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1 Introduction

Data taken at the Large Hadron Collider (LHC) has been essential to confirm Standard
Model (SM) predictions and perform precision measurements [1, 2]. Extensive efforts have
been made to search for phenomena beyond the Standard Model (BSM) as well, such
as supersymmetry, dark matter, extra dimensions, and many others. Thus far, no BSM
physics has been observed. The lack of evidence for new physics suggests that the simplest
scenarios are not good models of nature.
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However, one should worry that more complicated signals might have evaded current
LHC search strategies. A large class of unusual BSM signals arise within the “hidden-
valley” (HV) scenario, in which the SM is weakly coupled to a hidden sector of self-
interacting particles neutral under the SM gauge groups, at least one of which decays
visibly [3–6]. Similarly unusual signals arise in theories of “quirks” [3, 7–9], and also in the
context of unparticles [10–12] which in the presence of a mass gap may produce hidden-
valley phenomenology [13]. Since hidden sectors can be arbitrarily complex, many models
of this type are poorly constrained by LHC searches, and since indirect limits on hidden
sectors are often very weak, there are few other constraints. But it is impossible to search
through the full space of HV models, or of models in other general scenarios. Instead,
the practical approach to discovering a new signal is to carry out searches for distinct
and parametrizable signatures, and to make this possible, models that produce these sig-
natures must be developed. Among the unusual signatures identified in HV models to
date are soft, unclustered energy patterns (SUEPs) [13–15]; lepton jets [16, 17]; emerging
jets [3, 18]; semi-visible jets [3, 19–21]; and dark jets with unusual substructure [22, 102].

General, flexible searches for new physics at the LHC require us not only to widen the
range of models and signatures, but also to expand the tools available for data analysis,
both offline and at the trigger stage (where fewer than 1% of LHC collisions are recorded).
Search strategies for general hidden sectors are confounded by the many free parameters,
including the masses, couplings, and lifetimes of new particles. The overall event shape of
different scenarios can also take many forms. This motivates the development of diagnostic
tools to characterize anomalous event shapes which are unlikely to arise from Standard
Model processes.

In this paper we will introduce a class of simplified models that produce a range of
new signatures, and our goal will be to characterize them using event shape observables. It
would be premature to consider how to search for these signals at the LHC, as we should
first understand the signatures themselves. For this reason we focus our attention on an
idealized situation: a pure signal at an e+e− collider of the future with no background.

There exist several well-known observables that characterize the shapes of events at
e+e− colliders. A commonly used infrared and collinear (IRC) safe event shape observable
is thrust, defined as [23–25]

T = maxn̂
∑
i |n̂ · ~pi|∑
i |~pi|

. (1.1)

It has a range T ∈ [0.5, 1], where T = 1 corresponds to two back-to-back particles, and
T = 0.5 is an isotropic radiation pattern. While thrust has provided essential insight on
the perturbative nature of QCD, it is most sensitive to event shape deviations from the
two-particle dijet configuration and has less sensitivity in the quasi-spherical regime (see
figure 8 of [26]). To complement such standard observables, we also make use of a recently
proposed event shape observable, the event isotropy [26].

Event isotropy is defined using the energy mover’s distance (EMD) [27, 28]. Given two
radiation patterns of massless particles P , Q, the EMD is the minimum work necessary to
rearrange P into Q. A radiation pattern is defined as a set of particles, each of which are
specified by their position on the unit sphere and fraction of the total energy. To reorganize
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Figure 1. Event isotropy distributions for e+e− → qq̄ and e+e− → tt̄ (hadronic decays only) at a
center-of-mass energy just above the tt̄ threshold. The distance measure eq. (1.3) gives higher Isph

192
values than the corresponding plot in ref. [26].

the pattern P into Q, we construct a transport map fij that tracks the total energy fraction
moved from position i to position j. The total work done in the rearrangement can be
written as a sum over the distance dij from i to j weighed by the fraction of energy moved
fij . The EMD is the minimum work for all possible rearrangements of P to Q:

EMD (P,Q) = min
{fij}

∑
ij

fijdij . (1.2)

The distance measure we use in this paper is

dij ≡
3
2
√

1− n̂i · n̂j = 3
2
√

1− cos θij (1.3)

for n̂i the unit vector proportional to the three-momentum of the element pi, etc. Note
this differs from [26], where the distance measure was proportional to dij ∼ 1− cos θij . See
appendix B of that paper for a discussion of the different distance measures.

The ideal event isotropy of an event would be its EMD to a uniform radiation pattern
U of equal total energy:

I(E) = EMD (E ,U) . (1.4)

which we would take as a uniform spherical distribution for e+e− colliders. However to make
computation times practical we calculate the EMD to a uniformly tiled, high multiplicity
sphere generated with HEALPix [29]. Specifically, we will use multiplicity 192 for the
tiling, and we denote the event isotropy variable by Isph

192 .
Note that event isotropy is defined as a distance to an isotropic event. Thus, highly

isotropic events have low values of Isph, despite the name. In particular, Isph is 0 for
a spherical event and 1 for a pencil dijet event with two back-to-back momenta. More
generally, for an event with k isotropically distributed particles of equal energy, a sphere
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tiled with multiplicity N , and the distance measure eq. (1.3), the event isotropy is1

Isph
N &

√
2

min(k,N) . (1.5)

The minimum value of Isph
192 ≈

√
2

192 ≈ 0.1 represents a slight loss of dynamic range, a price
one pays for much faster computation.

