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1 Introduction

The dark energy, or the observed cosmological constant Λobs, poses a puzzle in fundamental
physics. Its smallness with respect to the (reduced) Planck mass (MPl = 2.4× 1018 GeV),
Λobs ' 10−120M4

Pl, needs to be understood. Since Λ is calculable in string theory, one is
led to search for a reason within string theory. Hopefully, understanding its smallness will
also reveal other structures in nature. Here is an attempt along this direction.

It has been shown that the string theory motivated racetrack Kähler uplift (RKU)
model allows an exponentially small cosmological constant Λ [1]. Sweeping over a patch of
the string landscape (i.e., scanning over the parameters of the model), one finds that the
probability distribution P (Λ) ∝ Λ−1+k for Λ → 0+, where 1 � k > 0. An exponentially
small positive Λ (e.g., the median value) naturally follows from the divergent behavior of
such a properly normalized P (Λ) at Λ→ 0+. In this RKU model, the value of the observed
Λobs implies the emergence of a new scale m, which happens to be close to the electroweak
scale, m ∼ mEW ∼ 102 GeV [2]. The KKLT scenario [3] suggests that an anti-D3-(D3)-
brane can break supersymmetry (SUSY) and uplift the vacuum to a de Sitter (dS) vacuum.
So one is led to include into the RKU model the contributions of the (warped) D3-brane
tension m4

s as well as the effective Higgs potential Vh after spontaneous symmetry breaking
(SSB). It is shown that their respective contributions must cancel to a high degree in order
to maintain a naturally small Λ in the RKU model [4],

(∆V )min =
∣∣∣m4

s + Vh,min
∣∣∣ < Λ , (1.1)

where the negative Vh,min ' −O(m4
EW). (In fact, there is no meta-stable dS vacuum

solution in the RKU model if ∆V > Λ.) This cancellation must be automatic; otherwise,
fine-tuning is re-introduced. In this paper, let us focus on this condition, which is now
a part of the naturalness criterion. Since the Higgs potential |Vh,min| is many orders of
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magnitude larger than Λobs, one should expect Vh,min to be canceled or screened by some
effect without fine-tuning in any model with a naturally small Λ. In this paper, we show
how this is achieved in a specific SUGRA model with D3-brane(s).

Note that, in scanning over parameters of the model to obtain P (Λ), we scan over
all the parameters in ∆V (1.1) too. A naturally vanishingly small (∆V )min with param-
eters spanning over (reasonable) ranges imposes tight constraints in model building. Not
surprisingly, this has strong implications on particle physics phenomenology.

The motivation of the model comes from string theory. In terms of the Planck mass
scale, ms ' mEW ∼ 10−16MPl. In the brane world scenario with the warped flux com-
pactification in Type IIB string theory [cf. [5–8]], this strongly suggests that both the
standard model (SM) of strong and electroweak interactions and the D3-brane must sit at
the bottom (or close to the bottom) of the same warped throat. This further suggests that
the SM particles are simply open string modes inside the D3-brane (or a stack of p ≥ 5
of them that span our 3-dimensional observable universe) [4], or more generally, inside a
D3/D7 system, with a set of intersecting D7-branes. Similar scenarios have been suggested
earlier [9–14]. In this paper, the naturalness criterion (1.1) provides crucial guidance in
developing the model.

It was suspected that SUSY breaking by (warped) D3-brane(s) is spontaneous [15–17].
It turns out that this spontaneous SUSY breaking by an D3-brane can be incorporated into
a non-linear SUSY model [18], which can be cast as a linear SUSY model with a nilpotent
chiral superfield X, where X2 = 0 [19–23]. (This is analogous to a non-linear sigma model
cast as a linear sigma model with a constraint.) To start the construction of the model, we
assume that the minimal supersymmetric standard model (MSSM) [cf. [24]] emerges from
such a D3/D7 system.

