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1 Introduction

The AdS/CFT correspondence [1–3] is one of the most significant topics in String Theory.
A typical example is the duality between type IIB string theory on AdS5×S5 and the N = 4
SU(N) super Yang-Mills theory in large N limit. A possible generalization, preserving the
conformal symmetry of the boundary theory, is to replace the internal manifold S5 by an
Einstein manifold T 1,1 [4–6]. The metric of T 1,1 is given by

ds2 = 1
6

2∑
i=1

(
dθ2

i + sin2 θidφ2
i

)
+ 1

9 (dψ + cos θ1dφ1 + cos θ2dφ2)2 (1.1)

(in units that the dimension of the curvature scale is unity). The AdS5 × T 1,1 geometry
has been elaborated in [7]. In particular, the classical dynamics of a string moving on T 1,1

is chaotic and hence non-integrable [8].1 This non-integrability has been shown also in an
analytic manner [13]. Furthermore, the chaotic dynamics has been shown in a near Penrose
limit [14]. The coset construction of the T 1,1 metric based on the coset

SU(2)L × SU(2)R ×U(1)
U(1)L ×U(1)R

(1.2)

has been discussed in [15]. Yang-Baxter deformations [16–21] of T 1,1 are discussed in [15,
22, 23] (For a short summary, see [24]).

Recently, an intriguing generalization of the T 1,1 background has been considered by
Arutyunov, Bassi and Lacroix [25]. The background is given by

ds2 =
2∑
i=1

λ2
i

(
dθ2

i + sin2 θidφ2
i

)
+ λ2 (dψ + cos θ1dφ1 + cos θ2dφ2)2 , (1.3a)

B2 = k (dψ + cos θ1dφ1) ∧ (dψ + cos θ2dφ2) (1.3b)
1Classical chaos and non-integrability of string dynamics have also been investigated on AdS soli-

tons [9–11]. Recentry, they were also studied on AdS5 × La,b,c [12].
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and contains four real parameters λ1 , λ2 , λ and k . We shall denote this background
by the symbol T (λ1,λ2,λ)

k . This metric (1.3a) is not Einstein in general. Notice that this
background contains a Kalb-Ramond two-form B2 .

It should be remarked that when k = λ2 , some interesting things happen. The classical
string dynamics on R×T (λ1,λ2,λ)

λ2 , where R describes the time direction in target space, is
integrable [25] in the sense of Lax pair. The special case with λ2

1 = λ2
2 = 3

2λ
2 gives rise to

the original T 1,1 metric (1.1) . Note that even for this original metric, the integrability is
still preserved due to the existence of the B-field (1.3b) . Also, the case with λ1 = λ2 = λ

has already been known as the Guadagnini-Martellini-Mintchev (GMM) model [26] and
used to construct an NS-NS supergravity background with the flux k = λ2 [27]. For recent
progress on the RG flow in this model, see [28].

On the other hand, it is conjectured that the system would be non-integrable when
k 6= λ2 [25].2 Hence it should be significant to show this non-integrability by following some
standard manners. In this letter, we will consider cases with k 6= λ2 and show that the
string sigma model on R × T (λ1,λ2,λ)

k exhibits classical chaos in string motion. To reduce
the sigma model to a dynamical system, we employ a winding string ansatz in which a
string is wrapped around all of the isometry directions, i.e. φ1, φ2 and ψ . Then the chaotic
behaviors are explicitly shown by numerically computing Poincaré sections and Lyapunov
spectra for some initial values.

This letter is organized as follows. In section 2, we introduce the classical string sigma
model action on R × T (λ1,λ2,λ)

k . Then the system is reduced by using a winding string
ansatz. In section 3, Poincaré sections and Lyapunov spectra are computed numerically
for some initial values and classical chaos appears when k 6= λ2 . Section 4 is devoted to
conclusion and discussion.

2 Reducing string sigma model on R× T (λ1,λ2,λ)
k

We shall consider a classical string on the background R×T (λ1,λ2,λ)
k . As discussed in [25],

the original isometries as T 1,1 are retained in the presence of B-field. In particular, one
can easily see in (1.3) that constant shifts in (φ1, φ2, ψ)-directions are still symmetries.