To illustrate the behavior of this variable, we used Pythia 8.243 [30] to generate,
at a center-of-mass energy of 350GeV, the processes e+e− → qq̄ and e+e− → tt̄. The
resulting event isotropy distributions are shown in figure 1; the values of Isph

192 are higher
than the corresponding plot in ref. [26] because of our choice of distance measure eq. (1.3).
QCD radiation and radiative-return to the Z boson both reduce the qq̄ isotropy from
1 to approximately 0.8. Meanwhile, since the top quarks are produced near threshold,
their six jets are distributed quasi-isotropically, and the distribution peaks near the value√

1/3 ∼ 0.58 that eq. (1.5) would suggest.
HV extensions to the SM often take the form of confining hidden sectors. However, con-

finement is compatible with a wide range of event shapes. The ‘t Hooft coupling λ = αsNc

plays a major role in determining the shape of events. In a QCD-like, asymptotically free
theory, λ� 1 near the confinement scale but runs to be � 1 at energies well above ΛQCD.
Gluon radiation in this regime is characterized by perturbative showering, in which a hard
quark or gluon is dressed with moderate amounts of collinear radiation, leading to a classic
QCD jet. However, a near-conformal field theory may maintain λ� 1 over a wide range of
energies above the confinement scale. In this regime collinear radiation is extremely rapid,
and all hard partons lose their energy; only soft physics survives. Such a theory will pro-
duce events which, because of greatly enhanced radiation [31], are spherically symmetric
in the extreme λ→∞ limit [13, 32, 33].

Although one can do reliable computations for λ� 1 (where field-theory perturbation
theory is valid) and sometimes for λ � 1 (where gauge/string duality furnishes us with
an alternative perturbation expansion), BSM physics could fall in the intermediate regime.
This regime is poorly understood, as there are no methods for detailed calculation at
intermediate λ.

Because of this obstacle, we pursue a more pragmatic approach. In this paper we
seek to develop a procedure for generating events that is physically reasonable and has
parameters that allow it to interpolate between jetty and spherical. We hope that a flexible
method for producing events with intermediate values of event shape observables may allow
the design of analysis and trigger strategies that are sensitive to a broader class of new
physics models, even ones whose signals cannot currently be calculated.

One widely-adopted strategy in the search for new physics at colliders is the use of
simplified models. These models can abstract away many details of a theory while preserv-

1We may imagine spreading each particle’s energy over a region of area 4π/k, which requires moving the
energy a distance of order 1/

√
k. The normalization is obtained by requiring that for k = 2, the extreme

dijet limit, Isph
192 = 1. Any non-uniformity in the distribution generally increases the isotropy when averaged

over many orientations. For the distance measure used in [26], there is no square root. See appendix A
of [26] for more details.
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ing key elements of the collider phenomenology, and have been designed for a broad range
of signals. However, they are intrinsically ‘simple’: the models include a small number of
new light particles and interactions [34–36]. While it is beneficial to have fewer parameters,
we would also like to consider more complex theories with many interactions and heavier
particles, as in Hidden Valleys. There have been studies of simplified models with relatively
high final-state multiplicities [19, 37–39], as well as studies of specific theories that give
signals made of many soft particles [9, 14, 15]. However, there is a gap which can be filled
by a straightforward approach to formulating simplified models that are flexible enough to
span a wide range of event shapes.

In this paper, we show that a simplified model within an extra dimension, with a
small number of parameters, allows for the generation of a wide range of event shapes.
Specifically, we consider a warped extra dimension, in the form of a slice of a 5d AdS
space [40]. This is motivated by the AdS/CFT or “gauge/string” correspondence, which
relates gauge theories to string theory [41–43]. The correspondence suggests that a set of
interacting fields (including gravity) on such a finite-size warped extra dimension can be
interpreted as the dual of a (large N) confining gauge theory. (This relation has been made
precise for a few purely 4d gauge theories, as in [44, 45].) The infinite tower of massive
Kaluza-Klein modes (KK modes) in the extra dimension is equivalent to a tower of hadrons
of the confining gauge theory. Rather than choosing some ansatz for the masses and
couplings of hadrons in a strongly-coupled gauge theory where we cannot do calculations,
we choose a small set of masses and couplings in 5d which determine the entire infinite set
of masses and couplings in 4d. This reduces the number of arbitrary choices to make, while
still allowing enough flexibility to generate a wide range of collider event shapes. This use
of AdS as a simplified dual to a Hidden Valley is in the spirit of previous uses of AdS to
model low energy QCD [31, 46–51]. The fact that KK-mode cascades in a warped extra
dimension can produce approximately spherical events was previously examined in [52].
We build on this by constructing a wider range of models, which lead to a wider range of
collider events. We also make use of the new tool of event isotropy to obtain an improved
characterization of these events.

We emphasize that what we present here is a physical model (morally dual to a field
theory at large λ) which can interpolate phenomenologically between the jetty regime
(which arises at small λ as it does in QCD) and the quasi-spherical regime (which appears
at very high energy at large λ.) Because multiple, qualitatively different interpolations
between the two regimes likely exist, our model may have little to do with what one would
observe in a real confining gauge theory whose ultraviolet value of λ is varied from small to
large. Nevertheless, our approach widens the space of sensible targets for experimenters,
and one may hope any search strategies that it inspires may be sensitive to a variety of
models, not just the one proposed here, that sit between the jetty and spherical extremes.

We proceed with a brief introduction of simplified models in extra dimensions in
section 2. In section 3, we present results from simulations of cascades generated with
our models, for a variety of parameter values and interaction terms. We show that these
models can accommodate varied distributions of event isotropy. The features of the model
are driven by basic properties of the couplings among various KK modes. In simple scenar-
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ios with one self-coupled bulk field, near-threshold decays are often preferred, while decays
with greater available phase space are suppressed. This leads to low-momentum daughter
particles with no preferred boost axis, and thus to nearly isotropic events. The degree of
isotropy depends on further details, such as the extent to which there is an approximately
conserved KK number, and the number of stable KK modes at the bottom of the spectrum.
In scenarios with multiple bulk fields, we find that there are “plateaus” in phase space with
relatively high decay rates, far from threshold. These lead to less isotropic events. Finally,
cases with boundary-localized couplings can have branching ratios determined mostly by
phase space, and lead to much less isotropic events. In each case, we explain how the pat-
tern of branching ratios is reflected in properties of the event: thrust, particle multiplicity,
the energy distribution of daughter particles, and the new event isotropy observable. The
structures that we find in the patterns of couplings among various modes are determined
by overlap integrals involving products of three Bessel functions. In section 4, we give an
analytic understanding of these integrals. In particular, we show that the overlap integrals
can be separated into two terms, one of which can be computed approximately and one
of which can be computed exactly. The latter term often dominates, and allows us to
obtain a clear analytic understanding of both the regime in which near-threshold decays
are preferred and the regime with plateaus of enhanced decays away from threshold. All
of the important qualitative features determining the event spectra can thus be extracted
from the analytic results. In section 5, we conclude and summarize both forthcoming work
and open questions for the future.

