2.75) is ill-defined at q2 = 0; a valid projector when
q2 = 0 is given by (

PV
f

)
βα

∣∣∣
on−shell

= − i

4 η · q
(
/η
)
βα
, (2.83)

where η is an arbitrary four-vector such that η · q 6= 0.
Setting q2 = 0 from the beginning of the calculation, we have

Σ̄(1,0)
V, f (0)

∣∣∣
Z exchange

= −
c1
(
ε, µ2) (a2

f + v2
f

)
4 η · q

∫
ddk1

Tr
{
/ηγν(/q + /k1)γν

}
(q + k1)2(k2

1 −m2
z)

=
2 c1

(
ε, µ2) (a2

f + v2
f

)
(1− ε)

η · q

∫
ddk1

η · q + η · k1
(q + k1)2(k2

1 −m2
z)
. (2.84)

Proceeding directly from Feynman/Schwinger parameters for the integral evaluations,
we find ∫

ddk1
1

(q + k1)2(k2
1 −m2

z)

∣∣∣
q2=0

= − eγEε

c1 (ε, µ2)

(
µ2

m2
z

)ε
Γ(−1 + ε) (2.85)

and
∫

ddk1
η · k1

(q + k1)2(k2
1 −m2

z)

∣∣∣
q2=0

= η · q eγEε

c1 (ε, µ2)

(
µ2

m2
z

)ε Γ(−1 + ε)
2− ε . (2.86)

7While comparing to [66], we noticed a typo in the expression for Σ iσ
A on the 3rd line of eq. (5.27):

the first term inside the bracket should actually read −2 viσaiσ
(
2B1

(
k2;miσ,Mz

)
+ 1
)
. Additional typos

were discovered in eq. (B.2); the tensor reduction formula needed for B1
(
k2;miσ,Mz

)
should read

2 k2B1
(
k2;M1,M2

)
= A (M1)−A (M2) +

(
M2

2 −M2
1 − k2)B0

(
k2;M1,M2

)
.
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Note that, in the degenerate q2 = 0 kinematics under consideration, all contributing one-
loop Feynman integrals must ultimately turn out to be proportional to the one-loop tadpole.

Finally, we obtain

Σ̄(1,0)
V, f (0)

∣∣∣
Z exchange

=
2
(
a2
f + v2

f

)
(1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
(2.87)

and see immediately that

lim
q2→0

(
Σ̄(1,0)

V, f (q2)
∣∣∣
Z exchange

)
= Σ̄(1,0)

V, f (0)
∣∣∣
Z exchange

(2.88)

as claimed.
We now consider the ramifications of chiral symmetry. In the Standard Model, the

right- and left-handed components of the Z-exchange contribution to the one-loop fermion
self-energy are exchanged under γ5 → −γ5. This implies that the axial vector component
of the Z-exchange contribution to the fermion self-energy ought to be obtained by a re-
placement of the form v2

f + a2
f → ±2 afvf in eq. (2.87). In order to fix the overall sign,

recall that the coupling of the W to matter is exactly left-handed, that the W -exchange
contribution is obtained by making the replacements af → aw and vf → vw, and that
aw = vw. Taken together, these considerations allow us to conclude that

Σ̄(1,0)
A, f (0)

∣∣∣
Z exchange

=− 4 afvf (1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
(2.89)

with no additional calculation.
In the on-shell scheme, massless fermion wavefunction counterterms are defined to

exactly cancel the perturbative corrections to the corresponding fermion self-energies order-
by-order. Therefore, we find

δZ
(1,0)
V, f = −Σ̄(1,0)

V, f (0) (2.90)

= −
2
(
a2
f + v2

f

)
(1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
− 2

(
a2
w + v2

w

)
(1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
w

)ε
δZ

(1,0)
A, f = −Σ̄(1,0)

A, f (0) (2.91)

= 4 afvf (1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
+ 4 awvw(1− ε)Γ(ε)eγEε

2− ε

(
µ2

m2
w

)ε
for the vector and axial vector components of the one-loop fermion wavefunction countert-
erm.

We now turn to the vector and axial vector components of the two-loop quark self-
energy of order ααs. To our knowledge, these mixed two-loop corrections to the self-energy
were first considered in [69], though not in the on-shell scheme with massless fermions. It is
straightforward to calculate the desired quantities by acting with the appropriate Lorentz
projector in Kreimer’s γ5 scheme, eq. (2.83), on the eight non-zero two-loop Feynman
diagrams summarized by figure 2. Remarkable simplifications are achieved by setting
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q2 = 0 at the beginning of the calculation. In the end, we find that the vector component
of the quark wavefunction counterterm is given by

δZ
(1,1)
V, q =−Σ̄(1,1)

V, q (0) (2.92)

=−
2(a2

q +v2
q )CF (1−ε)(1−3ε)(3−2ε)Γ2(1−ε)Γ(1+ε)Γ(−1+2ε)e2γEε

Γ(3−ε)

(
µ2

m2
z

)2ε

− 2(a2
w+v2

w)CF (1−ε)(1−3ε)(3−2ε)Γ2(1−ε)Γ(1+ε)Γ(−1+2ε)e2γEε

Γ(3−ε)

(
µ2

m2
w

)2ε

and the axial vector component of the quark wavefunction counterterm is given by

δZ
(1,1)
A, q = −Σ̄(1,1)

A, q (0) (2.93)

= 4 aqvqCF (1− ε)(1− 3ε)(3− 2ε)Γ2(1− ε)Γ(1 + ε)Γ(−1 + 2ε)e2γEε

Γ(3− ε)

(
µ2

m2
z

)2ε

+ 4 awvwCF (1− ε)(1− 3ε)(3− 2ε)Γ2(1− ε)Γ(1 + ε)Γ(−1 + 2ε)e2γEε

Γ(3− ε)

(
µ2

m2
w

)2ε

.

As at one loop, the simple form of eqs. (2.92) and (2.93) results from the fact that only
the one-mass two-loop tadpole integral can survive in the q2 → 0 limit.

2.8 Chiral symmetry restoration in HVBM’s γ5 scheme and Larin’s principle

As mentioned in section 2.2, HVBM’s γ5 scheme is especially challenging to work with
in practice due to the fact that, in general, a plethora of finite counterterms must be
introduced to restore the chiral symmetry of the Standard Model. We shall see that Larin’s
principle [56] provides a practical recipe which helps tremendously to minimize the number
of finite counterterms which must be computed explicitly for a given application. While we
will be most interested in the standard one-loop example of the order αs gluon-exchange
correction to the Zq̄q vertex shown in figure 4 [48], let us first revisit the one-loop fermion
self-energy calculation of section 2.7 in HVBM’s γ5 scheme to illustrate the utility of Larin’s
principle with minimal computational effort.

In HVBM’s γ5 scheme, the Lorentz decomposition for the massless fermion self-energy
reads

i
(
Σf (q)

)
αβ

= iΣV, f (0)
(
/q
)
αβ

+ iΣA, f (0) 1
2
[
/q, γ5

]
αβ

, (2.94)

where we have assumed the q2 = 0 Lorentz projector, eq. (2.83), will be employed to
compute ΣV, f (0) and, as in section 2.7, the color indices are suppressed. It is once again
sufficient to consider the Z-exchange contribution:

Σ(1,0)
V, f (0)

∣∣∣
Z exchange

= −
c1
(
ε, µ2) v2

f

4 η · q

∫ ddk1
(q + k1)2(k2

1 −m2
z)

tr
{
/ηγ

ν(/q + /k1)γν
}

−
c1
(
ε, µ2) a2

f

16 η · q

∫ ddk1
(q + k1)2(k2

1 −m2
z)

tr
{
/η [γν , γ5] (/q + /k1) [γν , γ5]

}
.

(2.95)
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In order to simplify the term proportional to a2
f , it is useful to resolve the d-dimensional

momenta and Dirac matrices into four-dimensional and (−2ε)-dimensional components
using eqs. (2.10) and (2.11). Crucially, the linear dependence on k1 in the numerator
of eq. (2.95) implies that the Dirac traces cannot produce non-zero µ integrals. This
observation allows for the immediate neglect of all terms involving k̂1.

Using the HVBM γ5 anticommutation relations of section 2.2, eq. (2.95) simplifies to

Σ(1,0)
V, f (0)

∣∣∣
Z exchange

= −
c1
(
ε, µ2) v2

f

4 η · q

∫ ddk1
(q + k1)2(k2

1 −m2
z)

tr
{
/ηγ

ν(/q + /k1)γν
}

−
c1
(
ε, µ2) a2

f

4 η · q

∫ ddk1
(q + k1)2(k2

1 −m2
z)

tr
{
/ηγ̄

ν(/q + /̄k1)γ̄ν
}
. (2.96)

Finally, the trace on the second line of eq. (2.96) is nothing but the ε→ 0 limit of the trace
on the first line of eq. (2.96); from the analysis of section 2.7, we see that

Σ(1,0)
V, f (0)

∣∣∣
Z exchange

=
2
(
v2
f (1− ε) + a2

f

)
Γ(ε)eγEε

2− ε

(
µ2

m2
z

)ε
. (2.97)

Starting at O
(
ε0
)
, eq. (2.97) clearly exhibits a chiral mismatch, indicating that the

vector components of the fermion kinetic terms of the Standard Model Lagrange density
receive finite counterterm corrections already at order α. In other words, a correction must
be made because the coefficient of a2

f is not equal to the coefficient of v2
f in eq. (2.97) at

O
(
ε0
)
. As Larin emphasized in [56], the form of the finite counterterm may be deduced

by simply demanding that the a2
f and v2

f coefficients be equal. For the present calcula-
tion, Larin’s principle dictates that the finite counterterm is given to all orders in ε by
the difference

Σ̄(1,0)
V, f (0)− Σ(1,0)

V, f (0) = −
2 a2

fΓ(1 + ε)eγEε

2− ε

(
µ2

m2
z

)ε
− 2 a2

wΓ(1 + ε)eγEε

2− ε

(
µ2

m2
w

)ε
. (2.98)

In fact, we could have simply skipped the calculation of the bare self-energy in HVBM’s γ5
scheme altogether ; requiring that our result respect the chiral symmetry of the Standard
Model to all orders in ε uniquely leads to the result obtained in Kreimer’s γ5 scheme in
section 2.7 after finite renormalization.8

Of course, Larin’s principle can be successfully applied to the fermion self-energies and
vertex form factors because they have a direct correspondence to terms in the renormalized
Lagrange density. For more complicated contributions to higher-multiplicity scattering
amplitudes at two loops and beyond, it is expected that non-trivial corrections will arise
from the finite counterterms, beginning with insertions into lower-loop box-type diagrams.

8In [56], it is suggested that one ought to perform additional renormalizations for the purpose of chiral
symmetry restoration only after the removal of all ultraviolet divergences with ordinary counterterms. In
our view, this is not necessarily the most transparent approach. However, at higher orders in perturbation
theory, it may be that restoring the chiral symmetry first in the way we propose leads to divergent “finite”
counterterms. Therefore, in our approach, “finite” may not be the best moniker to generally describe the
counterterms responsible for the restoration of the Standard Model chiral symmetry in HVBM’s γ5 scheme.

– 22 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
3

+

Figure 3. A two-loop γZ box-type diagram for the mixed EW-QCD corrections of relative order
ααs to the neutral-current Drell-Yan process which receives a correction from the insertion of a
finite one-loop counterterm (δZ(0,1)

Zq̄q of eq. (2.113)) into a corresponding one-loop box diagram.

Figure 4. The order αs gluon-exchange correction to the Zq̄q vertex form factor.

Indeed, as we shall see later on in our discussion of the two-loop mixed EW-QCD corrections
to the neutral-current Drell-Yan process, certain two-loop box-type diagrams which involve
axial vector couplings to quarks receive corrections from finite counterterm insertions into
corresponding one-loop box diagrams (see figure 3). The bare calculation in HVBM’s γ5
scheme needed to derive the finite counterterm featured in figure 3 is a familiar one [48, 56]
and, fortunately, the only one relevant to this work which we cannot bypass.

In HVBM’s γ5 scheme, the Zq̄q vertex has the Lorentz decomposition

ie
(
FZq̄qµ (p1, p2)

)
kj

= ieVZq̄q(s) v̄k(p2)γµuj(p1)

+ ieAZq̄q(s) v̄k(p2)1
2 [γµ, γ5]uj(p1) , (2.99)

where s = (p1 + p2)2 denotes the virtuality of the Z and color indices are suppressed
for brevity. Here, we have assumed an incoming massless quark of momentum p1 and an
incoming massless antiquark of momentum p2 for later convenience. The Lorentz projectors(

PµVq
)
jk

= i

4eNcs(1− ε)
ūj(p1)γµvk(p2) (2.100)

and
(
PµAq

)
jk

= i

4eNcs
ūj(p1)1

2 [γµ, γ5] vk(p2) (2.101)

deliver VZq̄q(s) and AZq̄q(s) respectively when acting on the sum of all Zq̄q vertex Feynman
diagrams with an implicit sum on the open Lorentz and spin indices.

