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1 Introduction

In the theory of integrable systems one usually starts with the RLL equation

R12L1,aL2,a = L2,aL1,aR12 (1.1)

which defines the relation between the R-matrix R : V ⊗ V → V ⊗ V intertwining a pair
of “auxiliary spaces” V, and the Lax operator L : V ⊗ F → V ⊗ F, acting on the tensor
product of the auxiliary space and the “quantum” space F of the integrable system. The
RLL equation implies [tr1 L1,a, tr2 L2,a] = 0, i.e. that the integrals of motion of the system
commute. The renowned Yang-Baxter equation

R12R13R23 = R23R13R12 (1.2)

appears in this approach as the associativity condition for the braiding relations (1.1). This
condition can be formulated as an equality between two different ways of permuting the
product of three Lax operators:

L3,aL2,aL1,a = J±(L1,aL2,aL3,a), J+ = AdR12AdR13AdR23 , J− = AdR23AdR13AdR12

(1.3)
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A solution of the Yang-Baxter equation allows one to construct an integrable system, e.g.
a spin chain. Equivalently, in a more abstract language one can use the solution to define
a quasitriangular Hopf algebra, e.g. a quantum group.

Zamolodchikov tetrahedron equation [53, 54] is a natural generalization of the Yang-
Baxter equation to three dimensions. While the Yang-Baxter equation is an equation on
operators corresponding to crossings of lines in a plane, the tetrahedron equation describes
triple crossings of planes in a 3d space. An analog of the RLL equation

L12,aL13,bL23,cRabc = RabcL23,cL13,bL12,a, (1.4)

drawn in figure 1, left, involves two kinds of spaces, F and V, and two kinds of operators

L : V⊗V⊗ F→ V⊗V⊗ F, R : F⊗ F⊗ F→ F⊗ F⊗ F. (1.5)

The tetrahedron equation should lead to the structures which are no less profound and
much more beautiful, compared to the Yang-Baxter equation. For example, in [35], the
tetrahedral structure was related to higher algebra and category theory. Its interpreta-
tion as a “higher” analogue of the Yang-Baxter equation becomes clear, if one assumes
invertibility of Rabc and multiplies both sides of the equation by R−1

abc on the right.1 This
gives a version of Yang-Baxter equation “up to” conjugation, i.e. it is no longer an equality
between two ways to permute the L-operators, but their equivalence. Considering Lij,x as
a matrix acting in Vi ⊗Vj , with coefficients in the algebra Ax = End(Fx), we can rewrite
eq. (1.4) as

L12({va})L13({vb})L23({vc}) = L23({v′c})L13({v′b})L12({v′a}), (1.6)

where by {vx} we denote the set of generators of Ax,

Lij,x = Lij({vx}), (1.7)

and
v′x = Rabc vxR−1

abc (1.8)

is the set of generators conjugated by Rabc ∈ Aa ⊗Ab ⊗Ac. Since conjugation is an inner
automorphism of the algebra, generators v′ satisfy the same relations as v, and all central
functions remain unchanged.

We can apply four transformations (1.6) to rearrange six L-operators in a different
way. Moreover, there are two different ways to perform this rearrangement (denoted by
J+ and J−):

L12,aL13,bL23,cL14,dL24,eL34,f = J±(L34,fL24,eL14,dL23,cL13,bL12,a)
J+ = AdRabcAdRadeAdRbdfAdRcef , J− = AdRcefAdRbdfAdRadeAdRabc .

(1.9)

See the pictorial representation in figure 1, right. Statement that these two ways are
equivalent gives under certain assumptions the functional tetrahedron equation [30, 46]

RcefRbdfRadeRabc = RabcRadeRbdfRcef . (1.10)
1We always assume that R is invertible.
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Figure 1. Left. The tetrahedron equation. To view it as a modification of the Yang-Baxter
equation one has to look at the transformation of the dashed triangle. Right. The functional
tetrahedron equation. The quantum spaces are located in the direction transverse to the plane of
the figure.

The first assumption is that (1.6) fixes R uniquely up to constant, or in other words, that
centralizer of L12,aL13,bL23,c in Aa ⊗ Ab ⊗ Ac is trivial. The second assumption is that
centralizer of L12,aL13,bL23,cL14,dL24,eL34,f in Aa ⊗ Ab ⊗ Ac ⊗ Ad ⊗ Ae ⊗ Af is trivial as
well. It will become clear later that (classical limits of) these assumptions are actually
satisfied for the L-operators that we consider in the present paper, once we identify these
3-fold and 6-fold products with elements in the largest double Bruhat cells in PGL(3) and
PGL(4), respectively. These two assumptions are sufficient to derive (1.10) still up to some
extra constant factor. To prove that this factor is identity one needs either to check some
matrix element, or find some extra property (for example, that traces of l.h.s. and r.h.s. are
defined and non-zero). We are not going into such details and refer to [8, 9] and references
therein.

Forgetting about the space F, one can consider eq. (1.6) as an equation on the L-matrix
valued in some algebra A, together with an automorphism of Aa⊗Ab⊗Ac. Suppose that
A has classical limit to commutative Poisson algebra. Then conjugation with Rabc has to
be replaced by some canonical transformation of C[Aa,Ab,Ac].

A solution of tetrahedron equation with V = C2 and the Lax operator valued in the
q-oscillator algebra was found in [4, 45] and further studied in [7–9, 32, 34, 41, 47]. We do
not give the quantum solution here as we will not need it here. The classical limit of the
solution is an operator LBS : C2 ⊗ C2 → C2 ⊗ C2 acting as a matrix2

LBS(x, y, λ, µ) =


1
µk −λµx
y λk

−λµ

 , (1.11)

where k2 = 1− xy and the Poisson brackets are

{x, y} = k2, {x, λ} = {x, µ} = {y, λ} = {y, µ} = 0. (1.12)

2Note that compared with [4] we use different notation for 4× 4 matrices representing operators acting
on C2 ⊗ C2: indices of the first C2 encode the position of the 2 × 2 block while index of the second C2

encodes matrix elements inside the block.
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The Lax operator (1.11) satisfies the tetrahedron equation (1.6) with the transformed
variables being

x′a = k′−1
b

λb
λc

(
kcxa −

1
λaµc

kaxbyc

)
, y′a = k′−1

b

λc
λb

(kcya − λaµckaybxc) ,

x′b = xaxc + 1
λaµc

kakcxb, y′b = yayc + λaµckakcyb,

x′a = k′−1
b

µb
µa

(
kaxc −

1
λaµc

kcyaxb

)
, y′c = k′−1

b

µa
µb

(kayc − λaµckcxayb) ,

k′a = ka
kb
k′b
, k′c = kc

kb
k′b
,

k′2b = k2
ak

2
bk

2
c − 2k2

ak
2
c + k2

a + k2
c −

kakcyaxbyc
λaµc

− λaµckakcxaybxc, (1.13)

The new variables (1.13) satisfy the same Poisson brackets, so the transformation is indeed
canonical. Variables with different labels a, b, c Poisson commute, and λ’s and µ’s do not
change under the transformation (the reason for this is that λ and µ are central functions,
so after quantization they will not be changed by (1.8), and so we demand that they are
do not change in the classical limit as well).

By contracting N Lax operators along one space, and taking the trace

L2N = Tr0 (L01,a1L02,a2 . . .L0N,aN ) (1.14)

one gets the Lax operator with auxiliary space (C2)N . This solution is called the “quantum
group-like” solution, as the Lax operator is block-diagonal and preserves the decomposition
LC2N = ⊕N

k=1 LΛkCN , where LΛkCN is the Lax operator whose auxiliary space is k-th
fundamental representation of Uq(glk). In particular, the first non-trivial operator LCN in
the classical limit satisfies the r-matrix Poisson bracket

{LCN (λ),LCN (µ)} = [r(λ/µ),LCN (λ)⊗ LCN (µ)] (1.15)

with r being the classical trigonometric r-matrix. The quantum version of the Lax operator
satisfies the RLL relation with the quantum trigonometric R-matrix.3 This implies that by
multiplying such Lax operators one obtains monodromy matrix of some integrable system.
This system can be identified with the XXZ spin chain in the q-oscillatory representation,
or its classical limit.

Cluster algebras originally appeared in the theory of Lie groups and algebras (see
e.g. [17]) and are now known to provide convenient language in the theory of integrable
systems [5, 12, 15, 19, 23, 24, 40]. In the present paper we try to make a small step
towards fully integrating the tetrahedron equations into the general mathematical physics
context, showing how Bazhanov-Sergeev solution naturally appears in the theory of cluster
integrable systems. Namely, we show that the Lax operator (1.11) can be identified with
the transfer matrix of paths on a four-gonal bi-coloured graph shown in figure 6. The

3We do not give here explicit expression for the classical r-matrix. Interested reader can find it e.g.
in [22, 40] or [42].
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tetrahedron equation for such Lax operators is then translated into the equality between
the transfer matrix of a graph composed from three four-gonal blocks and the result of
the action of four “spider moves” on it (see figure 7). This correspondence allows us to
generalize the construction for the spectral curve of the XXZ chain given in [4] to systems
with arbitrary symmetric Newton polygon. We shall note here that this block and the
sequence of mutations leading to tetrahedron equation already appeared in the related
contexts [1, 4, 29, 45, 52], however the full identification was missing.

We start our exposition in section 2 where we give a brief recapitulation of planar net-
works, Poisson structure on the variables associated with paths on these networks and the
transformations of the networks preserving the Poisson structure and partition function of
paths. We give three-parametric family of mappings of Poisson variables corresponding to
“corner” paths, shown in figure 3, all leading to the usual formulas for the transformations
of the face variables.