A preliminary version of some of our results was reported in section 7.3 of a recent
white paper on long-lived particles at the LHC [53]. This also included a comparison to a
parton shower algorithm pushed to strong coupling (work of Marat Freytsis), which may
be of interest to some readers.

In a companion paper [54], we will provide a more detailed understanding of the event
shape observables, and establish that event isotropy captures features of events that are
not easily extracted from traditional variables (thrust, eigenvalues of the sphericity tensor,
and jet multiplicities).

2 Extra dimensional simplified models: a brief introduction

One approach to robust searches for new physics at colliders is the use of simplified models.
An extensive summary can be found in [55]. Because these models are characterized by
effective Lagrangians with only a few new particles, they are not representative of the
rich spectra of new particles and decay chains that can arise within hidden sectors. It is
unreasonable to select, by hand, the masses and couplings of large numbers of particles.
Various approaches to this problem have been chosen in the literature, which we will
briefly discuss below in section 2.3. For our purposes, an efficient approach to generating
simplified models with a small number of free parameters is to consider theories with an
extra dimension containing a small number of bulk fields and interactions, which then
produce many modes and couplings in the four-dimensional reduction. This choice has
the advantage that gauge/string duality furnishes us with an interpretation of the extra-
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dimensional simplified model in terms of a toy model of a confining hidden sector at large
‘t Hooft coupling.

Readers familiar with RS models [40] can skim this section: the main message is that
we consider scalars with trilinear bulk interactions as a simplified model for the spectrum
and essential interactions in the hidden sector.

2.1 Spectrum of masses

We will imagine coupling the SM to a hidden sector which consists of states that propagate
in at least five dimensions. Such a hidden sector might in principle be dual to a gauge
theory via the gauge/string correspondence, and we will often use the language of this
correspondence in describing it.

Specifically, let us begin by considering a slice of (4+1)d AdS space (RS1). We will
denote the extra spatial coordinate as z. This spacetime geometry is specified by the
curvature radius R of the 5d geometry, with metric

ds2 = R2

z2 (ηµνdxµdxν − dz2) (2.1)

where zUV < z < zIR. In this paper we take zUV = 0, in order to focus purely on modeling
the hidden sector; coupling the sector to the SM may require reintroducing zUV depending
on the nature of the interaction between the two sectors.2 A theory of fields propagating
on AdS5 for z < zIR is often called the “hard-wall” model and has been extensively studied
as a model for QCD [31, 47, 48, 50, 51].

The dimensionful parameter zIR plays the role of the confinement length scale in pure
Yang-Mills theory. Indeed, this type of model is a cartoon of sorts, representing more
realistic string constructions that are dual to quasi-conformal field theories which vaguely
resemble QCD. More precisely, these field theories are asymptotically conformal at high
energy (corresponding to small z) with a continuous coupling constant, and their conformal
invariance is broken at a scale Λ that corresponds to z ∼ zIR. In some cases the breaking
of conformal invariance is due to confinement. Simple versions of the hard-wall model, like
pure Yang-Mills theory, have a mass gap and towers of states, the details depending on the
5d fields that the model contains. We will consider theories of this type below.

For simplicity only, we will consider interacting scalars propagating in the bulk. These
could be a subset of fields in a more realistic theory, or could serve as warm-ups for gauge
and/or gravity fields. The scalars will satisfy a 5d Klein-Gordon equation with mass M ,
and can be written as an infinite sum of scalar modes that propagate in the 4d bulk modified
by wavefunctions in the fifth dimension:

Φ (xµ, z) =
∞∑
n=1

φn (xµ)ψn (z) . (2.2)

2SM fields do not propagate in the bulk, because they are not composite states of the hidden sector.
One possibility would be to couple to them to the bulk fields by UV-brane localized interactions, but we
will not pursue the details here.
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Figure 2. The mass spectra of KK towers for ν = 0, 1, 5, and 10 respectively, in units of
1/zIR starting at the lowest mode. We assume Dirichlet boundary conditions on the IR brane. We
highlight two important trends. First, the lowest mass in the tower increases as ν increases. Second,
the mass splittings sufficiently high in each tower are approximately equal and independent of ν.

The 5d wavefunctions have the form of Bessel functions: ψn(z) ∝ z2Jν(mnz), where

ν ≡
√

4 +M2R2. (2.3)

The tower of massive Kaluza-Klein (KK) modes of the scalars can be interpreted, through
gauge/string duality, as a tower of hadrons of the quasi-conformal confining 4d theory dual
to the bulk description. These hadrons are sourced by a field-theory operator O of scaling
dimension dO ≡ ν+2. The smallest 5d mass-squared is set by the Breitenlohner-Freedman
bound [56]

M2R2 ≥ −4. (2.4)

This corresponds to values of ν
ν ≡ dO − 2 ≥ 0. (2.5)

The range 1 ≤ dO < 2 is allowed by unitarity but requires an alternative boundary condi-
tion at zUV [57], and will not be considered in this paper.

One can estimate the masses of the Kaluza-Klein modes by using the asymptotic
expansion of the Bessel function for large (positive real) arguments,

Jν (x) ≈
√

2
πx

[
cos

(
x− π2ν −

π

4

)
−
ν2 − 1

4
2x sin

(
x− π2ν −

π

4

)
+O(1/x2)

]
. (2.6)

In particular, the nth KK mode mass is approximately given by

m(ν)
n ≈

π

2(ν + C + 2n)z−1
IR , (2.7)

where C is an O(1) number that depends on the choice of boundary condition on the
IR brane. For Dirichlet boundary conditions (ψn|zIR = 0), we have C = −1/2, while for
Neumann boundary conditions (∂zψn|zIR = 0), we have C = −3/2.