Note that we suppose that the background R × T (λ1,λ2,λ)
k should be obtained from

a supergravity embedding of the background (1.3) , though it has not been done other
than for special values of the parameters. So this is just analogy of R × S3 in the case of
AdS5×S5 , where R comes from AdS time.

2.1 String sigma model on R× T (λ1,λ2,λ)
k

Let Gµν and Bµν (µ, ν = t, θ1, φ1, θ2, φ2, ψ) denote the background metric and B-field, hab
(a, b = τ, σ) the world-sheet metric, and Xµ the target-space coordinates. The classical
action of the string σ-model is given by

S = −1
2

∫
dτdσ

(√
−hhabGµν + εabBµν

)
∂aX

µ∂bX
ν , (2.1)

2In this sense, the particular value k = λ2 may be called critical and otherwise off critical.
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where h ≡ dethab and the antisymmetric symbol is defined as ετσ = −1 . The equation of
motion for Xµ is given by

∂a∂
aXµ + Γµρσhab∂aXρ∂bX

σ − T µρσεab∂aXρ∂bX
σ = 0 , (2.2)

where εab ≡ εab/
√
−h and

Γµρσ = 1
2G

µν (Gνσ,ρ +Gρν,σ −Gρσ,ν) , T µρσ = 1
2G

µν (Gρσ,ν +Gνρ,σ +Gσν,ρ) . (2.3)

The equation of motion for hab imposes that the stress-energy tensor Tab on the world-sheet
should vanish:

0 = Tab = Gµν∂aX
µ∂bX

ν − 1
2habh

cdGµν∂cX
µ∂dX

ν . (2.4)

Note here that the variation of hab is irrelevant to the antisymmetric symbol. The vanishing
stress-energy tensor leads to the Virasoro constraints which restrict the string embedding
specified by Xµ .

Thanks to the world-sheet diffeomorphism, one can take the conformal gauge hab =
e2ω(τ,σ)ηab , where ηab = diag(−1, 1) . In this gauge, the action takes the form:

S(c) =
∫

dτdσL = −1
2

∫
dτdσ

(
ηabGµν + εabBµν

)
∂aX

µ∂bX
ν . (2.5)

The conjugate momentum is given by

pµ = ∂L
∂ (∂τXµ) = Gµν∂τX

ν +Bµν∂σX
ν . (2.6)

Then the Hamiltonian is given by

H = pµ∂τX
µ − L = 1

2Gµν∂τX
µ∂τX

ν − 1
2Gµν∂σX

µ∂σX
ν . (2.7)

While the B-field appears in (2.6), it cancels with the B-field from L in the above expres-
sion. As a result, the canonical stress-energy tensor made of the conjugate momentum
gives the same result as (2.4) as it can be checked easily.

Once the gauge has been fixed, the Virasoro constraints can be expressed as follows.
The (τ, τ)-component of the stress-energy tensor is precisely the Hamiltonian, i.e. Tττ = H
and hence the Virasoro constraints indicate that H = 0 (the Hamiltonian constraint) . We
also find that Tττ = Tσσ because T aa = 0 . Substituting (2.6) into (2.4) in the conformal
gauge, the other independent component Tτσ can be rewritten as

Tτσ = pµ∂σX
µ = 0 . (2.8)

When k = λ2 , this string sigma model has a classical Lax pair and is classically
integrable [25]. Our purpose here is to see the anticipated non-integrability when k 6= λ2 .
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2.2 Reduction of the system with a winding string ansatz

In order to show non-integrability, it is sufficient to find out chaotic motions in a subsector.
Hence it is convenient to consider the simplest subsector which contains chaotic motions.
To reduce the system to a set of ordinary differential equations, let us suppose the following
winding string ansatz:

t = t(τ) , θ1 = θ1(τ) , θ2 = θ2(τ) ,
φ1 = φ1(τ) + α1σ , φ2 = φ2(τ) + α2σ , ψ = ψ(τ) + ασ .

