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1 Introduction

A renormalization group (RG) is a fundamental concept in quantum field theory (QFT).
By a deformation by a relevant operator O,

ICFT + λ

∫
ddxO , (1.1)

a conformal field theory (CFT) at a UV fixed point flows to a CFT at an IR fixed point.
The RG flow is not reversible, and this irreversibility implies the existence of a monotonic
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function, known as a C-function. A C-theorem which states the existence of the C-function
is pioneered by Zamolodchikov [1] in two-dimensional QFTs and is extended to higher
dimensions [2–7]. Combining a-theorem [2, 3] which is a C-theorem in d = 4 and F -
theorem [4, 5] which is a C-theorem in d = 3, a generalised F -theorem is conjectured [8]:
a free energy on a sphere Sd,

F̃ = sin
(
πd

2

)
logZ[Sd] , (1.2)

is a C-function and satisfies the monotonic relation

F̃UV ≥ F̃IR . (1.3)

The generalised F -theorem states monotonicity of an anomaly coefficient in the free energy
for even d, while monotonicity of a finite part in the free energy for odd d. The C-theorem
can also be proved by using an information theoretical method for d ≤ 4 [9–11].

For QFTs with p-dimensional defect, it is possible to consider an RG flow triggered by
a relevant operator localising on the defect,

IDCFT + λ̂

∫
dpx Ô . (1.4)

In [12], we conjectured that the defect free energy on a sphere, which is an increment of
the free energy due to the defect,

log〈D(p)〉 = logZDCFT[Sd]− logZCFT[Sd] , (1.5)

decreases under the defect RG flow. More precisely, the universal part of the defect
free energy,

D̃ = sin
(
πp

2

)
log |〈D(p)〉| (1.6)

is a C-function, and it decreases under the defect RG flow,

D̃UV ≥ D̃IR . (1.7)

For BCFTs with p = d − 1, a slight modification is needed since BCFTs is defined on
a hemisphere HSd (a half space of the original CFTs), and the boundary free energy is
introduced as1

log〈D(p)〉 = logZBCFT[HSd]− 1
2 logZCFT[Sd] . (1.8)

For BCFT, our conjecture reproduces a proved C-theorem in BCFT2, known as
g-theorem [15–17], and a C-theorem in higher dimensional BCFT [18–21]. In particu-
lar, the C-theorem in BCFT3 is proved in [18] by extending [3] and in [22] by extend-
ing [17]. In the context of holography, a C-theorem in BCFT is investigated in [23–27].2

1It is pointed out that the boundary free energy does not decrease monotonically under the bulk RG
flow [13, 14].

2In [26], it is argued that the defect entropy, which is an increment of the entanglement entropy of the
spherical region where the defect sits at the centre due to the presence of the defect, is a candidate of a
C-function in DCFT. The defect entropy is not a C-function for p < d − 1 as pointed out [12]. See also
related works [28, 29].
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For DCFT with p < d − 1, our conjecture however has passed only several checks in field
theory [12, 18, 21, 30–32] and holography [28, 29, 33].

Recently, we provide further evidence of our conjecture in a simple model, a conformally
coupled scalar field [34] (See also related works [35, 36]). Instead of putting the conformally
coupled scalar field on the sphere, we put it on Hp+1×Sq−1, where q = d−p is a codimension
of the defect, and impose boundary conditions at the boundary of Hp+1. The idea of
mapping BCFTs on a flat space Rd to Hd has appeared in [37, 38], and the similar idea for
DCFTs has appeared in [35, 39, 40]. It enables us to classify allowed boundary conditions
which are consistent with a recent classification [41]. The Dirichlet type boundary condition
is always allowed while the Neumann type boundary condition is allowed only in q =
1, 2, 3, 4. An RG flow from the Neumann boundary condition to the Dirichlet boundary
condition realised by a double trace deformation as is familiar with the AdS/CFT setup [42–
48], and the defect free energy with the Neumann boundary condition is always larger than
that of the Dirichlet boundary condition.

In this paper, we extend our analysis [34] to a free fermion to provide a further check
of our conjecture. To compare with a scalar field, a defect free energy of a free fermion
in higher dimensions has been studied only in BCFT [36, 37] and DCFT with a two-
codimensional defect in the context of entanglement entropy [49, 50]. In particular, the
existence of a nontrivial boundary condition is unclear in a free fermion since a unique
boundary condition is allowed in Hd [36, 51].

The organisation of this paper is as follows. In the next section, we summarise co-
ordinate systems and Weyl transformations among the coordinate systems. Furthermore,
we classify boundary conditions of a massive fermion on Hd and a massless fermion on
Hp+1× Sq−1. In particular, for a massless fermion on Hp+1× Sq−1, we show that a bound-
ary condition of a Dirichlet type always exists while a boundary condition of a Neumann
type exists only in q = 2. In section 3, we compute free energies of a massless fermion
on Sd and a hemisphere HSd using a zeta-function regularisation for a warm-up of the
next section. In section 4, we compute free energies of a massive fermion on Hd and free
energies of a massless fermion Hp+1 × Sq−1 with Dirichlet boundary condition by using a
zeta-function regularisation. In section 5, we obtain free energies with Neumann boundary
condition by analytical continuation and confirm the validity of our conjecture. The final
section is devoted to discussion. Appendix A contains the list of anomaly parts and finite
parts of free energies on Sd, HSd, Hd and Hp+1 × Sq−1 with Dirichlet boundary condition,
and appendix B is a technical details of a computation.

2 Classification of boundary conditions

2.1 Coordinate system

In this section, we summarise coordinate systems for a sphere Sd, a hemisphere HSd, a
hyperbolic space Hd and Hp+1×Sq−1 and conformal maps among a flat space Rd and them.

Let us consider DCFTd on Rd,

ds2 = dx2
a + dy2

i , (a = 1, · · · , p, i = p+ 1, · · · , d) (2.1)
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where a p-dimensional defect sits at yi = 0. For later convenience, we introduce a codi-
mension of the defect,

q = d− p . (2.2)

By using the polar coordinate for the yi-coordinate,

dy2
i = dz2 + z2ds2

Sq−1 , (2.3)

the metric of the flat space becomes

ds2 = dx2
a + dz2 + z2ds2

Sq−1

= z2
(

dx2
a + dz2

z2 + ds2
Sq−1

)
.

(2.4)

After a Weyl rescaling, the metric (2.4) reduces to a geometry Hp+1× Sq−1 with radius R,

ds2 = R2
(

dx2
a + dz2

z2 + ds2
Sq−1

)
. (2.5)

Now the defect sits at the boundary of Hp+1. We can also use the global coordinate
for Hp+1,

ds2 = R2
(
dρ2 + sinh2 ρ ds2

Sp + ds2
Sq−1

)
, (2.6)

where the defect sits at ρ = ∞. Introducing a new variable ϕ, tanϕ = sinh ρ, the met-
ric (2.6) becomes

ds2 = R2

cos2 ϕ

(
dϕ2 + sin2 ϕ ds2

Sp + cos2 ϕ ds2
Sq−1

)
. (2.7)

After a Weyl rescaling, the metric (2.7) can be mapped to the sphere metric with radius R

ds2 = R2
(
dϕ2 + sin2 ϕ ds2

Sp + cos2 ϕ ds2
Sq−1

)
, (2.8)

where 0 ≤ ϕ < π and the defect sits at ϕ = π/2. The hemisphere HSd has the same
metric of the sphere (2.8). A different point is that the range of ϕ is 0 ≤ ϕ ≤ π/2 and the
boundary sits at ϕ = π/2.