Putting together the RKU model, the KKLT model and MSSM leads us to a 4-
dimensional N= 1 supergravity model, namely a minimal non-linear (or nilpotent) SUSY
standard model (mNSSM). In MSSM, some of the terms in the Higgs potential contribute
an electroweak scale (semi-positive) vacuum energy density which is many orders of mag-
nitude bigger than Λobs. To satisfy (1.1), such terms have to be projected out, so the new
resulting potential ∆V can vanish naturally after SSB. Our approach uses X to impose
constraints [25–27] on the particle spectrum as well as terms in the Higgs potential so
that the model satisfies condition (1.1). As a result, the Higgsinos and half of the two
Higgs doublets are projected out, and the final Higgs potential for all practical purposes is
precisely that in the SM, with the SM Higgs doublet h = (h0, h−),

∆V =
∣∣∣m2

s − κh†h
∣∣∣2 , (1.2)

where (∆V )min = 0 after SSB, irrespective of the values of m2
s and the real positive κ.

That is, the warped D3-brane tension m4
s and the Higgs potential Vh,min completely cancel

each other to satisfy (1.1).
Note that the supposed SUSY breaking from D3-brane(s) (in the KKLT scenario) is

now completely screened by the Higgs potential. As a consequence, the SUSY breaking
in the model comes entirely from the Kähler uplift, which is exponentially small. This
implies that a SUSY pair have almost degenerate masses; since superpartners have not
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been observed experimentally, all remaining superpartners in MSSM must be removed,
again employing X to project them out. The final model is for all practical purposes
precisely the SM of strong and electroweak interactions. However, the superpartners of the
(closed) string modes (such as the graviton) that are not confined to the D3-brane(s) are
expected to remain.

2 Model

In the Wilsonian effective field theory approach, we write down a low energy 4-dimensional
N = 1 supergravity model with parameters calibrated at the electroweak energy scale.
Besides the contribution of the SU(3)× SU(2)×U(1) gauge supermultiplets, the model is
specified by the Kähler potential K and the superpotential W . (Bar on quantities implies
complex conjugate.)

K = −2 ln
[(
T + T −XX − nuH†uHu − ndH†dHd +Kmatter

)3/2
+ ξ

2

]
,

W = W0(Ui, S) +Wnp(T ) + µ̃HuHd −X
(
m̃2
s + γ̃HuHd

)
+Wmatter ,

Wnp(T ) = Ae−aT +Be−bT , ξ = − ζ(3)
4
√

2(2π)3χ(M)
(
S + S

)3/2
> 0 . (2.1)

Here, Kmatter and Wmatter contain the quark and lepton superfield contributions in MSSM,
including all the Yukawa couplings in Wmatter. The complex structure moduli Ui and the
dilaton S are stabilized [3, 4, 28], thus W0 can be treated as a constant, leaving only
the Kähler modulus T which measures the volume of the flux-compactified Calabi-Yau
orientifold M. The Kähler uplift is provided by ξ, a stringy α′3-correction [29]; with multiple
Ui, the Euler index of the manifold χ(M) < 0, so ξ > 0. We expect ξ ∼ O(10−2) in the KU
model [30–35]. The non-perturbative Wnp, which can come from gaugino condensation in
D7-branes, provides the racetrack. Together, they form the RKU model when T is being
stabilized. In the brane world picture in string theory, Ui, S, T and the graviton-gravitino
pair are close string modes while the rest are open string modes inside the D3-brane(s)
that span our observable universe.

Here the two Higgs doublets Hu and Hd in MSSM are explicitly displayed, since only
Higgs fields acquire vacuum expectation values (vev) in SM and contribute to Λ. We denote
HuHd = (Hu)i(Hd)jεij = H+

u H
−
d − H0

uH
0
d . nu and nd are O(1) normalization constants.