Then in section 3 we show that the Lax operator (1.11) coincides with the transfer ma-
trix (3.2) of non-intersecting paths on the planar network from figure 6. We interperet the
auxiliary space C2 in the Lax operator as a space on which the transfer matrix of paths acts.
We realize the tetrahedron transformation (1.6) as a sequence of four spider-moves (and
several two-moves) of the planar network shown in figure 7 and figure 11. Surprisingly, this
sequence of transformations appears to be well known in cluster-algebraic literature [33, 52],
however it was not identified before with the Bazhanov-Sergeev solution of the tetrahedron
equation. We also show that the transformation of the “corner” variables (3.7) derived
from the transformations of the network is consistent with those given by eq. (1.13).

In section 4 we extend the construction of the Lax operator (1.14) for the XXZ spin
chain (which has rectangular Newton polygon) made by contraction of the “tetrahedron”
Lax operators (1.11), to integrable systems with arbitrary centrally symmetric Newton
polygon. Finally, we discuss this construction from the point of view of the embedding of
cluster integrable system into affine group P̂GL(N) and extend it to non-symmetric Newton
polygons. We also prove a Lemma which shows the converse: it classifies conjugacy classes
in double affine Weyl group of A-type by Newton polygons.

2 Perfect networks and flows on them

In this introductory section we recall notions of perfect networks and flows on them, con-
struct Poisson structure on paths and discuss discrete transformations of networks pre-
serving this structure. This will allow us to construct solution of the tetrahedron equation
in section 3 and Hamiltonians of cluster integrable system with arbitrary Newton polygon
in section 4. The way of exposition, which we follow here, is a mixture of approaches
from [21, 50] and [19].

2.1 Flows on perfect networks

The main actor in considered approach to cluster integrable systems is a (planar) perfect
networkN = (G,w) — (planar) perfectly oriented graph in disk, with edges weight function
w. Orientation is called perfect if all vertices of a graph can be coloured in three colours: all

– 5 –
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boundary vertices are grey ( ), all internal vertices are either white ( ) (and have exactly
one outgoing edge) or black ( ) (and have exactly one incoming edge). We do not assume
graph to be connected, however we assume that there are no 1-loops (edges going form the
vertex to itself) and leaves (internal 1-valent vertices). All boundary vertices are assumed
to be 1-valent. Boundary vertex with edges oriented away from it is called source. Vertex
with edges oriented toward it is sink. We denote the set of sources by I, and the set of sinks
— by J . It will be useful to put additional grey vertices in the middles of internal edges,
and refer to edges connecting black and white vertices with grey vertices as half-edges. We
say that the vertex v with the all adjacent half-edges is the fan of vertex v, number of
half-edges in the fan is degree of the vertex and is denoted by deg(v). To each half-edge
e oriented from black or white to grey vertex we assign weight we ∈ C∗, to half-edge with
opposite orientation −e we assign weight w−e = w−1

e . Weight of any set of oriented edges
P is the product of weights of all half-edges in it wP = ∏

e∈P we.
Flow p on the perfect network N is the set of such non-intersecting and non-self-

intersecting paths ( ) oriented by G that ∂p = B − A with A ⊂ I, B ⊂ J , i.e. with all
begin and end points belonging to the boundary. The set of all flows with starting points A
and end points B is called FBA . For example, the set of all closed non-intersecting oriented
cycles on graph is F∅

∅ . The sum of weights over all flows from A to B

ZN (A→ B) =
∑
p∈FBA

wp (2.1)

is called partition function of flows from A to B. One can find examples of perfect networks
and sets of all flows on them in figure 6.

The partition function is naturally multiplicative with respect to the gluing of disks:
take pair of planar networks N ′ = (G1, w1) and N2 = (G2, w2) on disks D1 and D2.
Take intervals `1 ⊂ ∂D1 containing A1 ⊂ I1, B1 ⊂ J1 at boundary of D1, and `2 ⊂ ∂D2
containing A2 ⊂ I2, B2 ⊂ J2 at boundary of D2. We say that perfect network N in disk D
is the result of gluing of N1 over `1 to N2 over `2 if disks are glued D = (D1 tD2)/`1∼`2 in
such a way that the grey vertices from A1 are glued to B2, and from B1 — to A2. Set of
sources of N is I = (I1\A1)∪ (I2\A2) and set of sinks is J = (J1\B1)∪ (J2\B2). It is easy
to see that partition function of flows from A to B on glued network N is given by

ZN (A→B) =
∑

C⊂A1,E⊂B1

ZN1(C∪(A∩I1)→E∪(B∩J1))ZN2(E∪(A∩I2)→C∪(B∩J2)) ,

(2.2)
where the sum goes over all subsets of A1 = B2 and B1 = A2.

Consider corresponding subsets in example of two planar networks glued together in
figure 2. Sets that depend on planar networks only are I = {1, 3, 8} (all sources in ∂D), J =
{2, 4, 5, 6, 7} (all sinks in ∂D), I1 = {1, 3, 13, 11} (all sources in ∂D1), J1 = {2, 4, 5, 12, 10}
(all sinks in ∂D1), I2 = {8, 9, 10, 12} (all sources in ∂D2), J2 = {11, 13, 6, 7} (all sinks in
∂D2), A1 = B2 = {11, 13} (passages from D2 to D1), A2 = B1 = {10, 12} (passages from
D1 to D2). The particular flow (denoted by ) determines sets A = {1, 3} (starting points
of the flow), B = {5, 7} (endpoints of the flow), C = {13} (passages where flow is allowed
to go from D2 to D1), E = {10, 12} (passages where flow is allowed to go form D1 to D2).

– 6 –
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Figure 2. Gluing of two planar networks.

This is a single term in summation which goes over all possible subsets C ⊂ A1 = B2 and
E ⊂ B1 = A2, as we sum over all possible flows in disk D.

Formula (2.2) can be conveniently encoded using transfer matrix of flows TN . This is
an operator TN : (C2)⊗|I| → (C2)⊗|J | given by

TN =
∑

A⊂I,B⊂J
ZN (A→ B) ·

⊗
j∈J

es(j,B), j ⊗
⊗
i∈I

e∗s(i,A), i, (2.3)

where s(k,X) = + if k ∈ X and s(k,X) = − if k /∈ X. The vectors e±, j are basis vectors in
j-th component of (C2)⊗|J |, vectors e∗±, i are basis co-vectors in i-th component of (C2)⊗|I|.
Using this operator (2.2) becomes simply

TN = TN1 ◦ TN2 , (2.4)

where spaces with labels A1 contract with corresponding spaces in B1, and the same for
A2 and B2. Transfer matrices for perfect networks drawn in figure 6 are written in (3.2).

Remark. For the reader, familiar with combinatorics of dimers, we note that there is a bi-
jection between bipartite graphs without two-valent vertices with selected perfect matching
D0, and perfect networks without neighbouring vertices of the same colour. The bijection
can be established by choosing orientation on the bipartite graph from black to white for
the edges not in D0, and from white to black for those in D0. There is also similar bijection
between perfect matchings on bipartite graphs and flows on perfect networks.

2.2 Poisson structure on paths and X -cluster variety

There is a two-parametric family of Poisson brackets on the weights of half-edges, see [21].
Here we will use, however, 1-parametric specialization of it restricted to the paths connect-

– 7 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
3

γ∗1 γ∗2 γ∗3

δv(γ∗1 , γ∗2) = 1
2

δv(γ∗2 , γ∗3) = 1
2

δv(γ∗3 , γ∗1) = 1
2

Figure 3. Definition of the local pairing on paths at the three-valent vertex, γ∗1 +γ∗2 = −γ∗3 . Simple
corners are shown by blue.

ing middles of the edges4 considered in [19]. Any path p on perfect network N = (G,w)
which begins and ends at the grey vertices (in the middles of edges or at boundary points)
can be decomposed into sum of contributions associated with the fans of internal vertices

p =
∑

v∈C0(G)
ni,vγ

∗
v,i (2.5)

where C0(G) is the set of internal vertices of G. Generators γ∗v,i are called simple corners
and are associated with paths which go through v and connect middles of adjusted edges
in the clockwise order, see figure 3 for example. They satisfy relation ∑deg v

i=1 γ∗v,i = 0 which
means that by traversing all simple corners associated with one vertex we get trivial path.
The logarithmically constant Poisson bracket on weights of paths is

{wp1 , wp2} = ε(p1, p2)wp1wp2 , (2.6)

where the skew-linear form ε is defined as sum of local contributions of each fan

ε(p1, p2) = ∑
v∈C0(G) sgn(v)δv(p1, p2),

δu(γ∗v,i, γ∗w,j) =

±
1
2δu,vδu,w if j = i± 1

0 otherwise
,

(2.7)

where sgn(v) = 1 for the black vertices and sgn(v) = −1 for the white. Example of pairing
at three-valent black vertex is shown in figure 3. In fact, bracket can be defined by extending
it from the bracket on weights of simple corners γv,i = wγ∗v,i . Thanks to the local structure
of the bracket, the gluing of perfect networks is Poisson map, as it was shown in [21].
There is an opposite operation of splitting network N = (G,w) on D to N1 = (G1, w1) and
N2 = (G2, w2) by cutting D into D1 and D2 along some simple curve, which intersects G
only at middles of edges and divide grey vertices into pairs of vertices belonging to different
networks. It is not uniquely defined, if only weights of paths connecting boundary vertices
of D are known, because of the gauge redundancy under transformations at internal grey
vertices, which multiply weights of all paths ending at internal grey vertex v by xv ∈ C∗,
and all paths starting at v by x−1

v . We will face this problem again in section 3.2.
4The latter can be obtained from the former using procedure of the gauge symmetry reduction in black

and white vertices.
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The weight of any flow on planar network can be expressed using only the weights of
oriented boundaries of faces xi = w(∂f̄i∩G). Faces are defined from decomposition D\G =⋃
i fi. Note that for unbounded disks (adjacent to ∂D) we take only parts belonging to G.

The face variables xi satisfy single relation ∏i xi = 1, as each edge of G belongs to the
boundaries of exactly two faces with the opposite orientations.