2.2 Boundary condition of fermion on Hp+1 × Sq−1

In this section, we classify allowed boundary conditions of a massless fermion on Hp+1 ×
Sq−1. A free fermion on a curved background which is conformally equivalent to Rd is
studied in e.g. [37, 49, 52–54]. See [40] for the notation of a fermion on H2×S2. The action
of a massive Dirac fermion is given by3

I =
∫

ddx√g
(
iψ† Γa∇aψ +Mψ†ψ

)
, (2.9)

3The massive fermion is not conformal. However, we introduce a mass term for later convenience.
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where we assume M ≥ 0. The rank of the gamma matrix for d ≥ 2 is

rd = 2b
d
2 c , (2.10)

and the gamma matrix satisfies the anti-commutation relation,

{Γa,Γb} = 2δab1 . (2.11)

The covariant derivative ∇a and the spin connection ωµbc are defined as

∇a = eµa∇µ , ∇µ = ∂µ + 1
2σ

bcωµbc ,

σab = 1
4[Γa,Γb] , ωµbc = eνb (∂µecν − Γανµecα)

(2.12)

using a frame field eµa , which satisfies

eµae
ν
b gµν = δab . (2.13)

The covariant derivative satisfies a relation,

(Γa∇a)2 = ∇2 − 1
4R , (2.14)

where R is a Ricci scalar.
For Hd, a solution of the equation of motion for the massive fermion behaves

ψ ∼ z∆± (2.15)

near the boundary at z = 0, where ∆± is given by

∆± −
d− 1

2 = ±MR . (2.16)

Then, ∆± become degenerate in the massless limit, and the allowed asymptotic behaviour
is unique for a massless fermion.

For the product space Hp+1×Sq−1, we consider a massless fermion from the beginning.
We first decompose the fermionic field as

ψ(z, x, θ) =
∑
`

ψHp+1(z, x)⊗ ψ`,Sq−1(θ) , (2.17)

and the gamma matrices are also decomposed similarly. For even p and even q ≥ 4, the
decomposition of the fermion (2.17) has an additional U(1) as is clear from that the rank
of the spinor representation are different in both sides of (2.17).4 Mathematically, this is
equivalent to a decomposition of a representation of SO(p+q2 ) to that of SO(p2)×SO( q−2

2 )×
U(1). The spherical part ψ`,Sq−1(θ) satisfies the equation,

(Γ · ∇)Sq−1ψ`,Sq−1(θ) = ± i
`+ q−1

2
R

ψ`,Sq−1(θ) , (2.18)

4We are indebted to D. Rodriguez-Gomez and J. G. Russo for the decomposition of the fermion.
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where we decomposed the covariant derivative on Hp+1×Sq−1 into the covariant derivatives
on Hp+1 and Sq−1 appropriately. Then, the equation of motion reduces to(

i (Γ · ∇)Hp+1 ±
`+ q−1

2
R

)
ψHp+1(z, x) = 0 . (2.19)

The solution of this equation of motion behaves as

ψHp+1(z, x) ∼ z∆`
± (2.20)

near the boundary, z = 0, and ∆`
± is given by

∆`
± = p

2 ±
(
`+ q − 1

2

)
. (2.21)

The parameter ∆`
± can be understood as the conformal dimensions of operators localising

on a p-dimensional conformal defect at the boundary of Hp+1. Then not all the operators
with conformal dimensions (2.21) are allowed to exist due to the unitarity bound in p

dimensions [55]:

∆ ≥ p− 1
2 . (2.22)

∆`
+ is always above the unitarity bound, while ∆`

− is not necessary to satisfy the unitarity
bound unless

` ≤ 1− q

2 . (2.23)

Hence the mode with ` = 0 for q = 2 is allowed to have the boundary conditions corre-
sponding to ∆`

−.
The allowed boundary conditions for the massless fermion are classified as follows and

are listed in table 1.

q = 1 case. In this case, the geometry is the hyperbolic space Hd, and the allowed
asymptotic behaviour is unique,

Mixed b.c. : ∆ = d− 1
2 . (2.24)

This boundary condition is called a mixed boundary condition.

q = 2 case. Only the ` = 0 mode is allowed, resulting in a nontrivial boundary condition
with ∆`=0

− = p−1
2 for p ≥ 2. Note that ∆`=0

− saturates the unitarity bound. Then, two
different boundary conditions are allowed,

Dirichlet b.c. : ∆D = ∆`
+ for all ` ,

Neumann b.c. : ∆N =
{

∆`
− for ` = 0 ,

∆`
+ for ` 6= 0 .

(2.25)

In particular, ∆`=0
− vanishes for p = 1 case, and this implies that the defect operator is the

identity operator. Thus, we exclude p = 1 case of a nontrivial boundary condition.
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q = 1 q = 2 q = 3 q = 4 q = 5 · · ·
p = 1 ∆ ∆D ∆D ∆D ∆D · · ·
p = 2 ∆ ∆D/∆`=0

− ∆D ∆D ∆D

p = 3 ∆ ∆D/∆`=0
− ∆D ∆D ∆D · · ·

p = 4 ∆ ∆D/∆`=0
− ∆D ∆D ∆D

p = 5 ∆ ∆D/∆`=0
− ∆D ∆D ∆D

...
...

... . . .

Table 1. Classification of the allowed boundary conditions in the free massless fermion. The
Neumann boundary conditions exist in the shaded cells and the allowed modes differ from the
Dirichlet ones are shown in the right side. For q = 1, the boundary condition is unique. For q = 2,
∆`=0

− saturates the unitarity bound (2.22).

q ≥ 3 case. Only the Dirichlet type boundary condition is allowed,

Dirichlet b.c. : ∆D = ∆`
+ for all ` . (2.26)

3 Free energy on Sd and HSd

In this section, we compute free energies of a free massless Dirac fermion on Sd and HSd

using a zeta-function regularisation for a warm-up of the next section.

3.1 Free energy on Sd

For a massless fermion on Sd, the free energy is given by5

F [Sd] = −1
2tr log

[
−Λ̃−2(Γa∇a)2

]
= −

∞∑
`=0

g(d)(`) log
(
ν

(d)
`

Λ̃R

)
,

(3.1)

where we use the equation,

Γa∇aψ` = ± i ν
(d)
`

R
ψ` (3.2)

with the eigenvalues,

ν
(d)
` = `+ d

2 , ` = 0, 1, 2, · · · . (3.3)

The degeneracy for each sign is given by

g
(d)
± (`) = rdΓ(`+ d)

Γ(d)Γ(`+ 1) , (3.4)

5As noted in [34, 56], there is an ambiguity to decompose the logarithmic function into two parts. We
require two conditions to remove the ambiguity: the free energy in the Schwinger representation should
be convergent and the resulting zeta function does not depend on the cutoff scale Λ̃. In (3.1), the two
decomposed logarithmic functions are the same and the free energy in the Schwinger representation (3.6)
is convergent in the `→∞ limit.
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where rd (2.10) is the rank of the gamma matrix as before. For later convenience, we
introduce a notation

g(d)(`) = 2g(d)
± (`) = 2rdΓ(`+ d)

