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1 Introduction

Dominance of matter over antimatter remains one of the prominent cosmological puz-
zles [1, 2] which needs to be addressed in a beyond Standard Model (BSM) framework.
Light neutrino masses and mixing [3–15], another BSM phenomena, can be naturally con-
nected with matter anti-matter asymmetry with the inclusion of heavy right handed (RH)
sterile states (Ni) that facilitate light neutrino masses via Type-I seesaw mechanism as well
as lead to lepton number violation in the theory. The simplest leptogenesis mechanism is
the CP violating and out of equilibrium [16] decays of the sterile states [17–22] accompa-
nied by a B-L conserving Sphaleron transition [23, 24]. There could be other sources of
lepton number violation in the early universe (EU), e.g., lepton asymmetry sourced by chi-
ral Gravitational Waves (GWs) [25–31] and by the interaction of lepton or baryon current
with background gravity through the operator ∂µRjµ/M2, where R is the Ricci scalar, by
the means of a dynamical CPT violation [26, 32–40]. Interestingly, the operator ∂µRjµ/M2

can be generated in Type-I seesaw at two-loop level [41–44] (cf. figure 1) causing a chem-
ical potential and hence a net lepton asymmetry in equilibrium proportional to the time
derivative of R. When it comes to the testability of standard leptogenesis within Type-I
seesaw, one has either to lower the RH mass scale for collider searches [45–48] or to impose
restrictions on the parameter space, for example, considering discrete symmetries [49–52]
and theories like SO(10) grand unification (GUT) [53–57]. However, the discovery of GWs
by LIGO and Virgo collaboration [58–64] of black holes and neutron stars has opened up a
new cosmic frontier for multi-frequency study of stochastic GW background (SGWB) [65–
68] by which many BSM theories including leptogenesis can be probed. A natural and an
exciting prediction of a BSM phase transition [69] associated with a spontaneous breaking
of an Abelian symmetry is cosmic strings [70–72] which can form closed loop and shrink via
emission of GWs [73]. Whilst emission of GWs from cosmic string remains controversial,
numerical simulations based on the Nambu-Goto action [74, 75] indicate that cosmic string
loops loose energy dominantly via GW radiation, should the underlying broken symmetry
correspond to a local gauge symmetry.

Most distinguishable feature of GW emission from cosmic string is prediction of a
strong signal across a wide range of frequency which has triggered a growing interest in this
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field [76–86]. This also includes recent studies to probe GUT [87, 88], high scale leptogen-
esis [89], low scale leptogenesis [90]. Unequivocally, GW probe of BSM models has become
more interesting after the new NANOGrav analysis of 12.5 yrs pulsar timing data [91] which
reports a strong evidence for a stochastic common-spectrum process and may be interpreted
as a GW signal at frequency f ∼ 1/yr. The new data is better fitted with cosmic string
models [92–94] than the single value power spectral density as suggested by the models of
supermassive black hole (SMBHs). For the other interpretations of the NANOGrav data,
e.g., primordial black holes, dark phase transition and inflation please see refs. [95–105].

In the context of seesaw models and leptogenesis, one has a natural motivation for a
spontaneous breaking of U(1)B−L [106, 107] which generates heavy RH neutrino masses as
well as gives a detectable cosmic string induced GW signal. This has been the central point
of the studies in the refs. [89, 90]. We go in the same direction but consider RH neutrino
induced gravitational leptogenesis mechanism (RIGL) [44] wherein lepton asymmetry is
generated at two loop level due to the interactions of RH neutrinos with background grav-
ity. A dynamical CPT violation in this process induces a lepton asymmetry in equilibrium
which is maintained during the course of evolution until ∆L = 2 N1-interaction rates fall
below the Hubble expansion rate. While even without flavour effects [108–114] in the
washout processes, the mechanism is able to produce dominant lepton asymmetry (com-
pared to the leptogenesis from decays) [41–44], when the effects are taken into account, the
lightest RH mass scale M1 can be lowered to Mmin ∼ 107 GeV [115] unlike the standard
N1-thermal [116–119] leptogenesis scenario (TRH > M1) where it is subjected to a lower
bound of 109 GeV [120]. We consider a hierarchical spectrum of RH neutrinos assuming the
heaviest mass scale is of the order of the U(1) breaking scale (ΛCS) which also sets the initial
temperature of asymmetry generation and masses of the other two are parametrically sup-
pressed with the lightest being O(Mmin). The magnitude of the final frozen out asymmetry
depends on the heaviest mass scale as well as the strength of the ∆L = 2 N1-interactions
which typically increase with the increase of the lightest light neutrino mass m1 and cause a
reduction in the magnitude of the final asymmetry. This opens up the possibility to probe
the RIGL mechanism in GW detectors as well as absolute neutrino mass scale experiments
and consequently neutrinoless double beta decay (0νββ) experiments. We show that a
successful leptogenesis corresponds to Gµ > 4.4×10−11 with a corresponding upper bound
m1 . 12 meV, where G is the Newton’s constant and µ ∼ Λ2