For the axial vector component of the order αs correction to the Zq̄q vertex calculated
in HVBM’s γ5 scheme, Larin’s principle is applied by demanding equality to all orders in
ε between its aq coefficient and minus the vq coefficient of the vector component of the
order αs correction to the Zq̄q vertex form factor, a condition which would hold automat-
ically in Kreimer’s γ5 scheme. In other words, in the notation of [66], chiral symmetry
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guarantees that

Ā(0,1)
Zq̄q (s) = −aq

vq
V̄(0,1)
Zq̄q (s) (2.102)

where V̄(0,1)
Zq̄q (s) = V(0,1)

Zq̄q (s) is nothing but vq times the bare time-like one-loop quark vertex
form factor of massless QCD:

V̄(0,1)
Zq̄q (s) = vqF̄q1 (ε)eiπε

(
µ2

s

)ε

= −vq
(
2− ε+ 2ε2

)
Γ2(1− ε)Γ(ε)eγEε

εΓ(2− 2ε) CF e
iπε

(
µ2

s

)ε
. (2.103)

The derivation of the analytic expression for F̄q1 (ε) given above is reviewed in many places
in the literature, see e.g. [70]. Thus, Ā(0,1)

Zq̄q (s) is determined through eq. (2.102) and, to fix
the finite counterterm of interest, it remains only to directly calculate A(0,1)

Zq̄q (s).
Applying eq. (2.101), the axial vector component of the order αs correction to the Zq̄q

vertex form factor calculated in HVBM’s γ5 scheme is

A(0,1)
Zq̄q (s) = −aqc1

(
ε, µ2)CF
16 s

∫ ddk1
(p1 − k1)2k2

1(p2 + k1)2

tr
{

[γρ, γ5] /p2γ
σ(/p2 + /k1) [γρ, γ5] (/p1 − /k1)γσ/p1

}
. (2.104)

Splitting d-dimensional indices with eqs. (2.10) and (2.11) and eliminating all γ5 matrices
using the HVBM anticommutation relations, (2.20) and (2.21), we find that eq. (2.104)
simplifies to

A(0,1)
Zq̄q (s) = −aqc1

(
ε, µ2)CF
4 s

∫ ddk1
(p1 − k1)2k2

1(p2 + k1)2[
tr
{
γ̄ρ/p2γ̄

σ(/p2 + /̄k1)γ̄ρ(/p1 − /̄k1)γ̄σ/p1

}
− tr

{
γ̄ρ/p2γ̂

σ(/p2 + /̄k1)γ̄ρ(/p1 − /̄k1)γ̂σ/p1

}
+ tr

{
γ̄ρ/p2γ̄

σ /̂k1γ̄ρ/̂k1γ̄σ/p1

}
− tr

{
γ̄ρ/p2γ̂

σ /̂k1γ̄ρ/̂k1γ̂σ/p1

}]
. (2.105)

Using eq. (2.22) and the relation

γ̂µγ̂µ = −2ε , (2.106)

we can rewrite eq. (2.105) solely in terms of four-dimensional Dirac traces:

A(0,1)
Zq̄q (s) = −aqc1

(
ε, µ2)CF
4 s

∫ ddk1
(p1 − k1)2k2

1(p2 + k1)2[
tr
{
γ̄ρ/p2γ̄

σ(/p2 + /̄k1)γ̄ρ(/p1 − /̄k1)γ̄σ/p1

}
− 2ε tr

{
γ̄ρ/p2(/p2 + /̄k1)γ̄ρ(/p1 − /̄k1)/p1

}
− k̂1 · k̂1tr

{
γ̄ρ/p2γ̄

σγ̄ργ̄σ/p1

}
+ 2ε k̂1 · k̂1tr

{
γ̄ρ/p2γ̄ρ/p1

}]
. (2.107)
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Clearly, the remaining Dirac traces in eq. (2.107) may be evaluated in a straightforward
manner by applying eqs. (2.5), (2.25), and (2.26) with ε set to zero and the d-dimensional
metric tensor replaced by the four-dimensional metric tensor throughout. Discarding all
contributions which vanish due to scalelessness and setting k̄1 · k̄1 = k2

1 − k̂1 · k̂1, we find

A(0,1)
Zq̄q (s) = 2 aqc1

(
ε, µ2)CF
s

∫
ddk1

2s k2
1 + (1 + ε)k4

1 + s2 + (1 + ε)s k̂1 · k̂1
(p1 − k1)2k2

1(p2 + k1)2 . (2.108)

From eq. (2.42), we have
∫ ddk1
iπd/2

k̂1 · k̂1
(p1 − k1)2k2

1(p2 + k1)2 = ε

∫ dd+2k1
iπ(d+2)/2

1
(p1 − k1)2k2

1(p2 + k1)2 . (2.109)

It is worth pointing out that, by construction, such explicit µ terms could not occur in
a direct calculation of Ā(0,1)

Zq̄q (s) in Kreimer’s γ5 scheme. Finally, taking into account the
algorithms of [64] and their implementation in Reduze 2 [71–73] to treat the dimensionally-
shifted integral on the right-hand side of eq. (2.109), it follows that

A(0,1)
Zq̄q (s) = aqc1

(
ε, µ2)CF (2− 3ε− ε2)

(1− ε)ε

∫ ddk1
(p1 − k1)2(p2 + k1)2 (2.110)

after a straightforward integration by parts reduction. As is well-known (see e.g. [74]),

∫ ddk1
(p1 − k1)2(p2 + k1)2 = eγEε

c1 (ε, µ2)e
iπε

(
µ2

s

)ε Γ2(1− ε)Γ(ε)
Γ(2− 2ε) (2.111)

and therefore

A(0,1)
Zq̄q (s) = aq

(2− 3ε− ε2)Γ2(1− ε)Γ(ε)eγEε

(1− ε)εΓ(2− 2ε) CF e
iπε

(
µ2

s

)ε
. (2.112)

Now, as explained above, the finite counterterm of interest is obtained as the difference
between the Kreimer’s γ5 scheme expression deduced above and eq. (2.112):

δZ
(0,1)
Zq̄q = Ā(0,1)

Zq̄q (s)−A(0,1)
Zq̄q (s)

= 2 aq
(2− ε)Γ2(1− ε)Γ(1 + ε)eγEε

(1− ε)Γ(2− 2ε) CF e
iπε

(
µ2

s

)ε
. (2.113)

eq. (2.113) is manifestly finite at ε = 0; as expected, we see that δZ(0,1)
Zq̄q = 4aqCF +O(ε),

in complete agreement with eq. (9) of [56].9

Before leaving this section, let us stress that we do not employ in this paper what
is commonly referred to as “Larin’s scheme” in the QCD literature. It is clear that the
goal of [56] was to provide a recipe in FORM for the consistent treatment of multi-loop
QCD corrections to the axial vector components of Standard Model vertex form factors

9In making this comparison, note that eq. (3) of [56] was not written down for the Zq̄q interaction
verbatim and therefore does not have the overall factor of −aq present in interaction (2.24). Note also that
the cited equation numbers refer to the journal version of [56].
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in HVBM’s γ5 scheme; Larin did not discuss a prescription for the treatment of multi-
loop box-type diagrams, for example. Indeed, in contrast to the prescription of [56] for
the treatment of multi-loop QCD corrections to Standard Model vertex form factors, we
found it essential for the restoration of chiral symmetry in the two-loop box-type diagrams
treated below to consistently keep also higher-order terms of the ε expansions of our finite
counterterms in order to avoid any premature truncation.

3 Calculational details

3.1 Process definition

In this work, we study lepton pair production in quark-antiquark annihilation,

q(p1) + q̄(p2)→ `−(p3) + `+(p4) , (3.1)

at one and two loops. We obtain complete results for scattering amplitudes at order ααs,
order α2, and order α2αs in the approximation of vanishing light quark and lepton masses,
i.e. p2

1 = p2
2 = p2

3 = p2
4 = 0. As the present paper represents only a first decisive step

towards the assembly of phenomenological results for Drell-Yan lepton production including
complete two-loop EW-QCD effects in all channels, we defer the inclusion of the gauge-
invariant contributions proportional to the number of light quark or lepton flavors and
all top quark mass corrections to future work. The most important two-loop corrections
we omit are those which involve a closed fermion loop; these contributions arise due to
electroweak gauge boson self-energy insertions and are already known, see e.g. [26, 75]. We
also do not consider bb̄ initial states, which lead to double W exchange diagrams involving
the top quark; in other words, we restrict ourselves to four light flavors in the initial state.

As usual, the 2→ 2 kinematics of (3.1) is conveniently described by the Mandelstam
variables

s = (p1 + p2)2 and t = (p1 − p3)2; u = (p2 − p3)2 = −s− t . (3.2)

In total, five independent kinematic scales, s, t, mw, mz, and mh, appear in our results.
Here, mw is the mass of the W boson, mz is the mass of the Z boson, and mh is the mass
of the Higgs boson. For simplicity, we present our final results in a physical phase-space
region where t is allowed to take arbitrary physical values while s is constrained to be above
all two-particle thresholds present in the contributing Feynman diagrams. This amounts
to the condition

s > (mh +mz)2 (−s < t < 0 ) (3.3)

imposed by the Z-Z self-energy. Working in the kinematic region defined by (3.3) allows us
to do without the complex mass scheme, thereby avoiding further technical complications
for our proof-of-concept study. As discussed in [31], this restriction also simplifies the
explicit expressions for the two-loop master integrals.
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3.2 Form factor decomposition

We decompose the one- and two-loop scattering amplitudes for our process into basic
Lorentz structures (“standard matrix elements”) multiplied by form factors, which depend
only on the kinematic invariants. Since we are considering massless external fermions in the
Standard Model, the amplitude in conventional dimensional regularization can be written
up to two loops in terms of the Lorentz structures [76]

T̄1 = v̄(p2)γµu(p1) ū(p3)γµv(p4), (3.4)
T̄2 = v̄(p2)/p3u(p1) ū(p3)/p1v(p4), (3.5)

T̄3 = v̄(p2)γµγνγρu(p1) ū(p3)γµγνγρv(p4), (3.6)
T̄4 = v̄(p2)γµ/p3γ

νu(p1) ū(p3)γµ/p1γνv(p4), (3.7)

T̄5 = v̄(p2)γµγνγργσγτu(p1) ū(p3)γµγνγργσγτv(p4), (3.8)
and T̄6 = v̄(p2)γµγν/p3γ

ργσu(p1) ū(p3)γµγν/p1γργσv(p4), (3.9)

where we suppressed color and spin indices and ignored insertions of γ5. For our EW-QCD
corrections, structures T5 and T6 can be omitted even in a general Rξ gauge because the
gluon couples only to the initial-state quark line.

Allowing also for insertions of γ5 at the end of each Dirac chain, we obtain sixteen
different Lorentz structures. For the sake of our argument, let us consider an anticommuting
γ5 to illustrate the general principle of our projector method. The described form of the
amplitude can be obtained either using Passarino-Veltman reduction of the tensor integrals
or using projectors. In d = 4 dimensions, only four out of the sixteen Lorentz structures
are independent, as can be seen using Schouten and Fierz identities. In order to facilitate
a smooth d → 4 limit, we can define a d-dimensional basis of the four structures derived
from T̄1 by inserting γ5 matrices:

T̄VV = v̄(p2)γµu(p1) ū(p3)γµv(p4), (3.10)
T̄AA = v̄(p2)γµγ5u(p1) ū(p3)γµγ5v(p4), (3.11)
T̄AV = v̄(p2)γµγ5u(p1) ū(p3)γµv(p4), (3.12)
T̄VA = v̄(p2)γµu(p1) ū(p3)γµγ5v(p4), (3.13)

and twelve further structures (derived from T̄2, T̄3, and T̄4 in a similar way), which are
strictly “orthogonal” in d dimensions and smoothly vanish for d → 4. The d dimensional
projection onto the structures (3.10)–(3.13) obtained in this way are identical to those
calculated by ignoring the additional directions at the outset. This construction is described
in detail in appendix A, see also [77–81] for related work. We note that the four independent
structures in d = 4 are of course directly related to the four independent helicity amplitudes;
alternatively, for a given γ5 scheme, we could have written polarized Lorentz structures by
replacing e.g. u(pi) with 1

2 (1± γ5)u(pi).
For finite, renormalized and infrared-subtracted scattering amplitudes, O(ε) deviations

from the four-dimensional projectors will be irrelevant for the O
(
ε0
)
result. For infrared di-

vergent amplitudes, the O
(
ε0
)
term depends on the exact choice of the projector. However,
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as long as we use the exact same prescription for the projector for all divergent contribu-
tions, those ambiguities will exactly cancel for a finite sum. This argument assumes that
we use an analytic continuation which gives a well-defined meaning to the higher-order-in-ε
terms of the divergent quantities and that we do not truncate their Laurent expansions
in ε prematurely. In the schemes we consider here, for contributions involving Levi-Civita
tensors, we expect that consistency is ensured because Levi-Civita tensors effectively trun-
cate the higher-order-in-ε terms of finite quantities. We will discuss the details of how we
construct our projectors for the γ5 schemes we consider in the following.

3.3 Calculations in HVBM’s γ5 scheme

The Lorentz decomposition of the Drell-Yan scattering amplitude in HVBM’s γ5 scheme is

iADY = i (CVV TVV + CAA TAA + CVA TVA + CAV TAV + . . .) , (3.14)

where the dots denote additional structures which decouple in the limit d → 4 and can
effectively be ignored in our projector based setup. The relevant Lorentz structures for our
calculation are

TVV = v̄(p2)γµu(p1)ū(p3)γµv(p4), (3.15)

TAA = v̄(p2)1
2 [γµ, γ5]u(p1)ū(p3)1

2 [γµ, γ5] v(p4), (3.16)

TVA = v̄(p2)γµu(p1)ū(p3)1
2 [γµ, γ5] v(p4), (3.17)

TAV = v̄(p2)1
2 [γµ, γ5]u(p1)ū(p3)γµv(p4), (3.18)

In the manner described in section 3.2, we employ Lorentz projectors to calculate the form
factors CVV, CAA, CVA, and CAV in d dimensions. We request

C =
∑

spin,color
PC iADY, for C = CVV,CAA,CVA,CAV, (3.19)

to hold in d dimensions and obtain

PCVV = i
(
s2 − 2tu

)
8Nc (εs2 (s2 − 2tu)− 4t2u2)T

†
VV −

is (t− u)
8Nc (εs2 (s2 − 2tu)− 4t2u2)T

†
AA , (3.20)

PCAA = − is (t− u)
8Nc (εs2 (s2 − 2tu)− 4t2u2)T

†
VV + i

(
(1− ε)s2 − 2tu

)
8Nc (εs2 (s2 − 2tu)− 4t2u2)T

†
AA , (3.21)

PCVA = − i
(
s2 − 2tu

)
32Nct2u2 T

†
VA + is (t− u)

32Nct2u2T
†

AV , (3.22)

PCAV = is (t− u)
32Nct2u2T

†
VA −

i
(
s2 − 2tu

)
32Nct2u2 T

†
AV. (3.23)

In practice, we use these projectors only for box-type diagrams; for diagrams with self-
energy or vertex insertions, we choose to sew effective propagators and vertices into appro-
priate tree-level diagrams. Note that, as we plan to perform a calculation of all Feynman
diagrams in Kreimer’s γ5 scheme anyway, Larin’s principle allows us to completely bypass
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the direct calculation of almost all vertex Feynman diagrams in HVBM’s γ5 scheme; as
explained in section 2.8, the vertex form factor projector defined in eq. (2.101) above was
employed for the calculation of the finite counterterm δZ

(0,1)
Zq̄q of eq. (2.113), but that is all.10

After carrying out the renormalization program outlined in sections 2.5–2.8, the loop-
level amplitude form factor coefficients still diverge in the infrared. These singularities in
the virtual amplitudes manifest as poles in ε which are canceled by taking real radiative
corrections into account and, in the end, considering perturbative corrections to physical
observables. Fortunately, we have a priori knowledge of the infrared singularity structure
of the scattering amplitudes we calculate in this work due to the well-known dipole for-
mula [82–88] and a simple generalization thereof. In section 3.5, we review the two-loop
mixed EW-QCD neutral-current Drell-Yan dipole singularity structure derived in [20] and
show how subtraction functions may be defined which allow for the comparison of finite
hard scattering functions in different γ5 schemes.