γ̃ describes the (dimensionless) coupling between X and Higgs superfields. The scalar
potential V is given by two parts, namely the F -terms and the D-terms. Possible D-term
contribution from the geometrical sector is ignored here. In units where MPl = 1,

V = KIJF
IF J − 3eKWW + VD

= VT + VX + VH,F + VH,D = VT + ∆V , (2.2)

where auxiliary field F I = eK/2KIJDJW , DI = ∂I +KI , KI = ∂IK, KIJKIJ = 1 and

VT = eKKTT |DTW |2 − 3eK |W |2 , (2.3a)

VX = KXXF
XFX +

(
KTXF

TFX + c.c.
)
, (2.3b)
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VH,F = KHHF
HFH +

(
KHIF

HF I + c.c.
)
, (2.3c)

VH,D =
∑
a

1
2g

2
aD

a2 . (2.3d)

In the RKU model where only VT is present, it has a no-scale structure when ξ = 0 and a
small positive Λ emerges after T is stabilized with ξ turned on. ga is gauge coupling and Da

is the corresponding Killing potential in supergravity language. Contributions (2.3b), (2.3c)
and (2.3d) are all semi-positive squares. To minimize V (to satisfy condition (1.1)), we
need ∆V = VX + VH,F + VH,D < Λ, that is, for all practical purposes, each term should
vanish by itself. To achieve that, we introduce several algebraic constraints [26, 27, 36] to
project out some undesired degrees of freedom as well as interactions; explicitly,

X2 = 0 , (2.4a)
XH = chiral , (2.4b)

X
[

(Hu)i − εij
(
Hd

)j ]
= 0 , (2.4c)

XQi = XLj = XWα = 0 . (2.4d)

In short, (2.1) together with (2.4) defines our mNSSM model. Here X plays the role of a
projection operator that removes field degrees of freedom and the constraints are off-shell
conditions. The constraint (2.4b) (i.e., Dα̇

[
XH i

]
= 0) is on every Higgs chiral superfield,

and εijε
jk = δki in (2.4c). In (2.4d), index i runs over all quark chiral superfields, the

index j runs over all lepton chiral superfields and index α runs over all the field strength
chiral superfields of the vector superfields. In the context of string theory (D3-brane
in an orientifold), constraint (2.4a) is discussed in refs. [22, 23], while constraints (2.4b)
and (2.4d) are discussed in refs. [37, 38].

As we shall see, VX = 0 is automatic after SSB, while constraint (2.4b) eliminates
the term VH,F and the constraint (2.4c) eliminates VH,D terms (note that both VH,F and
VH,D are present in MSSM). The last set (2.4d) of constraints project out the remaining
R-parity odd degrees of freedom, i.e., the scalar quarks and scalar leptons as well as the
gauginos in MSSM; as we shall see, this is necessary since SUSY breaking is negligibly
small in the model.

3 Properties

The nilpotent superfield X emerges from the presence of an D3-brane [13, 21, 22]. The
constraint X2 = 0 (2.4a) projects out the scalar degree of freedom of X. Expanded in
supergravity variables Θ [39],

X = x+
√

2ΘG+ Θ2FX and x = GG/2FX , (3.1)

where Gα is the fermion which contributes to part of goldstino and FX is the auxiliary
field. Since the expectation value 〈GG〉 = 0, x and any field component in (2.3) that
contains Gα (due to constraints (2.4)) will drop out in V .1 Therefore, only the KXX term

1These constraints are operator identities, which means that these solution exists as long as F X 6= 0.
However, the classical value 〈F X〉 can be zero after SSB.

– 4 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
1

remains in (2.3b) and we have

VX =
∣∣m̃2

s + γ̃HuHd

∣∣2
3
(
T + T + · · ·

)2 . (3.2)

Next, let us consider a quark chiral superfield Q = q +
√

2Θψ + Θ2FQ. The constraint
XQ = 0 (2.4d) yields [26]

Q = ψG

FX
− G2FQ

2 (FX)2 +
√

2Θψ + Θ2FQ

=
√

2
(
ψ − FQG

FX

)
Θ̃ + FQΘ̃2 , (3.3)

where Θ̃ = Θ + G/
√

2FX . Here the scalar quark is projected out. (Since Gα plays no
role in the determination of ∆V , we can consider a simpler X = θ2FX which satisfies
X2 = 0 [26]. Here XQ = 0 implies qFX = 0 so q is projected out.) The other constraints
are similar.