Space of face weights admits structure of the toric chart in the X -cluster variety. This
means that it is algebraic torus with coordinate functions xi satisfying log-constant Poisson
bracket

{xi,xj} = εij xixj (2.8)

with some skew-symmetric matrix ε called exchange matrix. We say that xi are X -cluster
variables, and those xi which come from faces adjacent to ∂D are frozen variables. Ex-
change matrix ε for perfect networks follows from (2.6). It is convenient to represent ε
as oriented graph (quiver) with edges with multiplicities, whose oriented adjacency matrix
is ε and vertices correspond to xi, see examples in figure 5 and 7. Toric charts are glued
by transformations of mutations in directions of non-frozen variables xi. Mutation µi in
direction of variable xi is defined by the action

µi(xj) =
{

x−1
j , i = j

xj(1 + xsgn εji
i )εji , i 6= j

µi(εkl) =

−εkl, if i = k or i = l

εkl + |εki|εil + εki|εil|
2 , otherwise

(2.9)
on cluster variables and exchange matrix. We will call X -cluster variety of face variables
of graph G by XG. Realization of mutations as transformations of perfect network will be
discussed in the next subsection.

Operation of gluing of the disks results in the product of X -cluster varieties with
amalgamation, for details see [14]. In simple words one has to replace pair of frozen
variables corresponding to two unbounded faces, which are glued to one bounded, by the
new unfrozen variable (which equals to the product of initial variables), and obtain new
exchange matrix from the glued graph. From the point of view of quivers, product with
amalgamation is gluing of quivers by vertices corresponding to frozen variables.

2.3 Plabic graph transformations

There are two well-known basic local transformations of perfect networks, which preserve
both partition function of flows on them and Poisson structure: two-move shown in figure 4
and four-move (also known as spider move or urban renewal or square move) shown in
figure 5. The choosing of perfect orientation is inessential here. For the two-move either
face variables and quiver stay the same, while under the four-move they change as under
mutation [19, 44]. Here we present formulas for transformation of corner variables under
this moves, which will be required in section 3.

For both two- and four- moves we derive mapping of the corner variables from reason-
able monomial ansätze using three requirements

1. Transfer matrix of flows has to be preserved

– 9 –
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b2b3
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r′2

r′3

l′1

l′3

l′2

Figure 4. Transformations of the plabic graph under the two-moves at black and white vertices.

2. Poisson brackets of new corner variables have to be consistent with the transformed
plabic graph

3. Mapping has to respect symmetries of plabic graph

It is easy to see that the unique monomial transformation rule under the black two-
move for corner variables labelled in figure 4, left, satisfying this requirements is

l′1 = t3b2, l′2 = b3(t1b1)
1
2 , l′3 = t2(t1b1)

1
2 , r′1 = b3t2, r′2 = t3(t1b1)

1
2 , r′3 = b2(t1b1)

1
2 .

(2.10)
Under white two-move variables labelled in figure 4, right, transform as

l′1 = t2b3, l′2 = t3(t1b1)
1
2 , l′3 = b2(t1b1)

1
2 , r′1 = b2t3, r′2 = b3(t1b1)

1
2 , r′3 = t2(t1b1)

1
2 .

(2.11)
Exchange matrix ε does not change under these transformations.

For the four-move there is a family of transformations, parametrized by α1, α2, α3,
which acts on corner variables by

a′1 =b2d3 ·m−α3+α2
2 m−α3−α2

3 , a′2 =d2 ·(1+x−1)−
1
2m
− 1

4 +α1
1 m−α2

2 mα3
3 , a′3 =b3 ·(1+x)

1
2m
− 1

4−α1
1 mα3

2 mα2
3 ,

b′1 =a2c3 ·mα3+α2
2 m−α3+α2

3 , b′2 =c2 ·(1+x−1)−
1
2m

1
4−α1
1 m−α2

2 mα3
3 , b′3 =a3 ·(1+x)

1
2m

1
4 +α1
1 m−α3

2 m−α2
3 ,

c′1 =d2b3 ·mα3−α2
2 mα3+α2

3 , c′2 =b2 ·(1+x−1)−
1
2m
− 1

4 +α1
1 mα2

2 m−α3
3 , c′3 =d3 ·(1+x)

1
2m
− 1

4−α1
1 m−α3

2 m−α2
3 ,

d′1 =c2a3 ·m−α3−α2
2 mα3−α2

3 , d′2 =a2 ·(1+x−1)−
1
2m

1
4−α1
1 mα2

2 m−α3
3 , d′3 =c3 ·(1+x)

1
2m

1
4 +α1
1 mα3

2 mα2
3 ,

(2.12)

where
x = a1b1c1d1, m1 = a1c1

b1d1
, m2 = a2d2

b2c2
, m3 = a3b3

c3d3
. (2.13)

Quivers encoding exchange matrix ε before and after transformation are drawn in
figure 5, left, bottom. Whole family gives usual transformation rules for face variables, and
are equivalent for our purposes, however choosing α1 = α2 = 0, α3 = −1

2 strangely makes
formulas simpler.

The most subtle transformation is so-called parallel bigon reduction shown in figure 5,
right. Recall that the zig-zags are paths, which turn right at each black vertex, and
turn left on each white one. Parallel bigon is a pairs of zig-zags which have such pair
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c′3

d′1

d′3
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Figure 5. Left, top: change of bipartite graph under the spider-move. Left, bottom: changes in
the quiver. Grey arrows are for the entries ±1/2 of exchange matrix ε. Right, top: two ways for
parallel bigon reduction. Right, bottom: changes in the quiver.

of intersection points, that disk(s) bounded by their segments between intersection points
cannot be oriented in a way, consistent with orientation of segments.

The subtlety of parallel bigon reduction is that there are two different ways to perform
it, both of which are bad. One of them, labelled by (a) in figure 5, change topology of
zig-zag paths which will be unwanted for us in the following, but preserves transfer matrix
of flows and acts as cluster transformation (mutation supplied by forgetting of one variable)
on cluster variables. Another one, labelled by (b), does not change topology of zig-zags,
however, its action on cluster variables is ill-defined and it changes partition function of
flows on plabic network. In the following, we will either assume that the network does
not contain parallel bigons, or reduce first all its parallel bigons with transformation (b),
before considering any flows.

3 Tetrahedron equation from cluster algebra

The claim of this section is that transfer matrices for both plabic graphs shown in figure 6,
left, coincide with Bazhanov-Sergeev solution of tetrahedron equation. Moreover, we will
show that tetrahedron transformation is the result of sequence of four spider-moves.

3.1 Lax operators

As only paths which got both ends on the external edges of bipartite graph contribute to
the transfer matrices of flows, we need only path variables γi shown in figure 6, left. For
both graphs Poisson brackets of variables are

{γ1, γ2} = −1
2γ1γ2, {γ2, γ3} = 1

2γ2γ3, {γ3, γ4} = −1
2γ3γ4, {γ4, γ1} = 1

2γ4γ1,

{γ1, γ3} = 0, {γ2, γ4} = 0. (3.1)

All the paths contributing to the transfer matrices are drawn in figure 6, right. Note that
the only difference between the cases is in non-equivalent perfect orientation. Two plabic
graphs are related by one spider move.
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1
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1
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γ3

γ2

γ3

γ4

γ1

1

2 1′

2′

1 γ2 1
γ4

γ1γ2γ3 γ2γ3 γ1γ2
γ2
γ4

Figure 6. Left. Four-gonal pieces of bipartite graphs whose transfer matrices define Lax operators.
Right. Paths contributing to transfer matrices.

The transfer matrices for upper and lower networks in the basis C2 ⊗ C2 = 〈e+ ⊗
e+, e+ ⊗ e−, e− ⊗ e+, e− ⊗ e−〉 are respectively

LCL(γ) =


γ1γ
−1
3

(γ3γ4)−1 γ−1
3

γ1+(γ2γ3γ4)−1 (γ2γ3)−1

1

 , Lcl(γ) =


γ2γ
−1
4

γ2γ3 γ
−1
4 +γ1γ2γ3

γ2 γ1γ2
1

 .
(3.2)

Matrix LCL coincides with Bazhanov-Sergeev Lax operator (1.11) after conjugation

LBS = (σ1 ⊗ σ1 ◦ P) ◦ LCL ◦ (σ1 ⊗ σ1 ◦ P) (3.3)

where P is a permutation matrix P(u⊗ v) = v ⊗ u, and after identification of variables

x = γ−1
1 , y = γ1 +(γ2γ3γ4)−1, λ = −i

√
γ1γ4
γ2γ3

, µ = −i
√
γ1γ2
γ3γ4

, k = i
√
γ1γ2γ3γ4

. (3.4)

The Poisson brackets (1.12) follow from (3.1). Matrix Lcl can be mapped to LCL by
conjugation with P and replacement

γ1 7→ γ−1
4 , γ2 7→ γ−1

3 , γ3 7→ γ−1
2 , γ4 7→ γ−1

1 . (3.5)

In the following we will be dealing with matrix LCL only.