CS is the string tension. An
increase in Gµ causes an increase in the upper bound on m1 and hence less exclusion in the
0νββ decay parameter space. We then discuss the compatibility of RIGL mechanism with
recent NANOGrav data and find that m1 & 25 meV is disfavoured by NANOGrav at 2σ.

The rest of the paper is organised as follows: in section 2 we discuss the RIGL mecha-
nism. In section 3 we briefly outline the production of GWs from cosmic string. In section 4
we present the numerical analysis and an overall discussion. We summarise in section 5.

2 Right handed neutrino induced gravitational leptogenesis

The basic idea behind the gravitational leptogenesis [33] is that the C and CP violating
operator LCPV ∼ b∂µRjµ ∼ b∂µR ¯̀γµ` with b as a real effective coupling of mass dimension
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Figure 1. Flat space two loop diagrams in seesaw model that generate the ∂µRjµ/M2 operator
when computed in the gravitational bckground. E.g., see ref. [43].

minus two, corresponds to a chemical potential µ = bṘ for the lepton number in the
theory. Consequently, the normalised (by photon density nγ ∼ T 3) equilibrium lepton
asymmetry which arises due to this chemical potential is given by N eq

B−L ∼
bṘ
T . Now an

important question that can be addressed is, that without introducing the operator by
hand, given a model, whether the operator can be generated dynamically. The authors
of refs. [41–44] showed that the Type-I seesaw mechanism which is otherwise studied for
generating light neutrino masses and leptogenesis from RH neutrino decays [17], facilitates
LCPV at two loop-level (figure 1) even when the seesaw Lagrangian is minimally coupled to
the gravitational background. Physically, a non-vanishing value of the chemical potential
which could be attributed to an asymmetric propagation of lepton and anti-lepton can be
understood by computing the self energy diagrams for lepton and anti-lepton propagators
(in gravitational background) which in the seesaw model leave different contributions only
at the two loop level (figure 1).

To understand how LCPV gets generated in seesaw model, one has to capitalise on the
fact that the effective coupling ‘b’ is independent of the choice of background and therefore
the computation can simply be done in a conformally flat metric given by

gµν = (1 + h)ηµν (2.1)

so that the contribution from LCPV = b∂µR ¯̀γµ` to the effective ``h vertex in the momen-
tum space reads

A(q) = 3ib(q2
/q)h(q), (2.2)

where q = p′−p is the momentum transfer between the ingoing (p′) and outgoing lepton(p)
and the Ricci scalar is given by R = −3∂2h. In the seesaw model, a construction of an
effective ``h vertex that leaves a similar contribution as in eq. (2.2) would then manifest
the generation LCPV operator. The coupling ‘b’ therefore can be calculated by matching
the terms proportional to q2/q. Now looking at figure 1, it is clear that to create an effective
``h vertex, one needs to have an insertion of h for example by the means of NNh, HHh,
H`Nh etc. terms. Then the function A(q) can be calculated by computing the transition
matrix element 〈`α(p′)|Oh|`α(p)〉, where the operator Oh can be generated using eq. (2.1)
and a proper conformal rescaling [41, 44]of the fields followed by an expansion (upto linear
order in h)of UV Lagrangian

L = LEW +
√
−g

[
iN̄Ri /DNRi −

{
fαi ¯̀LαH̃NRi + 1

2N̄
C
Ri(MR)ijδijNRj + h.c.

}]
, (2.3)
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where
√
−g is the square root of the metric determinant, `Lα =

(
νLα eLα

)T
is the SM

lepton doublet of flavour α, H̃ = iσ2H∗ with H =
(
H+ H0

)T
being the Higgs doublet

and MR = diag (M1,M2,M3), M1,2,3 > 0. It can be shown that only the NNh insertion is
what is relevant to the computation of the transition matrix element and essentially one
has to compute four two-loop diagrams (two diagrams for each of the diagrams in figure 1
with NiNih and NjNjh insertion) [42, 44]. The contribution from these diagrams to the
matrix element reads as

A(q) = i(q2
/q)h(q)