We now turn to a technical discussion of our approach to Dirac trace manipulation
and numerator algebra in Mathematica. First of all, note that all terms which involve
an odd number of γ5 matrices in total must vanish due to the fact that we consider a
2 → 2 scattering process with purely massless external momenta which cannot support a
contraction with a Levi-Civita tensor. One possible approach to calculate the non-vanishing
terms in HVBM’s γ5 scheme, popularized by [56], would be to make use of the identity

1
2[γµ, γ5] = − i

3! εµνρσγ
νγργσ, (3.24)

derived from eqs. (2.3) and (2.28), at the level of the d-dimensional Feynman rules. This
prescription, however, has the very unpleasant side-effect that the lengths of all Dirac
traces involving γ5 are artificially inflated at intermediate stages.

While the associated performance penalty could be ameliorated to some extent by
exploiting the total antisymmetry of the Levi-Civita tensor, we prefer instead to follow [52]
and split indices from the very beginning. We use the anticommutation relations, eqs. (2.20)
and (2.21), to write11

1
2[γµ, γ5] = γ̄µγ5 . (3.25)

Once all explicit γ5 matrices have been anticommuted away and traces with an odd number
of hatted variables have been discarded, we apply eq. (2.5) and its companion identity,

/qγν1 · · · γνn/q = 2
n∑
i=1

(−1)i+nqνi /qγν1 · · · γνi−1γνi+1 · · · γνn + q2(−1)nγν1 · · · γνn , (3.26)

to shorten all Dirac traces at an early stage to the maximal extent possible.
In our view, this strategy is most sensible because, due to the presence of box-type

diagrams, it is anyway inevitable that we must split indices at some stage. As a bonus,
10Strictly speaking, there is another finite counterterm which is needed as well, δZ(0,1)

W±q̄q
, but it may be

trivially obtained from eq. (2.113) via the replacement aq → aw.
11To be clear, we distilled eq. (3.25) from [48]; axial vector couplings were not considered in [52].
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eq. (3.26) also allows us to exploit the on-shell kinematics to discard vanishing terms at an
early stage. While it may not be obvious at first sight, eqs. (2.5), (2.25), and (3.26) can be
applied verbatim to traces which contain both barred and hatted variables, provided that
mixed contractions of indices are discarded as soon as they are produced by the formulae.
Although it was not really needed for the two-loop calculations considered in this work, it
is worth mentioning that an aggressive use of memoization for the Dirac traces appearing
in our calculations could have significantly decreased the runtime required by our code to
process all Feynman diagrams.

Once all Dirac traces have been evaluated and all compatible Lorentz indices con-
tracted, contractions and products of Levi-Civita tensors from the box-type diagrams must
be dealt with using eqs. (2.12)–(2.16). Subsequently, all scalar products of the form ḡµνk

µ
i k

ν
j

must be processed using the methods reviewed in section 2.4. Finally, taking into account
the algorithms of [64] and their implementation in Reduze 2, we obtain the amplitude
form factor coefficients via integration by parts reduction as a linear combination of mas-
ter integrals. At both one and two loops, we find it particularly convenient to rotate to
normal form bases of Feynman integrals, characterized by the simple, ε-decoupled differen-
tial equations they satisfy [89, 90]. Our one- and two-loop normal form bases are defined
in sections 4.2 and 5.2.

3.4 Calculations in Kreimer’s γ5 scheme

The Lorentz decomposition of the Drell-Yan scattering amplitude in Kreimer’s γ5 scheme
is essentially eq. (B.10) of [66]. Suppressing the color indices, we have

iĀDY = i
(
C̄VVT̄VV + C̄AAT̄AA + C̄VAT̄VA + C̄AVT̄AV + . . .

)
, (3.27)

where the dots denote additional Lorentz structures which can be ignored in our projector
based setup, and the Lorentz structures of relevance are defined in (3.10)–(3.13). The
corresponding Lorentz projectors in Kreimer’s γ5 scheme fulfill

C̄ =
∑

spin,color
PC̄ iĀDY, for C̄ = C̄VV, C̄AA, C̄VA, C̄AV, (3.28)

in d dimensions and are given by

PC̄VV
= − i

(
(1− ε)s2 + 2t(s+ t)

)
8Nc (2t2 − εs2)D T̄ †VV + is (s+ 2t)

8Nc (2t2 − εs2)D T̄
†

AA , (3.29)

PC̄AA
= is (s+ 2t)

8Nc (2t2 − εs2)D T̄
†

VV −
i
(
(1− ε)s2 + 2t(s+ t)

)
8Nc (2t2 − εs2)D T̄ †AA , (3.30)

PC̄VA
= − i

(
(1− ε)s2 + 2t(s+ t)

)
8Nc (2t2 − εs2)D T̄ †VA + is (s+ 2t)

8Nc (2t2 − εs2)D T̄
†

AV , (3.31)

PC̄AV
= is (s+ 2t)

8Nc (2t2 − εs2)D T̄
†

VA −
i
(
(1− ε)s2 + 2t(s+ t)

)
8Nc (2t2 − εs2)D T̄ †AV , (3.32)

with D ≡ (2− ε)s2 + 2t(2s+ t).
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Again, we employ eqs. (3.29)–(3.32) only for the box contributions. For the vertex
corrections, the Kreimer’s γ5 scheme analogs of eqs. (2.99), (2.100), and (2.101),

ie
(
F̄V q̄qµ (p1, p2)

)
kj

= ie V̄V q̄q(s) v̄k(p2)γµuj(p1) (3.33)

+ ie ĀV q̄q(s) v̄k(p2)γµγ5uj(p1) ,(
PµV̄q

)
jk

= i

4eNcs(1− ε)
ūj(p1)γµvk(p2) , (3.34)(

PµĀq
)
jk

= i

4eNcs(1− ε)
ūj(p1)γµγ5vk(p2) , (3.35)

are useful.12 Of course, a decomposition completely analogous to (3.33) exists for the
lepton vertex form factors,

ie
(
F̄V ¯̀̀
µ (p3, p4)

)
mn

= ie V̄V ¯̀̀ (s) ūm(p3)γµvn(p4) (3.36)

+ ie ĀV ¯̀̀ (s) ūm(p3)γµγ5vn(p4) .

(
PµV̄`

)
nm

and
(
PµĀ`

)
nm

are obtained by setting Nc = 1 in eqs. (3.34) and (3.35),

(
PµV̄`

)
nm

= i

4es(1− ε) v̄n(p4)γµum(p3) , (3.37)(
PµĀ`

)
nm

= i

4es(1− ε) v̄n(p4)γµγ5um(p3) . (3.38)

Note that the symmetric form of e.g. eqs. (3.34) and (3.35) is a reflection of the absence of
chiral mismatch in Kreimer’s γ5 scheme (contrast with the asymmetric form of eqs. (2.100)
and (2.101)).

We calculate our one- and two-loop scattering amplitudes in Mathematica, using a
code pipeline similar to that described in section 3.3; as mentioned in section 2.3, the
algebraic form of the non-vanishing families of even and odd Dirac traces is the same in
Kreimer’s γ5 scheme as in HVBM’s γ5 scheme. A key advantage of Kreimer’s γ5 scheme,
however, is that, due to the standard anticommutation relation, eq. (2.7), Dirac traces
need not be calculated with split indices. Rather, one can first evaluate all traces and
introduce scalar products of the form ḡµνk

µ
i k

ν
j only at a later stage, when contractions and

products of Levi-Civita tensors are eliminated using eqs. (2.12)–(2.16). As a cross-check,
we also calculated the interference of the one- and two-loop scattering amplitudes with
the tree-level Drell-Yan amplitude in Kreimer’s γ5 scheme using an independent setup in
FORM 4 [91] which, in particular, employed Passarino-Veltman reduction [63] instead of
the technology of section 2.4 to simplify scalar products of the form ḡµνk

µ
i k

ν
j . Finding

complete agreement between our independent implementations served as a crucial cross-
check on our calculations.

12In eqs. (3.33) and (3.36), V may be either a photon or a Z boson.
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3.5 Infrared dipole singularity structure and subtraction functions

The infrared singularities of general scattering amplitudes in two-loop QCD can be pre-
dicted in a process independent way [53, 92–96]. The dipole formula [82–88] provides a
particularly concise and straightforward recipe for the generation of infrared subtraction
terms at two loops.13 While, historically, the singularity structures of scattering ampli-
tudes in particularly simple models such as massless QED, massless QCD, and N = 4
super Yang-Mills theory were discussed most frequently in the literature, broader applica-
tions to theories with massive particles or mixed gauge groups are certainly possible and
have long been known, see e.g. [20, 107]. In particular, it was shown in [20] that with
straightforward modifications, the dipole formula can be extended to describe the singu-
larity structure of two-loop mixed QED-QCD Drell-Yan scattering amplitudes. This setup
covers also the case of the mixed EW-QCD corrections discussed in this paper.

We begin by introducing the building blocks required to describe the infrared singu-
larities of the order ααs, order α2, and order α2αs neutral-current Drell-Yan scattering
amplitudes. As has long been clear, the leading infrared singularities of gauge theory scat-
tering amplitudes are governed by cusp anomalous dimensions [108]. The one-loop quark
cusp anomalous dimension of massless QCD may be extracted, for example, from the ex-
pression for the one-loop quark form factor of massless QCD given in eq. (2.103). In QCD,
we have

Γ(0,1)
q = 4CF , (3.39)

whereas in QED we obtain the result from eq. (3.39) by replacing the quadratic Casimir
invariant CF with the squared charge of the fermion flavor,

Γ(1,0)
f = 4Q2

f . (3.40)

However, as pointed out in [20], the mixed quark cusp anomalous dimension vanishes:

Γ(1,1)
q = 0 . (3.41)

The next-to-leading infrared singularities are more complicated and receive contribu-
tions from both soft anomalous dimensions and resummation functions derived from the
ε−1 poles of massless vertex form factors with an appropriate number of gluon and/or
photon exchanges. The one-loop Drell-Yan soft anomalous dimensions are well-known and
have been calculated in many places in the literature, see e.g. [83, 84] for a thorough dis-
cussion. Note that, for general QCD scattering processes, the soft anomalous dimension
becomes a mixing matrix in color space. For processes with just two partons in the initial
state such as the Drell-Yan process, the color space structure trivializes and all matrices
in the dipole formula may be replaced with functions. Rewriting the results to make all

13At three loops and beyond, an extension of the formalism is necessary [97–106].
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imaginary parts explicit in the physical kinematic region of interest, we find

S
(0,1)
DY =

(
−4 ln

(
µ2

s

)
− 4iπ

)
CF (3.42)

and S
(1,0)
DY =

(
−4 ln

(
µ2

s

)
− 4iπ

)(
Q2
` +Q2

q

)
+ 8Q`Qq ln

(
t

u

)
. (3.43)

Once again, as shown in [20], the two-loop mixed EW-QCD Drell-Yan soft anomalous
dimension vanishes identically:

S
(1,1)
DY = 0 . (3.44)

We define our massless QCD resummation functions in the framework of [109]. In
practice, following [20], all results may be derived from the one- and two-loop quark re-
summation functions of massless QCD by making simple replacements. In what follows,
f [k] denotes the coefficient of εk in the Taylor series expansion of f(ε),

f(ε) =
∞∑
k=0

f [k]εk . (3.45)

To the relevant ε orders, we have

G(0,1)
q [0] = 6CF , (3.46)

G(0,1)
q [1] =

(
16− 2ζ2

)
CF , (3.47)

G(0,1)
q [2] =

(
32− 3ζ2 −

28
3 ζ3

)
CF , (3.48)

G(0,1)
q [3] =

(
64− 8ζ2 − 14ζ3 −

47
10ζ

2
2

)
CF , (3.49)

G(0,2)
q [0] =

(
3− 24ζ2 + 48ζ3

)
C2
F

+
(2545

27 + 44
3 ζ2 − 52ζ3

)
CACF , (3.50)

and G(0,2)
q [1] =

(1
2 − 116ζ2 + 120ζ3 + 176

5 ζ2
2

)
C2
F

+
(70165

162 + 575
9 ζ2 −

520
3 ζ3 −

176
5 ζ2

2

)
CACF (3.51)

from eqs. (3.10) and (3.11) of [109] after discarding all contributions proportional to the
number of light quarks.