4 Higgs sector

VH,F (2.3c) in V (2.2) will in general violate (1.1) without fine-tuning, so we like to remove
it. Constraint (2.4b) on a Higgs superfield yields, in global SUSY [26],

H = h+
√

2θΨH + θ2FH , (4.1)

ΨH = iσν
(
G

FX

)
∂νh ,

FH = −∂µ
(
G

FX

)
σνσµ

G

FX
∂νh+ 1

2
(
FX

)2G2∂2h ,

where the corresponding expressions in SUGRA can be found in refs. [27]. We see that,
not only ΨH is removed, so is the corresponding auxiliary field FH . Applying the con-
straint (2.4b) on every Higgs superfield, the auxilliary fields FH are removed, and (2.3c)
yields (after setting the expectation value of Gα to zero)

VH,F ∝ |µ̃|2
(
H†uHu +H†dHd

)
+ · · · → 0 . (4.2)

This means that µ̃HuHd in W (2.1) contributes to the scalar potential (of order
O(m6

EW/M
2
Pl)) only in VT , which is already included in the RKU model [4].

Now let us expand the whole scalar potential and focus on Higgs fields. Relevant and
marginal terms are kept and higher order terms which is suppressed by MPl are ignored.
Having in mind that T + T ∼ O(103) (so the string scale MS ∼ 1015 − 1016 GeV), we
only keep terms proportional to (T + T )−2. Due to the no-scale structure of the Kähler
potential, Higgs fields receive field normalization according to their respective kinetic terms
(after the T stabilization),

hu = hu

( 3nu
T + T

)1/2
, hd = hd

( 3nd
T + T

)1/2
, (4.3)
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so that kinetic terms of hu and hd are in canonical form, which means that they are the
observed Higgs fields in MSSM. The remaining dependence of (T +T ) in the potential can
be absorbed into the parameters,

ms = m̃s

[
3
(
T + T

)2
]−1/4

, γ = γ̃ (27nund)−1/2 , (4.4)

where the D-term potential is the same as that in MSSM. There should be some T -
dependence in VH,D, which could be further absorbed into nu and nd after normalization
of Higgs fields. We write down the potential for two Higgs doublets with all parameters
rescaled to observed value properly,

V2h = 2m2
s Re (γhuhd) + |γhuhd|2 + g2 + g′2

8

(
|hu|2

nu
− |hd|

2

nd

)2

+ g2

2

∣∣∣∣∣ h†uhd√
nund

∣∣∣∣∣
2

, (4.5)

where the first two terms come from VX and the last two terms from VH,D; g and g′ are
the SU(2) and U(1) gauge couplings respectively, and hu = (h+

u , h
0
u), hd = (h0

d, h
−
d ) as in

MSSM. With the SU(2) symmetry, we choose SSB as 〈h0
u〉 develops a vev, followed by

〈h0
d〉 6= 0. Parameter γ is a complex number in principle. It can be made real by rotating

the complex fields h0
u and h0

d, so that γ > 0 and γ〈huhd〉 = −γ〈h0
u〉〈h0

d〉 = −γvuvd < 0.
After SSB, vuvd = m2

s/γ, v2
d = m2

s

√
nd/nu/γ, so v2

u = m2
s

√
nu/nd/γ. Following MSSM,

we introduce tan β = vu/vd. It turns out that, at the minimum,

tan β =
√
nu
nd
→

VH,D,min = 0
V2h,min = −m4

s

→ VX,min = 0 , (4.6)

so (∆V )min = 0 and condition (1.1) is satisfied. Note that the result (∆V )min = 0 is
insensitive to the values of ms, γ, g

2, g′2, nu, nd and µ.
If the |µ̃|2 term in VH,F (4.2) is present, as in MSSM, then V2h (4.5) will have an

additional term (setting nu = nd = 1 and with a rescaled µ): V2h → V2h+|µ|2(|hu|2+|hd|2).
In this case V2h,min = −(m2

s − |µ|2/γ)2 yielding ∆V = m4
s − (m2

s − |µ|2/γ)2 > 0, so
condition (1.1) is not satisfied except via fine-tuning. This is the reason we impose (2.4b) to
obtain (4.2); as a consequence, Higgsinos are absent in this model. However, for a very small
W0(Ui, S) (as expected), the observed Λobs implies that |µhuhd| ∼m3 ∼ (100 GeV)3 [2, 4].