∑
i,j,β

Im
[
f †iαfαjf

†
iβfβj

]
MiMj

I[ij], (2.4)

where the loop function I[ij] depends on the heavy neutrino masses. Comparing eq. (2.2)
and eq. (2.4), it is evident that the effective coupling b is simply given by

b =
∑
i,j,β

Im
[
f †iαfαjf

†
iβfβj

]
3MiMj

I[ij] (2.5)

and consequently, LCPV operator for one generation of leptons in seesaw model reads as

LCPV =
∑
i,j,β

Im
[
f †iαfαjf

†
iβfβj

]
3MiMj

I[ij]∂µR ¯̀
αγ

µ`α. (2.6)

Now recalling the chemical potential µ = bṘ, using standard Fermi-Dirac statistics for
lepton and anti-lepton equilibrium densities and normalising the lepton asymmetry with
photon number density, the net lepton asymmetry (summing over all the lepton genera-
tions) can be calculated as

N eq
B−L = π2Ṙ

36
∑
j>i

Im
[
k2
ij

]
ζ(3)TMiMj

I[ij], (2.7)

where kij = (f †f)ij . The general form of the loop function I[ij] is given by

I[ij] = 1
(4π)4

(
M2
j

M2
i

)p
ln
(
M2
j

M2
i

)
(2.8)

where p = 0, 1 [41–44]. Note that in refs. [41–44], the authors show, though p = 0 is a
conservative solution, p = 1 is also strongly preferred (see e.g., the discussion related to
‘Diagram 4’ in section 4.1 of ref. [42]. Briefly, the transition amplitude can be shown to
be a difference between the amplitudes of two self-energy diagrams, where the first one
shows a clear p = 1 behaviour and the second one which requires a non-trivial analytic
computation of ten scalar topologies, from the power counting argument can be shown
to be not dominant enough to cancel the amplitude of the first diagram. However, still
there could be a room for an unlikely conspiracy for some of the scalar topologies of the
second diagram to cancel the p = 1 behaviour of the first diagram. That fine-tuned
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region of parameter space requires full analytic computation of all the scalar topologies for
the second diagram). Here we do not confront the robustness of p = 1 solution (or the
‘hierarchically enhanced solution’ [43, 44]), rather we take it at face value. As an aside, let
us mention that p = 0 solution does not work (cannot produce correct baryon asymmetry)
in the standard cosmological evolution of the universe [43, 44, 115]. From now on we shall
proceed with hierarchically enhanced equilibrium asymmetry

N eq
B−L = π2Ṙ

36(4π)4

∑
j>i

Im
[
k2
ij

]
ζ(3)TMiMj

(
M2
j

M2
i

)
ln
(
M2
j

M2
i

)
, (2.9)

considering a standard cosmological evolution and therefore, we stress that any conclusive
future demurral of p = 1 would imply our analysis is invalid. To proceed further, the time
derivative of the Ricci scalar Ṙ is given by

Ṙ =
√

3σ3/2(1− 3ω)(1 + ω) T
6

M3
Pl

, (2.10)

where σ = π2g∗/30, MPl ∼ 2.4 × 1018 GeV and ω being the equation of state parameter.
A non-zero value of Ṙ in radiation domination is obtained in all the usual scenarios of
gravitational leptogenesis by considering so called trace-anomaly in the gauge sector al-
lowing 1 − 3ω ' 0.1.1 The light neutrino masses are obtained from the flat space seesaw
Lagrangian and are given in the flavour basis as

Mν = −mDM
−1
R mT

D . (2.11)

where mD = fv with v = 174GeV being the vacuum expectation value of the SM Higgs.
Neutrino-less double beta decay parameter is the absolute value of the (11) element of Mν ,
i.e |Mν,11| ≡ |mββ | [121]. The mass matrix in eq. (2.11) can be diagonalised by a unitary
matrix U as

U †mDM
−1
R mT

DU
∗ = Dm, (2.12)

where Dm = − diag (m1,m2,m3) with m1,2,3 being the physical light neutrino masses. We
work in a basis where the RH neutrino mass matrix MR and charged lepton mass matrix

1Note that δω = 1 − 3ω ' 0.01 − 0.1 6= 0 is a crucial ingredient of all the gravitational leptogenesis
models. In the SM, δω ' 0 is still a very good assumption at the higher temperatures [123]. Therefore,
most of the gravitational leptogenesis models that assume a large and nonvanishing δω, intrinsically refer
to a BSM theory. For example, without going into the detail of a specific BSM model, starting from the
ref. [33] to the refs. [41–44] refer to δω ∼ 0.1 considering the finite temperature QCD as SU(Nc) gauge
theory with Nf massless quark flavours and coupling g which give rise to δω as [124]