3.2 Tetrahedron transformation

Tetrahedron transformation (1.6) for the Lax operators LBS itself recasts into the relation

L23
CL(γa)L13

CL(γb)L12
CL(γc) = L12

CL(γ′c)L13
CL(γ′b)L23

CL(γ′a) (3.6)

for the transfer matrices of perfect networks. Gluing left and right sides of this equation
from the blocks shown in figure 6 gives equality for networks as drawn in figure 7. Note
that as in figure 6, each Lax operator ‘permutes’ vector spaces. The networks are related by
sequence of four spider-moves µR = µ7µ4µ2µ3 supported by two-moves, detailed sequence
is shown in figure 11. Mapping (1.13) being rewritten in γ-variables using (3.4) results in
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γ′a,1 = γa,1γa,4

γb,4γc,3[x−1
3 ,x−1

2 ]

√ x4

x2x3
A, γ′b,1 = γa,1γc,1

[x−1
3 ]

, γ′c,1 = γc,1γc,2

γa,3γb,2[x−1
3 ,x−1

4 ]

√ x2

x4x3
A,

γ′a,2 = γa,2γb,4γc,3
γa,4

x2x3[x−1
3 ,x−1

2 ], γ′b,2 = γb,2[x−1
3 ]

γa,1γa,4γc,1γc,2

√
x3

x2x4

1
A
, γ′c,2 = γb,2γa,3x4x3[x−1

3 ,x−1
4 ],

γ′a,3 = γa,3γa,4

γb,4γc,3[x−1
3 ,x−1

2 ]

√ x4

x2x3
A, γ′b,3 = γb,3γa,1γa,4γc,1γc,2

x3[x−1
3 ]

, γ′c,3 = γc,3γc,2

γa,3γb,2[x−1
3 ,x−1

4 ]

√ x2

x4x3
A,

γ′a,4 = γb,4γc,3x2x3[x−1
3 ,x−1

2 ], γ′b,4 = γb,4[x−1
3 ]

γa,1γa,4γc,1γc,2

√
x3

x2x4

1
A
, γ′c,4 = γa,3γb,2γc,4

γc,2
x4x3[x−1

3 ,x−1
4 ]

(3.7)

where A = 1 + x−1
3 + x−1

7 [x−1
3 ,x−1

2 ][x−1
3 ,x−1

4 ], [x] = 1 + x, [x, y] = 1 + x(1 + y) and
locations of face variables xi are shown in figure 7. Their explicit expressions in terms of
γ-variables are

x2 = 1
γc,1γc,4γc,3γc,2

, x3 = γb,1γa,4γc,2, x4 = 1
γa,1γa,4γa,3γa,2

, x7 = 1
γb,1γb,4γb,3γb,2

,

x1 = γc,4 × (weights of other boundaries), x5 = γa,2 × (weights of other boundaries),
x6 = γb,4 × (weights of other boundaries), x8 = γb,2 × (weights of other boundaries),

(3.8)
where by “weights of the other boundaries” we denote a product of the γ-variables that
correspond to the other boundaries of the face corresponding to given x-variable, which
are unimportant as neither transform under four- and two-moves, nor contribute into the
transfer matrices of flows.

It is easy to check that formulas (3.7) are consistent with the mapping of X -cluster
variables

x′0 =x0
1

[x−1
3 ]

,

x′1 =x1
[x−1

3 ]
[x−1

3 ,x−1
2 ]

, x′2 = 1
x2x3

1
A
, x′3 =x3x2x4x7A, x′4 = 1

x3x4

1
A
, x′5 = x5

[x−1
3 ]

[x−1
3 ,x−1

4 ]
,

x′6 =x6 · x3x2[x−1
3 ,x−1

2 ], x′7 = 1
x7

[x−1
3 ,x−1

2 ][x−1
3 ,x−1

4 ]
[x−1

3 ]
, x′8 =x8 · x3x4[x−1

3 ,x−1
4 ],

x′9 =x9
x7

[x−1
3 ,x−1

2 ][x−1
3 ,x−1

4 ]
A,

(3.9)

under µR which follows from (2.9). Trying to recover formulas (3.7) using ‘refined’ formu-
las (2.10)–(2.12) for transformation of corner variables one faces problems. In appendix A
we explain how these problems can be treated successfully.

4 Integrable system for arbitrary Newton polygon

In this section we give explicit construction for bi-coloured graph G defining integrable
system with arbitrary Newton polygon. It will turn out that for symmetric Newton polygon
Lax operator is ‘patchworked’ by contraction of ‘XXZ spin chain’ rectangular blocks (see
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Figure 7. Left. Tetrahedron equation realized as equality of transfer matrices of perfect networks.
Grey crosses are for the points of gluing of four-gonal building blocks. Graphs are related by
sequence of four spider-moves µR = µ7µ4µ2µ3. Right. Corresponding quiver before and after
mutation.

figure 8), which are made from tetrahedron Lax operators (3.2). This extends results of [4]
and [42] to the case of non-rectangular Newton polygons.

Then we will show, how our constructions come out in the approach to cluster in-
tegrable systems via double Bruhat cells in P̂GL(N). Tetrahedron Lax operator will be
identified with generator sis̄i of diagonal sub-group W (A(1)

N−1) ⊂ W (A(1)
N−1 × A

(1)
N−1), and

tetrahedron transformation — with the Coxeter relation there. Embedding of commuting
subgroups P̂GL(a1)× . . . × P̂GL(an) ⊂ P̂GL(N), N = a1 + . . . + an, will provide natural
framework for the construction of Bruhat cell for arbitrary symmetric Newton polygon.
Finally, we will construct double Bruhat cells for non-symmetric Newton polygons via tri-
angular decomposition of Lax operators, discuss additional freedom, coming from Newton
polygons with sides, containing internal integral points, and prove classification theorem
for perfect networks on torus.

4.1 Spectral curve and perfect network on torus

To the moment we were considering bi-coloured graphs on disks only. Integrable system
appears once we consider network on torus: due to [19], spectral curve, which is generating
function of Hamiltonians of integrable system

S = {(λ, µ) ∈ C∗ × C∗ | S(λ, µ) =
∑

(i,j)∈Z2

λiµjHij = 0}, (4.1)

– 14 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
3

is equal to the partition function of flows on perfect network N = (G,w) on torus T2. In
this subsection we are going to explain how spectral parameters (λ, µ) and Hamiltonians
of the system appear.

There are two major differences in structure of XG for the network N = (G,w) on torus
T2 compared to the case of disk. First, there are no open faces, so H1(G, ∂G) = H1(G),
and second, not any path on G can be decomposed as a sum of paths along boundaries
of faces, one has to take also representatives of H1(T2). Bringing this together we can
uniquely decompose any closed path γ ∈ H1(G) into

γ = nA(γ)γA + nB(γ)γB +
∑
fi∈F

ni(γ)∂fi, (4.2)

where F is the set of faces of graph G embedded into T2, and γA, γB is fixed pair of paths
on G, which represent two classes in homologies of torus with non-trivial intersection. The
best choices for γA,B are zig-zag paths Z (those oriented paths which turn left at each white
vertex and turn right at each black one) because, as it is easy to see, all face variables xi
and all zig-zag variables ζα = wzα , zα ∈ Z are Poisson-commuting

{xi, ζα} = 0, {ζα, ζβ} = 0. (4.3)

with respect to the bracket (2.6), so they are good candidates for the role of ‘spectral
parameters’. For further convenience, we fix trivialization H1(T2) = Z2 by choosing a pair
of cycles on torus hA, hB with simple intersection < hA, hB >= 1, so one can assign a
vector ~uα = (aα, bα) ∈ H1(T2) to each zig-zag [zα] = aα[hA] + bα[hB]. It often happens
that the lattice [Z], generated by classes ~uα of all zig-zags, does not generate entire lattice
Z2 = H1(T2), but some sub-lattice of finite index |H1(T2)/[Z]| = d instead. In those cases
there is no way to choose any pair of zig-zags zα, zβ ∈ Z to be ‘basic cycles’ γA = zα and
γB = zβ , and express all classes in homologies as their integral combination. In such cases
one has to make coefficients nA, nB, ni in (4.2) rational numbers with denominators being
divisors of d instead. So we get an embedding of finite index H1(G) ⊂ Z2 ⊕ 1

dZ
|F | which

implies decomposition for the space of functions

XG = C[(H1(G))∗] ⊂ C[λ±1, µ±1]⊗ C[x±1/d
i ]i∈F, (4.4)

where λ = (ζα)kA,α(ζβ)kA,β , µ = (ζα)kB,α(ζβ)kB,β will have powers chosen so that

kA,α~uα + kA,β~uβ = (1, 0), kB,α~uα + kB,β~uβ = (0, 1), (4.5)

so that λ, µ are variables corresponding to generators (1, 0) and (0, 1) of homologies, and
will play the role of ‘spectral parameters’ in the following. Now, spectral curve of cluster
integrable system defined by perfect network N = (G,w) can be calculated as partition
function of flows

S(λ, µ) = ZT2 =
∑
p∈FT2

wp =
∑
p∈FT2

λ< [p], hB>µ−< [p], hA>
∏
fi∈F

xni(p)i =
∑

(i,j)∈∆
λiµjHij , (4.6)

where FT2 is the set of flows on torus, Hamiltonians Hij = Hij({xa}) depend only on
face variables xi, which are X -cluster coordinates, and set ∆ ⊂ Z2 is convex envelope
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of those (i, j) ∈ Z2 for which Hij are non-zero, and is called Newton polygon of curve
S. It was proved in [19] that for minimal bi-coloured graphs there exist special perfect
orientations, called α-orientations (we will give both definitions in a moment)5 for which
following theorem holds.

Theorem ([19]). Let N = (G,w) be α-orientated perfect network on torus with minimal
bi-coloured graph and (4.6) be partition function of flows on it. Then:

1. Hamiltonians corresponding to boundary points of ∆ are Casimir functions.6

2. Hamiltonians corresponding to internal points are algebraically independent and in
involution

{Hij , Hkl} = 0. (4.7)

3. Number of Hamiltonians (which are not Casimirs) is exactly half of the dimension of
symplectic leaf.

4. The Newton polygon ∆ is the unique (up to permutation of collinear vectors) convex
polygon whose set of primitive oriented boundary intervals is {~uk}|Z|k=1.7

Together statements 1–3 imply integrability of the system. Statement 4 gives simple way
to predict shape of the Newton polygon without computation of entire spectral curve. We
will use it intensively in the following. By deforming slightly zig-zag paths from the graph,
so that they cross edges only at grey vertices, and erasing graph itself, one obtains so-called
wiring diagram. This operation is invertible: it is easy to recover the graph from its wiring
diagram [19].