Although the above result (4.6) with VH,D,min = 0 is desirable, it is straightforward to
check that the charged Higgs boson mass is the same as the W -boson mass, m2

H± = m2
W =

(v2
u+v2

d)g2/2, which is disastrous, as experiments show such H± do not exist. Fortunately,
this problem can be easily solved by the constraint (2.4c), which projects out VH,D (2.3d)
as well as half of the Higgs degrees of freedom.

Let us explain the choice of the particular linear combination in the constraint (2.4c).
Similar to (3.3), a linear combination of the Higgs scalar fields is projected out. Suppose,
instead of (2.4c), we impose X[(Hu)i − qεij(Hd)j ] = 0, where q is real but arbitrary. This
projection gives a linear relation between observed (properly normalized according to (4.3))
Higgs fields,

h+
u = −q

√
nu
nd
h
−
d , h0

u = q

√
nu
nd
h

0
d . (4.7)
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Now h†uhd = h
+
u h

0
d + h

0
uh
−
d = q

√
nu/nd(−h−d h0

d + h−d h
0
d) = 0, huhd = −q

√
nu/ndh

†
dhd ≡

−
√
nd/nuh

†h/q and the two Higgs doublet potential V2h (4.5) reduces to the one Higgs
doublet potential ,

Vh =− 2m2
s

γ

q

√
nd
nu
h†h+ γ2

q2
nd
nu

(
h†h

)2
+ g2 + g′2

8

(
q2 − 1

)2
q4n2

u

(
h†h

)2
, (4.8)

where the last term in V2h (4.5) has dropped out. In this case, VD,H > 0, which in general
violates condition (1.1) unless q = 1. After SSB, instead of (4.6), one is sitting at

V
(q)
h,min = − m4

s

1 +
g2 + g′2

8γ2q2nund
(q2 − 1)2

, (4.9)

implying (∆V )min > 0 and condition (1.1) is not satisfied unless q = 1, when V
(q)
h,min is

lowest. That is, constraint (2.4c) is energetically preferred, i.e., dynamically determined.
With constraint (2.4c), or q = 1 for (4.7), the VH,D term in (4.8) drops out, and the

Higgs potential for a single Higgs doublet becomes

Vh = −2κm2
sh
†h+ κ2

(
h†h

)2
, (4.10)

where κ = γ
√
nd/nu is taken to be a real positive (dimensionless) coupling. Since the

constraint (2.4c) removes VH,D in (4.5), the gauge couplings do not enter Vh. This is exactly
the SM Higgs potential and its contribution comes entirely from VX ∝ |FX |2, where FX
here is the vacuum expectation value of the auxilliary field; so VX = m4

s+Vh = |m2
s−κh†h|2,

as shown in (1.2). Note that the quartic coupling κ2 > 0.
After SSB, the Higgs field acquires a vev, 〈h†h〉 = v2/2 = m2

s/κ. Expanding around
this minimum, physical massive Higgs boson and the three massless Goldstone bosons
emerge, as expected,

m2
h = 4m2

sκ , m2
G0 = m2

G± = 0 . (4.11)

Putting in the observed mH = 125GeV and v = 246GeV, one finds κ = 0.36 and ms =
104.3GeV. The triple and quartic Higgs self-couplings are the same as those in SM. The
potential value for VX (1.2) after SSB is VX,min = 0, irrespective of the values of m2

s and
the real positive κ; with

∆V = VF,H + VH,D + VX = VX , (4.12)

we now have (∆V )min = VX,min = 0, satisfying the condition (1.1) without fine-tuning.
Note that the (warped) SUSY breaking D3-brane tension is completely screened by the

Higgs potential, so D3-brane(s) do not break SUSY in this model. SUSY breaking and the
uplift from AdS to dS vacuum comes from the ξ term only. However, the SUSY breaking
by the Kähler uplift is very small (m2