Γ(d)Γ(`+ 1) . (3.5)

We write the free energy (3.1) in the Schwinger representation,

F [Sd] =
∫ ∞

0

dt
t

∞∑
`=0

g(d)(`) e−tν
(d)
`
/(Λ̃R) , (3.6)

and we introduce the regularised free energy [57] to remove the divergence in the integral,

Fs[Sd] =
∫ ∞

0

dt
t1−s

∞∑
`=0

g(d)(`) e−tν
(d)
`
/(Λ̃R)

= 1
2(Λ̃R)s Γ(s) ζSd(s) ,

(3.7)

where the zeta function ζSd(s) is defined by

ζSd(s) ≡ 2
∞∑
`=0

g(d)(`)
(
ν

(d)
`

)−s
. (3.8)

Then the (unregularised) free energy is obtained in the s→ 0 limit:

Fs[Sd] = 1
2

(1
s
− γE + log(Λ̃R)

)
ζSd(0) + 1

2∂sζSd(0) +O(s) , (3.9)

which is divergent due to the pole at s = 0. Here γE is the Euler constant. By removing
the pole, the remaining part becomes the renormalized free energy

Fren[Sd] ≡ 1
2∂sζSd(0) + 1

2 log(ΛR) ζSd(0) , (3.10)

where Λ = e−γE Λ̃.
To compute the zeta function, we expand the gamma functions in the degeneracy (3.5),

Γ
(
ν

(d)
` + d

2

)
Γ
(
ν

(d)
` −

d
2 + 1

) =



d
2∑

n=0
(−1)

d
2 +n αn,d+1

(
ν

(d)
`

)2n−1
d : even ,

d−1
2∑

n=0
(−1)

d−1
2 +n βn,d+1

(
ν

(d)
`

)2n
d : odd ,

(3.11)

where we used the awkward suffix for αn,d+1 and βn,d+1 to use the same notation in the
scalar case [34]. Since α0,d+1 = 0, we can omit the n = 0 term in the summation for even
d whenever we want. Using the asymptotic expansion ((5.11.14) in [58])

Γ(x+ a)
Γ(x+ b) =

∞∑
k=0

(
x+ a+ b− 1

2

)a−b−2k (a− b
2k

)
B

(a−b+1)
2k

(
a− b+ 1

2

)
, (3.12)
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where B(m)
k (x) is the generalized Bernoulli polynomial, and comparing both sides, we find

Even d : αn,d+1 = (−1)
d
2 +n

(
d− 1
d− 2n

)
B

(d)
d−2n

(
d

2

)
, (3.13)

Odd d : βn,d+1 = (−1)
d−1

2 +n
(

d− 1
d− 1− 2n

)
B

(d)
d−1−2n

(
d

2

)
. (3.14)

3.1.1 Odd d

When d is odd, the zeta function reduces to

ζSd(s) = 4rd
Γ(d)

d−1
2∑

n=0
(−1)

d−1
2 +nβn,d+1 ζH

(
s− 2n, 1

2

)
, (3.15)

where we use the identity

ζH

(
s− 2n, d2

)
= ζH

(
s− 2n, 1

2

)
−

d−1
2∑

m=0

(
m+ 1

2

)2n−s
(3.16)

and the expansion (3.11) with the replacement ν(d)
` → m+ 1/2. Since the zeta function at

s = 0 vanishes,

ζSd(0) = 4rd
Γ(d)

d−1
2∑

n=0
(−1)

d−1
2 +nβn,d+1 ζH

(
−2n, 1

2

)
= 0 ,

(3.17)

due to the fact ζH (−2n, 1/2) = 0, there is no conformal anomaly, and the finite part
remains in the free energy:

Fren[Sd] = 1
2∂sζSd(0)

= rd
Γ(d)(−1)

d+1
2 β0,d+1 log 2+ 2rd

Γ(d)

d−1
2∑

n=1
(−1)

d−1
2 +nβn,d+1 (2−2n−1)ζ ′(−2n) .

(3.18)

This formula correctly reproduces the known results [5, 59]. The finite parts of the free
energy for d ≤ 9 are listed in table 3 in appendix A.

3.1.2 Even d

When d is even the zeta function is given by

ζSd(s) = 4rd
Γ(d)

d
2∑

n=0
(−1)

d
2 +n αn,d+1 ζ(s− 2n+ 1) , (3.19)

where we use the identity

ζH

(
s− 2n+ 1, d2

)
= ζ(s− 2n+ 1)−

d
2−2∑
m=0

(m+ 1)2n−1−s (3.20)
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and the expansion (3.11) with the replacement ν(d)
` → m+1. The renormalized free energy

is given by

Fren[Sd] = −A[Sd] log(ΛR) + Ffin[Sd] , (3.21)

with the anomaly coefficient

A[Sd] = −1
2ζSd(0)

= rd
Γ(d)

d
2∑

n=1
(−1)

d
2 +n αn,d+1

B2n
n

,

(3.22)

where B2n is the Bernoulli number, and the finite part

Ffin[Sd] = 1
2∂sζSd(0)

= 2rd
Γ(d)

d
2∑

n=1
(−1)

d
2 +n αn,d+1 ζ

′(−2n+ 1) .
(3.23)

There is a logarithmic divergent term associated with the conformal anomaly in the free
energy. The free energy (3.21) with (3.22) correctly reproduces the known conformal
anomaly [8]. The anomaly coefficients and the finite parts of the free energy for d ≤ 10 are
listed in tables 2 and 3 in appendix A.

3.1.3 Interpolating a and F

The finite part of the free energy (3.18) and the anomaly coefficient of the free energy (3.22)
do not depend on the choice of the cutoff scale and are universal in this sense. Thus, we
introduce the “universal” free energy:

Funiv[Sd] =


Ffin[Sd] d : odd ,

−A[Sd] log
(
R

ε

)
d : even ,

(3.24)

where ε is used for the cutoff instead of Λ. In [8], it is pointed out that the universal free
energy has an integral representation:

Funiv[Sd] = − 2rd
sin
(
πd
2

)
Γ(d+ 1)

∫ 1
2

0
du cos (πu) Γ

(
d+ 1

2 + u

)
Γ
(
d+ 1

2 − u
)
. (3.25)

For odd d, the prefactor of the universal free energy (3.25) is finite. However, for even
d, the prefactor in (3.25) is divergent due to the sine function. This divergence may be
replaced with the logarithmic divergence by introducing a small cutoff ε,

− 1
sin
(
πd
2

) =


(−1)

d+1
2 d : odd ,

(−1)
d
2

2
π

log
(
R

ε

)
d : even .

(3.26)

Using the replacement (3.26), the universal free energy in the integral representation (3.25)
has the same behaviour of (3.24). A proof of the equivalence of the two expressions (3.24)
and (3.25) is presented in [60].

– 10 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
2

3.2 Free energy on HSd

Next, let us consider the free energy on the hemisphere. At the boundary of HSd, a mixed
boundary condition is imposed [51],

P+ψ = 0 . (3.27)

Here P+ is a projection operator,

P+ = 1
2 (1− iΓ∗Γaeµanµ) (3.28)

with a chirality matrix Γ∗ and an incoming normal vector nµ. See appendix A in [51]
for the detail of a construction of the chirality matrix Γ∗. The mixed boundary condition
preserves a conformal symmetry.