The details of the mass spectrum impose constraints on particle decays; examples of
spectra for different ν are given in figure 2. For the Dirichlet case, C = −1/2 implies
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that for ν < 1/2, a decay of KK mode n1 to KK modes n2 and n3 of the same field,
with n1 = n2 + n3, is always kinematically allowed. In particular, barring some additional
constraints, the only stable mode is n = 1. Conversely, for ν > 1/2, some of these decays
are always disallowed, and (to a very good approximation) 1+

⌊
(ν + 3

2)/2
⌋
modes are stable

against decay. In particular, the mass spectrum for ν = 1
2 is exactly that of a 5d-massless

field in a flat extra dimension, mn = πn; as ν → 1
2 from below, the phase space for the

decay 2 → 1 + 1 closes off and the second KK mode becomes kinematically stable. Note
also that for all such spectra, a decay n1 → n2 + n3 is always forbidden for modes of the
same field if n1 < n2 + n3.

The wavefunction of the nth mode is

ψ(ν)
n (z) = N (ν)

n z2Jν
(
m(ν)
n z

)
, N (ν)

n ≡
(∫ zIR

0
dz (R/z)3

[
z2Jν(m(ν)

n z)
]2)− 1

2
. (2.8)

The coefficient N (ν)
n is determined by requiring that the 4d field φn(x) be canonically

normalized at tree level. The Dirichlet case has a simple normalization:

N (ν)
n = 1

zIRR3/2

√
2

|Jν+1(m(ν)
n zIR)|

≈

√√√√ πm(ν)
n

R3zIR
. (Dirichlet) (2.9)

For the Neumann case the closed form is more complicated, but the final approximate
expression in eq. (2.9) remains true at large n.

In the case of Neumann boundary conditions, the value of the wavefunction on the IR
boundary can be approximated by:

ψ(ν)
n (zIR) ≈ zIR

R3/2

[
(−1)n+1√2 +O(1/n)

]
. (2.10)

This implies that a φ3 interaction localized on the IR boundary will give rise to couplings
of approximately equal magnitude between any three KK modes, a fact that we will make
use of in section 3.4.

2.2 Interaction terms

Each scalar field in 5d provides a tower of massive particles. To induce the decays among
these particles that will create a range of signals, we next turn on interactions among the
scalars. In many models, the dominant decays are all two-body, and in such cases, the only
important interactions are cubic. We therefore consider cubic couplings of scalar fields in
the 5d bulk, ∫ √

g d4x dz Lint = −
∫ √

g d4x dz cΦ1Φ2Φ3 (2.11)

where Φ1,2,3 are potentially different fields with corresponding bulk mass parameters ν1,2,3,
and c is a coupling constant.3 We implicitly assume that the unboundedness of this La-
grangian is corrected by higher-order terms which make the theory well-behaved but do
not affect decays.

3Throughout the paper, we only use c to denote this coupling constant; it should not be confused with
the central charge c that is often discussed in the context of AdS/CFT.
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In our studies below, we will focus only on the “single field case”, where all three fields
are the same, and the “two field case” where Φ2 = Φ3. The single-field case captures some
features of self-interacting bulk fields such as a dilaton, non-abelian vectors or scalars,
or the gravitational field. The two-field case captures features of situations in which a
scalar, gauge field, or gravity couples to a second field that carries charge under either a
Z2 symmetry, or perhaps CP, forbidding modes of Φ2 from being created singly. It also is
similar to cases in which the second field is complex and carries a U(1) charge, since the
spectrum and decay modes of Φ2 and Φ∗2 are the same in such a case. The field Φ1 may
have its own cubic interaction, but we will assume here for simplicity that its coupling is
relatively small compared to the Φ1Φ2

2 coupling, and so plays an insignificant role in decay
chains. The cubic interaction could also be zero, as for an abelian gauge field.

We will denote the ith KK mode of the field Φn by φn,i(x). In the 4d effective theory,
the 5d interaction translates into an infinite set of couplings among the 4d modes:

L4d ⊃
∞∑
i,j,k

cijkφ1,i(x)φ2,j(x)φ3,k(x), (2.12)

where the effective couplings of the 4d scalars are determined by the overlaps of the wave-
functions in the extra dimension,

cijk = cN
(ν1)
i N

(ν2)
j N

(ν3)
k

∫ zIR

zUV

(
R

z

)5
dz

[
z2Jν1(m(ν1)

i z)
] [
z2Jν2(m(ν2)

j z)
] [
z2Jν3(m(ν3)

k z)
]
.

(2.13)
Here we substituted det g = (R/z)10 for the metric eq. (2.1) into eq. (2.11).

These 4d coupling constants depend on various dimensionful 5d quantities: c, R, Mn,
and zIR. However, it turns out that if we write cijk in terms of the νn (which depend
only on the product MnR) and the dimensionless coupling c0 ≡ c

√
R, then all remaining

dependence on R drops out of the equation. Hence, we never need to specify the 5d length
scale R to do a calculation. Furthermore, we are primarily interested in branching ratios
(rather than total widths), for which the value of c0 cancels out as well. Consequently, we
can set both R and c0 to 1 for convenience. Meanwhile the scale zIR, corresponding to the
confinement scale of a dual field theory, is the only dimensionful quantity that appears in
physical measurements. We may express masses and widths of the KK modes, and other
dimensionful measurements, in units of zIR, and so we can also set this quantity to 1 if we
choose. The only non-trivial parameters left, then, are the 5 dimensional masses, which
we express using the dimensionless parameters νi, which in the context of a gauge/string
duality are related to 4d operator dimensions.

As we will see, depending on the choices of νi and the boundary conditions, the cijk
will often (but not always) respect an approximate KK-number symmetry. Were the extra
dimension flat, it would have a conserved KK-number with Neumann boundary conditions
(or with periodic boundary conditions) and an approximately conserved KK-number with
Dirichlet boundary conditions. More precisely, in the latter case, cijk vanishes if i+ j+k is
even, and falls off as ∼ 1/∆KK when odd, where (if i > j + k) the violation of KK-number
is ∆KK = i− j− k. Once we replace the flat space with a slice of AdS, however, additional
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effects from the bulk will break the KK symmetry, sometimes leaving it approximately
conserved as in the flat Dirichlet example, but sometimes not.