3/2 ∼ O(Λ/M2
Pl)), so any SUSY pair will have almost

degenerate masses, which is a problem as no superpartner has been observed. Again, this
phenomenological problem can be easily solved by imposing the constraints (2.4d), which
removes all the scalar quarks and scalar leptons as well as the gauginos. Constraint (2.4b)
projects out the Higgsinos while constraint (2.4c) reduces the two Higgs doublets to a single
doublet, and implies the same Yukawa couplings as those in SM.
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5 Summary

The mNSSM model is given by (2.1) together with (2.4). After imposing the con-
straints (2.4), the particle spectrum of the mNSSM model is reduced to exactly that in
the SM (in energy scales around or below mEW), except for the very light modes of S,
Ui and T (and the graviton-gravitino pair). Since these modes are not confined to the
D3-brane(s), their superpartners (dilatino, the Uenos and the Tino) cannot be projected
out by X. Here, the role of D3-brane(s) is not to break SUSY (as opposed to the KKLT
model [3]), but to cancel the electroweak Higgs potential contribution to Λ.

Once the contributions to Λ from the D3-brane tension cancels the Higgs potential
Vh,min, the value of Λ follows from the T stabilization in the RKU model [1, 4]. There, the
divergent behavior of the probability distribution P (Λ) ∼ Λ−1+k around Λ ∼ 0+ follows
when we scan over the ratio z = A/B of the coefficients of the two non-perturbative terms
in Wnp = Ae−aT +Be−bT (2.1), while the value of 1� k > 0 depends on the ratio β = b/a

(as we scan over a and b). Here the gravitino gains a tiny mass from the ξ-induced SUSY
breaking, which is for the whole orientifold, not limited to the D3-branes or the throat we
live in.

6 Comments

Some comments are in order here.

• The (necessary in MSSM) SUSY breaking scale m4
s & m4

EW are many orders of
magnitude bigger than the observed Λ. This SUSY breaking will generate a huge
contribution to Λ in the absence of fine-tuning. Therefore, it is neat to see that
it is precisely screened by the Higgs potential contribution to Λ. This cancellation
without fine-tuning is probably a necessary condition in any model for a naturally
small Λ.

• In fitting experimental data, the couplings and masses are taken to have physical (i.e.,
renormalized) values, as measured at the electroweak energy scale, à la the Wilsonian
approach. It is important to study the radiative corrections of the model. It is argued
that the statistical approach in the RKU model does not have the usual radiative
instability problem [40]. Intuitively, this should not be too surprising. To determine
P (Λ), one scans over ranges of all the parameters of the model that yield a local
minimum solution; typical radiative corrections contribute tiny shifts when compared
to the variations of the parameters that are already included in the scanning.

• Looking back at the KPV picture [15], where a small stack of D3-branes sits in a
“false” vacuum, we see that the electroweak contribution, by lowering the vacuum
energy of the “false” vacuum, tends to suppress the tunneling probability when com-
pared to that in the KPV scenario.

• In the model, one expects Kaluza-Klein modes as well as string excitation modes
to be present at scales not too far from mEW. Their detection will provide strong
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evidence for the scenario. Furthermore, their spectra will reveal valuable details of
the warped throat and exactly where and how the SM sits in the throat.

• The mNSSM has no particle that is a suitable candidate for cold dark matter. How-
ever, it has very light scalar fields like the Ui, S and T [32, 34, 40], one (or some)
of which can play the role of super-light bosonic particles in the fuzzy dark matter
scenario [41, 42].

• The model can easily accommodate theD3-D3 inflationary model, à la the KKLMMT
scenario [16]. This scenario should happen in the early universe in another (less
warped) throat in the orientifold.

• In the model, we introduce degrees of freedom and terms in the Higgs potential to be
projected out later. It will be interesting to find a more direct formulation without
going through this seemingly tortuous path.

• We hope the results here, may be together with the speculation on the quark and
lepton mass distributions [43], provide hints in the search for the SM in Type IIB
string theory and/or F theory.
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