A degeneracy with the mixed boundary condition is given by (3.4) which is just a half
of the degeneracy of Sd (3.5). Then, the free energy on HSd is nothing but half of that
on Sd,

Fren[HSd] = 1
2Fren[Sd] . (3.29)

This formula correctly reproduces the known results [36].6

4 Free energy on Hp+1 × Sq−1 with Dirichlet boundary condition

In this section, we first compute a free energy of a massive fermion on Hd, although we
are interested in a massless (conformal) fermion. This is because the angular momentum
along Sq−1 can be regarded as a mass on Hp+1 due to a Kaluza-Klein mechanism when
we compute the free energy on Hp+1 × Sq−1. After that, we compute a free energy of a
massless fermion on Hp+1 × Sq−1.

4.1 Free energy on Hd

In this section, we extend a computation of the zeta function for a massive fermion on Hd

for d = 3, 4 in [61] to general dimensions.
The free energy of the massive Dirac fermion with mass M = m/R is given by

F [Hd](m) = −1
2tr log

[
−Λ̃−2

(
(Γa∇a)2 −M2

)]
= −1

2

∫ ∞
0

dω µ(d)(ω)
[
log

(
ω + im

Λ̃R

)
+ log

(
ω − im

Λ̃R

)]
,

(4.1)

where Λ̃ is the UV cutoff scale introduced to make the integral dimensionless. The param-
eter ω is an eigenvalue of the equation,

Γa∇aψω = i ω
R
ψω , ω ≥ 0 , (4.2)

6In [36], anomaly coefficients of a ball Bd which is conformally equivalent to Hd, is obtained.
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and the Plancherel measure of a fermion on Hd of unit radius takes the form [53]

µ(d)(ω) = cd rd

∣∣∣∣∣∣
Γ
(
d
2 + iω

)
Γ
(

1
2 + iω

)
∣∣∣∣∣∣
2

= cd rd



d−2
2∏

j= 1
2

(ω2 + j2) d : odd ,

ω coth(πω)
d−2

2∏
j=1

(ω2 + j2) d : even ,

(4.3)

with the coefficient

cd = Vol(Hd)
2d−1πd/2Γ(d/2)

(4.4)

and the rank of the gamma matrix rd (2.10). The regularised volume of the hyperbolic
space is given by

Vol(Hd) = π
d−1

2 Γ
(1− d

2

)
= − π

d+1
2

sin
(
π d−1

2

)
Γ
(
d+1

2

) . (4.5)

The hyperbolic volume is finite for even d but divergent for odd d due to the pole of the
sine function. By introducing a small cutoff parameter ε, the sine function can be replaced
by the logarithmic divergence,

− 1
sin
(
π d−1

2

) =


(−1)

d−1
2

2
π

log
(
R

ε

)
d : odd ,

(−1)
d
2 d : even .

(4.6)

Then, the coefficient becomes

cd = − 1
sin
(
π d−1

2

)
Γ(d)

= 1
Γ(d)


(−1)

d−1
2

2
π

log
(
R

ε

)
d : odd ,

(−1)
d
2 d : even .

(4.7)

Since the Plancherel measure (4.3) needs to satisfy the square integrability condition, the
free energy is defined for m ≥ 0. That is, equation (4.1) represents a free energy with a
boundary condition, ∆ = (d− 1)/2 +m. We add a mass term in the free energy (4.1) for
the regularisation of the zero mode, and we take a massless limit to obtain free energies of
the conformal fermion.

By using the Schwinger representation, the free energy can be written as

F [Hd](m) = 1
2

∫ ∞
0

dt
t

∫ ∞
0

dω µ(d)(ω)
(
e−t(ω+im)/Λ̃R + e−t(ω−im)/Λ̃R

)
. (4.8)
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To remove the divergence in the integral, we introduce the regularised free energy

Fs[Hd](m) = 1
2

∫ ∞
0

dt
t1−s

∫ ∞
0

dω µ(d)(ω)
(
e−t(ω+im)/Λ̃R + e−t(ω−im)/Λ̃R

)
= 1

2(Λ̃R)sΓ(s)ζHd(s,m) ,
(4.9)

where the zeta function is defined as

ζHd(s,m) =
∫ ∞

0
dω µ(d)(ω)

(
(ω + im)−s + (ω − im)−s

)
. (4.10)

Then, the (unregularised) free energy is obtained in the s→ 0 limit,

Fs[Hd](m) = 1
2

(1
s
− γE + log(Λ̃R)

)
ζHd(s,m) + 1

2∂sζHd(s,m) +O(s) . (4.11)

By removing the pole at s = 0, we obtain the renormalized free energy

Fren[Hd](m) = 1
2∂sζHd(0,m) + 1

2 log(ΛR)ζHd(0,m) , (4.12)

where Λ = e−γEΛ̃.
In the following, we will compute the renormalized free energy by evaluating the zeta

function based on the method used in [62, 63].

4.1.1 Odd d

Using the expansion of the Plancherel measure (4.3)

µ(d)(ω) = cd rd

d−1
2∑

k=0
βk,d+1ω

2k , (4.13)

the zeta function is convergent for Re s > 2k + 1,

ζHd(s,m) = cd rd

d−1
2∑

k=0
βk,d+1

∫ ∞
0

dω ω2k ((ω + im)−s + (ω − im)−s
)

= 2cd rd

d−1
2∑

k=0
βk,d+1(−1)k sin

(
πs

2

)
m2k+1−sΓ(2k + 1)

2k+1∏
i=1

1
s− i

.

(4.14)

We immediately obtain

ζHd(0,m) = 0 , (4.15)

∂sζHd(0,m) = cd rd

d−1
2∑

k=0
βk,d+1

πm2k+1

2k + 1 (−1)k+1 . (4.16)

For the massive fermion, the renormalized free energy is given by

Fren[Hd](m) = 1
2∂sζHd(0,m)

= (−2) d−1
2

Γ(d)

d−1
2∑

k=0
βk,d+1

m2k+1

2k + 1(−1)k+1 log
(
R

ε

)
.

(4.17)
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In the massless limit, the renormalized free energy vanishes,

Fren[Hd] = 0 . (4.18)

Here and hereafter, we omit (0) in free energies for the massless fermion. Equation (4.18)
implies that the boundary anomaly does not exist.
4.1.2 Even d

Using the expansion of the Plancherel (4.3)

µ(d)(ω) = cd rd coth(πω)
d
2∑

k=1
αk,d+1ω

2k−1 , (4.19)

and the identity

coth(πω) = 1 + 2
e2πω − 1 , (4.20)

the zeta function can be decomposed into two parts,

ζHd(s,m) = ζ
(1)
Hd (s,m) + ζ

(2)
Hd (s,m) , (4.21)

ζ
(1)
Hd (s,m) = cd rd

d
2∑

k=1
αk,d+1

∫ ∞
0

dω ω2k−1 ((ω + im)−s + (ω − im)−s
)
, (4.22)

ζ
(2)
Hd (s,m) = 2cd rd

d
2∑

k=1
αk,d+1

∫ ∞
0

dω ω2k−1

e2πω − 1
(
(ω + im)−s + (ω − im)−s

)
. (4.23)

The first term of the zeta function can be calculated as

ζ
(1)
Hd (s,m) = 2cd rd

d
2∑

k=1
αk,d+1m

2k−s(−1)k cos
(
πs

2

)
Γ(2k)