As with the cusp anomalous dimensions, the one-loop QED results may be obtained
by making the replacement CF → Q2

f in eqs. (3.46)–(3.49). Explicitly, we have

G
(1,0)
f [0] = 6Q2

f , (3.52)

G
(1,0)
f [1] =

(
16− 2ζ2

)
Q2
f , (3.53)
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G
(1,0)
f [2] =

(
32− 3ζ2 −

28
3 ζ3

)
Q2
f , (3.54)

and G
(1,0)
f [3] =

(
64− 8ζ2 − 14ζ3 −

47
10ζ

2
2

)
Q2
f . (3.55)

Finally, the two-loop mixed EW-QCD quark resummation functions are obtained from
eqs. (3.50) and (3.51) by setting CA to zero and replacing C2

F with Q2
qCF :

G(1,1)
q [0] =

(
3− 24ζ2 + 48ζ3

)
Q2
qCF (3.56)

and G(1,1)
q [1] =

(1
2 − 116ζ2 + 120ζ3 + 176

5 ζ2
2

)
Q2
qCF . (3.57)

Given the ingredients discussed above, we are now in a position to present the predic-
tions of the generalized dipole formula for the ultraviolet-renormalized, infrared-divergent
scattering amplitudes ADY and ĀDY in, respectively, HVBM’s γ5 scheme and Kreimer’s γ5
scheme. At tree level we have

(–)

ADY = 4πα
(–)

H(0,0)
DY [0] + · · · , (3.58)

where the dots stand for terms of higher order in the coupling constants. As the notation
suggests, the tree-level hard functions, H(0,0)

DY [0] and H̄(0,0)
DY [0], are defined to be independent

of the coupling constants. We have

(–)

H(0,0)
DY [0] =

(
QqQ`
s

+ vqv`
s−m2

z

)
(–)

TVV −
a`vq
s−m2

z

(–)

TVA −
aqv`
s−m2

z

(–)

TAV + aqa`
s−m2

z

(–)

TAA (3.59)

in the notation of [66] for the couplings of the Z boson to matter, see eqs. (2.73).
As is clear from the form of eqs. (3.59), the tree-level amplitudes in the two γ5 schemes

we consider trivially coincide in the four-dimensional limit because all of the differences
between the schemes disappear in four spacetime dimensions:

lim
ε→0

{
H(0,0)

DY [0]
}

= lim
ε→0

{
H̄(0,0)

DY [0]
}
. (3.60)

For the remainder of this work, it will sometimes be convenient to view the hard scattering
functions in the two schemes we consider as vectors of coefficients with respect to

(–)

TVV,
(–)

TVA,
(–)

TAV, and
(–)

TAA. This minor abuse of notation will allow us to rewrite e.g. eq. (3.60) as

H(0,0)
DY [0] = H̄(0,0)

DY [0] . (3.61)

At higher perturbative orders, we have

(–)

ADY = 4πα
(

(–)

A (0,0)
DY +

(–)

A (0,1)
DY

(
αs
4π

)
+

(–)

A (1,0)
DY

(
α

4π

)
+

(–)

A (1,1)
DY

(
α

4π

)(
αs
4π

)
+ · · ·

)
, (3.62)

where
(–)

A(0,0)
DY =

(–)

H(0,0)
DY , (3.63)
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(–)

A(0,1)
DY = 1

ε2

(
− 1

2Γ(0,1)
q

(–)

H(0,0)
DY [0]

)
+ 1
ε

(
1
2

[
S

(0,1)
DY −G

(0,1)
q [0]

] (–)

H(0,0)
DY [0]

)
− 1

2G
(0,1)
q [1]

(–)

H(0,0)
DY [0]+

(–)

H(0,1)
DY [0]+ε

(
− 1

2G
(0,1)
q [2]

(–)

H(0,0)
DY [0]+

(–)

H(0,1)
DY [1]

)
+ε2

(
− 1

2G
(0,1)
q [3]

(–)

H(0,0)
DY [0]+

(–)

H(0,1)
DY [2]

)
+· · · , (3.64)

(–)

A(1,0)
DY = 1

ε2

(
− 1

2

[
Γ(1,0)
` +Γ(1,0)

q

] (–)

H(0,0)
DY [0]

)
+ 1
ε

(
1
2

[
S

(1,0)
DY −G

(1,0)
` [0]−G(1,0)

q [0]
] (–)

H(0,0)
DY [0]

)
− 1

2

[
G

(1,0)
` [1]+G(1,0)

q [1]
] (–)

H(0,0)
DY [0]+

(–)

H(1,0)
DY [0]+ε

(
− 1

2

[
G

(1,0)
` [2]+G(1,0)

q [2]
] (–)

H(0,0)
DY [0]

+
(–)

H(1,0)
DY [1]

)
+ε2

(
− 1

2

[
G

(1,0)
` [3]+G(1,0)

q [3]
] (–)

H(0,0)
DY [0]+

(–)

H(1,0)
DY [2]

)
+· · · , (3.65)

and

(–)

A(1,1)
DY = 1

ε4

(
1
4Γ(0,1)

q

[
Γ(1,0)
` +Γ(1,0)

q

] (–)

H(0,0)
DY [0]

)
+ 1
ε3

(
− 1

4

(
Γ(0,1)
q

[
S

(1,0)
DY −G

(1,0)
` [0]

−G(1,0)
q [0]

]
+
[
Γ(1,0)
` +Γ(1,0)

q

][
S

(0,1)
DY −G

(0,1)
q [0]

]) (–)

H(0,0)
DY [0]

)
+ 1
ε2

(
1
4

(
Γ(0,1)
q

[
G

(1,0)
` [1]

+G(1,0)
q [1]

]
+
[
Γ(1,0)
` +Γ(1,0)

q

]
G(0,1)
q [1]+

[
S

(0,1)
DY −G

(0,1)
q [0]

][
S

(1,0)
DY −G

(1,0)
` [0]

−G(1,0)
q [0]

]) (–)

H(0,0)
DY [0]− 1

2Γ(0,1)
q

(–)

H(1,0)
DY [0]− 1

2

[
Γ(1,0)
` +Γ(1,0)

q

] (–)

H(0,1)
DY [0]

)
+ 1
ε

(
1
4

(
Γ(0,1)
q

[
G

(1,0)
` [2]+G(1,0)

q [2]
]
+
[
Γ(1,0)
` +Γ(1,0)

q

]
G(0,1)
q [2]

−G(0,1)
q [1]

[
S

(1,0)
DY −G

(1,0)
` [0]−G(1,0)

q [0]
]
−
[
G

(1,0)
` [1]+G(1,0)

q [1]
][
S

(0,1)
DY −G

(0,1)
q [0]

]
−2G(1,1)

q [0]
)

(–)

H(0,0)
DY [0]− 1

2Γ(0,1)
q

(–)

H(1,0)
DY [1]− 1

2

[
Γ(1,0)
` +Γ(1,0)

q

] (–)

H(0,1)
DY [1]

+ 1
2

[
S

(1,0)
DY −G

(1,0)
` [0]−G(1,0)

q [0]
] (–)

H(0,1)
DY [0]+ 1

2

[
S

(0,1)
DY −G

(0,1)
q [0]

] (–)

H(1,0)
DY [0]

)
+ 1

4

(
Γ(0,1)
q

[
G

(1,0)
` [3]+G(1,0)

q [3]
]
+
[
Γ(1,0)
` +Γ(1,0)

q

]
G(0,1)
q [3]

−G(0,1)
q [2]

[
S

(1,0)
DY −G

(1,0)
` [0]−G(1,0)

q [0]
]
−
[
G

(1,0)
` [2]+G(1,0)

q [2]
][
S

(0,1)
DY −G

(0,1)
q [0]

]
+G(0,1)

q [1]
[
G

(1,0)
` [1]+G(1,0)

q [1]
]
−2G(1,1)

q [1]
)

(–)

H(0,0)
DY [0]− 1

2G
(0,1)
q [1]

(–)

H(1,0)
DY [0]

− 1
2

[
G

(1,0)
` [1]+G(1,0)

q [1]
] (–)

H(0,1)
DY [0]+ 1

2

[
S

(0,1)
DY −G

(0,1)
q [0]

] (–)

H(1,0)
DY [1]

+ 1
2

[
S

(1,0)
DY −G

(1,0)
` [0]−G(1,0)

q [0]
] (–)

H(0,1)
DY [1]− 1

2Γ(0,1)
q

(–)

H(1,0)
DY [2]

− 1
2

[
Γ(1,0)
` +Γ(1,0)

q

] (–)

H(0,1)
DY [2]+

(–)

H(1,1)
DY [0]+· · · . (3.66)

The one- and two-loop hard scattering functions which appear above are determined by
demanding equality between eqs. (3.62) and the corresponding explicit calculations at one
and two loops.
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All other things being equal, it is generally believed that HVBM’s γ5 scheme and
Kreimer’s γ5 scheme produce identical results through to one loop and O

(
ε0
)
[54]. This

proposition was implicitly affirmed at order ααs in section 2.8. At order α2, our explicit
one-loop calculations, discussed in detail in the next section, do indeed show that

H(1,0)
DY [0] = H̄(1,0)

DY [0] . (3.67)

However, we also find that

H(1,0)
DY [k] 6= H̄(1,0)

DY [k] for k > 0 . (3.68)

Thus, in light of the fact that the higher-order-in-ε one-loop hard functions first enter
eqs. (3.62) at the level of the ε−1 poles of the relative order ααs expressions, it is not
obvious that an analog of eq. (3.67) continues to hold at higher orders in perturbation
theory:

H(1,1)
DY [0] ?= H̄(1,1)

DY [0] . (3.69)

While it is generally expected that all terms of virtual and real radiative corrections sen-
sitive to ambiguities in the treatment of γ5 eventually cancel out of combinations which
furnish complete fixed-order perturbative corrections to physical observables, hard partonic
scattering functions by themselves are not physical observables. We will test whether (3.69)
actually is an equality with our explicit calculations below.

4 One-loop scattering amplitudes

4.1 Diagrammatic structure

In this section, we present the diagrammatic structure of the one-loop perturbative correc-
tions to the neutral-current Drell-Yan process. Due to their familiarity, the renormalized
self-energy corrections to the photon and Z propagators,

,

will not be visualized in explicit detail. In what follows, we will also use a generic wavy
line for both the photon and the Z, keeping in mind that some contributions involving e.g.
a coupling to neutrinos can occur only for the Z. As is well-known, just a single class of
diagram contributes to the one-loop corrections of relative order αs,

.
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The remaining one-loop corrections of relative order α fall into three categories: initial
state vertex diagrams, final state vertex diagrams, and box diagrams. Both the initial state
vertex diagrams

and the final state vertex diagrams

require renormalization,

,

due to the presence of ultraviolet divergences. The box diagrams

have infrared divergences only.

4.2 One-loop integral definitions

All of the one-loop integrals defined below are pure functions taken in the standard MS
normalization. Therefore, all of our one-loop Feynman integrals are understood to have a
multiplicative factor of

c1
(
ε, µ2

)
= eγEε

(
µ2)ε

iπ2−ε (4.1)

in the integration measure. In what follows, thin solid lines denote massless propagators
or massless external momenta, thick, dotted lines denote propagators of mass mw, thick,
dashed lines denote propagators of mass mz, and thick solid lines denote propagators
of mass mh. In total, 31 linearly-independent one-loop integrals appear in the one-loop
calculations of section 4.3 (supplemented by appendix B):

I1 = ε
(
m2
w

)
(4.2)

I2 =
√
s(s− 4m2

w) ε
(
s,m2

w

)
(4.3)
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I3 =
√
m2
z(4m2

w −m2
z) ε

(
m2
w,m

2
z

)
(4.4)

I4 = ε
(
m2
z

)
(4.5)

I5 = ε
(
m2
h

)
(4.6)

I6 =
√
λ
(
s,m2

z,m
2
h

)
ε

 +

(s,m2
z,m

2
h

)
(4.7)

I7 =
√
m2
h(4m2

z −m2
h) ε

 +

(m2
z,m

2
h

)
(4.8)

I8 = s ε
(
s,m2

w

)
(4.9)

I9 =
√
λ (s,m2

w,m
2
z) ε

 +

(s,m2
w,m

2
z

)
(4.10)

I10 =
√
λ
(
s,m2

w,m
2
h

)
ε

 +

(s,m2
w,m

2
h

)
(4.11)

I11 =
√
m2
z(4m2

w −m2
z) ε

 +

(m2
w,m

2
z

)
(4.12)

I12 =
√
m2
h(4m2

w −m2
h) ε

 +

(m2
w,m

2
h

)
(4.13)

I13 = s ε (s) (4.14)

I14 = s ε2
(
s,m2

z

)
(4.15)

I15 = s ε2
(
s,m2

w

)
(4.16)

I16 = s ε2
(
s,m2

w

)
(4.17)
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I17 = t ε (t) (4.18)

I18 = u ε (u) (4.19)

I19 = s t ε2 (s, t) (4.20)

I20 = s u ε2 (s, u) (4.21)

I21 = s ε
(
s,m2

z

)
(4.22)

I22 = t ε2
(
t,m2

z

)
(4.23)

I23 = u ε2
(
u,m2

z

)
(4.24)

I24 = t
(
s−m2

z

)
ε2

(
s, t,m2

z

)
(4.25)

I25 = u
(
s−m2

z

)
ε2

(
s, u,m2

z

)
(4.26)

I26 =
√
s(s− 4m2

z) ε
(
s,m2

z

)
(4.27)

I27 = s ε2
(
s,m2

z

)
(4.28)

I28 =
√
s t (s t− 4m2

z (t+m2
z)) ε2

(
s, t,m2

z

)
(4.29)

I29 =
√
s u (s u− 4m2

z (u+m2
z)) ε2

(
s, u,m2

z

)
(4.30)

I30 = u ε2
(
u,m2

w

)
(4.31)

I31 =
√
s u (s u− 4m2

w (u+m2
w)) ε2

(
s, u,m2

w

)
, (4.32)
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where λ(x, y, z) is the Källén function,

λ(x, y, z) = x4 + y4 + z4 − 2x2y2 − 2x2z2 − 2y2z2. (4.33)

For clarity and later convenience, we have made all dependence on the kinematic variables
s, t, u = −s− t, m2

w, m2
z, and m2

h completely explicit on the right-hand side. Moreover, we
have included integrals for all relevant permutations of the kinematic variables separately.
In order to actually calculate the master integrals, it is enough to find explicit expressions
for I1, I2, I3, I6, I7, I8, I13, I14, I16, I17, I19, I22, I24, and I28, as all other integrals
may be obtained by making simple replacements. For example, I31 is obtained from I28
by replacing m2

z with m2
w and t with u. Due to the fact that we consider the physical

region s > (mz + mh)2 (see (3.3)), the same form of the analytic result can be used in a
straightforward way.

Our calculation requires knowledge of the most complicated one-loop box-type master
integrals (i.e. I24 and I28) expanded through to fourth order in ε. We could not find suitable
analytic solutions for all integrals in the literature. Several of the explicit results we could
locate in the Loopedia database [110] were either not expanded to a sufficiently high order
in ε for our purposes or not provided in a form convenient for numerical evaluations in the
physical region of interest to us.

We therefore computed all of the integrals from scratch, either by direct integration for
generic ε followed by an expansion14 in ε or by using the method of differential equations [49,
50, 112–116]. The integral definitions given above lead to a ε-decoupled form for the
differential equations [89, 90], which we integrate in terms of multiple polylogarithms. To
proceed, we construct real-valued multiple polylogarithms in the region of phase space of
interest to us, employing the functional basis presented in [29, 31], together with a few
additional logarithms and polylogarithms required to integrate e.g. I6 to a sufficiently high
order in ε. We provide our results in the ancillary file oneloopmasters.m attached to the
arXiv submission of this paper.