Partition function of flows ZT2 on toric network N = (G,w), G ⊂ T2 can be obtained
by gluing of sides of the disk with network Ñ = (G̃, w). To do this, divide boundary of the
disk into four clockwise oriented segments `a, `b, `c, `d with no sources or sinks at the points
of contact of segments. The gluing is possible if one can find such continuous monotonic
map j1 : `a → `c that puts beginning of `a to the end of `c, end of `a to the beginning of
`c, sources to sinks and sinks to sources, and similar map for j2 : `b → `d. If one found
j1,2, then the partition function of flows on perfect network N on torus is related to Ñ on
the disk, from which the torus is glued with j1,2, by

ZT2 =
∑
A⊂Ia

∑
B⊂Ib

∑
C⊂Ic

∑
D⊂Id

ZÑ (A∪B∪C∪D → j1(A)∪j2(B)∪(j1)−1(C)∪(j2)−1(D)) (4.8)

where Ik and Jk are sets of sinks and sources on `k for k ∈ {a, b, c, d}, and we use identi-
fications j1(Ia) = Jc, j2(Ib) = Jd, j

−1
1 (Ic) = Ja, j

−1
2 (Id) = Jb. Term with chosen subsets

(A,B,C,D) contributes to Hamiltonian H|C|−|A|,|D|−|B|, if generators of H1(T2) are chosen
5Actually, logic of [23] and [24] suggests that similar statement holds for any perfect orientation, however

the understanding of this point is still missing in the literature.
6Spectral parameters (λ, µ) are obviously Casimirs as well, as they are expressible via zig-zag variables

only.
7It might be so because there is a pair of zig-zags which travel in two opposite directions along each

edge of graph, so
∑

k
[zk] =

∑
k
~uk = 0.

– 16 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
3

to be hA = −`b = `d and hB = `a = −`c respectively. To obtain the same partition func-
tion using transfer matrix of flows, one can ‘take trace’ of transfer matrix by contraction
of spaces whose boundary points are glued by j1,2. With explicit dependence on λ and µ
(which are not λ, µ from (4.4), but just generating parameters, keeping trace of classes in
homologies) incorporated it looks

ZT2 = Trj1,j2
(
TN ◦ λP̂Ja−P̂JcµP̂Jb−P̂Jd

)
, P̂X =

∑
i∈X

1
2(1 + σ̂z,i), (4.9)

where σ̂z,i = 1⊗ . . .⊗ σz ⊗ . . .⊗ 1 is operator acting by σz-matrix in space i, and by unity
in all other spaces.

Now, it remains to construct special orientation for network on torus, for which Hamil-
tonians are involutive. We construct it using so-called dominant orientation for network on
disk. In the following we will be considering only graphs called minimal graphs, for which
zig-zags do not have self-intersections, there are no closed zig-zags (i.e. those isotopic to
S1) and no parallel bigons of zig-zags. For minimal planar graphs, we can label zig-zags
by their staring points.

Take any linear order 6 on the set of zig-zags, i.e. for any pair of zig-zags z1 and z2 set
z1 6 z2 or z2 6 z1. For intersecting zig-zags order must be strict, those zig-zags which do
not have intersection points could be equal in this order. Take any black or white vertex
v, and let zig-zags which pass it are za < za−1 < . . . < z1, where a is the degree of the
vertex. We say that za is the lowest zig-zag at v and z1 is the highest zig-zag at v. The
order is said to be consistent at v if it satisfies the following requirements:

• If zig-zag z1 is highest at v, then it is highest in the next vertex along z1 if the next
vertex is black, and in the previous vertex along z1 if the previous vertex is white.
Note, that the both cases could occur at the same vertex, as we do not demand graph
to be bipartite.

• Any other zig-zags zi, i = 2, . . . , a is not the highest in the next vertex along zi if
the next vertex is black, and in the previous vertex along zi, if the previous vertex is
white.

The order is consistent if it is consistent at all vertices. To construct perfect orientation on
the graph by ordering on zig-zags, define first orientation on fans of all internal vertices.
For any black vertex the only incoming half-edge is those, along which the highest zig-zag
come to the vertex, and all the other are outgoing. For any white vertex the only outgoing
half-edge is those, along which the highest zig-zag leave the vertex, and all the other are
incoming. It is easy to see that if the order on zig-zags is consistent, then orientations of
halves of all the internal edges are consistent. We do not give explicit description of the
set of all consistent orders on zig-zags, however make the following

Conjecture. All perfect orientations without oriented loops for graphs on disks are ori-
entations constructed from some consistent orders on zig-zags.

If one glue pair of disks D1 and D2, each equipped with dominant orientation, the
dominant orientation on D1 ∪` D2 can also be obtained, once the orders on zig-zags are
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~u1 = (1,−1)

~u2 = (3, 2)

~u3 = (0, 1)

Figure 8. Left. Example of the Newton polygon. Center. Schematic drawing of the graph on
torus. Four-gonal blocks are drawn in details on the right panel. Edges are coloured according to
the colours of zig-zags going along them, by colours from the left panel. Right. Detailed view on
graph and on wiring diagram of zig-zags at the intersection points.

concerted, and consistency condition at boundary vertices holds (note that all the gluings
in section 3.2 was so). The same is true also for gluing disk into torus. Now, construct
α-ordering by taking any zig-zag to be the highest among all, and other zig-zags to be
ordered according to counter-clockwise order of their classes in H1(T2,Z) considered as
vectors in Z2. As it was claimed, for orientation built from such ordering, Hamiltonians
Hij are involutive.

4.2 Integrable system with symmetric Newton polygon

In this subsection using four-gonal block from figure (6) we construct cluster integrable
systems with arbitrary symmetric Newton polygon. As it was discussed in the previous
sub-section, for this it is enough to construct such bi-coloured graph, that collection of
homology classes of its zig-zags coincides with the set of oriented boundary intervals of the
Newton polygon.

We say that Newton polygon is ‘symmetric’ if it is invariant under the central symme-
try (i, j) 7→ (−i,−j), see e.g. figure 8. Due to the symmetry, it always has even number
of vertices — it is 2n-gonal. Let’s select any point with the minimal i-coordinate. Start-
ing from this point, we enumerate all oriented boundary intervals ~u1 = (a1, b1), ~u2 =
(a2, b2), . . . , ~un = (an, bn) in counter-clockwise direction, until the point, which is symmet-
ric to the initial one. Since we started from the left-most point, then all ai > 0. We
assume also that all intervals are primitive, i.e. gcd(ai, bi) = 1. Opposite half of polygon,
which starts at rightmost point, and ends at leftmost, consists of vectors with coordinates
−~u1, . . . ,−~un.

Decompose fundamental domain of torus into grid of n×n rectangular blocks. Diagonal
block at i-th position has ai sources on its left side, ai sinks on its right side, |bi| sinks and
sources on upper and lower sides respectively if bi > 0, or visa versa if bi < 0. Edges are
non-intersecting, and if bi > 0, then graph is constructed by iterative connection of closest
non-connected sources with sinks by edges starting from top-left corner, while if bi < 0,
the process of connection starts from bottom-left corner, see example in figure 8, center.
Non-diagonal block at row i (counting from the top) and column j (counting from the left)
is ai × |bj | ‘fence net’ bipartite graphs, which is rectangular grid glued from four-gonal
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blocks. As it is shown in figure 8, right, at each four-gonal block zig-zag paths are going
without changing of direction, so it is easy to convince yourself that the classes of zig-zags
in H1(T2) are precisely ~u1, . . . , ~un,−~u1, . . . ,−~un as required.

Remark. Bi-coloured graphs on torus obtained in this way might be not simple because
of parallel bigons. The evidence for this, is that the graph constructed by proposed recipe,
for each pair of boundary intervals ~ui and ~uj , has |aibj |+ |ajbi| four-gonal blocks at their
intersection points, which is not SA(2,Z)-invariant quantity. Obtaining minimal graph,
which is necessary for integrability theorem, requires additional spider-moves and parallel
bigon reductions. As an illustration, interested reader can try to construct graph and
reduce it for the Newton polygon obtained from the one drawn in figure 8 by transformation
x 7→ x+ y, y 7→ y.

Transfer matrix of each four-gonal block is LCL from (3.2), which we identified with
the solution of tetrahedron equation. If all blocks are oriented as in figure 6, top, then the
global orientation turns out to be the α-orientation, so does not have oriented cycles. It
is known since [4], and redirived in the context of cluster integrable systems in [42], that
‘fence net’ a× b block being glued by pairs of opposite sides to cylinder defines either Lax
operator of gla classical XXZ spin chain on b sites or glb chain on a sites, depending on pair
of sides chosen to be glued. As we remarked in (1.14), it was noted in [4] that the result
of contraction of tetrahedron Lax operators decomposes into direct sum of Lax operators
for XXZ chain with auxiliary space being sum of all fundamental representations of gla

(C2)⊗a =
a⊕
i=0

C(ai) ⇒ T (µ) =
a⊕
i=0
LΛiCa(µ). (4.10)

In our approach this is the result of the natural grading by the number of paths which cross
cylinder from the left to the right, and implication8 of LGV lemma [20, 36]. Dependence on
spectral parameter µ comes from the paths which cross horizontal boundary of fundamental
domain, and formula (4.9).

Cylindric transfer matrix of the system with arbitrary Newton polygon can be obtained
by cutting of graph drawn in figure 8 by vertical line between any pair of columns of four-
gons. Due to the chosen orientation, all the sources are located on the left, and all sinks
are located on the right side of cylinder. The transfer matrix by cylindric LGV lemma
again provides Lax operator acting in direct sum ⊕r

i=0 ΛiCr, r = a1 + . . . + an. The first
fundamental Lax operator LCr(µ) satisfies r-matrix Poisson bracket (1.15), as it was proved
in [22].