The degree and pattern of KK-number violation has an intricate structure. Much of it
emerges from the cijk, through the very interesting properties of the triple Bessel function
integrals in eq. (2.13). Specifically, it is convenient to rewrite the integral of interest as a
difference of two easier integrals:

I(νi,mi) ≡
∫ 1

0
dz z

3∏
k=1

Jνk (mkz) =
(∫ ∞

0
−
∫ ∞

1

)
dz z

3∏
k=1

Jνk (mkz)

≡ I+(νi,mi)− I−(νi,mi) (2.14)

Except right at threshold, detailed understanding of the I+ and I− integrals can be obtained
using approximation methods described in section 4. We will use specific cases in the studies
of our model presented in section 3.

Additional KK-number violation can arise from kinematic constraints. As already
noted (see eq. (2.7) and following), certain decays are kinematically forbidden in the single
field case for ν > 1/2. These constraints can be more complex in a two field case.

In addition, KK-number might be further violated by interactions at the IR boundary
of the space at z = zIR. Specifically, in addition to or as an alternative to the bulk
coupling (2.11), we could add an interaction term:∫ √

g d4x dz Lbdry = −
∫ √

g d4x dz zIRδ(z − zIR) c̃Φ1Φ2Φ3. (2.15)

This leads to nontrivial interactions if the fields satisfy Neumann boundary conditions at
z = zIR. The boundary-localized interaction leads to approximately equal couplings among
all the modes, due to (2.10). This contrasts with bulk couplings for small νi, where the
cijk generally have more structure.

A mode’s decay width is determined by the available phase space for its potential
decays. Recall that the decay width of a scalar φi → φj + φk through a constant matrix
element cijk is

Γ =
c2
ijk

16πm3
i

λ
1/2
PS

(
m2
i ,m

2
j ,m

2
k

)
, (2.16)

where the phase-space function λPS is defined as

λPS
(
m2

1,m
2
2,m

2
3

)
≡ (m1+m2+m3)(m1−m2+m3)(m1+m2−m3)(m1−m2−m3). (2.17)

We will see cases where near-threshold decays are favored, because approximate KK-
number conservation in the cijk overcompensates the phase space suppression. This situa-
tion leads to near-spherical distributions in decay chains. In other cases this is not so, and
decay chains lead to much less spherical events.

2.3 Comparison to other high-multiplicity models in the literature

The use of a warped extra dimension to provide a model for a dark or hidden sector is
natural following [12, 58], and is well-established in the literature [13, 59–64]. In this
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subsection, we will briefly comment on some related or alternative approaches to modeling
high-multiplicity hidden sectors.

Recently, cascade decays in warped dark sectors have been discussed in a series of
papers [65–67]. While the basic RS framework of these papers is similar to ours, they
have focused especially on the regime in which individual KK modes become sufficiently
broad that they should be described as a continuum, rather than as narrow resonances.
On the other hand, all of our calculations will be done in the regime in which each KK
mode is narrow and we can model a cascade decay as a sequence of 1 → 2 decays. This
can be done consistently provided that our bulk couplings are sufficiently small, while at
the same time not so small that resonances acquire a long lifetime and alter the collider
phenomenology. (The long-lived regime may be of independent interest, but its additional
complications are beyond the scope of this paper.) In every case that we consider, the
couplings can be chosen so that this consistency condition is met. In particular, in every
case the width-to-mass ratio of the nth KK mode grows more slowly than it would in a
model with decays determined by pure phase space. With pure phase space decays, the
nth KK mode has of order n2 decay modes available to it, with comparable widths. On
the other hand, the partial width of a given decay mode scales as in (2.16), i.e., roughly as
1/mn. As a result, the total width of the KK mode scales linearly with the mode number,
and the width-to-mass ratio is constant. If we take the bulk couplings to be small but not
too small, the width-to-mass ratio of each mode will be small but every unstable KK mode
will still decay promptly on collider time scales. The regime of small bulk couplings is
where gauge/string duality is well-understood. If the bulk couplings are too small, there is
a potential “empty universe problem” in cosmology related to the slow first-order confining
phase transition in the dark sector [68–70]. However, the details of such a phase transition
can be model-dependent (see, e.g., [71]). We assume that potential cosmological problems
can be addressed without qualitatively altering the collider phenomenology.

Other recent work [72, 73] has studied dark sector particles with simple ansätze for the
masses and couplings, e.g., mn = m0 + nδ∆m for some positive exponent δ, and couplings
depending on factors (m` − mi − mj)r and (1 + |mi − mj |/(∆m))−s favoring decays to
lighter daughter particles or nearby daughter particles, respectively. The model of [72]
involves neutral particles χn decaying to q̄q′χl, and leads to high-multiplicity event shapes
with missing momentum, which are qualitatively similar to events we will discuss. The
fully dark decay chains discussed in [73] are even more similar to ours, but are discussed
in the context of cosmology rather than collider physics. It is no accident that these decay
chains have similar properties, as the ansätze used have been motivated, in part, by models
of extra dimensions [74–77].

Further models for high-multiplicity events have been proposed based on a variety of
ideas. SUEP events have been modeled using thermal spectra [15]. Models of black hole
production at colliders predict similar spectra [78, 79], as do “string balls,” lower-mass
precursors of black holes [80, 81]. Another model with interesting phenomenology, albeit
without a well-motivated UV completion, achieves a wide range of couplings within a large
ensemble of particles through a random mass matrix [82] (see also [83–85]). It would be
interesting, in the future, to apply the event isotropy variable to more of these models.