2k∏
i=1

1
s− i

, (4.24)

and we can easily read off

ζ
(1)
Hd (0,m) = cd rd

d
2∑

k=1
αk,d+1

(−1)k
k

m2k , (4.25)

∂sζ
(1)
Hd (0,m) = cd rd

d
2∑

k=1
αk,d+1

(−1)k
k

m2k (H2k − logm) , (4.26)

where H2k is a harmonic number.
On the other hand, it is difficult to perform the integral in ζ(2)

Hd (s,m), hence we compute
ζ

(2)
Hd (0,m) and ∂sζ(2)

Hd (0,m) instead. ζ(2)
Hd (0,m) is independent on the mass term,

ζ
(2)
Hd (0,m) = cd rd

d
2∑

k=1
αk,d+1(−1)k+1B2k

k
, (4.27)
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and the derivative can be computed as

∂sζ
(2)
Hd (0,m) = −2cd rd

d
2∑

k=1
αk,d+1fk(m) (4.28)

with

fk(m) =
∫ ∞

0
dω ω2k−1

e2πω − 1 log(ω2 +m2)

= (−1)k
[

m2k−1

2(2k − 1) + m2k

4k

(1
k
− log(m2)

)
+
k−1∑
l=1

B2l
4l

m2k−2l

k − l
− B2kH2k−1

2k

+
2k−1∑
r=0

(−1)r
(

2k − 1
r

)
m2k−1−r

(
ζ ′(−r,m)− Br+1(m)Hr

r + 1

)]
,

(4.29)

where Br+1(m) is a Bernoulli polynomial. See appendix B for the detailed derivation
of (4.29).

We obtain the renormalized free energy for the massive fermion,

Fren[Hd](m) = −A[Hd](m) log(ΛR) + Ffin[Hd](m) (4.30)

with the coefficient of the logarithmic divergent part

A[Hd](m) = −1
2
(
ζ

(1)
Hd (0,m) + ζ

(2)
Hd (0,m)

)
= cd rd

d
2∑

k=1
αk,d+1(−1)kB2k −m2k

2k ,

(4.31)

and the finite part

Ffin[Hd](m) = 1
2
(
∂sζ

(1)
Hd (0,m) + ∂sζ

(2)
Hd (0,m)

)
= cd rd

d
2∑

k=1
αk,d+1(−1)k+1

(
−m2kH2k−1

2k − B2kH2k−1
2k + m2k−1

2(2k − 1)

+
k−1∑
l=1

B2l
4l

m2k−2l

k − l
+

2k−1∑
r=0

(−1)r
(

2k − 1
r

)
m2k−1−r

(
ζ ′(−r,m)− Br+1(m)Hr

r + 1

))
.

(4.32)

In the massless limit, m→ 0, the renormalized free energy has a simple expression

Fren[Hd] = −A[Hd] log(ΛR) + Ffin[Hd] , (4.33)

with the anomaly coefficient and the finite part

A[Hd] = cd rd

d
2∑

k=1
αk,d+1(−1)k+1B2k

2k , (4.34)

Ffin[Hd] = cd rd

d
2∑

k=1
αk,d+1(−1)kζ ′(1− 2k) . (4.35)
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To see the massless limit of the finite term, it is convenient to use (B.7) instead of (4.29).
The free energy on Hd is just the half of that on Sd,

Fren[Hd] = 1
2Fren[Sd] , (4.36)

and this reproduces the known anomaly coefficients in literature [36].
The anomaly coefficients and the finite parts of the free energy for d ≤ 10 are listed in

tables 2 and 3 in appendix A.

4.2 Free energy on Hp+1 × Sq−1

The free energy on Hp+1 × Sq−1 for the massless Dirac fermion except for even p and even
q ≥ 4 is expressed as

F [Hp+1 × Sq−1] = −1
2

∞∑
`=0

g(q−1)(`)
∫ ∞

0
dω µ(p+1)(ω) log

ω2 +
(
ν

(q−1)
`

)2

Λ̃2R2

 , (4.37)

with the Plancherel measure (4.3) and the degeneracy (3.5). For even p and even q ≥ 4,
there are two fermions of opposite U(1) charge as the additional U(1) appeared in (2.17).
Then, the free energy on Hp+1 × Sq−1 with even p and even q ≥ 4 becomes

F [Hp+1 × Sq−1] = −
∞∑
`=0

g(q−1)(`)
∫ ∞

0
dω µ(p+1)(ω) log

ω2 +
(
ν

(q−1)
`

)2

Λ̃2R2

 . (4.38)

To treat these two cases simultaneously, we introduce a notation,

dU(1) =
{

2 for even p and even q ≥ 4 ,
1 otherwise .

(4.39)

In the following, we compute the free energy using the zeta-function regularisation
divided into two cases: even p case and odd p case. An important notice is that we use
different decompositions for the logarithmic function depending on the evenness of p.

4.2.1 Even p

Performing similar computations in section 4.1, the renormalized free energy is given by

Fren[Hp+1 × Sq−1] = 1
2ζHp+1×Sq−1(0) log(ΛR) + 1

2∂sζHp+1×Sq−1(0) (4.40)

with the zeta function

ζHp+1×Sq−1(s) = dU(1)

∞∑
`=0

g(q−1)(`)ζHp+1

(
s, ν

(q−1)
`

)
. (4.41)

Here ζHp+1

(
s, ν

(q−1)
`

)
is the zeta function of Hd with mass ν(q−1)

` (4.14). By using the
expansion of the degeneracy (3.11) with the replacement d → q − 1, the zeta function
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becomes

ζHp+1×Sq−1(s) = 2dU(1)cp+1 rp+1

p
2∑

k=0
βk,p+2(−1)k sin

(
πs

2

)
Γ(2k + 1)

2k+1∏
i=1

1
s− i

· 2rq−1
Γ(q − 1)



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q ζ(s− 2n− 2k) q : odd ,

q−2
2∑

n=0
(−1)

q
2−1+n βn,q ζH

(
s− 2n− 2k − 1, 1

2

)
q : even .

(4.42)

We immediately find

ζHp+1×Sq−1(0) = 0 , (4.43)

and

∂sζHp+1×Sq−1(0) = −dU(1)cp+1 rp+1

p
2∑

k=0
βk,p+2

(−1)kπ
2k + 1

· 2rq−1
Γ(q − 1)


0 q : odd ,
q−2

2∑
n=0

(−1)
q
2−1+n βn,q ζH

(
−2n− 2k − 1, 1

2

)
q : even .

(4.44)

For even p, we find the following:

• For odd q, the renormalized free energy vanishes,

Fren[Hp+1 × Sq−1] = 0 . (4.45)

This implies that both bulk and defect anomalies vanish.

• For even q, the renormalized free energy has a defect anomaly which comes from the
volume of Hp+1,

Fren[Hp+1 × Sq−1] = −A[Hp+1 × Sq−1] log
(
R

ε

)
(4.46)

with

A[Hp+1 × Sq−1] = −
(−2)

p+q
2 dU(1)

Γ(p+ 1)Γ(q − 1)

p
2∑

k=0
βk,p+2

(−1)k
2k + 1

·

q
2−1∑
n=0

(−1)n βn,q ζH
(
−2n− 2k − 1, 1

2

)
.