One can keep decomposing cylinder by vertical cuts, up to separating transfer matrix
into product of n transfer matrices, each corresponding to flows passing one column in the
array of fence-nets. We will clarify how this cylindric blocks are related to combinatorics
of affine Weyl groups below. However, we want to stress here, that only the toroidal
representation of the system makes SA(2,Z) covariance explicit.

8This is not LGV lemma itself, as we deal with cylinder. Some subtleties with spectral parameter and
its signs appear because of the closed paths which go around cylinder. For discussions see [22] and [37].
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4.3 Integrable systems on Poisson-Lie group

Another origin of cluster coordinates in integrable systems is factorization ansätze for ele-
ments of Poisson-Lie group P̂GL(N) [14, 15, 23], which appeared in theory of positive ma-
trices [17]. In this approach phase spaces of systems are double Bruhat cells Bw ⊂ P̂GL(N),
which are enumerated by elements w of extended double Weyl group W̃

(
A

(1)
N−1 ×A

(1)
N−1

)
,

which has presentation

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
=
〈

si, s̄i,Λ sisi+1si = si+1sisi+1, Λsi = si+1Λ, s2
i = 1, s̄isj = sj s̄i,

i ∈ Z/NZ s̄is̄i+1s̄i = s̄i+1s̄is̄i+1, Λs̄i = s̄i+1Λ, s̄2
i = 1

〉
. (4.11)

Each reduced decomposition of w into product of generators si, s̄i,Λ provides open em-
bedding of X -cluster chart in Bw: to each generator one assigns certain matrix (namely,
transfer matrix in one-path sector of blocks shown in figure 9), depending on X -cluster
variables. Product of these matrices in the same order, as letters in the word w are lo-
cated, provide matrix g(λ) parametrizing Bw. Cycle hA is chosen to be interval lying on the
‘back’ side of cylinder and connecting its left and right boundaries, so the dependence on
λ comes from generators s0, s̄0 and Λ which contain edges crossing hA, for details see [15].

The restriction of r-matrix bracket with trigonometric r-matrix

{g(λ1)⊗ g(λ2)} = [r(λ1/λ2), g(λ1)⊗ g(λ2)] (4.12)

to double Bruhat cells, which are Poisson submanifolds, turns out to be compatible with
logarithmically constant bracket (2.6). The simplest way to check this is by checking for
each block drawn in figure 9, and using co-product property of r-matrix bracket, that if
g1 and g2 satisfy it, then g1g2 also satisfies. Exchange matrix ε can be easily written
from the word w by considering graphs, dual to those drawn in figure 9, as it was done
in figure 5. Change of reduced decomposition via Coxeter relations sisi+1si = si+1sisi+1
and s̄is̄i+1s̄i = s̄i+1s̄is̄i+1 amounts in single four-move and pair of two-moves. Relation
s̄isj = sj s̄i can be realized as single two-move and does not affect exchange matrix if
i = j ± 1, and is single four-move if i = j. The relations s2

i = 1 and s̄2
i = 1 can be

done by pair of two-moves followed by parallel bigon reduction of type (b), and therefore
are not cluster transformations and do not preserve transfer matrix, however preserves
wiring of zig-zags. If one applies parallel bigon reduction of type (a) instead, one gets Weyl
semi-group with relation s2

i = si. Below we will assume that we use reduction of type (b).
Spectral curve of integrable system is given by characteristic equation

S(λ, µ) = det(g(λ)− µ). (4.13)

Hamiltonians of the system are Ad-invariant functions on Bruhat cells, and so only con-
jugacy class of word w matters. Taking characteristic equation of g(λ) is close relative of
gluing torus into cylinder, so the spectral curve coincides with the one given by (4.6) up to
transformations S(λ, µ) 7→ f(λ)S(λ, µ), µ 7→ g(λ)µ, where f, g are some rational functions
with coefficients depending on Casimirs.
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1

i

i+ 1

N

s̄i

..
.

. .
.

1

i

i+ 1

N

Λ

Figure 9. Basic graphs on cylinder corresponding to generators of Weyl group. Zig-zag paths are
drawn by green lines, and generators act on their ends by permutation. Note that zig-zags are
drawn so, that in-going and out-going ends of zig-zags alternate along the boundary.

Important observation, which we will need in the following, is that the building blocks
for si, s̄i,Λ indeed ‘permute’ zig-zag paths, which we will sometimes refer as strands. One
can see in figure 9 that zig-zags going from the left to the right along lines i and i+ 1 are
permuted after passing si, while s̄i permutes those going from the right to the left along
i and i + 1. Note, that the label i of generators si and s̄i is given not by the number of
zig-zag, but by the number of horizontal line of bi-coloured graph. Generator Λ shifts by
+1 all zig-zags going from the left to the right, and by −1 those going from the right to
the left.

Weyl group interpretation of tetrahedron equation. Double Weyl group of
P̂GL(N) contains diagonal subgroup W (A(1)

N−1) ⊂ W (A(1)
N−1 × A

(1)
N−1) generated by sis̄i

and Λ. Comparing figure 6 and figure 9 one sees that plabic graphs corresponding to Lax
operator of Bazhanov and Sergeev coincides with the one presenting word sis̄i in dou-
ble Weyl group! As we will see below, systems with symmetric Newton polygons can be
constructed using diagonal subgroup only, so this again gives construction of integrable sys-
tem with arbitrary symmetric Newton polygon from contraction of Lax operators (1.11).
Tetrahedron transformation shown in figure 7, can be interpreted just as braiding relation

µR : (sis̄i)(si+1s̄i+1)(sis̄i) 7→ (si+1s̄i+1)(sis̄i)(si+1s̄i+1) (4.14)

for diagonal subgroup of W̃ (A(1)
N−1×A

(1)
N−1). This is the same transformation, which relates

two ‘positive’ parametrizations [17] for the largest Bruhat cell w0 in PGL(3).
The functional tetrahedron equation (1.10) recasts into statement, that two ways

to identify two different parametrizations for the largest Bruhat cell w0 in PGL(4) are
equivalent

w0 = (s1s̄1s2s̄2s3s̄3)(s1s̄1s2s̄2)(s1s̄1) ∼= (s3s̄3s2s̄2s1s̄1)(s3s̄3s2s̄2)(s3s̄3). (4.15)
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Symmetric Newton polygon. Now, we are ready to show how construction from sec-
tion 4.2 for integrable system with symmetric Newton polygon (~u1, . . . , ~ur,−~u1 . . . ,−~ur)
can be reproduced for double Bruhat cell of the group P̂GL(N), N = a1 + . . .+ an. Con-
struction comes from consideration of commuting subgroups P̂GL(a1) × P̂GL(a2) × . . . ×
P̂GL(an) in P̂GL(N), similar to those from [16], and observation that si and s̄i act on zig-
zag paths by permutations. Consider subgroup W̃i,j = W̃ (A(1)

j−i×A
(1)
j−i) ⊂ W̃ (A(1)

N−1×A
(1)
N−1)

which permutes strands from i to j keeping other strands intact. More precisely, generators
s′i,Λ′ of this subgroup are

s′a = si+a−1, s̄′a = s̄i+a−1, 1 ≤ a ≤ j − i,
s′0 = si−1si−2 . . . s1s0sN−1 . . . sj+1sjsj+1 . . . sN−1s0s1 . . . si−2si−1,

s̄′0 = s̄i−1s̄i−2 . . . s̄1s̄0s̄N−1 . . . s̄j+1s̄j s̄j+1 . . . s̄N−1s̄0s̄1 . . . s̄i−2s̄i−1,

Λ′ = si−1s̄i−1si−2s̄i−2 . . . s1s̄1s0s̄0sN−1s̄N−1 . . . sj+1s̄j+1Λ,

(4.16)

so generators from s′1 to s′j−i−1 act on strands i, . . . , j as usual, while the affine generators
are ‘skipping’ other strands 1, . . . , i − 1, j + 1, . . . , N . Generator Λ′ of subgroup Wi,j will
be referred as Λi,j in the following. Note, that bipartite graph defined by block Λij is the
same stripe of four-gons as a one, which appeared in section 4.2.

It is always possible using SA(2,Z) transformation to place Newton polygon in such a
way, that it does not have any vertical sides. It is straightforward to check that the Bruhat
cell which gives Newton polygon (~u1, . . . , ~un,−~u1 . . . ,−~un) is defined then by element

w = (Λ1,r1)b1(Λr1+1,r2)b2 . . . (Λrn−1+1,rn)bn , rk = a1 + . . .+ ak (4.17)

in double Weyl group. Side (ak, bk) of the Newton polygon is generated by strands
ark−1+1, . . . , ark . Together they got projection ak on the generator of homologies oriented
along cylinder. Generator Λrk−1+1,rk mixes only them, and each application of this ‘twist’
operator increases their common projection on generator of homologies, oriented across
cylinder, by 1. By applying it bk times and making torus from cylinder, they are gluing
into longer strands representing class (ak, bk) ∈ H1(T2,Z), so it presents side ~uk of the
Newton polygon. Strands going along the same lines but with the opposite orientations
generate class −~uk.