– 12 –



J
H
E
P
0
5
(
2
0
2
1
)
0
9
6

3 Simulation results

In this section we study event shapes of our toy model for different parameters, by sim-
ulating decay cascades of a heavy KK mode with n = np � 1, in its rest frame, to light
and stable KK modes. (We will often refer to the KK modes as “hadrons,” using the
dual viewpoint, but one should keep in mind that these are hidden-sector hadrons, not
SM hadrons.) We further decay the hidden-sector stable hadrons (HSH) into two massless
particles each, to mimic decays back into the SM. Then we calculate observables from the
collection of massless, final-state momenta.

In this simplified model, mass and KK-number are closely related, as we have seen in
eq. (2.7). It follows that the degree of violation of KK-number is directly tied to kinematics.
Roughly, if KK-number is conserved or lightly violated in a two-body decay, the final state
particles tend to be slow in the initial particle’s rest frame, while if KK-number is strongly
violated, the final state particles are produced with a substantial boost. It is not surprising
then that KK-number violation correlates closely with event-shape variables, as we will
show in this section.

In extreme limits, it is clear how this should work. Were KK-number precisely con-
served in all decays, then every decay would occur at or near threshold, and the final state
of the hidden sector cascade would be a collection of slow HSHs. When the HSHs them-
selves decay to the visible sector, they would produce an array of roughly back-to-back
massless particles, produced at random angles. The expected distribution of such particles
is roughly spherical. Note, however, that even with dozens of particles, random fluctuations
are large and observed events are far from spherical, both to the eye and to event shape
variables.

Conversely, in cases with large KK-number violation, the first decay in the cascade
produces two relatively light KK states at high boost. Once this occurs, all ensuing decays
of the lighter daughters will be highly collimated, and so, independent of the details, two
hard jets result.4 Thus KK-number violating decays early in the cascade leads to a highly
non-spherical pattern.

The simulations that we describe in this section interpolate between these extremes.
We will demonstrate this using thrust and event isotropy, both of which are sensitive to
the features of the events.

These variables are somewhat correlated with a third, namely particle multiplicity.
The possible maximum particle multiplicity in our simulations is 2np. This occurs when
KK-number is conserved in every decay, and all hidden hadrons can decay except the n = 1
state, the unique HSH. Then the decay cascade leads to np HSH’s, and to 2np massless
particles once these decay. Violations of KK-number in the cascade, and the existence of
multiple HSH’s with n > 1, will decrease this number. This tends to increase the event
isotropy, since, as noted in eq. (1.5), for a multiplicity k < 192, Isph

192 &
√

2/k. (The average
isotropy tends to be higher than this estimate, which holds for maximally symmetric events,

4These jets, neither pencil-like nor QCD-like, will have opening angles and subjets that depend on the
kinematics of the initial steps in the cascade, especially on the boost of the initial decay’s daughters.
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because of random fluctuations in the angles.) Despite this we will see that isotropy and
particle multiplicity are not redundant.

We now present our results, progressing from the most isotropic scenario to the least.
For each choice of bulk masses and couplings, we generate 104 events starting at KK mode
np = 100 and allow it to cascade into stable hadrons, each of which then decays to a pair
of massless particles. In each case, we will see that the degree of KK-number conservation,
as reflected in the couplings cijk and the resulting branching fractions, determines the
qualitative properties of the event shapes.

Note that we mainly limit ourselves to small values of ν. This is because scalars with
large 5d mass correspond to 4d operators with large scaling dimension (dO = ν + 2), and
it is difficult to imagine coupling the SM to them.

3.1 Spherical and near-spherical cases

To set a baseline, we begin with the most spherical case in our AdS-based simplified model,
a single-field model with ν = 0. This case corresponds to a five-dimensional scalar with
mass-squared −2, at the Breitenlohner-Freedman bound, and thus to a dual CFT operator
of dimension 2 with a non-zero three-point function. We will compare it a pair of toy
models in which KK-number is exactly conserved and spherical events are to be expected.
The event shapes for ν = 0 are virtually the same as for the toy models, despite the former’s
mild KK-number violation and semi-relativistic velocities.

The ν = 0 single field model has a spectrum approximately given by mn ≈ π
(
n− 1

4

)
.

The only HSH is the mode with n = 1; all decays φi → φj + φk are open if i ≥ j + k.
For any single field with a cubic self-interaction and even integer ν, the couplings of

its modes satisfy a simple approximate formula. As noted in eq. (2.14), the triple Bessel
integral eq. (2.13) can be conveniently written as a difference of integrals. For even ν ≥ 0,
I+ vanishes due to a factor of 1/Γ(−ν/2) which can be seen in eq. (4.11). Meanwhile I− is
approximately given by eq. (4.9). Using eq. (2.9), we find

cijk ≈
(−1)n1+n2+n3+1

√
2

8mimjmk

λPS
(
m2
i ,m

2
j ,m

2
k

) (3.1)

While this is accurate only away from threshold, for ν = 0 the approximation works to
within 2% percent except for n2 + n3 = n1 − 1, where the real coupling is smaller in
magnitude by up to 5%, and n2 + n3 = n1, where the difference reaches nearly 30%.

From this formula it follows that partial widths behave as λ−3/2
PS , and so decays tend

to occur at or very near threshold. This implies that the leading decays for each hadron
conserve KK-number. (For instance, the particle with n = np = 100 has a 77% branching
fraction to conserve KK-number, and this varies slowly with np.) Even those decays that
violate KK-number do so by small amounts, and in the end the average HSH multiplicity
at the end of the cascade is reduced only to 93 from its maximum of 100; this is shown later
in figure 5. The decays of the HSHs produce nearly 200 massless particles with an energy
distribution, shown in figure 3(c); note that m1 ≈ 2.40 ≈ m100/130, and the distribution
peaks at about m1/2, with a tail up to ∼ 2m1. Thus velocities of the HSHs tend to be only
semi-relativistic, and the angular distribution of their massless daughters is largely random.
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Figure 3. The (a) event isotropy, (b) thrust, and (c) energy spectra of the final state for cascades
generated with ν = 0 with and without KK-number conservation, and the flat case. The multiplicity
is not shown as both the KK-number conserving ν = 0 and the flat case distributions are delta
functions at 200 particles. The energy spectrum of the flat case is not plotted as it is a delta
function at π/2; the other two spectra peak at approximately half the mass of the HSH.