δω = 5
12π2

g4

(4π)2

(
Nc + 5

4Nf
) (

11
3 Nc −

2
3Nf

)
2 + 7

2
NcNf

N2
c−1

+O(g5)

so that typical gauge groups and matter content can easily yield δω ' 0.01− 0.1 at high energy [33]. Note
that we quote the result of eq. 3.88 of ref. [123] which differs from the results of eq.4 of ref. [33] by a factor 2.
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m` are diagonal. Therefore, the neutrino mixing matrix U can be written as

U = PφUPMNS ≡ Pφ

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

PM ,

(2.13)
where PM = diag (eiαM , 1, eiβM ) is the Majorana phase matrix, Pφ = diag (eiφ1 , eiφ2 , eiφ3)
is an unphysical diagonal phase matrix and cij ≡ cos θij , sij ≡ sin θij with the mixing angles
θij = [0, π/2]. Low energy CP violation enters in eq. (2.13) via the Dirac phase δ and the
Majorana phases αM and βM . It is useful to parametrise (which can be straightforwardly
derived from eq. (2.12)) the Dirac mass matrix as [122]

mD = U
√
DmΩ

√
MR, (2.14)

where Ω is a 3× 3 complex orthogonal matrix and is given by

Ω =

 1 0 0
0 cos z23 sin z23
0 − sin z23 cos z23


 cos z13 0 sin z13

0 1 0
− sin z13 0 cos z13


 cos z12 sin z12 0
− sin z12 cos z12 0

0 0 1

 , (2.15)

where zij = xij + iyij . In the hierarchical limit of the RH neutrinos M3 �M2 �M1, the
equilibrium asymmetry can be approximated as

N eq
B−L '

π2Ṙ

36(4πv)4

∑
k,k′mkmk′Im [Ω∗k1Ωk3Ω∗k′1Ωk′3]

ξ(3)T
M2

3
M2

1
ln
(

M2
3

M2
1

)
. (2.16)

As mentioned previously, one needs to compute the frozen out asymmetry NG0
B−L con-

sidering the effect of ∆L = 2 processes which tend to maintain the asymmetry N eq
B−L in

equilibrium and therefore a dilution of the asymmetry from zin upto z0-the freeze-out point
of the asymmetry. The asymmetry NG0

B−L can be obtained by solving a simple Boltzmann
equation [44]

dNB−L
dz

= −W∆L=2
(
NB−L −N eq

B−L

)
, (2.17)

where W∆L=2 encodes the effect of ∆L = 2 process involving non-resonant N1-exchange
and is given by [44, 125]

W∆L=2(z � 1) ' 12m∗M1
π2v2z2

([
m̄

m∗

]2
+K2

1 −
2m2

1
m∗2

)
with m̄ =

√∑
i

m2
i . (2.18)

For a parametric scan using 3σ neutrino oscillation data [15], it is convenient to solve the
BE in eq. (2.17) analytically. To this end, we re-write eq. (2.17) as

dNB−L
dz

= − κ

z2

(
NB−L −

β

z5

)
, (2.19)

where

κ = 12m∗M1
π2v2

([
m̄

m∗

]2
+K2

1 −
2m2

1
m∗2

)
, β =

√
3σ3/2M5

1
M3
Pl

(1− 3ω)(1 + ω)Y (2.20)
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and the unflavoured N1-decay parameter K1 is given in terms of orthogonal matrix as

Ki = 1
m∗

∑
k

mk|Ωki|2. (2.21)

The parameter Y which encodes the CP violation in the theory is given by

Y = π2

36(4πv)4

∑
k,k′mkmk′Im [Ω∗k1Ωk3Ω∗k′1Ωk′3]

ξ(3)
M2

3
M2

1
ln
(

M2
3

M2
1

)
. (2.22)

Starting from a vanishing initial abundance of NB−L(z), for large values of z one finds the
analytical solution for NG0

B−L as

NG0
B−L = 120β

κ5

[
1− e−κ/zin

]
− βe−κ/zin

κ5

[ 5∑
n=1

5!
n!

(
κ

zin

)n]
. (2.23)

Since the lightest RH scale is below 109 GeV, a second stage N1-washout by inverse decays
occurs in all the three flavours and therefore the final asymmetry is given by [115]

Nf
B−L =

∑
α=e,µ,τ

N∆α = 1
3

∑
α=e,µ,τ

(
120β
κ5

[
1−e−κ/zin

]
−βe

−κ/zin

κ5

[ 5∑
n=1

5!
n!