4.3 Assembly of one-loop results

In this section, we give our results for the renormalized one-loop amplitude coefficients in
both HVBM’s γ5 scheme (3.14) and Kreimer’s γ5 scheme (3.27). Assembling the compo-
nents provided in appendices B.1 and B.2, we find

C(0,1)
VV = −Q`

s
V̄(0,1)
γq̄q (s) + v`

s−m2
z
V̄(0,1)
Zq̄q (s) , (4.34)

C(0,1)
VA = − a`

s−m2
z
V̄(0,1)
Zq̄q (s) , (4.35)

C(0,1)
AV = v`

s−m2
z
Ā(0,1)
Zq̄q (s) , (4.36)

C(0,1)
AA = − a`

s−m2
z
Ā(0,1)
Zq̄q (s) , (4.37)

14For some of the more complicated expansions, we used the Mathematica package HypExp [111].
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C(1,0)
VV = −QqQ`

s2

(
Σ̄(1,0)
γγ (s)− sδZ(1,0)

γγ

)
+ 1

s(s−m2
z)

(Qqv` +Q`vq)
(
Σ̄(1,0)
γZ (s) + 1

2

(
s
(
δZ

(1,0)
γZ + δZ

(1,0)
Zγ

)
−m2

zδZ
(1,0)
Zγ

))
− vqv`

(s−m2
z)2

(
Σ̄(1,0)
ZZ (s) + sδZ

(1,0)
ZZ −m

2
z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

))
− Qq

s

(
V̄(1,0)
γ ¯̀̀ (s)−Q`

(
δZ(1,0)

e + δZ
(1,0)
V, ` + 1

2δZ
(1,0)
γγ − v`

2Q`
δZ

(1,0)
Zγ

))
− Q`

s

(
V̄(1,0)
γq̄q (s)−Qq

(
δZ(1,0)

e + δZ
(1,0)
V, q + 1

2δZ
(1,0)
γγ − vq

2Qq
δZ

(1,0)
Zγ

))
+ vq

s−m2
z

(
V̄(1,0)
Z ¯̀̀ (s) + v`

(
δZ(1,0)

e + δZ
(1,0)
V, ` + 1

2δZ
(1,0)
ZZ

)
− a`δZ

(1,0)
A, `

−Q`2 δZ
(1,0)
γZ + m2

z

2(m2
z −m2

w)

(
v` −

2m2
w

m2
z
a`

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ v`

s−m2
z

(
V̄(1,0)
Zq̄q (s) + vq

(
δZ(1,0)

e + δZ
(1,0)
V, q + 1

2δZ
(1,0)
ZZ

)
− aqδZ(1,0)

A, q

−Qq2 δZ
(1,0)
γZ + m2

z

2(m2
z −m2

w)

(
vq −

2m2
w

m2
z
aq

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ B(1,0)

VV ,

(4.38)

C(1,0)
VA = − Qqa`

s(s−m2
z)

(
Σ̄(1,0)
γZ (s) + 1

2

(
s
(
δZ

(1,0)
γZ + δZ

(1,0)
Zγ

)
−m2

zδZ
(1,0)
Zγ

))
+ a`vq

(s−m2
z)2

(
Σ̄(1,0)
ZZ (s) + sδZ

(1,0)
ZZ −m

2
z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

))
− Qq

s

(
Ā(1,0)
γ ¯̀̀ (s)−Q`

(
δZ

(1,0)
A, ` + a`

2Q`
δZ

(1,0)
Zγ

))
+ vq

s−m2
z

(
Ā(1,0)
Z ¯̀̀ (s) + v`δZ

(1,0)
A, ` − a`

(
δZ(1,0)

e + δZ
(1,0)
V, ` + 1

2δZ
(1,0)
ZZ

)
−a`

m2
z

2(m2
z −m2

w)

(
1− 2m2

w

m2
z

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
− a`

s−m2
z

(
V̄(1,0)
Zq̄q (s) + vq

(
δZ(1,0)

e + δZ
(1,0)
V, q + 1

2δZ
(1,0)
ZZ

)
− aqδZ(1,0)

A, q

−Qq2 δZ
(1,0)
γZ + m2

z

2(m2
z −m2

w)

(
vq −

2m2
w

m2
z
aq

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ B(1,0)

VA ,

(4.39)

C(1,0)
AV = − Q`aq

s(s−m2
z)

(
Σ̄(1,0)
γZ (s) + 1

2

(
s
(
δZ

(1,0)
γZ + δZ

(1,0)
Zγ

)
−m2

zδZ
(1,0)
Zγ

))
+ aqv`

(s−m2
z)2

(
Σ̄(1,0)
ZZ (s) + sδZ

(1,0)
ZZ −m

2
z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

))
− Q`

s

(
Ā(1,0)
γq̄q (s)−Qq

(
δZ

(1,0)
A, q + aq

2Qq
δZ

(1,0)
Zγ

))
− aq

s−m2
z

(
V̄(1,0)
Z ¯̀̀ (s) + v`

(
δZ(1,0)

e + δZ
(1,0)
V, ` + 1

2δZ
(1,0)
ZZ

)
− a`δZ

(1,0)
A, `

−Q`2 δZ
(1,0)
γZ + m2

z

2(m2
z −m2

w)

(
v` −

2m2
w

m2
z
a`

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ v`

s−m2
z

(
Ā(1,0)
Zq̄q (s) + vqδZ

(1,0)
A, q − aq

(
δZ(1,0)

e + δZ
(1,0)
V, q + 1

2δZ
(1,0)
ZZ

)
−aq

m2
z

2(m2
z −m2

w)

(
1− 2m2

w

m2
z

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ B(1,0)

AV , (4.40)
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C(1,0)
AA = − aqa`

(s−m2
z)2

(
Σ̄(1,0)
ZZ (s) + sδZ

(1,0)
ZZ −m

2
z

(
δZ

(1,0)
ZZ + δZ

(1,0)
m2
z

))
− aq

s−m2
z

(
Ā(1,0)
Z ¯̀̀ (s) + v`δZ

(1,0)
A, ` − a`

(
δZ(1,0)

e + δZ
(1,0)
V, ` + 1

2δZ
(1,0)
ZZ

)
−a`

m2
z

2(m2
z −m2

w)

(
1− 2m2

w

m2
z

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
− a`

s−m2
z

(
Ā(1,0)
Zq̄q (s) + vqδZ

(1,0)
A, q − aq

(
δZ(1,0)

e + δZ
(1,0)
V, q + 1

2δZ
(1,0)
ZZ

)
−aq

m2
z

2(m2
z −m2

w)

(
1− 2m2

w

m2
z

)(
δZ

(1,0)
m2
z
− δZ(1,0)

m2
w

))
+ B(1,0)

AA (4.41)

for the renormalized one-loop scattering amplitude coefficients in HVBM’s γ5 scheme. In
writing the above expressions, we made use of the tabulated one-loop vertex counterterms
collected in appendix A of [67]. Results in Kreimer’s γ5 scheme may be simply obtained
from eqs. (4.34)–(4.41):

C̄(0,1)
VV = C(0,1)

VV , (4.42)

C̄(0,1)
VA = C(0,1)

VA , (4.43)

C̄(0,1)
AV = C(0,1)

AV , (4.44)

C̄(0,1)
AA = C(0,1)

AA , (4.45)

C̄(1,0)
VV = C(1,0)

VV /.B(1,0)
VV → B̄(1,0)

VV , (4.46)

C̄(1,0)
VA = C(1,0)

VA /.B(1,0)
VA → B̄(1,0)

VA , (4.47)

C̄(1,0)
AV = C(1,0)

AV /.B(1,0)
AV → B̄(1,0)

AV , (4.48)

C̄(1,0)
AA = C(1,0)

AA /.B(1,0)
AA → B̄(1,0)

AA , (4.49)

where /. denotes the replacement operator.
Eqs. (4.34)–(4.49) may be directly matched onto eqs. (3.62) to determine H(0,1)

DY [0],
H(0,1)

DY [1], H(0,1)
DY [2], H̄(0,1)

DY [0], H̄(0,1)
DY [1], H̄(0,1)

DY [2], H(1,0)
DY [0], H(1,0)

DY [1], H(1,0)
DY [2], H̄(1,0)

DY [0],
H̄(1,0)

DY [1], and H̄(1,0)
DY [2]. We observe analytically that the 1/ε2 and 1/ε poles cancel in the

hard scattering functions, leaving a finite remainder, as expected.
Let us emphasize that, upon substituting the explicit expressions for the master inte-

grals discussed in the previous section (see also appendix B.2), we find

H(1,0)
DY [0] = H̄(1,0)

DY [0] (4.50)

but15

H(1,0)
DY [k] 6= H̄(1,0)

DY [k] for k > 0 . (4.51)

In section 6.1, it is explained in detail how one-loop polarized hard scattering functions
may be derived from H(0,1)

DY [0] and H(1,0)
DY [0] or, equivalently, from H̄(0,1)

DY [0] and H̄(1,0)
DY [0].

15Due to the fact that the relative order αs one-loop corrections are comprised of simple vertex form
factor diagrams with no sensitivity to the γ5 problem, we have H(0,1)

DY [k] = H̄(0,1)
DY [k] for all k.
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5 Two-loop scattering amplitudes

5.1 Diagrammatic structure

In this section, we present the diagrammatic structure of the two-loop perturbative correc-
tions to the neutral-current Drell-Yan process of relative order ααs. As at one loop, we do
not explicitly identify the photon and Z. Due to their familiarity, diagrams with one-loop
renormalized self-energy insertions of the form

will not be visualized in explicit detail. Several other two-loop diagrams are also trivial, in
that they essentially consist of simple products of one-loop contributions:

.

Note that, in the above, the sum of the final four diagrams vanishes identically.
For the sake of brevity, we draw only one half of the two-loop vertex diagrams with a

single massive vector boson stretched across the quark line:

.
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The remaining diagrams of this type may be trivially recovered from the above by exchang-
ing the gluon and the electroweak gauge boson attached to the quark line.

Of course, there are also diagrams with γW+W− and ZW+W− interactions:

.

Finally, the order ααs vertex receives a correction from a two-loop vertex counterterm
insertion,

.

The most complicated two-loop diagrams are those of box type:

.

Our evaluation of these box-type diagrams is one of the most important new results of this
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work. In HVBM’s γ5 scheme, further diagrams,

,

need to be included to ensure that the order α2αs hard scattering function in HVBM’s
γ5 scheme respects the chiral symmetry of the Standard Model (see section 2.8 for more
details).

5.2 Two-loop integral definitions

All of the two-loop integrals defined below are pure functions, converted from the idiosyn-
cratic notation of [29, 31], where they were originally evaluated in the physical region above
all two-particle thresholds, to standard MS normalization. To be explicit, the mi integrals
from [29] and the mi integrals from [31] must be multiplied by

c2
(
ε, µ2, s

)
= e2γEε

Γ2(1− ε)

(
µ2

s

)2ε

. (5.1)

That is to say, the integral measure of our two-loop integrals is exactly:(
eγEε

(
µ2)ε

iπ2−ε

)2 ∫
ddk1

∫
ddk2 . (5.2)

For brevity, we suppress the factors of c2
(
ε, µ2, s

)
which belong in the definitions of all

of the non-factorizable two-loop integrals given below. In total, 133 linearly-independent
two-loop integrals appear in our calculations:

J1 = m17
(
m2
z

)
J2 = m17

(
m2
w

)
J3 = m1 (s)

J4 =
(
I13
)2

J5 = m5 (s) J6 = m12 (s)

J7 = I4I13 J8 = m18
(
s,m2

z

)
J9 = m19

(
s,m2

z

)
J10 = m28

(
s,m2

z

)
J11 = m31

(
s,m2

z

)
J12 = m32

(
s,m2

z

)
J13 = I13I14 J14 = m37

(
s,m2

z

)
J15 = m39

(
s,m2

z

)
J16 = m42

(
s,m2

z

)
J17 = m43

(
s,m2

z

)
J18 = m44

(
s,m2

z

)
J19 = m56

(
s,m2

z

)
J20 = m57

(
s,m2

z

)
J21 = m58

(
s,m2

z

)
J22 = m15

(
s,m2

w

)
J23 = m18

(
s,m2

w

)
J24 = m19

(
s,m2

w

)
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J25 = m28
(
s,m2

w

)
J26 = m31

(
s,m2

w

)
J27 = m32

(
s,m2

w

)
J28 = I13I15 J29 = m37

(
s,m2

w

)
J30 = m39

(
s,m2

w

)
J31 = m42

(
s,m2

w

)
J32 = m43

(
s,m2

w

)
J33 = m44

(
s,m2

w

)
J34 = m56

(
s,m2

w

)
J35 = m57

(
s,m2

w

)
J36 = m58

(
s,m2

w

)
J37 = I2I13 J38 = m10

(
s,m2

w

)
J39 = m11

(
s,m2

w

)
J40 = m12

(
s,m2

w

)
J41 = m23

(
s,m2

w

)
J42 = m24

(
s,m2

w

)
J43 = m25

(
s,m2

w

)
J44 = m2 (t) J45 = m2 (u)

J46 = m6 (t) J47 = m6 (u) J48 = m7 (s, t)
J49 = m7 (s, u) J50 = m8 (s, t) J51 = m8 (s, u)
J52 = m9 (s, t) J53 = m9 (s, u) J54 = m10 (s, t)
J55 = m10 (s, u) J56 = m11 (s, t) J57 = m11 (s, u)

J58 = I13I21 J59 = m25
(
s,m2

z

)
J60 = m26

(
s,m2

z

)
J61 = m27

(
t,m2

z

)
J62 = m37

(
t,m2

z

)
J63 = m38

(
t,m2

z

)
J64 = m40

(
s,m2

z

)
J65 = m45

(
s, t,m2

z

)
J66 = m46

(
s, t,m2

z

)
J67 = m47

(
s, t,m2

z

)
J68 = m48

(
s, t,m2

z

)
J69 = m49

(
s, t,m2

z

)
J70 = m50

(
s, t,m2

z

)
J71 = m51

(
s, t,m2

z

)
J72 = m52

(
s, t,m2

z

)
J73 = m53

(
s, t,m2

z

)
J74 = m54

(
s, t,m2

z

)
J75 = m55

(
s, t,m2

z

)
J76 = m27

(
u,m2

z

)
J77 = m37

(
u,m2

z

)
J78 = m38

(
u,m2

z

)
J79 = m45

(
s, u,m2

z

)
J80 = m46

(
s, u,m2

z

)
J81 = m47

(
s, u,m2

z

)
J82 = m48

(
s, u,m2

z

)
J83 = m49

(
s, u,m2

z

)
J84 = m50

(
s, u,m2

z

)
J85 = m51

(
s, u,m2

z

)
J86 = m52

(
s, u,m2

z

)
J87 = m53

(
s, u,m2

z

)
J88 = m54

(
s, u,m2

z

)
J89 = m55

(
s, u,m2

z

)
J90 = I13I26

J91 = m10
(
s,m2

z

)
J92 = m11

(
s,m2

z

)
J93 = m12

(
s,m2

z

)
J94 = m23

(
s,m2

z

)
J95 = m24

(
s,m2

z

)
J96 = m25

(
s,m2

z

)
J97 = I13I27 J98 = m26

(
s, t,m2

z

)
J99 = m27

(
s, t,m2

z

)
J100 = m30

(
s,m2

z

)
J101 = m31

(
s, t,m2

z

)
J102 = m32

(
s, t,m2

z

)
J103 = m33

(
s, t,m2

z

)
J104 = m34

(
s, t,m2

z

)
J105 = m35

(
s, t,m2

z

)
J106 = m36

(
s, t,m2

z

)
J107 = m26

(
s, u,m2

z

)
J108 = m27

(
s, u,m2

z

)
J109 = m31

(
s, u,m2

z

)
J110 = m32

(
s, u,m2

z

)
J111 = m33

(
s, u,m2

z

)
J112 = m34

(
s, u,m2

z

)
J113 = m35

(
s, u,m2

z

)
J114 = m36

(
s, u,m2

z

)
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J115 = m27
(
u,m2

w

)
J116 = m37

(
u,m2

w

)
J117 = m38

(
u,m2

w

)
J118 = m46

(
s, u,m2

w

)
J119 = m47

(
s, u,m2

w

)
J120 = m48

(
s, u,m2

w

)
J121 = m49

(
s, u,m2

w

)
J122 = m52

(
s, u,m2

w

)
J123 = m53

(
s, u,m2

w

)
J124 = I13I16 J125 = m26

(
s, u,m2

w

)
J126 = m27

(
s, u,m2

w

)
J127 = m30

(
s,m2

w

)
J128 = m31

(
s, u,m2

w

)
J129 = m32

(
s, u,m2

w

)
J130 = m33

(
s, u,m2

w

)
J131 = m34

(
s, u,m2

w

)
J132 = m35

(
s, u,m2

w

)
J133 = m36

(
s, u,m2

w

)
. (5.3)

In writing the above definitions, we have made all dependence on the kinematic vari-
ables s, t, u = −s − t, m2

w, m2
z, and m2

h explicit on the right-hand side for all functions
not expressed as a simple product of the one-loop integrals from section 4.2. The attentive
reader will note that, out of 124 non-factorizable integrals, only 57 actually need to be
evaluated due to the fact that the rest may subsequently be accessed by considering simple
permutations of the kinematic invariants.