(4.47)
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• For q = p+ 2, the defect anomaly is proportional to the bulk anomaly on S2p+2,

A[S2p+2] = 2A[Hp+1 × Sp+1] , (4.48)

as in the scalar case [34, 35] and the holographic case [35]. It is expected that the
holographic result should be the same as the free fermion result because the anomaly
coefficient does not depend on the strength of a coupling constant and the holography
can be applied if the number of fermions is large.

For q = 2, our result correctly reproduces the free energy obtained in [49, 50] (with an
appropriate dimension of the spinor).

The anomaly coefficients of the free energy are listed in table 2 in appendix A.

4.2.2 Odd p

In this section, we do not omit all equations in order to derive our main results of this
section, (4.63) and (4.66). If the reader is not interested in the detail of the derivations,
the reader can skip until (4.63).

For odd p, the Plancherel measure (4.19) is decomposed into two parts using the
identity (4.20), and the free energy consists of two parts,

F [Hp+1 × Sq−1] = −cp+1 rp+1
2

p+1
2∑

k=1
αk,p+2

∞∑
`=0

g(q−1)(`)
∫ ∞

0
dω ω2k−1

·
[
log

(
ω + i ν(q−1)

`

Λ̃R

)
+ log

(
ω − i ν(q−1)

`

Λ̃R

)]

− cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dω ω2k−1

e2πω − 1

∞∑
`=0

g(q−1)(`)

·
[
log

(
ν

(q−1)
` + iω

Λ̃R

)
+ log

(
ν

(q−1)
` − iω

Λ̃R

)]
.

(4.49)

In contrast to section 4.1.2, we decompose the logarithmic function differently for each
term, and the ordering of the summation over ` and the integral over ω is important.

The Schwinger representation of the free energy (4.49) is given by

F [Hp+1 × Sq−1] = cp+1 rp+1
2

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dt
t

∞∑
`=0

g(q−1)(`)
∫ ∞

0
dω ω2k−1

·
[
e−t(ω+i ν(q−1)

`
)/(Λ̃R) + e−t(ω−i ν

(q−1)
`

)/(Λ̃R)
]

+ cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dt
t

∫ ∞
0

dω ω2k−1

e2πω − 1

∞∑
`=0

g(q−1)(`)

·
[
e−t(ν

(q−1)
`

+iω)/(Λ̃R) + e−t(ν
(q−1)
`

−iω)/(Λ̃R)
]
.

(4.50)
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For the first term, we first perform the integral over ω, and hence the first term is convergent
in the ω → ∞ limit in the Schwinger representation. On the other hand, for the second
term, we first perform the summation over `, and hence the second term is convergent in
the `→∞ limit in the Schwinger representation.

The renormalized free energy is given by

Fren[Hp+1 × Sq−1] = 1
2ζHp+1×Sq−1(0) log(ΛR) + 1

2∂sζHp+1×Sq−1(0) , (4.51)

where the zeta function is a sum of two parts,

ζHp+1×Sq−1(s) = ζ
(1)
Hp+1×Sq−1(s) + ζ

(2)
Hp+1×Sq−1(s) , (4.52)

with

ζ
(1)
Hp+1×Sq−1(s) = cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∞∑
`=0

g(q−1)(`)

·
∫ ∞

0
dω ω2k−1

[(
ω + i ν(q−1)

`

)−s
+
(
ω − i ν(q−1)

`

)−s]
,

(4.53)

ζ
(2)
Hp+1×Sq−1(s) = 2cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dω ω2k−1

e2πω − 1

·
∞∑
`=0

g(q−1)(`)
[(
ν

(q−1)
` + iω

)−s
+
(
ν

(q−1)
` − iω

)−s]
.

(4.54)

The first term in the zeta function is convergent for Re s > 2k,

ζ
(1)
Hp+1×Sq−1(s) = 2cp+1rp+1

p+1
2∑

k=1
αk,p+2(−1)k cos

(
πs

2

)
Γ(2k)

2k∏
i=1

1
s− i

· 2rq−1
Γ(q − 1)



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q ζ(s− 2n− 2k + 1) q : odd ,

q
2−1∑
n=0

(−1)
q
2−1+n βn,q ζH

(
s− 2n− 2k, 1

2

)
q : even .

(4.55)

It follows that

ζ
(1)
Hp+1×Sq−1(0) = cp+1 rp+1

2rq−1
Γ(q − 1)

p+1
2∑

k=1
αk,p+2

(−1)k
k

·


q−1

2∑
n=0

(−1)
q−1

2 +n αn,q ζ(−2n− 2k + 1) q : odd ,

0 q : even ,

(4.56)
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and
∂sζ

(1)
Hp+1×Sq−1(0)

= cp+1 rp+1
2rq−1

Γ(q − 1)

p+1
2∑

k=1
αk,p+2

(−1)k
k

·



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q

[
H2kζ(−2n− 2k + 1) + ζ ′(−2n− 2k + 1)

]
q : odd ,

q
2−1∑
n=0

(−1)
q
2−1+n βn,q ∂sζH

(
−2n− 2k, 1

2

)
q : even .

(4.57)

Using the expansion of the gamma functions in the degeneracy,

Γ
(
ν

(q−1)
` + q−1

2

)
Γ
(
ν

(q−1)
` − q−1

2 + 1
)

=



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q

2n−1∑
i=0

(
2n− 1
i

)(
ν

(q−1)
` + iω

)i
(−iω)2n−1−i q : odd ,

q
2−1∑
n=0

(−1)
q
2−1+n βn,q

2n∑
i=0

(
2n
i

)(
ν

(q−1)
` + iω

)i
(−iω)2n−i q : even ,

(4.58)

and its complex conjugate, we obtain

ζ
(2)
Hp+1×Sq−1(s) = 2cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dω ω2k−1

e2πω − 1
2rq−1

Γ(q − 1)

·



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q

2n−1∑
i=0

(
2n− 1
i

)
(−i)2n−1−iω2n−1−i

·
[
ζH (s− i, iω) + (−1)i+1ζH (s− i,−iω)

] q : odd ,

q
2−1∑
n=0

(−1)
q
2−1+n βn,q

2n∑
i=0

(
2n
i

)
(−i)2n−iω2n−i

·
[
ζH

(
s− i, 1

2 + iω
)

+ (−1)iζH
(
s− i, 1

2 − iω
)] q : even .

(4.59)
Although it is difficult to perform the integral over ω analytically, it is possible to simplify
ζ

(2)
Hp+1×Sq−1(0) and its derivative at s = 0 furthermore. After a bit of calculation, we obtain

ζ
(2)
Hp+1×Sq−1(0) =



cp+1 rp+1
2rq−1

Γ(q − 1)

p+1
2∑

k=1
αk,p+2

q−1
2∑

n=0
(−1)

q−1
2 αn,q

·
2n−1∑
i=0

(
2n− 1
i

)
(−1)i+k+n+1

i+ 1

b i+1
2 c∑
l=0

(
i+ 1

2l

)
B2l

B2k+2n−2l
k + n− l

q : odd ,

0 q : even .
(4.60)

– 20 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
2

In addition, the derivative of the zeta function at s = 0 can be computed as

∂sζ
(2)
Hp+1×Sq−1(0) = 2cp+1 rp+1

p+1
2∑

k=1
αk,p+2

∫ ∞
0

dω ω2k−1

e2πω − 1
2rq−1

Γ(q − 1)

·



q−1
2∑

n=0
(−1)

q−1
2 +n αn,q

2n−1∑
i=0

(
2n− 1
i

)
(−i)2n−1−iω2n−1−i

·
[
∂sζH (−i, iω) + (−1)i+1∂sζH (−i,−iω)

] q : odd ,

q
2−1∑
n=0

(−1)
q
2−1+n βn,q

2n∑
i=0

(
2n
i

)
(−i)2n−iω2n−i

·
[
∂sζH

(
−i, 1

2 + iω
)

+ (−1)i∂sζH
(
−i, 1

2 − iω
)] q : even .