(2.9)

This ansatz describes a string wrapped on (φ1, φ2, ψ)-directions. Since the periodicity of
the compact coordinates are φi ' φi + 2π (i = 1, 2) and ψ ' ψ + 4π , and σ ' σ + 2π , the
winding numbers αi (i = 1, 2) and α should satisfy αi, α/2 ∈ Z .

By substituting the ansatz (2.9) into (2.6), the momentum components associated with
the isometries (and hence conserved) are given by

pt = −ṫ , (2.10a)

pφ1 =
(
λ2

1 sin2 θ1 + λ2 cos2 θ1
)
φ̇1

+ λ2 cos θ1 cos θ2φ̇2 + λ2 cos θ1ψ̇ + k cos θ1(α2 cos θ2 + α) , (2.10b)

pφ2 =
(
λ2

2 sin2 θ2 + λ2 cos2 θ2
)
φ̇2

+ λ2 cos θ1 cos θ2φ̇1 + λ2 cos θ2ψ̇ − k cos θ2(α1 cos θ1 + α) , (2.10c)
pψ = λ2 cos θ1φ̇1 + λ2 cos θ2φ̇2 + λ2ψ̇ − kα1 cos θ1 + kα2 cos θ2 . (2.10d)

Under the ansatz (2.9) , the constraint (2.8) can be rewritten as

Tτσ = pφ1α1 + pφ2α2 + pψα = 0 . (2.11)

From this expression, one finds that this constraint can be satisfied by simply taking
pφ1 = pφ2 = pψ = 0 . It is also helpful to introduce the energy E defined as E ≡ −pt .
Then, from (2.10), we obtain

ṫ=E , (2.12a)

φ̇1 =−k cosθ1 (α+α1 cosθ1)
λ2

1 sin2 θ1
, (2.12b)

φ̇2 = k cosθ2 (α+α2 cosθ2)
λ2

2 sin2 θ2
, (2.12c)

ψ̇= k

(
α1 cosθ1−α2 cosθ2

λ2 + cos2 θ1 (α+α1 cosθ1)
λ2

1 sin2 θ1
− cos2 θ2 (α+α2 cosθ2)

λ2
2 sin2 θ2

)
. (2.12d)

The other components are given by

pθi = λ2
i θ̇i . (2.13)
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The string motion is described by coupled ordinary differential equations for θi. Sub-
stituting (2.9) into (2.2) and using (2.12), we obtain the evolution equations for θi as

θ̈1
sin θ1

= α2
1

(
λ2

λ2
1
− 1 + k2

λ2λ2
1

(
1− λ2

λ2
1

+ λ2

λ2
1 sin4 θ1

))
cos θ1 − α1α2

k2 − λ4

λ2λ2
1

cos θ2

+ αα1
λ4

1

(
λ2λ2

1 − k2 + k2 (cos2 θ1 + 1
)

sin4 θ1

)
+ α2k2 cos θ1

λ4
1 sin4 θ1

, (2.14a)

θ̈2
sin θ2

= α2
2

(
λ2

λ2
2
− 1 + k2

λ2λ2
2

(
1− λ2

λ2
2

+ λ2

λ2
2 sin4 θ2

))
cos θ2 − α1α2

k2 − λ4

λ2λ2
2

cos θ1

+ αα2
λ4

2

(
λ2λ2

2 − k2 + k2 (cos2 θ2 + 1
)

sin4 θ2

)
+ α2k2 cos θ2

λ4
2 sin4 θ2

. (2.14b)

Note that the two equations are decoupled when k = λ2 and no chaos appears obviously.
The Hamiltonian becomes