One noteworthy fact is that, apart from J14, all non-factorizable crossed two-loop
integrals not treated explicitly in references [29] or [31] may be directly obtained through
to weight four from the integral evaluations carried out in [29, 31] via the replacement
t→ u. For the sake of completeness, we present a simple expression for J14 in the physical
region above its one-mass threshold. Indeed, the integral admits a compact evaluation in
Feynman/Schwinger parameters to all orders in ε:

J14 = εΓ2(1− ε)Γ(2 + 2ε)e2γEε

Γ(1− 2ε)

(
µ2

s

)2ε


(
m2
z

s

)−1−2ε Γ(−1− 2ε)Γ(1 + ε)
(1− ε)Γ(−ε) 2F1

(
1, 1; 2− ε;− s

m2
z

)

−Γ(1− 2ε)Γ(−2− 2ε)Γ(2 + ε)e2iπε

Γ(1− 3ε) 2F1

(
1,−2ε; 1− 3ε;− s

m2
z

)}
. (5.4)

Expanding eq. (5.4) in ε, we find results equivalent to those obtained from J62 by performing
a crossing from t to s and then carefully rewriting the result in terms of the basis of multiple
polylogarithms suitable for the ε expansion of J13 in the physical region above the one-
particle threshold.

5.3 Assembly of two-loop results

In this section, we provide further details relevant to the assembly of our renormalized two-
loop scattering amplitudes for the mixed EW-QCD corrections to qq̄ → `+`− and discuss
some implications of our results. As alluded to in section 2.5, we have

δZ
(1,1)
V V ′ = 0 and δZ

(1,1)
m2
v

= 0 , (5.5)
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due to our neglect of all contributions proportional to the number of light fermion flavors
or involving the top quark. Together with eq. (2.57), eqs. (5.5) imply exceptionally-simple
forms for the order ααs γq̄q and Zq̄q vertex counterterms:

δZ
(1,1)
V,γq̄q = −QqδZ(1,1)

V, q , (5.6)

δZ
(1,1)
A,γq̄q = −QqδZ(1,1)

A, q , (5.7)

δZ
(1,1)
V,Zq̄q = vqδZ

(1,1)
V, q − aqδZ

(1,1)
A, q , (5.8)

and δZ
(1,1)
A,Zq̄q = −aqδZ(1,1)

V, q + vqδZ
(1,1)
A, q , (5.9)

where δZ(1,1)
V, q and δZ(1,1)

A, q are, respectively, the vector and axial vector components of the
order ααs quark wavefunction counterterm.16 Eqs. (5.6)–(5.9) are in fact the only non-
zero counterterms of order ααs which directly contribute to the renormalization of the
scattering amplitudes we calculate.

Of course, it is crucial to bear in mind that the renormalization program in HVBM’s
γ5 scheme is complicated by the fact that insertions of the finite counterterms17 δZ(0,1)

Zq̄q

and δZ
(0,1)
W±q̄q into one-loop box diagrams are required on top of all of the conventional

renormalizations required to remove ultraviolet divergences. As emphasized in section 2.8,
δZ

(0,1)
Zq̄q and δZ

(0,1)
W±q̄q do not contribute to the renormalization of the two-loop scattering

amplitudes in Kreimer’s γ5 scheme. This fundamental difference between the systematics
of renormalized Standard Model perturbation theory in the two γ5 schemes we consider is
what makes a direct two-loop comparison of them instructive and highly non-trivial.

After applying the computational methods and master integral evaluations described
above to the Feynman diagrams of section 5.1, our explicit two-loop calculations confirm
analytically that (3.69) does in fact hold:

H(1,1)
DY [0] = H̄(1,1)

DY [0] . (5.10)

That is to say, the hard scattering functions for the two-loop mixed EW-QCD corrections to
the neutral-current Drell-Yan process we consider in HVBM’s γ5 scheme and in Kreimer’s
γ5 scheme coincide. As expected, once all relations between crossed- and uncrossed-channel
multiple polylogarithms were identified, we observed that the 1/ε4 through 1/ε poles can-
celled analytically in the two-loop hard scattering functions we derived from eqs. (3.62). In
our view, the rigorous establishment of eq. (5.10) constitutes a very important cross-check
on our entire formulation and a significant theoretical result. In the future, our detailed
comparison of HVBM and Kreimer at the two-loop level should benefit further calculations
of still-unknown multi-loop perturbative corrections to more complicated Standard Model
processes in pure dimensional regularization.

In future studies of Standard Model scattering processes, it would certainly be possible
to perform two parallel calculations for each process in the two γ5 schemes considered in

16We remind the reader that explicit all-orders-in-ε results for the components of the quark wavefunction
counterterm at order ααs are provided in eqs. (2.92) and (2.93).

17Expressions for the finite counterterms relevant to this work are provided in unintegrated form in
eqs. (B.5) and (B.6) and, due to the trivial ratio of δZ(0,1)

Zq̄q and δZ(0,1)
W±q̄q

, in integrated form in eq. (2.113).
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this work, but there may be a more practical way to rigorously cross-check perturbative cal-
culations going forward. During the course of our investigation of qq̄ → `+`− in Kreimer’s
γ5 scheme, we discovered that we could effectively check the correctness of the two-loop
hard scattering functions within Kreimer’s γ5 scheme itself by setting up our code pipeline
to allow the user to make different choices of reading point prescription for the Dirac traces.
For example, we found that the fully-symmetrized reading point prescription mentioned in
section 2.3 led to different higher-order-in-ε one-loop hard scattering functions, but to a
unique order α2αs hard scattering function at O

(
ε0
)
.

Even when written as a linear combination of a minimal number of multiple polylog-
arithms such that the cancellation of infrared poles becomes manifest, the two-loop hard
scattering functions calculated in this work are too long to be included in the article. Once
we have implemented support for the remaining kinematic regions of the physical phase
space, we plan to provide public access to an efficient C++ program for the evaluation of
the polarized hard scattering functions discussed in the next section.

6 Numerical results

6.1 Helicity amplitudes

Having arrived at finite quantities in four dimensions, we can directly cast our results
into expressions for the scattering of fermions with definite helicities using explicit four-
dimensional representations.

Due to the form of the massless fermion propagator and the manner in which the
electroweak gauge bosons couple to matter, the helicity quantum number is conserved
along the initial and final fermion lines (see e.g. [117] for a review). This implies that
there are just four non-vanishing helicity amplitudes, those where both the quark and the
antiquark have opposite helicity and the lepton and antilepton have opposite helicity. We
parametrize the center-of-momentum frame according to

p1 =
√
s

2 (1, 0, 0, 1), p3 =
√
s

2 (1, sin θ, 0, cos θ),

p2 =
√
s

2 (1, 0, 0,−1), p4 =
√
s

2 (1,− sin θ, 0,− cos θ), (6.1)

with
− t

s
= 1− cos θ

2 , (6.2)

and use an explicit basis of spinor states in the chiral representation [47]

u+(p1) = s1/4
(
0, 0, 1, 0

)
, u+(p3) = s−1/4

(
0, 0,

√
−u,
√
−t
)
,

u−(p1) = s1/4
(
0, 1, 0, 0

)
, u−(p3) = s−1/4

(
−
√
−t,
√
−u, 0, 0

)
,

v+(p2) = s1/4
(
−1, 0, 0, 0

)
, v+(p4) = s−1/4

(
−
√
−u, −

√
−t, 0, 0

)
,

v−(p2) = s1/4
(
0, 0, 0, 1

)
, and v−(p4) = s−1/4

(
0, 0, −

√
−t,
√
−u
)
. (6.3)
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Plugging these representations18 into our Lorentz structures directly gives us results for the
helicity amplitudes. Decomposing the hard functions (or finite remainders) according to

(–)

H(m,n)
DY [0] =

(–)

C(m,n), fin
VV

(–)

TVV +
(–)

C(m,n), fin
AA

(–)

TAA +
(–)

C(m,n), fin
VA

(–)

TVA +
(–)

C(m,n), fin
AV

(–)

TAV , (6.4)

we obtain for the polarized hard scattering functions H(m,n)
λ1λ2λ3λ4

:

H(m,n)
+−+− = −2(s+ t)

(
C(m,n), fin

VV + C(m,n), fin
AA + C(m,n), fin

VA + C(m,n), fin
AV

)
, (6.5)

H(m,n)
−+−+ = −2(s+ t)

(
C(m,n), fin

VV + C(m,n), fin
AA −C(m,n), fin

VA −C(m,n), fin
AV

)
, (6.6)

H(m,n)
+−−+ = −2t

(
C(m,n), fin

VV −C(m,n), fin
AA −C(m,n), fin

VA + C(m,n), fin
AV

)
, (6.7)

and H(m,n)
−++− = −2t

(
C(m,n), fin

VV −C(m,n), fin
AA + C(m,n), fin

VA −C(m,n), fin
AV

)
. (6.8)

for coupling orders m and n. In eqs. (6.5)–(6.8), due to the observed γ5 scheme-indepen-
dence of the hard scattering functions at zeroth order in the ε expansion (see section 5.3),
we drop the dual notation employed in eq. (6.4).

6.2 Final results

In this section we present visualizations of the polarized hard scattering functions H(0,0)
λ1λ2λ3λ4

,
H(0,1)
λ1λ2λ3λ4

, H(1,0)
λ1λ2λ3λ4

, and H(1,1)
λ1λ2λ3λ4

defined in section 6.1 for all four non-trivial helicity
configurations. In the numerical analysis, we set the gauge boson and Higgs masses to
their on-shell values as listed in [119],

mw = 80.379 GeV, mz = 91.1876 GeV, mh = 125.10 GeV, (6.9)

and the renormalization scale µR =
√
s. Since we keep powers of α and αs factored out

of the expressions we plot, we do not need to specify their values here. For illustrative
purposes, we found it sufficient to consider up-type quarks in the initial state. Our figures
do look rather different for down-type quarks, but our impression is that, on the whole,
they do not introduce completely new features which would be of paramount importance
to discuss here. We elected to plot only the real parts of our final results, as the real parts
of H(1,1)

λ1λ2λ3λ4
contain the most complicated weight four multiple polylogarithms appearing

in our calculations.
In our numerical analysis, we focus on larger values of

√
s where the previously un-

known non-factorizable two-loop box-type Feynman diagrams of section 5.1 are expected
to be important. In order to compare the different orders in α and αs, we find it con-
venient to include in our plots the 4π suppression factors taken out of each higher-order
term in eq. (3.62); that is, we consider H(m,n)

λ1λ2λ3λ4
/(4π)m+n, where the relative orders in the

electroweak and strong couplings are given by (m,n) (see also eq. (2.56)).

18The phase conventions of (6.3) above are in line with the spinor helicity formalism, as in [118] where
u±(pi) = v∓(pi) for all i. Let us stress, however, that we do not adopt the all-outgoing convention for the
external four-momenta. We made use of eqs. (6.1) and (6.2) to derive eqs. (6.3).
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Figure 5. Helicity amplitudes for uū → `+`− in dependence on the center-of-momentum energy
for central scattering, cos θ = 0, and µR =

√
s. The figure shows the real parts of the polarized

hard scattering functions (finite remainders) ReH(m,n)
λ1λ2λ3λ4

/(4π)m+n, see eqs. (6.5)–(6.8), where the
relative orders in the electroweak and strong couplings are denoted by (m,n).

In all plots, we include the tree-level and relative order αs results for reference, they
show a rather simple behavior. The one-loop QCD corrections lie almost on top of the tree
level results. Indeed, they fully factorize from the tree results; we have

H(0,1)
λ1λ2λ3λ4

/(4π) =
(
π

3 − i
)
H(0,0)
λ1λ2λ3λ4

(6.10)

for all helicity configurations and both up- and down-type quarks in the initial state. For
the real part we see that π/3 ≈ 1.05, thus explaining the observed similarity.

Figure 5 shows the dependence of the hard functions on the center-of-mass energy
√
s

for fixed central scattering angle. We observe that the absolute values of all plotted real
parts of relative order ααs increase as a function of

√
s, justifying the expectation that

the calculation of the mixed two-loop EW-QCD corrections for the leptonic final state is
well-motivated in the kinematic regime depicted in the figure. We note that the real parts
of the one-loop EW and the two-loop EW-QCD corrections are not aligned for all helicity
configurations.

Figure 6 shows the dependence of the hard functions on the cosine of the scattering
angle for fixed center-of-mass energy

√
s. The electroweak corrections show a rather com-

plex angular dependence. While the one-loop EW and the two-loop EW-QCD corrections
show a similarity in their angular dependence, they differ in the details.

We also compared the curves of figure 6 to analogous ones for the pure QED-QCD
model studied in [20].19 While maybe not instructive from the phenomenological point of
view, it was interesting to see a somewhat similar qualitative angular dependence emerge
when comparing the two-loop polarized hard scattering functions for QED-QCD and EW-
QCD normalized by their respective tree level contributions.