(
κ

zin

)n])
e−

3π
8 K1α ,

(2.24)
where the flavoured washout parameters are given by

Kiα = 1
m∗

∣∣∣∣∣∑
k

Uαk
√
mkΩki

∣∣∣∣∣
2

. (2.25)

One has to compare eq. (2.24) with the measured asymmetry at recombination

ηCMB ' 10−2Nf
B−L ' 6× 10−10. (2.26)

In figure 2, we show the dynamics of the lepton asymmetry production (inclusive of a
second stage N1-washout for benchmark value of K1α = 2). As one sees as κ increases
∆L = 2 interactions try to maintain the asymmetry in equilibrium for a longer period of
time and hence causes a late freeze-out as well as a reduction in magnitude of the frozen out
asymmetry. Thus, if the elements of the orthogonal matrix are not significantly large [126]-
which also correspond to a fine tuning in the seesaw formula [57, 127], an increase of m1
causes an increase of the value of κ (shown in figure 3) and consequently the magnitude of
the asymmetry reduces. This leads to an upper bound on m1 for successful gravitational
leptogenesis. Note that in the analytical formula for Nf

B−L we have neglected the flavour
effect in the ∆L = 2 process as well as all the possible values of the flavour projectors (that
project the asymmetry on the e, µ, τ basis) compatible with 3σ oscillation data. In ref. [115]
we computed it numerically and found these effects do not have any significant effect on the
final asymmetry. For convenience, let us re-mention here that the frozen out asymmetry
that is large enough in magnitude to be compatible with the observed one, corresponds to
smaller values κ which are not very sensitive to the flavour effect. On the other hand, in the
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κ = 4×10-6

κ =6.5×10-6

κ = 4×10-5

κ = 8×10-5

Numerical vs. Analytical

NB-L
eq

NB-L
Obs

K1α = 2

10-6 10-4 10-2 100 102
10-15

10-12

10-9

10-6

10-3

100

z = M1/T

Figure 2. A numerical vs. analytical comparison of NG0
B−L. The coloured solid lines are numerical

solutions and the black dashed lines are analytical yields. The coloured dashed lines are the lepton
number violating interactions–∆L = 2+Inverse decays which contribute to the washout processes
(initial dilution and a second stage washout).

probability triangle, though flavour projectors show a biasness towards the electron flavour,
Piα = 1/3 still remains a fair choice to take under consideration [115, 127]. Therefore to
efficiently scan the entire parameter space in the computer codes, we have simplified the
final formula for Nf

B−L considering a democratic behaviour of the flavour projectors. A
consideration of the full 3σ data for the flavour projectors (analytical formula including
flavour projectors is given in ref. [115]) would affect the final results only at the level of
few percent. However, let us mention that in our previous analysis we did not take into
account the effect of flavour-couplings (FC) at the N1-washout [109, 114, 128–130]. Though
in typical leptogenesis studies, FCs are included for more accurate computation involving
flavour effect, in some scenarios, FCs play roles which are of great interest [114, 130]. For
example, in ref. [114] it has been shown that even if CP violation is absent in one particular
flavour, FCs can generate significant lepton asymmetry in that flavour. In this article we
include the effect of FCs towards a fuller treatment of flavour effect and in the numerical
section we shall state the percentage of correction to the final result. The flavour coupling
effect is introduced in the washout equation as

dN∆α

dz
= −P1αCαβW

ID
1 N∆β

, (2.27)

where P1α=K1α/K1 and the flavour coupling matrices in the three flavour regime [114, 129]

Cl =

151/179 −20/179 −20/179
−25/358 344/537 −14/537
−25/358 −14/537 344/537

 , Ch =

37/179 52/179 52/179
37/179 52/179 52/179
37/179 52/179 52/179

 , (2.28)
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yield

Cαβ ≡ Cl + Ch =

188/179 32/179 32/179
49/358 500/537 142/537
49/358 142/537 500/537

 . (2.29)

Clearly, unlike eq. (2.24) which is a solution of eq. (2.27) with C = I, now the equation
for the final asymmetry would be more complicated and interestiyngly, a particular flavour
component of the asymmetry would receive contribution from other flavours. For computa-
tional purpose, it is convenient to perform a basis rotation to make the eq. (2.27) diagonal
in a redefined flavour basis. To this end, eq. (2.27) can be written in matrix form as

d ~N∆
dz

= −W ID
1 P̃1 ~N∆, (2.30)

where ~N∆ =
(
N∆e, N∆µ, N∆τ

)T and P̃1 = P1αCαβ . Introducing the V matrix that diago-
nalises P̃1 as V P̃1V

−1 = P̃ ′1, eq. (2.30) can be written in the new flavour basis as

d ~N ′∆
dz

= −W ID
1 P̃ ′1 ~N

′
∆, (2.31)

where ~N ′∆ = V ~N∆. Therefore, the asymmetry matrix in the prime is simply obtained as