Our first toy model has the same masses and KK-number-conserving couplings as the
ν = 0 case just described, but we set all KK-number violating couplings to zero by hand:

cijk = 0 (i 6= j + k) . (3.2)

We will call this the KK-conserving (KKC) ν = 0 model. Its final state consists of exactly
200 massless particles, with an energy distribution slightly narrower than the full ν = 0
model, as the latter has KK-number-violating decays with more kinetic energy. We expect
it to have slightly more spherical events.

The second toy model (the “flat case”) is a single field on Minkowski space times an
interval,M4×S1/Z2, with Neumann boundary conditions on the field. As noted earlier, the
spectrum has mn ∝ n exactly, and KK-number is conserved. Strictly speaking all particles
are marginally stable, but we imagine deforming the model infinitesimally so that all decays
can occur. The final state from an initial heavy hadron with quantum number np consists
of np HSHs with n = 1, all at rest. The decay to SM massless particles then produces
events with exactly 200 massless particles in back-to-back pairs, distributed randomly in
angle. Each particle has energy exactly m1/2 = π

2 .
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Now we compare the event shapes for these three cases. In figure 3 we show the
distributions in energy, event isotropy, and thrust for the particles in the final state. For
consistency in range, we plot the scaled thrust T̃

T̃ ≡ 2(T − 1) (3.3)

such that all variables have a range of [0, 1] with 0 being the most isotropic and 1 being
the least.

All three of these examples are very similar as seen by event-shape variables. The most
notable differences are percent-level shifts in event shapes, in tails that arise from small
numbers of somewhat less isotropic events. We may therefore treat any one of them as a
benchmark against which to compare other cases.

All three cases have event isotropy that peaks in the range 0.15–0.20. From eq. (1.5),
maximally isotropic events with 192 particles U sph

192 would have

Isph
(
U sph

192

)
≈
√

2
192 ≈ 0.10 (3.4)

Naively we might have expected the flat case, with 200 particles of equal energy and random
angles, to approximate this value. However, the random fluctuations in angle (but not in
energy, which remains m1/2 for each particle) lead to a significantly higher event isotropy,
closer to 0.16; we do not know a method to compute this number without simulation.5
Despite the wider energy distribution of the ν = 0 and KKC cases, their event isotropies
are quite similar to the flat case. We will explore the causes of this in [54].

3.2 Single field, general ν

Next, still studying a single scalar field with Dirichlet boundary conditions, we consider
other values of ν. Each has a different degree of KK-number violation. Although the
amount of KK-number violation is still relatively small, and the decays are still mostly
close to threshold, the effects are large enough to observably shift event shapes relative to
the ν = 0 benchmark.

As noted in eq. (2.14), the integral eq. (2.13) can be written in terms of a difference of
two integrals I+ and I−. Substituting νi = ν into eq. (4.13) and using the Euler reflection
formula, one finds

I+ = sin
(
ν

2π
)(

m2m3
m2

1

)ν
λ
−1/2
PS H(ν,mi) (3.5)

where H is a function whose dependence on ν and the mi is subleading compared to the
terms shown explicitly.6

When ν is an even integer, I+ vanishes, so the couplings are determined entirely by
I−. Since, from eq. (4.9), I− ∼ λ−1

PS near but below threshold, the branching fractions
decrease as ∼ λ

−3/2
PS , strongly suppressing KK-number violation. For ν = 0, where there

5For KK-number conserving scenarios, events become more spherical at high np, as shown in appendix B,
and the theoretical limit is reached at large np.

6The full integral I in eq. (2.14) is elementary at ν = 1
2 , and the λ−1/2

PS factor is easily seen there.
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are no other sources of KK-number violation, this gives quasi-spherical events. For general
ν, however, I+ ∼ λ−1/2

PS falls off more slowly away from threshold than I−. Although for ν
very large this does not matter, because the power of the mass ratio in eq. (3.5) decreases
rapidly with ν and tends to disfavor decays to light hadrons, for ν ∼ 1 one finds |I+| ∼ |I−|,
and so KK-number violation in the couplings is considerably larger than for ν ≈ 0, 2, 4, . . . .

The dominant decays remain KK-number conserving for ν . 0.1. For the ν = 0.15
case below, KK-number violation in the couplings is already significant, and reduces the
multiplicity of HSHs well below the ν = 0 benchmark, as we will see shortly.

For ν ≥ 0.5, a new effect reduces multiplicity further: mn < mn′ + mn−n′ , so KK-
number conserving decays all become kinematically forbidden, and the minimal amount of
KK-number-violation per decay is > 0, even for even integer ν. This reduces the number
of typical decays in the cascade and the number of hadrons at the end of the cascade.
However, even though KK-number conservation is forbidden, decays with large KK-number
violation are still somewhat suppressed, and so the leading decays are minimally KK-
number-violating — that is, they have the smallest amount of violation consistent with
kinematic constraints. These decays are generally the ones closest to threshold.

When decays can typically only violate KK-number by a small amount (per decay),
they remain near kinematic threshold, so boosted hadrons and ensuing jetty structures in
the events do not arise. Nevertheless, Isph

192 increases. In part, this is due to a decrease in
particle multiplicity. The total amount of KK-number ∆KK,tot lost in the cascade (equal
to the sum over decays of the KK violation ∆KK,s in each decay s) is given by the parent
mode number np at the beginning of the cascade minus the sum over KK-numbers ni of
the NHSH HSHs in the final state,

∆KK,tot =
S∑
s

∆KK,s = np −
NHSH∑
i

ni , (3.6)

where S is the total number of decays in the cascade. The reduced final-state hadron
multiplicity NHSH increases the minimum value of Isph

192 by a factor of order
√

100/NHSH,
from eq. (1.5), even if the HSHs are rarely boosted and their final decay products are
quasi-isotropically distributed.