(4.61)

For even q, the combination of the Hurwitz zeta functions can be simplified using a formula

∂sζH

(
−i, 1

2 + iω
)

+ (−1)i∂sζH
(
−i, 1

2 − iω
)

= Γ(i+ 1)
(2πi)i Lii+1(−e−2πω) + π i

i+ 1Bi+1

(1
2 + iω

)
.

(4.62)

See e.g. (B.19) in [34] for the derivation. Unfortunately, it is difficult to simplify the
equations anymore, so we perform the integral (4.61) numerically.

For odd p, we find the following:

• For odd q, we numerically find the relation among free energies

Fren[Sd] = Fren[H2k × Sd−2k] (4.63)

for k = 1, 2, · · · , d/2−1. That is, the anomaly coefficients and the finite parts satisfy
the relations,

A[Sd] = A[H2k × Sd−2k] , (4.64)
Ffin[Sd] = Ffin[H2k × Sd−2k] . (4.65)

• For even q, the anomaly parts vanish since the bulk dimension d = p+ q is odd. We
numerically find the relation between the universal parts of the free energy

Ffin[Sd] = Ffin[H2k × Sd−2k] . (4.66)

for k = 1, 2, · · · , (d− 1)/2.

The equivalence of the anomaly coefficients between H2k × Sd−2k and Sd follows from a
relation of Euler characteristic χ[H2k × Sd−2k] = χ[Sd] as pointed out [34, 35] because the
bulk anomaly is related to the Euler characteristic.
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5 Free energy for Neumann boundary condition

In section 4, we computed the free energy on Hp+1×Sq−1 with Dirichlet boundary condition.
In this section, we compute the free energy with Neumann boundary condition. Neumann
boundary condition exists only when q = 2 as we saw in section 2.

5.1 Analytical continuation

We decompose the free energy into a sum of `,

F [Hp+1 × Sq−1] =
∞∑
`=0

g(q−1)(`)F`
(
ν

(q−1)
`

)
, (5.1)

where F`
(
ν

(q−1)
`

)
is the free energy for the `-th mode on Hp+1,

F`
(
ν

(q−1)
`

)
= −

dU(1)
2

∫ ∞
0

dω µ(p+1)(ω)
[
log

(
ω + i ν(q−1)

`

Λ̃R

)
+ log

(
ω − i ν(q−1)

`

Λ̃R

)]
. (5.2)

Since the ω integral is performed before the summation over `, the logarithmic function is
decomposed in this way.

From now on, we concentrate on q = 2 because Neumann boundary condition is allowed
only when q = 2. The difference of free energies between the two boundary conditions comes
from the ` = 0 mode. The Dirichlet boundary condition has a positive value

ν
(1)
`=0 = 1

2 , (5.3)

while the Neumann boundary condition has a negative value

ν
(1)
`=0 = −1

2 . (5.4)

In section 4.1, we obtained the zeta functions as analytical functions of positive m. It is
possible to analytically continue the zeta functions to a m < 0 region.

Even p. From (4.17) the free energy of the ` = 0 mode is given by

F`=0
(
ν

(1)
`=0

)
= (−1)

p
2 +12

p
2

Γ(p+ 1)

p
2∑

k=0
βk,p+2

(
ν

(1)
`=0

)2k+1

2k + 1 (−1)k log
(
R

ε

)
. (5.5)

Then, the difference of the free energies becomes

F∆D [Hp+1 × S1]− F∆N [Hp+1 × S1] = (−2)
p
2 +1

Γ(p+ 1)

p
2∑

k=0
βk,p+2

(−1)k
22k(2k + 1) log

(
R

ε

)
. (5.6)

By using

1
22k(2k + 1) = 2

∫ 1
2

0
duu2k , (5.7)

(3.11) with the replacement ν(d)
` → u, and the reflection formula of the gamma function

Γ(z)Γ(1− z) = π

sin(πz) (5.8)
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with z = u− p+1
2 + 1, the coefficient of the logarithmic divergent part becomes

(−2)
p
2 +1

Γ(p+ 1)

p
2∑

k=0
βk,p+2

(−1)k
22k(2k + 1) = 2(−2)

p
2 +1

πΓ(p+ 1)

∫ 1
2

0
du cos(πu)Γ

(
p+ 1

2 + u

)
Γ
(
p+ 1

2 − u
)
.

(5.9)

We find a relation

F∆D [Hp+1 × S1]− F∆N [Hp+1 × S1] = −2Funiv[Sp] , (5.10)

where the universal free energy on Sp is given by (3.24).

Odd p. From (4.31) and (4.32) with (B.7), the difference of the free energies is given by

F∆D [Hp+1 × S1]− F∆N [Hp+1 × S1]

= −2cp+1 rp+1

p+1
2∑

k=1
αk,p+2

(
fk

(1
2

)
− fk

(
−1

2

))

= −2cp+1 rp+1

p+1
2∑

k=1
αk,p+2(−1)k

(
1

22k−1(2k − 1) +
∫ 1

2

− 1
2

duu2k−1ψ(u)
)
.

(5.11)

By using the identity

ψ(u)− ψ(−u) = 1
u

+ π cot(πu) , (5.12)

(3.11) with the replacement ν(d)
` → u and the reflection formula of the gamma function

with z = u− p+1
2 + 1, we find

F∆D [Hp+1×S1]−F∆N [Hp+1×S1] = 2cp+1rp+1

∫ 1
2

0
du cos(πu)Γ

(
p+1

2 +u
)

Γ
(
p+1

2 −u
)

=−2Funiv[Sp] , (5.13)

where the universal free energy on Sp is given by (3.24).
Independent of the evenness of p, the difference of the free energies between the two

boundary conditions is proportional to the universal free energy of the fermion on Sp,

F∆D [Hp+1 × S1]− F∆N [Hp+1 × S1] = −2Funiv[Sp] . (5.14)

This fact implies that the Neumann boundary condition for q = 2 is trivial in the sense
that the defect operator saturates the unitarity bound (2.23) and becomes a free field.

5.2 Evidence for defect C-theorem

We are now in a position to compare the result in section 5.1 with our proposed conjecture
in [12]. The defect free energy (1.5) may not be invariant under the Weyl transformation,
while we expect that the difference of the defect free energies is invariant. An RG flow
from the Neumann boundary condition to the Dirichlet boundary condition is triggered by
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a double trace deformation as is familiar in the AdS/CFT setup [42–48], and the difference
of the universal part of the defect free energies is given by

D̃UV − D̃IR = − sin
(
πp

2

)(
F∆N [Hp+1 × S1]− F∆D [Hp+1 × S1]

)
= 2F̃ [Sp] ,

(5.15)

where

F̃ [Sp] = 2rp
Γ(p+ 1)

∫ 1
2

0
du cos(πu)Γ

(
p+ 1

2 + u

)
Γ
(
p+ 1

2 − u
)

(5.16)

is positive for any p. The positivity of the sphere free energy leads to the positivity of the
difference of the free energies between at UV fixed point and at IR fixed point. In this
case, our proposed defect C-theorem holds.