~N ′f∆ =
(
NG0

∆e′e
− 3π

8 K1e′ NG0
∆µ′e

− 3π
8 K1µ′ NG0

∆τ ′e
− 3π

8 K1τ ′
)T

, (2.32)

where K1α′ = P1α′K1. Consequently, the final asymmetry matrix which we meed in the
unprimed basis is obtained as

~Nf
∆ = V −1

∑
β

Ve′βN
G0
∆βe

− 3π
8 K1e′

∑
β

Vµ′βN
G0
∆βe

− 3π
8 K1µ′

∑
β

Vτ ′βN
G0
∆βe

− 3π
8 K1τ ′

T .
(2.33)

Therefore, the total asymmetry that produces the observed baryon asymmetry is given by

Nf
B−L =

∑
α

Nf
∆α =

∑
α

∑
α′

V −1
αα′

∑
β

Vα′βN
G0
∆βe

− 3π
8 K1α′ . (2.34)

3 Gravitational waves from cosmic string

Cosmic strings are natural prediction of many extension of standard model featuring U(1)
symmetry breaking [71, 72]. They are considered to be one dimensional object having
string tension µ which is typically taken to be of the order of the square of the symmetry
breaking scale. The normalised string tension Gµ, with G being the Newton’s constant, is
directly constrained by CMB as Gµ . 1.1 × 10−7 [131]. After formation, the strings are
expected to reach a scaling regime in which their net energy density tracks the total energy
density of the universe with a relative fraction Gµ. This regime is considered to have
many closed loops and Hubble-length long strings which intersect to form new loops as
the universe expands. All these loops oscillate and emit radiation, including gravitational
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waves. We consider stochastic gravitational background (SGWB) from cosmic string scaling
by considering Nambu-goto strings which radiate energy dominantly in the form of GW
radiation. We follow ref. [77] to calculate SGWB from cosmic string. Once the loops
are formed, they radiate energy in the form of gravitational radiation at a constant rate,
mathematically described as

dE

dt
= −ΓGµ2, (3.1)

where G is the usual gravitational constant and Γ = 50 [73, 132]. Thus, the initial length
li = αti of the loop decreases as

l(t) = αti − ΓGµ(t− ti) (3.2)

until the loop disappears completely. The quantity α has a distribution and for the largest
loop one typically has α = 0.1 [133, 134] which we consider in the numerical calculation.
The total energy loss from a loop is decomposed into a set of normal-mode oscillations at
frequencies f̃ = 2k/l, where k = 1, 2, 3 . . .. The relic GW density parameter is given by

ΩGW = f

ρc

dρGW
df

, (3.3)

where f is the red-shifted frequency and ρc = 3H2
0/8πG. The GW density parameter ΩGW

can be written as a sum over all relic densities corresponding to a mode k as

ΩGW(f) =
∑
k

Ω(k)
GW(f), (3.4)

where

Ω(k)
GW(f) = 1

ρc

2k
f

FαΓ(k)Gµ2

α(α+ ΓGµ)

∫ t0

tF

dt̃
Ceff(t(k)

i )
t
(k)4
i

[
a(t̃)
a(t0)

]5 [
a(tki )
a(t̃)

]3

Θ(t(k)
i − tF ) (3.5)

and the integration runs over the emission time with tF as time corresponding to the scaling
regime of the loop after formation. The numerical values of Ceff are found to be 5.7 and
0.5 at radiation and matter domination and Fα has a value ∼ 0.1 [133, 134]. The quantity
t
(k)
i is the formation time of the loops contributing to the mode k and is given by

t
(k)
i (t̃, f) = 1

α+ ΓGµ

[
2k
f

a(t̃)
a(t0) + ΓGµt̃

]
. (3.6)

The relative emission rate per mode is given by

Γ(k) = Γk−4/3∑∞
m=1m

−4/3 (3.7)

with
∑∞
m=1m

−4/3 ' 3.6 and
∑
k Γ(k) = Γ. Having set up all the theoretical machineries,

we now proceed towards the final discussion containing numerical results.
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4 Numerical results and discussions