H = −1
2E

2 + 1
2λ2

1
p2
θ1 + 1

2λ2
2
p2
θ2 + V (θ1, θ2) , (2.15)

where the potential V (θ1, θ2) is defined as

V (θ1, θ2) ≡ α2
1

2λ2λ2
1

(
λ2 cos2 θ1 + λ2

1 sin2 θ1
) (
k2 cos2 θ1 + λ2λ2

1 sin2 θ1
)

sin2 θ1

+ α2
2

2λ2λ2
2

(
λ2 cos2 θ2 + λ2

2 sin2 θ2
) (
k2 cos2 θ2 + λ2λ2

2 sin2 θ2
)

sin2 θ2

− α1α2
k2 − λ4

λ2 cos θ1 cos θ2

+ α2

2

(
λ2 + k2 cot2 θ1

λ2
1

+ k2 cot2 θ2
λ2

2

)
+ αα1

λ2
1

(
k2 cot2 θ1 + λ2λ2

1

)
cos θ1 + αα2

λ2
2

(
k2 cot2 θ2 + λ2λ2

2

)
cos θ2 . (2.16)

Recall that the Hamiltonian has to be zero, i.e. H = 0, due to the Virasoro constraints.
Since the Hamiltonian is conserved, this constraint is always satisfied along time evolution
once the initial data is prepared so as to satisfy H = 0 .

The presence of the background B-field restricts the domain of the string motion.
When k 6= 0 , the string cannot reach the poles of S2 (θi = 0 and π), because V (θ1, θ2)
diverges there. Therefore, the string can move in the range 0 < θi < π . When k = 0 , the
divergent terms are absent in the potential, and the string can shrink and pass through
the poles.

Note also that the potential is tilted because of the winding in the ψ-direction (i.e.,
α 6= 0) . If α = 0, the potential is symmetric under (θ1, θ2) → (π − θ1, π − θ2), while it is
not otherwise. Hence, there is one global minimum when α 6= 0 . In practice, the minimum
can be found numerically with specified parameters.
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3 Chaotic string dynamics

In this section, we present classical chaos in the reduced system (2.14) by computing
Poincaré sections and Lyapunov spectra for some values when k 6= λ2 .

For numerical computations, we set the parameters as

α1 = α2 = 1 , α = 2 , λ1 = λ2 = λ = 1 (3.1)

for simplicity. We have examined various values of k, but here we will show results for the
cases that k = 0 , 0.5 and 10 . For other values of k as far as we have examined, classical
chaos has been observed (except the special case with k = λ2) . Poincaré sections are
computed for

θ2 = π (k = 0) or θ2 = π/2 (k = 0.5, 10) and pθ2 ≥ 0 . (3.2)

In each figure, the energy E is fixed and the initial conditions for the differential equations
are changed. Different colors correspond to different initial conditions.

In addition, to measure the strength of chaos, we have examined the Lyapunov spec-
trum as well (For the detail of the computation, for example, see [29]) . In the system (2.14) ,
the Lyapunov spectrum contains four exponents and the largest one is the most significant
for the growth of chaos.

As a remark on α , for α = 0 and λ1 = λ2 = λ, we could not find any chaos in
string motion even for k 6= λ2. This would be simply because this case corresponds to an
integrable subsector.

In the following, let us present Poincaré sections and Lyapunov spectra for k = 0 , 0.5
and 10 , respectively.

(i) k = 0 case. Figure 1 shows Poincaré sections for k = 0 . The potential minimum
is (θ1, θ2) = (π, π) . In the low-energy region (E = 1), there are only Kolmogorov-Arnold-
Moser (KAM) tori [30–32] and is no chaos [figure 1(a)] . One can see a separatrix structure
around θ1 = 2.44 and pθ1 = 0 . When E = 1.5 , the separatrix begins to collapse and
classical chaos appears [figure 1(b)] . When E = 5 , a lot of KAM tori are broken and an
island of KAM tori survives on the right-hand side [figure 1(c)] . When E = 10 , all of the
trajectories become KAM tori again and no chaos is found [figure 1(d)] . This is a typical
behavior of classical chaos in the high-energy region.

Figure 1(e) is a Lyapunov spectrum for E = 5 . The initial values of θ1(t), θ2(t),
pθ1(t) and pθ1(t) are taken as θ1(0) = 1, θ2(0) = π, pθ1(0) = 1, and pθ2(0) ∼ 4.574 . The
maximum Lyapunov exponent is evaluated as the average for 150 ≤ t ≤ 200 . Then it is
0.3990± 0.0116, where the errors are given by the standard deviation.