Non-symmetric Newton polygons. For integrable system with non-symmetric New-
ton polygon it is convenient to present Lax operator in triangular decomposed form.
This requires getting out of diagonal subgroup of W̃ (A(1)

N−1 × A
(1)
N−1), and considering

separately ‘positive’ and ‘negative’ commuting subgroups W̃ (A(1)
a1−1) × . . . × W̃ (A(1)

an−1)
and W̃ (A(1)

c1−1) × . . . × W̃ (A(1)
cm−1), where ~u1 = (a1, b1), . . . , ~un = (an, bn) are primi-

tive oriented boundary intervals of polygon between the leftmost and rightmost points,
~v1 = (−c1,−d1), . . . , ~vm = (−cm,−dm) are intervals between the rightmost and leftmost
points in counter-clockwise direction. Introducing halves of ‘twisting’ operators

Λ+
ij = si−1si−2 . . . s1s0sN−1 . . . sj+1Λ, Λ−ij = s̄i−1s̄i−2 . . . s̄1s̄0s̄N−1 . . . s̄j+1Λ, (4.18)
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where ri = a1 + . . .+ai and li = c1 + . . .+ci, the word in double Weyl group which provides
wiring diagram for non-symmetric Newton polygon is

w=w+w−Λ−b1−...−bn , w+ =(Λ+
1,r1)b1 . . . (Λ+

rn−1+1,rn)bn , w−=(Λ−1,l1)d1 . . . (Λ−lm−1+1,lm)dm ,
(4.19)

see example in figure 10, left. As far as the shifts w− 7→ Λkw−Λ−k preserve Newton
polygon, b1 + . . . + bn = d1 + . . . + dm and only the conjugacy class of word matters,
the same Newton polygon is provided by w = w−w+Λ−d1−...−dn . The upper- and lower-
diagonal Lax operators defined by w± are constructed from hexagonal graph, in contrast
to the symmetric case, where the basic building blocks were four-gonal ‘fence-net’ graph.

Wiring of parallel zig-zags. It remains to discuss a wiring of parallel zig-zags. Take
Newton polygon with integral points on the boundary, which are not at the corners, i.e.
those having at least one ‘non-simple’ side ~u′k = hk · (ak, bk), with gcd(ak, bk) = 1 (hk > 0,
and let a′k > 0 for certainty). Considering hk simple boundary intervals (ak, bk) separately,
one gets hk commuting sub-groups (W̃ (A(1)

ak−1))×hk , whose resulting contribution into word
in double Weyl group by twists is

wk,k+hk =
(
Λ+
rk−1+1,rk−1+ak

)bk
. . .
(
Λ+
rk−1+(hk−1)ak+1,rk−1+hkak

)bk
. (4.20)

Alternatively, one can consider this intervals together, which gives group W̃ (A(1)
hkak−1) con-

tributing by
wk,k+hk =

(
Λ+
rk−1+1,rk−1+hkak

)bkhk
. (4.21)

Two choices can be transformed one into another by local moves, however the second ansatz
is more reduced compared to the first one, as it involves (N − akhk + 1)bkhk generators
against (N −ak + 1)bkhk in the first case. Another benefit is that it can be easily extended
to involve ‘wiring’ of parallel strands, by

wk,k+hk =
(
Λ+
rk−1+1,rk−1+hkak

)hkbk
w̃k, w̃k ∈W (Ahk−1), (4.22)

whereW (Ahk−1) is group acting by permutations of strands rk−1+1, rk−1+2, . . . , rk−1+hk,
see example in figure 10, right. One can assign such ‘non-affine’ word to each non-simple
boundary interval of Newton polygon, however it is more natural not to bring all parallel
intervals together, but to join them according to decomposition of w̃k into a product of
simple cycles.

4.4 Classification of perfect networks on torus

Systematizing examples of previous subsection, we show now that all bi-coloured graphs
on torus can be reduced by local moves to ‘normal forms’, which are enumerated by New-
ton polygons (containing information about winding of zig-zags on torus), with the sides
containing integral internal points partitioned according to the wiring of parallel zig-zags.
Normal form attributed to graph is unique, up to SA(2,Z) transformation of Newton poly-
gon. Similar combinatorics already appeared in [11] in the description of moduli spaces of
monopole walls.
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~u1 = (1, 0)
~u2 = (1, 0)
~u3 = (1, 0)

~v1 = (−1, 2)
~v2 = (−1, 0)
~v3 = (−1,−2) s̄1 s̄2 s̄0 s̄1 s̄0 s̄2 s̄1 s̄0

(12)(3)

~u1 = (2, 0)
~u2 = (1, 0)

~v1 = (−1, 1)
~v2 = (−1, 1)
~v3 = (−1,−2) s1 s̄2 s̄1 s̄0 s̄2 s̄1 s̄0

Figure 10. Left: example of the double Bruhat cell in P̂GL(3) with non-symmetric New-
ton polygon. The corresponding element in the double Weyl group is w = (Λ−1,1)−2(Λ−3,3)2 =
(s̄0s̄2Λ)−2(s̄2s̄1Λ)2 = s̄1s̄2s̄0s̄1s̄0s̄2s̄1s̄0, where we used commutation relations of s̄i with Λ. The
bipartite graphs are drawn on torus, i.e. one has to glue right side with the left one, and upper
with the lower. Right: example of the double Bruhat cell in P̂GL(3) with non-trivial wiring of par-
allel zig-zags, the corresponding element in double Weyl group is w = s1(Λ−1,1)−1(Λ−2,2)−1(Λ−3,3)2 =
s1(s̄0s̄2Λ)−1(s̄1s̄0Λ)−1(s̄2s̄1Λ)2 = s1s̄2s̄1s̄0s̄2s̄1s̄0.

The statement is straightforward consequence of the fact, proved in [15], that one can
always ‘slice’ bipartite graph on torus, and put into correspondence to it some conjugacy
class in double Weyl group (4.11), and the following

Lemma. Any conjugacy class in double Weyl group (4.11) contains unique element of
the form

w = w+
1 · . . . · w

+
n · w−1 · . . . · w

−
m · Λ−b1−...−bn , (4.23)

w+
k =

(
Λ+
rk−1+1,rk

)bk (rk−1 + gcd(ak, bk), . . . , rk−1 + 1),

w−k =
(
Λ−lk−1+1,lk

)dk (lk + gcd(ck, dk), . . . , lk + 1),

where

• Numbers ak, bk, ck, dk define ordered set of counter-clockwise oriented, boundary in-
tervals ~uk = (ak, bk), ~vk = (−ck,−dk) with ak, ck > 0, of some Newton polygon of
width N . The order starts from the direction (0,−1), ‘parallel’ vectors (i.e. propor-
tional, with positive rational coefficient)9 are ordered from the longest to shortest.

• Numbers rk, lk are defined by rk = a1 + . . . + ak, lk = c1 + . . . + ck for k > 0,
r0 = l0 = 0.

• Words Λ±ij are ‘subgroup twists’ defined by formula (4.18).

• Words (j, . . . , i) = sisi+1 . . . sj−2sj−1 and (j, . . . , i) = s̄is̄i+1 . . . s̄j−2s̄j−1 are simple
cycles,10 i < j.

9Sides of the Newton polygon, containing internal integral points, can be split into pieces in various
different ways.

10The name comes from its action as permutation j 7→ j − 1, . . . , i+ 1 7→ i, i 7→ j.
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Proof. Any element w of the group W̃ (A(1)
N−1 × A

(1)
N−1) admits decomposition w =

w+w−Λ−K , where w+, w− are words, which contain only generators si,Λ or s̄i,Λ respec-
tively, and total degree of Λ in either w+ or w− is K. Both w± belong to sub-groups
of W̃ (A(1)

N−1) - type, so we will classify conjugacy classes of its elements, and then show,
how ambiguity with the distribution of Λ can be fixed. Choose for definiteness subgroup
generated by si,Λ. There is a structure of semi-direct product

W̃ (A(1)
N−1) = ZN oW (AN−1), (4.24)

which comes from presentation w+ = L · g, where g is element of non-affine Weyl group
generated by si, and L is element of lattice generated by commuting elements Λ+

i,i, as
defined in (4.18), i.e. those which take strand, wind it up over cylinder, and bring back
onto initial place. Writing this as pairs, and using additive notation for elements of lattice
ei = Λ+

i,i, we get product rule

(L1 ; g1) · (L2 ; g2) = (L1 +Rg1(L2) ; g1g2), (4.25)

where Rg1 acts on the basis elements of lattice by permutations

Rsi(ei) = ei+1, Rsi(ei+1) = ei, Rsi(ej) = ej if i 6= j, j + 1 and Rg1Rg2 = Rg1g2 . (4.26)

The conjugacy classes in W̃ (A(1)
N−1) are in bijection with the set of pairs (~q , λ), where

λ = (λ1 ≥ . . . ≥ λ`(λ) > 0) is the partition of number N , ~q ∈ Z`(λ) and `(λ) is the number
of parts in the partition λ. Indeed, conjugacy classes of permutations on N elements are
enumerated by partitions λ of number N , each containing representative

(p1, . . . , 1)(p2, . . . , p1 + 1) . . . (p`(λ), . . . , p`(λ)−1 + 1), (4.27)

where p0 = 0, pi = λ1 + . . . + λi, and (j, . . . , i) = si . . . sj−1 is cyclic permutation, acting
on the lattice by

R(j,...,i) : ei 7→ ei+1 , . . . , ej−1 7→ ej , ej 7→ ei (4.28)

for i < j. As simple cycles (pk, . . . , pk−1 + 1) commute for different k, and generators of
the lattice can be shifted along the cycles

[(ek ; id) · (0 ; (j, . . . , i))] = [(el ; id) · (0 ; (j, . . . , i))], ∀ i ≤ k, l ≤ j, (4.29)

where [ ] is taking of conjugacy class, then by moving elements of the lattice to the ‘first
lines’, one gets

[w+] = [w+
1 . . . w

+
`(λ)] , w+

k = (qk · epk−1+1 ; (pk, . . . , pk−1 + 1)), (4.30)

for some qk ∈ Z, so the vector ~q = (q1, . . . , q`(λ)) is the vector of the ‘lengths’ of lattice
elements. To put conjugacy class in the form of the products of ‘twists’ Λij , note that(

Λpk−1+1, pk
)qk · (pk−1 + gcd(λk, qk), . . . , pk−1 + 1) = (Vk ; σk (pk, pk−1 + 1)σ−1

k ), (4.31)
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where the lattice element Vk = t′k(epk−1+1 + . . . + epk) + epk−1+1 + . . . + epk−1+t′′
k
with

t′k ∈ Z≥0, 0 ≤ t′′k < λk is defined by qk = t′kλk + t′′k, and comes from decomposition(
Λpk−1+1, pk