To generate all the plots in figure 3, we scanned over 3σ neutrino oscillation data [15]
and used the seesaw fine-tuning parameter γi =

∑
j |Ω2

ij | ' 1 which also helps to avoid
the non-perturbative Yukawa couplings, i.e., Tr(f †f) ≤ 4π. We use the upper bound
on the sum of the light neutrino masses as

∑
imi < 0.17 eV [1] which corresponds to

m1 . 50 meV as shown by vertical light blue shade in each of the plots. A more stringent
upper bound m1 . 31 meV is also available from latest PLANCK data [2, 136]. The
red vertical region is the future sensitivity region of the KATRIN experiment which is
starting to measure neutrino masses with an ultimate sensitivity to 0.2 eV [135]. In the
top panel of the figure, we show the variation of κ with m1 which indicates that for
m1 & 10−2 eV, κ increases rapidly. An immediate consequence can be seen in the middle
panel where NB−L has a decreasing slope for m1 & 10−2 eV. This corresponds to the
previously mentioned late freeze out solutions as also shown in figure 2. We show three
gray shaded exclusion regions for the string tensions Gµ = 4.44 × 10−11, 2.7 × 10−10 and
1.7× 10−9 which correspond to the upper bounds m1 . 10 meV, 21 meV and 31 meV for
successful leptogenesis. Corresponding exclusion regions on the effective matrix element
of 0νββ decay have been shown in the bottom panel. The horizontal gray shaded region
represents the already excluded region and the yellow shaded region represents the future
sensitivity limits of next-generation 0νββ experiments. A comprehensive discussion about
all the current and planned 0νββ experiments can be found in ref. [135]. The above
numerical discussion excludes the contribution of the FCs since it is sufficient to consider
eq. (2.24) to have an overall idea of the parameter space. However, to obtain more accurate
upper bounds, it is instructive to include FCs as discussed in section 2. Using eq. (2.34)
with a democratic behaviour of the flavour projectors, we perform a full numerical scan of
the parameter space and find bit more relaxed upper bounds on m1. For the mentioned
values of Gµ, we find m1 . 12 meV, 25 meV and 36 meV for successful leptogenesis.
This implies in this scenario, FCs give correction around 17%–20% to the final result. We
would like to take this opportunity to mention that we expect some level of correction
to the parameter space (which does not include FCs) in our previous publication [115] as
well, where we discuss the flavour effects in RIGL mainly focusing on a two-RH neutrino
scenario. A complete discussion in this context will be presented elsewhere.

As one notices on the middle panel, a decrease in the string tension results in a decrease
in the magnitude of the overall asymmetry which goes below the observed value (NObs

B−L) for
Gµ < 4.4× 10−11. Therefore, RIGL will be fully tested in the space-based interferometers
such as LISA [137], Taiji [138], TianQin [139], BBO [140], DECIGO [141], ground based
interferometers like Einstein Telescope (ET) [142] and Cosmic Explorer (CE) [143], and
atomic interferometers MAGIS [144], AEDGE [145] over wide range of frequencies. Of
course, as already argued, any exclusion of the string tension value Gµ > 4.4 × 10−11 by
the GW detectors would put an exclusion region in the |mββ | parameter space or future
discovery of 0νββ signal for m1 > 10 meV would put a lower bound on the string tension
that would be tested by the GW detectors. In the left panel of figure 4, we show the
GW spectrum that corresponds to an upper bound on m1 within the range 12 meV-36
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Figure 3. Upper panel: m1 vs. κ. Middle panel m1 vs. Nf
B−L. Bottom panel: m1 vs. |mββ |.
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meV (bottom-up). We now conclude the paper by analysing the recent NANOGrav pulsar
timing array (PTA) data which if interpreted as GW signal, would put an interesting
constraint on RIGL mechanism.

Though the idea of detecting GW with PTA is very much well known, for completeness
we write few sentences. Pulsars are highly magnetised and rapidly rotating neutron stars.
They emit radio waves from their magnetic poles and we observe these waves on the
Earth as a string of pulses. Since neutron stars are of high densities, the time of arrival
(TOA) of pulses are highly regular and that is why they are used in high precision timing
experiments. Millisecond pulsars (spins ∼ 100 times a second) produce most stable pulses
and are used by the PTAs. When a “disturbance” like gravitational wave passes through
the earth and pulsar system, the time of arrival of the signal from the pulsars changes. This
induces a frequency change in the pulses (contributes to a measurable quantity called time
residual R ∝ δν