19To our knowledge, the authors of [20] calculated unpolarized hard scattering functions only.
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Figure 6. Helicity amplitudes for uū→ `+`− in dependence on the cosine of the scattering angle
for
√
s = 500 GeV and µR =

√
s. The figure shows the real parts of the polarized hard scattering

functions (finite remainders) ReH(m,n)
λ1λ2λ3λ4

/(4π)m+n, see eqs. (6.5)–(6.8), where the relative orders
in the electroweak and strong couplings are denoted by (m,n).

7 Summary and outlook

In this article, we calculated the relative order ααs mixed EW-QCD corrections to Drell-
Yan lepton pair production, qq̄ → `+`−. We performed the calculation in both the ’tHooft-
Veltman-Breitenlohner-Maison γ5 scheme and in the Kreimer γ5 scheme using the projector
method for chiral fermions. While our two-loop scattering amplitudes were found to be
scheme dependent starting at O

(
ε−1), unique polarized hard scattering functions in d = 4

were obtained after infrared subtraction. In the ’tHooft-Veltman-Breitenlohner-Maison
scheme, we restored chiral symmetry using local counterterms, where we found it essential
to consistently calculate our renormalization constants to higher orders in ε. To the best
of our knowledge, our application of Kreimer’s γ5 scheme to the calculation of genuine
two-loop 2 → 2 scattering amplitudes with non-trivial electroweak effects is the first of
its kind.

Our calculation provides a major building block for the calculation of the relative
order ααs corrections to off-shell Drell-Yan production in the high energy region, which
is particularly relevant to new physics searches and the establishment of constraints on
possible extensions of the Standard Model.
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A Decoupling of irrelevant Lorentz structures

The helicity amplitudes presented in this article have been calculated using projectors
involving only a set of Lorentz structures which are independent in four dimensions. In
this appendix we show how the additional Lorentz structures in d dimensions can be cleanly
separated in d dimensions such that the limit d→ 4 is smooth. Our construction is similar
to the discussion in [80], but here we consider also explicit occurrences of γ5. We present
the argument for the anticommuting γ5 scheme.

The basic Lorentz structures relevant to our calculation are constructed from T̄1, . . . , T̄4
in (3.4)–(3.7), where we allow for additional insertions of γ5 just before the last spinor of
each Dirac chain. For each of the four Lorentz structures T̄i we obtain four structures
in this way: T̄i,VV, T̄i,AA, T̄i,AV, and T̄i,VA. For the case of T̄1 this was shown explicitly
in (3.10)–(3.13), where we suppressed the index 1 for brevity.

We could collect the basic Lorentz structures according to

Tα = (T̄1,VV, T̄1,AA, T̄2,VV, T̄2,AA, . . . , T̄1,AV, T̄1,VA, T̄2,AV, T̄2,VA, . . .) (A.1)

and decompose our two-loop amplitudes in d dimensions according to

iADY = i
16∑
α=1

Cα Tα, (A.2)

either by explicit Passarino-Veltman reduction of the tensor integrals, or using a projector
method. In fact, we could consider a matrix with elements

Mαβ =
∑

spin,color
T †αTβ (A.3)

to construct projectors

Pα = −i
16∑
β=1

M−1
αβ T

†
β (A.4)

which fulfill
Cα =

∑
spin,color

PαiADY (A.5)

using the standard spin summation of conventional dimensional regularization,∑
spin,color

u(p1)ū(p1) = Nc/p1,
∑

spin,color
u(p3)ū(p3) = /p3, (A.6)

∑
spin,color

v(p2)v̄(p2) = Nc/p2,
∑

spin,color
v(p4)v̄(p4) = /p4, (A.7)

for the spinors of the initial state quarks and of the final state leptons. Here, the matrix
M = (Mαβ) and its inverse are rational functions of s, t and ε. The problem with the
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basis (A.1) is two-fold. First, M−1 has an overall factor 1/ε, which introduces spurious
poles into the calculation and prevents a smooth limit d → 4 at the level of the Lorentz
structures. Second, even if one is interested only in the physical form factors T̄1,VV, T̄1,AA,
T̄1,AV, T̄1,VA, which are independent in d = 4 dimensions, one can not ignore the other
Lorentz structures when calculating the former.

Both problems can be cured by changing to a different basis of Lorentz structures.
Before we discuss this new choice we note that the matrix M above is block diagonal, and
the VV, AA block (indices 1 . . . 8) is identical to the AV, VA block (indices 9 . . . 16). It
is therefore sufficient to restrict the following discussion to the VV, AA block and restrict
indices to 1 . . . 8. We consider a new basis of Lorentz structures T ′α =

∑
β RαβTβ such that

T ′1 = T1, T ′2 = T2, T ′α = Tα +
2∑

β=1
RαβTβ for α = 3 . . . 8 (A.8)

or

(T ′α) = (Rαβ)(Tβ) =
(
12×2 02×6
R6×2 16×6

)
(Tβ) (A.9)

and the first two structures are strictly orthogonal to the others in d dimensions,

(M ′αβ) =
∑

spin,color
(T ′†α T ′β) = (RMR†) =

(
M ′2×2 0

0 M ′6×6

)
. (A.10)

The remaining part of R is obtained according to

Rαβ = −
2∑

α=1
(M−1

2×2)βγMγα for α = 3 . . . 8, β = 1 . . . 2. (A.11)

Note that only the inverse of the left upper 2× 2 submatrix of M ,

M2×2 = Nc

(
8(t2 + u2 − s2ε) 8s(t− u)

8s(t− u) 8(t2 + u2 − s2ε)

)
, (A.12)

enters, which, unlike M−1, is free of 1/ε poles. For R we find explicitly

R31 = R42 = tu(t− u)(tu+ εs2/2)/dR (A.13)
R41 = R32 = −stu(tu− εs2/2)/dR (A.14)
R51 = R62 = −2(20t2u2 − ε(13s4 + 26s3t+ 38s2t2 + 36st3 + 12t4)

+ 2ε2s2(7s2 + 9st+ 6t2)− 3ε3s4)/dR (A.15)
R61 = R52 = −2(12t2u2 − 3εs(s3 + 2s2t+ 4st2 + 4t3) + 3ε2(t− u)s3)/dR (A.16)
R71 = R82 = tu(4t2u+ 2ε(s3 + 2s2t+ 5st2 + 2t3)− ε2s2(3s+ 2t))/dR (A.17)
R81 = R72 = tu(4t2u+ 2εs(s2 + t2)− 3ε2s3)/dR , (A.18)

where
dR = (2t2 − εs2)(2u2 − εs2) . (A.19)
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In the new basis, the matrix M ′ takes the form

M ′ =
(
M2×2 0

0 M ′6×6

)
, (A.20)

where M ′6×6 has an overall factor of ε and therefore vanishes for d → 4. Since in the new
basis the first two Lorentz structures are orthogonal to the other structures in d dimen-
sions, the projectors for the first two form factors can be constructed without explicitly
considering the other structures. Moreover, from the form of M ′6×6 we see that contribu-
tions due to the other structures are suppressed by a power of ε. This motivates to consider
only the first two Lorentz structures for the calculation of physical helicity amplitudes, just
ignoring the other “irrelevant” Lorentz structures (in the terminology of [80]). As pointed
out before, the same construction applies to the AV, VA structures as well, leaving us with
a total of four Lorentz structures, matching the number of different helicity configurations.

B Explicit one-loop results

B.1 Relative order αs results

Corrections to the neutral-current Drell-Yan process of relative order αs are produced
exclusively via gluon exchange across the initial quark line. As should be clear from the
diagrams of section 4.1, the corresponding order αs vertex form factors,

V̄(0,1)
γq̄q (s) = −QqCF t1I13 , (B.1)

V̄(0,1)
Zq̄q (s) = vqCF t1I13 , (B.2)

and Ā(0,1)
Zq̄q (s) = −aqCF t1I13 , (B.3)

where

t1 = 2− ε+ 2ε2

(1− 2ε)ε2 , (B.4)

are nearly trivial.
In HVBM’s γ5 scheme, the finite counterterms relevant to the renormalization of the

order α2αs scattering amplitude,

δZ
(0,1)
Zq̄q = −aqCF t2I13 (B.5)

and δZ
(0,1)
W±q̄q = −awCF t2I13 , (B.6)

where

t2 = 2(2− ε)
(1− ε)(1− 2ε) , (B.7)

are also of order αs (see section 2.8 for more details).

– 55 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
3

B.2 Relative order α results

Corrections to the neutral-current Drell-Yan process of relative order α are generated by
electroweak gauge boson self-energy diagrams, vertex diagrams, and box diagrams. For the
sake of completeness, we also present expressions for the counterterms of order α discussed
in sections 2.6 and 2.7.

The fermion wavefunction counterterms, calculated to all orders in ε in section 2.7, are

δZ
(1,0)
V, f =

(
a2
w + v2

w

)
p I1 +

(
a2
f + v2

f

)
p I4 (B.8)

and δZ
(1,0)
A, f = −2awvwp I1 − 2afvfp I4 , (B.9)

where

p = −2(1− ε)
(2− ε)ε . (B.10)

Due to their excessive length, we abbreviate the integral coefficients of the electroweak
gauge boson self-energies and associated counterterms as ri and present explicit expressions
for them in the ancillary file twopointcoeffs.m attached to the arXiv submission of this
paper. In the notation of section 2.6, we have

Σ̄(1,0)
γγ (s) = r1I1 + r2I2 , (B.11)

Σ̄(1,0)
γZ (s) = r3I1 + r4I2 , (B.12)

Σ̄(1,0)
ZZ (s) = r5I1 + r6I2 + r7I4 + r8I5 + r9I6 , (B.13)

and Σ̄(1,0)
W+W−(s) = r10I1 + r11I4 + r12I5 + r13I8 + r14I9 + r15I10 (B.14)

for the transverse parts of the bare electroweak gauge boson self-energies of relative order α.
Inserting explicit expressions for our master integrals, we find complete agreement through
to O

(
ε0
)
with the results of [66, 67] after setting contributions proportional to the number

of fermion flavors to zero.
Through eqs. (2.71), we subsequently find

δZ(1,0)
γγ = r16I1 , (B.15)

δZ
(1,0)
Zγ = r17I1 , (B.16)

δZ
(1,0)
γZ = r18I1 + r19I3 , (B.17)

δZ
(1,0)
ZZ = r20I1 + r21I3 + r22I4 + r23I5 + r24I7 , (B.18)

δZ
(1,0)
m2
z

= r25I1 + r26I3 + r27I4 + r28I5 + r29I7 , (B.19)

and δZ
(1,0)
m2
w

= r30I1 + r31I4 + r32I5 + r33I11 + r34I12 (B.20)

for the relative order α electroweak gauge boson mass and wavefunction counterterms
appearing in our calculations. As it was not possible for us to find eqs. (B.11)–(B.20) in
the literature verbatim, it may be that we present explicit all-orders-in-ε results for the
above quantities for the first time.
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Although the vertex form factor integral coefficients are all reasonably compact, we
nevertheless abbreviate them as vi in what follows in order to highlight the strong con-
straints imposed on their structure by the chiral symmetry of the Standard Model. We
present explicit expressions for the vi in the ancillary file vertexcoeffs.m attached to the
arXiv submission of this paper. For the order α vertex form factors, we find

V̄(1,0)
γq̄q (s) =−Q3

qv1I13−Qq
(
a2
q +v2

q

)
(v2I4 +v3I13 +v4I14) (B.21)

−Qq′
(
a2
w+v2

w

)
(v5I1 +v6I13 +v7I15)−I3

q

(
a2
w+v2

w

)
(v8I1 +v9I2 +v10I16) ,

Ā(1,0)
γq̄q (s) = 2Qqaqvq (v2I4 +v3I13 +v4I14)+2Qq′awvw (v5I1 +v6I13 +v7I15) (B.22)

+2I3
q awvw (v8I1 +v9I2 +v10I16) ,

V̄(1,0)
Zq̄q (s) =Q2

qvqv1I13 +vq
(
3a2

q +v2
q

)
(v2I4 +v3I13 +v4I14) (B.23)

+
(
2awvwaq′+

(
a2
w+v2

w

)
vq′
)

(v5I1 +v6I13 +v7I15)

+I3
q

(
a2
w+v2

w

) mw√
m2
z−m2

w

(v8I1 +v9I2 +v10I16) ,

Ā(1,0)
Zq̄q (s) =−Q2

qaqv1I13−aq
(
a2
q +3v2

q

)
(v2I4 +v3I13 +v4I14) (B.24)

−
(
2awvwvq′+

(
a2
w+v2

w

)
aq′
)

(v5I1 +v6I13 +v7I15)

−2I3
q awvw

mw√
m2
z−m2

w

(v8I1 +v9I2 +v10I16) ,

V̄(1,0)
γ ¯̀̀ (s) =−Q3

`v1I13−Q`
(
a2
` +v2

`

)
(v2I4 +v3I13 +v4I14) (B.25)

−Q`′
(
a2
w+v2

w

)
(v5I1 +v6I13 +v7I15)−I3

`

(
a2
w+v2

w

)
(v8I1 +v9I2 +v10I16) ,

Ā(1,0)
γ ¯̀̀ (s) = 2Q`a`v` (v2I4 +v3I13 +v4I14)+2Q`′awvw (v5I1 +v6I13 +v7I15) (B.26)

+2I3
` awvw (v8I1 +v9I2 +v10I16) ,

V̄(1,0)
Z ¯̀̀ (s) =Q2

`v`v1I13 +v`
(
3a2

` +v2
`

)
(v2I4 +v3I13 +v4I14) (B.27)

+
(
2awvwa`′+

(
a2
w+v2

w

)
v`′
)

(v5I1 +v6I13 +v7I15)

+I3
`

(
a2
w+v2

w

) mw√
m2
z−m2

w

(v8I1 +v9I2 +v10I16) , and

Ā(1,0)
Z ¯̀̀ (s) =−Q2

`a`v1I13−a`
(
a2
` +3v2

`

)
(v2I4 +v3I13 +v4I14) (B.28)

−
(
2awvwv`′+

(
a2
w+v2

w

)
a`′
)

(v5I1 +v6I13 +v7I15)