6 Summary and discussion

In this paper, we studied a free Dirac fermion on Hp+1 × Sq−1 as a DCFT. In section 2,
we classified the allowed boundary conditions, and we found that a nontrivial boundary
condition is allowed only in q = 2. In sections 3 and 4, we computed the free energy on Sd,
HSd, Hd and Hp+1 × Sq−1 with the Dirichlet boundary condition using the zeta-function
regularisation. In particular, we obtained relations of free energies, which hold also in a
conformally coupled scalar field [34, 35] in section 4.2. In section 5, we computed the
difference of the free energies between the Dirichlet boundary condition and the Neumann
boundary condition in q = 2 and confirmed the validity of our proposed defect C-theorem.

We obtained various results similar to a conformally coupled scalar case [34, 35]. How-
ever, there are several differences between the fermion case and the scalar case. The first
difference comes from the codimension of the defect which allows nontrivial boundary con-
ditions. Nontrivial boundary conditions in the conformally coupled scalar are allowed in
q = 1, 2, 3, 4 [34], but the nontrivial boundary condition in the free fermion occurs in q = 2.
The second difference is that we rigorously derive the equivalence of the free energies be-
tween HSd and Hd for arbitrary d. However, for the conformally coupled scalar [34], the
equivalence of the free energies between HSd and Hd is checked only numerically because a
nontrivial identity among Bernoulli polynomials are required for a proof of the equivalence
for arbitrary d.

In section 2.2, we gave a classification of boundary conditions in a free fermion, and
this means that we constructed a concrete model of a DCFT. A task to derive the same
classification (or defect operator) of boundary conditions by using the method in [41]
remains. The concrete model would be useful for a study of DCFTs. In this paper we
discussed the non-monodromy defect where the fermion does not receive any phase around
the defect. For q = 2, there exits a monodromy defect where the fermion receives a phase
around the defect in addition to the non-monodromy defect.
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A List of tables

· S1 S2 S3 S4

· 0 1
3 0 −11

90

H2 1
6 0 −11

90 0 191
3780

H3 0 − 37
1440 0 191

7560 0
H4 − 11

180 0 191
3780 0 − 2497

113400

H5 0 407
40320 0 − 151951

14515200 0
H6 191

7560 0 − 2497
113400 0 14797

1496880

H7 0 − 124603
29030400 0 4384643

958003200 0
H8 − 2497

226800 0 14797
1496880 0 − 92427157

20432412000

H9 0 7277933
3832012800 0 − 43105214773

20922789888000 0
H10 14797

2993760 0 − 92427157
20432412000 0 36740617

17513496000

S5 S6 S7 S8

· 0 191
3780 0 − 2497

113400

H2 0 − 2497
113400 0 14797

1496880

H3 − 33533
2903040 0 726491

136857600 0
H4 0 14797

1496880 0 − 92427157
20432412000

H5 14797
2993760 0 − 3467627767

1494484992000 0
H6 0 − 92427157

20432412000 0 36740617
17513496000

H7 − 4609862003
2092278988800 0 36740617

35026992000 0
H8 0 36740617

17513496000 0 − 61430943169
62523180720000

H9 50453696437
50214695731200 0 − 20200704144983

41811420119040000 0
H10 0 − 61430943169

62523180720000 0 23133945892303
49893498214560000

Table 2. The bulk anomalies A[Hp+1 × Sq−1] and the defect anomalies A[Hp+1 × Sq−1] (shaded)
on Hp+1 × Sq−1 with the Dirichlet boundary condition.
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M Ffin[M]
S2 4 ζ ′(−1)
S3 1

4 log 2 + 3
8π2 ζ(3)

S4 −4
3 ζ
′(−1) + 4

3 ζ
′(−3)

S5 − 3
32 log 2− 5

32π2 ζ(3)− 15
64π4 ζ(5)

S6 8
15 ζ

′(−1)− 2
3 ζ
′(−3) + 2

15 ζ
′(−5)

S7 5
128 log 2 + 259

3840π2 ζ(3) + 35
256π4 ζ(5) + 63

512π6 ζ(7)

S8 − 8
35 ζ

′(−1) + 14
45 ζ

′(−3)− 4
45 ζ

′(−5) + 2
315 ζ

′(−7)
S9 − 35

2048 log 2− 3229
107520π2 ζ(3)− 141

2048π4 ζ(5)− 189
2048π6 ζ(7)− 255

4096π8 ζ(9)

S10 32
315 ζ

′(−1)− 82
567 ζ

′(−3) + 13
270 ζ

′(−5)− 1
189 ζ

′(−7) + 1
5670 ζ

′(−9)

Odd d Ffin[HSd] = 1
2Ffin[Sd]

Even d Ffin[HSd] = 1
2Ffin[Sd]

Odd d 0
Even d Ffin[Hd] = 1

2Ffin[Sd]
Even p Ffin[Hp+1 × Sq−1] = 0
Odd p Ffin[Sd] = Ffin[H2k × Sd−2k] for k = 1, · · · , dd/2e − 1

Table 3. Table of the finite parts of Ffin[Sd], Ffin[HSd], Ffin[Hd], and Ffin[Hp+1 × Sq−1] with the
Dirichlet boundary condition.

B Detail derivation of (4.29)

In this appendix, we give a detailed derivation of (4.29).
To perform the integral

fk(m) =
∫ ∞

0
dω ω2k−1

e2πω − 1 log(ω2 +m2) , (B.1)

we first take the derivative respect to m,

∂mfk(m) = 2mgk(m) , (B.2)

gk(m) =
∫ ∞

0
dω ω2k−1

(e2πω − 1)(ω2 +m2) . (B.3)

Since gk(m) satisfies the recursion relation

gk+1(m) = −m2gk(m) + (−1)k+1B2k
4k , (B.4)

with the initial condition

g1(m) = 1
2

(
logm− 1

2m − ψ(m)
)
, (B.5)
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the solution is given by

gk(m) = (−1)k−1m2k−2
(
g1(m)−

k−1∑
l=1

m−2lB2l
4l

)
. (B.6)

By integrating 2mgk(m) from 0 to m, fk(m) can be evaluated as

fk(m) = (−1)k
[
−ζ ′(1− 2k) + m2k−1

2(2k − 1) + m2k

4k

(1
k
− log(m2)

)

+
∫ m

0
dµµ2k−1ψ(µ) +

k−1∑
l=1

B2l
4l

m2k−2l

k − l

]
,

(B.7)

where we use

fk(0) = 2
∫ ∞

0
dω ω2k−1

e2πω − 1 logω

= (−1)k−1ζ ′(1− 2k) .
(B.8)

The remaining integral is performed using a formula in [64, 65]∫ m

0
dµµnψ(µ) = (−1)n

(
Bn+1Hn

n+ 1 − ζ ′(−n)
)

+
n∑
r=0

(−1)r
(
n

r

)
mn−r

(
ζ ′(−r,m)− Br+1(m)Hr

r + 1

)
.

(B.9)
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