)qk = (Vk ; (pk, . . . , pk−1 + 1)qk), (4.32)

which can be checked by direct computation, using that Λ+
ij = (k, . . . , i) · Λ+

kk · (j, . . . , k)
for any i ≤ k ≤ j, and non-affine permutation σk is defined from

(pk, . . . , pk−1 +1)qk · (pk−1 +gcd(λk, qk), . . . , pk−1 +1) = σk · (pk, . . . , pk−1 +1) ·σ−1
k (4.33)

which holds, because all orbits of the action of i 7→ i + qk on Z/λkZ can be uniquely
presented by one of the numbers 1, . . . , gcd(λk, qk), so both sides of (4.33) got only one
orbit. From (4.31), using (4.29), for conjugacy classes follows

[
(
Λpk−1+1, pk

)qk · (pk−1 + gcd(λk, qk), . . . , pk−1 + 1)]
= [
(
qk · epk−1+1 ; (pk, . . . , pk−1 + 1)

)
] = [w+

k ], (4.34)

which is almost statement of the Lemma. The w− part can be reduced to the normal form,
encoded by (~̄q, λ̄), in the same way. The only element, which is common for words w+ and
w− is Λ, which also do not commute with all generators si and s̄i. However, we initially
distributed it in w = w+w−Λ−K in a such way, that the total degree of Λ inside w−Λ−K
or Λ−Kw+ is zero, so the treatment of w+ or w− is not affected by another part. Finally,
conjugating w± by suitable permutations from non-affine parts, we can rearrange indices of
si, s̄i inside w±k by counter-clockwise order on the directions of vectors (λi, qi), (−λ̄i,−q̄i),
starting from the direction (0,−1), and by decrease of lengths for the vectors of the same
slope, obtaining numbers (ai, bi) and (ci, di). The properties that the sum of vectors is
zero, i.e. that they can be composed into the boundary of Newton polygon, and that the
width of this polygon is N , are guaranteed by ∑i λi = ∑

i λ̄i = N , ∑i qi = ∑
i q̄i = K.

5 Discussion

In this paper we have demonstrated that the Bazhanov-Sergeev solution of the tetrahedron
equation appears naturally as the basic building block for the transfer matrix of paths in
the theory of cluster integrable systems. We have also shown how the integrable system
with arbitrary symmetric Newton polygon can be built using this building block. We have
explained how this construction originates from the combinatorics of words in the double
affine Weyl groups and used it to explicitly construct bi-coloured graph for the integrable
system associated with any Newton polygon. We have also proven the classification Lemma
stating that we have constructed all possible systems of such kind.

The following questions seem to be promising for future developments of this topic:

• As the Poisson brackets on weights of paths are bi-linearly constant, it can be quan-
tized in a straightforward way by [13]

{wγ1 , wγ2} = ε(γ1, γ2)wγ1wγ2 −→ ŵγ1ŵγ2 = t
1
2 ε(γ1,γ2)ŵγ1+γ2 (5.1)
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The mutation, which was a canonical transformation classically, in the quantum
world becomes a conjugation by quantum dilogarithm. Extension of the arguments
presented in this paper to the quantum case will provide a closed formula for the
tetrahedron R-matrix Rabc in terms of four quantum dilogarithms. This can clarify
the appearance of the product of four functions similar to quantum dilogarithms at
the root of unity in the vertex weight of the 3d vertex model [2, 3, 27, 28], whose
solution is known to be a solution of the tetrahedron equation [31, 48]. Such product
(outside of the roots of unity) was also noted in [45]. Another promising direction
of research is construction of new solution for the tetrahedron equation using cluster
algebras with fermionic variables [43], as suggested by recent appearance of quivers
with fermionic nodes in representations theory of affine algebras [6, 32, 38, 39, 55]
and approach of [47] to super-algebras using tetrahedron equation.

• Surprisingly, the same quiver and the same cluster transformation as those shown in
figure 7 have already appeared in the context of the relation between cluster algebras
and vertex integrable systems in [52]. The physical origin of these solutions was the
2d N = (2, 2) supersymmetric sigma-model, whose Kähler parameters were shown
in [10] to transform as cluster variables under Seiberg dualities. From the other side,
the approach to cluster integrable systems which we have used here is suspected
to originate from 5d N = 1 theories [5, 12, 42], where cluster variables play the
role of Seiberg-Witten curve’s moduli. This intriguing coincidence should have some
unifying physical origins.

• The systems we have considered were mainly of “affine” type: they live on double
Bruhat cells of the affine group P̂GL(N) and being rewritten in Darboux variables
represent “closed” chains of interacting particles [12, 15, 24, 40]. The integrability
theorem, proved in [19], assumes that the perfect network on torus is minimal, i.e.
that its zig-zags do not have self-intersections, and that parallel zig-zags (those, whose
classes in H1(T2,Z) are proportional with positive coefficient) do not intersect. The
cluster description of the “open” chains,11 which live on double Bruhat cells of the
non-affine group PGL(N), involves networks drawn on a cylinder (or on a cut torus —
this can be treated as a particular case of a “squashed” Newton polygon of zero area).
So all the intersections of zig-zags are either self- or parallel-, and integrability of such
systems is not guaranteed by [19]. However it can be proved by other methods.

We have unified these classes of systems by considering the wiring of parallel zig-zags.
As it was shown in [22], the Lax operator of any network on a cylinder has an r-
matrix Poisson bracket with itself, however the general integrability criterion, which
allows to compare the number of independent integrals of motion and the dimensions
of the symplectic leaves still has to be developed.

• We have proven the classification theorem for bi-coloured graphs on torus. Graphs
which contain wiring of parallel zig-zags cannot be made minimal by local moves, i.e.

11Which were historically the first examples of the cluster description of integrable systems [23].
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self-intersections of zig-zags are protected by topology. However, they can always be
made “locally minimal”, which means that they become such networks on torus, that
being cut by any curves into a disk, they become minimal network on the disk, as
follows from the reduction theorem proved in [51]. In the language of double Weyl
groups locally minimal diagrams are those defined by reduced words.
However, in our consideration we allowed to reduce parallel bigons by the use of
s2
i = 1 which is not a cluster transformation. Classification of the normal forms of
the locally minimal networks “up to cluster transformations” with the bigon reduction
relation s2

i = si seems to be a fruitful direction for further investigations, especially as
it might exhibit interesting SL(2,Z) covariant behaviour.12 The problem of parallel
bigons itself is still poorly understood in cluster algebras, and also awaits its solution.
We also expect, that the condition that the Newton polygon does not contain vertical
sides might be removed and full SL(2,Z) covariance restored by the replacement of
the double affine Weyl group with a certain generalization thereof, originating from
toroidal algebras.

• In this paper we have been discussing continuous time integrability only. However,
the cluster integrable systems are known to have rich discrete dynamics. In [18] the
general structure of the group of discrete transformations generated by spider moves
was given. However, it is known that even for quivers coming from bi-coloured graphs
there is a much larger group of cluster transformations (sequences of mutations and
permutations of quiver vertices) which bring quivers back into itself, which however
cannot be represented by a sequence of bi-coloured graph transformations (see e.g. [26]
for hexagonal lattice and [42] for the four-gonal one). These transformations are
related to boundary intervals of Newton polygons with integral internal points, and
realize permutations of “parallel” zig-zags (whose classes in torus homology coincide).
We expect that using the results of this paper, a big piece of the cluster mapping
class group containing the sub-group W (A(1)

N ) for each boundary interval with N

internal points, and a subgroup described in [18], can be explicitly constructed. The
half Dehn-twists R-matrix [25, 49] should also find their natural interpretation in
this construction.
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Figure 11. Tetrahedron transformation as sequence of eight two-moves and four spider-moves.
Red colour highlights those parts of graph which being transformed by two- or four- moves.

A Details on tetrahedron transformation

As it was said in section 3.2, it is easy to check that transformation of cluster variables (3.9)
is agreed with tetrahedron transformation (1.13) via (3.4). However, it is not that easy to
derive transformation rules for γ variables (3.7) directly from sequence of two- and four-
moves. The major difficulty is that after sequence of moves shown in figure 11 new variables
γ′ defined in figure 7 can not be expressed using γx,i with x = a, b, c; i = 1, 2, 3, 4 variables
only, but more refined corner variables, a1, a2, a3, . . . , l1, l2, l3, as indicated in figure 11,
should be involved.

It turns out that this problem might be treated by choosing of appropriate gauge.
After application of two- and four- moves one can still apply gauge transformations at
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points shown by grey crosses in figure 7, left, bottom, which transform γ′ variables by

γ′a,1 → Xγ′a,1, γ′a,2 → X−1Y γ′a,2, γ
′
a,3 → Y −1γ′a,3,

γ′b,2 → Zγ′b,2, γ′b,3 → XZ−1γ′b,3, γ
′
b,4 → X−1γ′b,4,

γ′c,1 → Z−1γ′c,1, γ
′
c,4 → Y −1Zγ′c,4, γ

′
c,3 → Y γ′c,3,

(A.1)

and change transfer matrix of each four-gonal block, but do not affect transfer matrix of
whole network. Direct check shows13 that once X,Y, Z are chosen to be

X =
√
f2γa,4
e3γa,2

(
γa,1γa,4γ

2
b,3γc,1γc,2

γa,2γa,3γ2
b,1γc,3γc,4

)1/8

,

Y =
√
l2b2
a3k3

(
d3l3
i2a2

)3/8(γa,2γb,4γc,2
γa,4γb,2γc,4

)1/4

,

Z =
√
h2γc,4
g3γc,2

(
γa,2γa,3γ

2
b,1γc,3γc,4

γa,1γa,4γ2
b,3γc,1γc,2

)1/8

,

(A.2)

transformed γ′ variables match (3.7) obtained directly from (1.13) via (3.4).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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