−2I3
` awvw

mw√
m2
z−m2

w

(v8I1 +v9I2 +v10I16) ,

where f ′ denotes the isospin partner of fermion f . It is worth pointing out that, in the
above, v5, v6, and v7 may be trivially obtained from v2, v3, and v4 respectively by
replacing m2

z with m2
w. For the infrared-finite contributions featuring massive electroweak

vector bosons in the loop, our results for the one-loop vertex form factors are directly
comparable to the original calculation of [66]. Indeed, upon inserting explicit expressions
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for our master integrals, we find complete agreement through to O
(
ε0
)
with the relevant

terms of eqs. (5.28) and (5.30) of [66] modulo minor typos.20

Finally, for HVBM’s γ5 scheme, we let B(1,0)
VV , B(1,0)

VA , B(1,0)
AV , and B(1,0)

AA denote the
contributions from order α2 box diagrams to C(1,0)

VV , C(1,0)
VA , C(1,0)

AV , and C(1,0)
AA and, for

Kreimer’s γ5 scheme, B̄(1,0)
VV , B̄(1,0)

VA , B̄(1,0)
AV , and B̄(1,0)

AA denote the contributions from order
α2 box diagrams to C̄(1,0)

VV , C̄(1,0)
VA , C̄(1,0)

AV , and C̄(1,0)
AA . We find

B(1,0)
VV =Q2

qQ
2
` (a1I13+a2I17+a3I18+a4I19+a5I20)

+QqQ`aqa` (a6I4+a7I17+a8I18+a9I21+a10I22+a11I23+a12I24+a13I25)
+QqQ`vqv` (a14I4+a15I17+a16I18+a17I21+a18I22+a19I23+a20I24+a21I25)
+a2

qa
2
` (a22I4+a23I17+a24I18+a25I22+a26I23+a27I26+a28I27+a29I28+a30I29)

+a2
qv

2
` (a31I4+a32I17+a33I18+a34I22+a35I23+a36I26+a37I27+a38I28+a39I29)

+a2
`v

2
q (a40I4+a41I17+a42I18+a43I22+a44I23+a45I26+a46I27+a47I28+a48I29)

+v2
qv

2
` (a49I4+a50I17+a51I18+a52I22+a53I23+a54I26+a55I27+a56I28+a57I29)

+aqa`vqv` (a58I4+a59I17+a60I18+a61I22+a62I23+a63I26+a64I27+a65I28+a66I29)
+a4

w (a67I1+a68I2+a69I16+a70I18+a71I30+a72I31)
+v4

w (a73I1+a74I2+a75I16+a76I18+a77I30+a78I31)
+a2

wv
2
w (a79I1+a80I2+a81I16+a82I18+a83I30+a84I31) , (B.29)

B(1,0)
VA =QqQ`aqv` (b1I4+b2I17+b3I18+b4I21+b5I22+b6I23+b7I24+b8I25)

+QqQ`a`vq (b9I4+b10I17+b11I18+b12I21+b13I22+b14I23+b15I24+b16I25)
+a2

qa`v` (b17I4+b18I17+b19I18+b20I22+b21I23+b22I26+b23I27+b24I28+b25I29)
+aqa2

`vq (b26I4+b27I17+b28I18+b29I22+b30I23+b31I26+b32I27+b33I28+b34I29)
+aqvqv2

` (b35I4+b36I17+b37I18+b38I22+b39I23+b40I26+b41I27+b42I28+b43I29)
+a`v2

qv` (b44I4+b45I17+b46I18+b47I22+b48I23+b49I26+b50I27+b51I28+b52I29)
+a3

wvw (b53I16+b54I30+b55I31)
+awv3

w (b56I16+b57I30+b58I31) , (B.30)

B(1,0)
AV =QqQ`aqv` (c1I4+c2I17+c3I18+c4I21+c5I22+c6I23+c7I24+c8I25)

+QqQ`a`vq (c9I4+c10I17+c11I18+c12I21+c13I22+c14I23+c15I24+c16I25)
+a2

qa`v` (c17I4+c18I17+c19I18+c20I22+c21I23+c22I26+c23I27+c24I28+c25I29)
+aqa2

`vq (c26I4+c27I17+c28I18+c29I22+c30I23+c31I26+c32I27+c33I28+c34I29)
+aqvqv2

` (c35I4+c36I17+c37I18+c38I22+c39I23+c40I26+c41I27+c42I28+c43I29)
+a`v2

qv` (c44I4+c45I17+c46I18+c47I22+c48I23+c49I26+c50I27+c51I28+c52I29)
+a3

wvw (c53I16+c54I30+c55I31)
+awv3

w (c56I16+c57I30+c58I31) , (B.31)
20While comparing to [66], we noticed two typos in eq. (B.6), the definition of the form factor Λ3(k2,M)

appearing in eqs. (5.28) and (5.30): the sixth and seventh lines of eq. (B.6) should read

+2
3w(w + 2)

[
ln2
(

1 +
√

1− 4w
1−
√

1− 4w

)
− π2

]
− iπ

[
2w + 1

3
√

1− 4w + 4
3w(w + 2) ln

(
1 +
√

1− 4w
1−
√

1− 4w

)]
.
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B(1,0)
AA =Q2

qQ
2
` (d1I13+d2I17+d3I18+d4I19+d5I20)

+QqQ`aqa` (d6I4+d7I17+d8I18+d9I21+d10I22+d11I23+d12I24+d13I25)
+QqQ`vqv` (d14I4+d15I17+d16I18+d17I21+d18I22+d19I23+d20I24+d21I25)
+a2

qa
2
` (d22I4+d23I17+d24I18+d25I22+d26I23+d27I26+d28I27+d29I28+d30I29)

+a2
qv

2
` (d31I4+d32I17+d33I18+d34I22+d35I23+d36I26+d37I27+d38I28+d39I29)

+a2
`v

2
q (d40I4+d41I17+d42I18+d43I22+d44I23+d45I26+d46I27+d47I28+d48I29)

+v2
qv

2
` (d49I4+d50I17+d51I18+d52I22+d53I23+d54I26+d55I27+d56I28+d57I29)

+aqa`vqv` (d58I4+d59I17+d60I18+d61I22

+d62I23+d63I26+d64I27+d65I28+d66I29)
+a4

w (d67I1+d68I2+d69I16+d70I18+d71I30+d72I31)
+v4

w (d73I1+d74I2+d75I16+d76I18+d77I30+d78I31)
+a2

wv
2
w (d79I1+d80I2+d81I16+d82I18+d83I30+d84I31) , (B.32)

B̄(1,0)
VV =Q2

qQ
2
` (ā1I13+ā2I17+ā3I18+ā4I19+ā5I20)

+QqQ`aqa` (ā6I4+ā7I17+ā8I18+ā9I21+ā10I22+ā11I23+ā12I24+ā13I25)
+QqQ`vqv` (ā14I4+ā15I17+ā16I18+ā17I21+ā18I22+ā19I23+ā20I24+ā21I25)
+a2

qa
2
` (ā22I4+ā23I17+ā24I18+ā25I22+ā26I23+ā27I26+ā28I27+ā29I28+ā30I29)

+a2
qv

2
` (ā31I4+ā32I17+ā33I18+ā34I22+ā35I23+ā36I26+ā37I27+ā38I28+ā39I29)

+a2
`v

2
q (ā40I4+ā41I17+ā42I18+ā43I22+ā44I23+ā45I26+ā46I27+ā47I28+ā48I29)

+v2
qv

2
` (ā49I4+ā50I17+ā51I18+ā52I22+ā53I23+ā54I26+ā55I27+ā56I28+ā57I29)

+aqa`vqv` (ā58I4+ā59I17+ā60I18+ā61I22+ā62I23+ā63I26+ā64I27+ā65I28+ā66I29)
+a4

w (ā67I1+ā68I2+ā69I16+ā70I18+ā71I30+ā72I31)
+v4

w (ā73I1+ā74I2+ā75I16+ā76I18+ā77I30+ā78I31)
+a2

wv
2
w (ā79I1+ā80I2+ā81I16+ā82I18+ā83I30+ā84I31) , (B.33)

B̄(1,0)
VA =QqQ`aqv`

(
b̄1I4+b̄2I17+b̄3I18+b̄4I21+b̄5I22+b̄6I23+b̄7I24+b̄8I25

)
+QqQ`a`vq

(
b̄9I4+b̄10I17+b̄11I18+b̄12I21+b̄13I22+b̄14I23+b̄15I24+b̄16I25

)
+a2

qa`v`
(
b̄17I4+b̄18I17+b̄19I18+b̄20I22+b̄21I23+b̄22I26+b̄23I27+b̄24I28+b̄25I29

)
+aqa2

`vq
(
b̄26I4+b̄27I17+b̄28I18+b̄29I22+b̄30I23+b̄31I26+b̄32I27+b̄33I28+b̄34I29

)
+aqvqv2

`

(
b̄35I4+b̄36I17+b̄37I18+b̄38I22+b̄39I23+b̄40I26+b̄41I27+b̄42I28+b̄43I29

)
+a`v2

qv`
(
b̄44I4+b̄45I17+b̄46I18+b̄47I22+b̄48I23+b̄49I26+b̄50I27+b̄51I28+b̄52I29

)
+a3

wvw
(
b̄53I1+b̄54I2+b̄55I16+b̄56I18+b̄57I30+b̄58I31

)
+awv3

w

(
b̄59I1+b̄60I2+b̄61I16+b̄62I18+b̄63I30+b̄64I31

)
, (B.34)
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B̄(1,0)
AV =QqQ`aqv` (c̄1I4+c̄2I17+c̄3I18+c̄4I21+c̄5I22+c̄6I23+c̄7I24+c̄8I25)

+QqQ`a`vq (c̄9I4+c̄10I17+c̄11I18+c̄12I21+c̄13I22+c̄14I23+c̄15I24+c̄16I25)
+a2

qa`v` (c̄17I4+c̄18I17+c̄19I18+c̄20I22+c̄21I23+c̄22I26+c̄23I27+c̄24I28+c̄25I29)
+aqa2

`vq (c̄26I4+c̄27I17+c̄28I18+c̄29I22+c̄30I23+c̄31I26+c̄32I27+c̄33I28+c̄34I29)
+aqvqv2

` (c̄35I4+c̄36I17+c̄37I18+c̄38I22+c̄39I23+c̄40I26+c̄41I27+c̄42I28+c̄43I29)
+a`v2

qv` (c̄44I4+c̄45I17+c̄46I18+c̄47I22+c̄48I23+c̄49I26+c̄50I27+c̄51I28+c̄52I29)
+a3

wvw (c̄53I1+c̄54I2+c̄55I16+c̄56I18+c̄57I30+c̄58I31)
+awv3

w (c̄59I1+c̄60I2+c̄61I16+c̄62I18+c̄63I30+c̄64I31) , and (B.35)

B̄(1,0)
AA =Q2

qQ
2
`

(
d̄1I13+d̄2I17+d̄3I18+d̄4I19+d̄5I20

)
+QqQ`aqa`

(
d̄6I4+d̄7I17+d̄8I18+d̄9I21+d̄10I22+d̄11I23+d̄12I24+d̄13I25

)
+QqQ`vqv`

(
d̄14I4+d̄15I17+d̄16I18+d̄17I21+d̄18I22+d̄19I23+d̄20I24+d̄21I25

)
+a2

qa
2
`

(
d̄22I4+d̄23I17+d̄24I18+d̄25I22+d̄26I23+d̄27I26+d̄28I27+d̄29I28+d̄30I29

)
+a2

qv
2
`

(
d̄31I4+d̄32I17+d̄33I18+d̄34I22+d̄35I23+d̄36I26+d̄37I27+d̄38I28+d̄39I29

)
+a2

`v
2
q

(
d̄40I4+d̄41I17+d̄42I18+d̄43I22+d̄44I23+d̄45I26+d̄46I27+d̄47I28+d̄48I29

)
+v2

qv
2
`

(
d̄49I4+d̄50I17+d̄51I18+d̄52I22+d̄53I23+d̄54I26+d̄55I27+d̄56I28+d̄57I29

)
+aqa`vqv`

(
d̄58I4+d̄59I17+d̄60I18+d̄61I22

+d̄62I23+d̄63I26+d̄64I27+d̄65I28+d̄66I29
)

+a4
w

(
d̄67I1+d̄68I2+d̄69I16+d̄70I18+d̄71I30+d̄72I31

)
+v4

w

(
d̄73I1+d̄74I2+d̄75I16+d̄76I18+d̄77I30+d̄78I31

)
+a2

wv
2
w

(
d̄79I1+d̄80I2+d̄81I16+d̄82I18+d̄83I30+d̄84I31

)
, (B.36)

where, due to their excessive length, the ai, bi, ci, di, āi, b̄i, c̄i, and d̄i are provided
in the ancillary files HVBMboxcoeffs.m and Kreimerboxcoeffs.m attached to the arXiv
submission of this paper.

In fact, it is possible to compare our results for the one-loop box diagrams to the original
calculation of [66], where a photon mass λ was employed to regulate infrared singularities,
by making the identification ln

(
λ2/s

)
→ 1/ε. Inserting explicit expressions for our master

integrals into eqs. (B.29)–(B.36), we find, modulo typos, complete agreement through to
O
(
ε0
)
with eqs. (B.10) and (B.12)–(B.14) of [66]. To find agreement with [66], we first set

the factor of α/(2πs) in eq. (B.10) to one, the factors of α/(2π) in eq. (B.12) to 2/s, the
factors of α/(2π) in eq. (B.13) to 2/

(
s−M2

Z

)
, and the factors of α/(2π) in eq. (B.14) to

2/s. In addition, we find that the term inside the brackets on the second line of eq. (B.12)
should read

−2
[
ln
(−t
s

)
− ln

(−u
s

)]
ln
(−s− iε

λ2

)
,

– 60 –



J
H
E
P
0
5
(
2
0
2
1
)
2
1
3

that the term inside the parentheses on the right-hand side of the second equality of eq.
(B.13) should read21

Sp
(
M2
Z + t

t

)
− Sp

(
M2
Z + u

u

)
+ 1

2

[
ln
(
t2

s2

)
− ln

(
u2

s2

)]
ln
(

M2
Z

M2
Z − s− iε

)

−
[
ln
(−t
s

)
− ln

(−u
s

)]
ln
(
M2
Z − s− iε
λ2

)
,

and that the factor of x2 + x1 in the denominator on the third line of eq. (B.14) should be
replaced by x2 − x1.

From the ingredients presented above, we distill complete results for C(0,1)
VV , C(0,1)

VA ,
C(0,1)

AV , C(0,1)
AA , C̄(0,1)

VV , C̄(0,1)
VA , C̄(0,1)

AV , C̄(0,1)
AA , C(1,0)

VV , C(1,0)
VA , C(1,0)

AV , C(1,0)
AA , C̄(1,0)

VV , C̄(1,0)
VA , C̄(1,0)

AV ,
and C̄(1,0)

AA in section 4.3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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