(ii) k = 0.5 case. Figure 2 shows Poincaré sections for k = 0.5 . The potential minimum
is (θ1, θ2) ∼ (2.438, 2.438) . In the low-energy region (E = 3) , there are only KAM tori
only and is no chaos [figure 2(a)] . As the energy is a bit increased to E = 3.3 , a separatrix
structure appears around θ1 = 1.51 and pθ1 = 1.6 as shown in figure 2(b) . When E = 4 ,
one can see that the separatrix begins to collapse and classical chaos appears [figure 2(c)] .

– 6 –
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(a) Poincaré sections for E = 1. (b) Poincaré sections for E = 1.5.

(c) Poincaré sections for E = 5. (d) Poincaré sections for E = 10.

(e) Lyapunov spectrum for E = 5, pθ1 (0) = 1.

Figure 1. Poincaré sections and Lyapunov spectrum for k = 0.

When E = 5 , chaos is clearly observed while some islands of KAM tori survive [figure 2(d)] .
In the higher energy region (E = 15) , there are only KAM tori and the chaos disappears
again [figure 2(e)] .

Figure 2(f) is a Lyapunov spectrum for E = 5. The initial values of θ1(t), θ2(t), pθ1(t),
and pθ2(t) are taken as θ1(0) = θ2(0) = π/2, pθ1(0) = 3, and pθ2(0) =

√
10 . Then the

maximum Lyapunov exponent is 0.1999± 0.0075 .
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(a) Poincaré sections for E = 3. (b) Poincaré sections for E = 3.3.

(c) Poincaré sections for E = 4. (d) Poincaré sections for E = 5.

(e) Poincaré sections for E = 15. (f) Lyapunov spectrum for E = 5, p1 = 3.

Figure 2. Poincaré sections and Lyapunov spectrum for k = 0.5.

(iii) k = 10 case. Figure 3 shows Poincaré sections for k = 10 . The potential minimum
is (θ1, θ2) ∼ (π/2, π/2) . When E = 5 , there are only KAM tori and no chaos is found
[figure 3(a)] . When E = 40 , some of KAM tori collide with each other and chaos appears
[figure 3(b)] . As the energy becomes much higher (E = 300) , there are only KAM tori
and chaos disappears again [figure 3(c)] . Notice here that higher energy is necessary to
see chaos in this case in comparison to the previous two cases. This is simply because the

– 8 –
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(a) Poincaré sections for E = 5. (b) Poincaré sections for E = 40.

(c) Poincaré sections for E = 300. (d) Lyapunov spectrum for E = 40, p1 = 15.

Figure 3. Poincaré sections and Lyapunov spectrum for k = 10.

large value of k means a strong magnetic flux. The magnetic flux acts to force the particles
to move in a circle and hence the KAM tori can survive even at relatively high energy.

Figure 3(d) is a Lyapunov spectrum with E = 40 . The initial values of θ1(t), θ2(t) ,
pθ1(t) , and pθ2(t) are taken as θ1(0) = θ2(0) = π/2 , pθ1(0) = 15 , and pθ2(0) = 37 . Then
the maximum Lyapunov exponent is 2.0341± 0.0182 .

4 Conclusion and discussion

In this letter, we have studied a string sigma model on R × T (λ1,λ2,λ)
k by using a winding

string ansatz. We have shown the presence of classical chaos for k 6= λ2 by looking at
Poincaré sections. We have also calculated the Lyapunov spectra and showed that the
largest Lyapunov exponent is positive for chaotic string motions. Thus we conclude that
the string sigma model is not classically integrable when k 6= λ2 as conjectured in [25].

In our analysis, we have supposed a supergravity embedding of the background (1.3) .
It is a significant future problem to find out this supergravity embedding for general values
of the parameters. Notably, in [25], the background (1.3) has been derived as a certain limit
of a more general background. It is a challenging problem to try to find out a supergravity

– 9 –
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embedding of it. It is also a nice practice to study non-integrable parameter region of it
by following the standard manner as performed in this letter.
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