ν ). The NANOGrav collaboration with their recently released data reports
a strong evidence for a stochastic common-spectrum process (they analysed 45 pulsars)
over independent-red noises [91]. However, they do not claim the detection as GW, since
the time residuals do not show characteristic spatial relation described by the Hellings-
Downs (HD) curve [146]. In addition, other systematics such as pulsar spin noise [147]
and solar system effects [148] might affect the signal thus the analysis requires proper
handling of these two effects–a study which is in preparation [91]. In any case, if in the
near future, more data and a more rigorous statistical analysis by NANOGrav leads to
the detection to SGWB, it would undoubtedly open up a new direction to probe Early
Universe cosmology. This of course includes leptogenesis as well. Remarkably enough,
testing leptogenesis with pulsars would be a completely novel aspect which can serve also
as a complementary probe of leptogenesis alongside the experiments in the particle physics
side such as neutrino oscillation and neutrino-less double beta decay [53, 57]. Let us now
focus on the analysis of gravitational leptogenesis scenario with respect to the NANOGrav
data. The 12.5 yrs NANOGrav data are expressed in terms of power-law signal with
characteristic strain given by

hc(f) = A

(
f

fyr

)(3−γ)/2

(4.1)

with fyr = 1yr−1 and A being the characteristic strain amplitude. The abundance of GWs
has the standard form and can be recast as:

Ω(f) = Ωyr

(
f

fyr

)5−γ

, with Ωyr = 2π2

3H2
0
A2f2

yr. (4.2)

We do a simple power law fit to the cosmic string generated GW spectra using eq. (4.2)
and show the results in the right panel of figure 4 on the spectral index (γ)-amplitude (A)
plane against the NANOGrav@1σ and 2σ contours. We plot the same benchmark values
of Gµ that were used in figure 3, i.e., Gµ = 4.44×10−11, 2.7×10−10 and 1.7×10−9. These
values are plotted as solid red circle, square and diamond points. We find Gµ = 2.7×10−10

is at the edge of the 2σ. Thus RIGL disfavours m1 > 25 meV at NANOGrav@2σ. Let’s
point out that our fit is consistent with ref. [92], e.g., Gµ ∼ 2.7 × 10−10 is disfavored
at 2σ, however, we get the strain amplitude value slightly lower than ref. [92]. The new
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Figure 4. Left: GW spectrum for sucessful RIGL mechanism. Right: cosmic string fit to
NANOGrav data: Gµ = 4.44× 10−11 (red circle), 2.7× 10−10 (red squre) and 1.7× 10−9 (red dia-
mond).

NANOGrav 12.5 yr data [91] though consistent with previous EPTA data [149], they are
in tension with previous limits from PPTA [150] and a previous NANOGrav analysis of
their 11 yr data [151]. This tension would be reduced using improved prior to the intrinsic
pulsar red noise to the older data [91].

5 Summary

We analyse a cosmic string induced GW spectrum as a test of leptogenesis. We discuss
gravitational leptogenesis within the Type-1 seesaw which is otherwise studied in general
for leptogenesis from right handed neutrino decays. An operator of the form LCPV ∼
b∂µRj

µ ∼ b∂µR ¯̀γµ` can generate a lepton asymmetry NB−L ∼ bṘ
T in thermal equilibrium

evading Sakharov’s third condition for baryogenesis. In seesaw model LCPV can be created
at two loop level with the right handed neutrinos as virtual particles. The generated
equilibrium asymmetry is maintained (decreases with temperature) until the non-resonant
∆L = 2 N1-interaction goes out of equilibrium (then the asymmetry freezes out). The
magnitude of the final asymmetry which depends on the lightest light neutrino mass m1,
typically decreases with the m1 and therefore the parameter space of the leptogenesis is
sensitive to m1 as well as the neutrino less double beta decay parameter |m11|, through m1.
We consider that the masses of the right handed neutrinos are generated dynamically by
an U(1)B−L symmetry breaking which also leads to a formation of cosmic string network
that produce gravitational waves. Therefore, the mechanism is sensitive to gravitational
wave physics as well as low energy neutrino physics. We show that right handed neutrino
induced gravitational leptogenesis can be probed by the gravitational wave detectors as
well as next-generation neutrinoless double beta decay experiments in a complementary
manner such that an exclusion limit on f−ΩGWh

2 plane would correspond to an exclusion
on the |mββ | −m1 plane as well. We consider a normal light neutrino mass ordering and
show that the gravitational wave detectors can fully test the mechanism for a wide range
of frequencies. We then show that recent NANOGrav pulsar timing data (if interpreted as
GW signal) would exclude 0νββ parameter space for m1 & 25 meV at ∼ 2σ.
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