If KK-number is exactly conserved, S = np − 1 and NHSH = np. More generally
NHSH ≤ np − ∆KK,tot, with the equality holding only if the only HSH has n = 1. This
is true for ν < 1

2 , and in particular for the case ν = 0.15 that we show below. For
larger ν, there are HSH’s with n > 1, so NHSH is even smaller; and on top of this, decays
with ∆KK,s = 0 are forbidden, so ∆KK,tot is of the same order as S and np, leading to
a substantial reduction in NHSH. For the ν = 0.75 case we show below, S ∼ np/2 and
NHSH < np/2, leading to a reduction of the multiplicity by more than half compared to
the ν = 0 case, and a corresponding substantial increase in Isph

192 .
The branching ratios for the np = 100 mode into daughter modes n1, n2 with

ν = {0, 0.15, 0.75} are shown in figure 4. For convenience we will refer to these plots
throughout the paper as “branching fraction triangles.” For ν = 0, the only HSH is the
n = 1 state at the bottom of the tower, and conservation of KK-number is both kinemat-
ically allowed for all decays in the cascade and dominant; as noted earlier, about 77% of
decays are KK-number conserving. For ν = 0.15, KK-number conservation is kinematically
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Figure 4. (a–c) Branching ratios, for ν = {0, 0.15, 0.75}, of the 100th KK mode into all kinemati-
cally allowed two-body final states, as a function of the daughter KK-numbers n1 ≥ n2. Dominant
decays occur at or near kinematic threshold, along the line of minimum KK violation. The pro-
jection of the branching ratios for all values of ν on the n1 = n2 line is shown in (d), where the
relative suppression of KK violation is made obvious especially for the ν = 0 case.

allowed, but the probability of conservation in the decay of heavy modes is only ∼ 30%.
Decays with KK-number violation ∆KK = 1 occur with comparable probability (∼ 30%).
Technically, this is due to a cancellation in the integral for cijk; the integrals I+ and I−
are similar in magnitude for ν ∼ 0.1−1.9 and interfere destructively (constructively) when
i+ j + k is even (odd). The checkerboard pattern in figure 4 (b,c) arises from this effect.

The pattern of branching ratios for ν = 0.75 is similar to that of ν = 0.15. However,
∆KK = 0 decays are kinematically forbidden, as can be seen by careful examination of the
upper right edge of the triangle.

While figure 4 applies for np = 100, it illustrates qualitative features that apply, at
fixed ν, for smaller values of n, and thus for the whole cascade. This is because the
integrals I+ and I− have relatively simple behavior under changes of n; see appendix B for
some discussion.
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Figure 5. The (a) event isotropy, (b) thrust, (c) multiplicity, and (d) energy spectra of the final
state of ν = {0, 0.15, 0.75} cascades. The samples comprise 104 events with np = 100, and all final
state observables are computed after splitting the HSHs into two massless particles.

We present results for the event shapes of the cascades in figure 5, where we show
distributions of the multiplicity and energy of the massless particles in the sample, along
with the sample’s event isotropy and thrust distributions. KK-number violation reduces
the multiplicity for ν = 0.15 relative to the ν = 0 benchmark. The ν = 0.75 case has
even smaller multiplicity and a wider energy distribution, due to additional sources of KK-
number violation and the fact that the n = 2 state is also an HSH. Meanwhile the event
isotropy increases (the events become less spherical) for ν = 0.15 and even more so for
ν = 0.75. Interestingly, this pattern does not apply for thrust; the thrust distributions
for ν = 0.15 and 0.75 are very similar. This suggests that event isotropy and thrust are
sensitive to different event shape characteristics and are not redundant variables. Further
study of this issue will be presented in [54].

Comparing figure 5 (a) and (c), one might wonder if event isotropy and particle mul-
tiplicity are redundant variables, especially considering the natural correlation between
them that we described earlier. Although the correlation seems particularly strong in
these examples, other simulations shown below clearly demonstrate these two variables
are independent.

We illustrate some characteristic events for each of these samples in figure 6. An event
of average isotropy in the most isotropic sample (ν = 0) does not show any clear boost

– 19 –



J
H
E
P
0
5
(
2
0
2
1
)
0
9
6

(a) (b) (c)

Figure 6. Visualizations of a characteristic final state for (a) ν = 0, (b) ν = 0.15, and (c)
ν = 0.75. The chosen events have Isph

192 equal to the mean in each distribution: (a) 〈Isph
192 〉 = 0.20,

(b) 〈Isph
192 〉 = 0.26, (c) 〈Isph

192 〉 = 0.29. For ease of viewing, all momenta with magnitude above the
average in the event are plotted, with the length proportional to the magnitude.

axis, whereas the samples with greater amounts of KK violation (ν = {0.15, 0.75}) begin
to show collimated prongs of energy.

We end our discussion of the single field case with a few comments on large values
of ν. With increasing ν but fixed np, I+ is suppressed by a factor of

(
m2m3/m

2
1
)ν , so

I− dominates in most decay channels. When this happens, the couplings conserve KK-
number similarly to eq. (3.1) even when ν is not an even integer. However, this fact is
irrelevant for np = 100 because the kinematic constraints imposed by the mass spectrum
require large violation of KK-number in each decay, which grows with ν. We noted ear-
lier that KK-number conservation becomes kinematically disallowed for ν > 1/2. More
generally, decays with KK-number violation ∆KK begin to be kinematically constrained
when ν & 2∆KK + 1/2, starting with the most symmetric decays, and once ν reaches the
values 0.5, 2.92, 5.56, 8.30, 11.1, . . . , all decays with ∆KK = 0, 1, 2, 3, 4, . . . are forbidden.
Moreover, there are roughly 1 +

⌊
1
2(ν + 3

2)
⌋
HSHs in the spectrum. All of these effects

drastically reduce multiplicity and widen energy distributions, further increasing the event
isotropy and thrust, so we do not expect highly spherical distributions to be common in
this regime.

3.3 Two field (ν1 6= ν2 = ν3)

Now we consider the two field scenario, where eq. (2.11) includes two distinct 5d scalar
fields. Here the cascade will be populated with φ1,i → φ2,jφ2,k and φ2,i → φ1,jφ2,k decays.

Because there are two towers of hadrons with different mass spectra, the correlation
between KK-number and mass is not as simple as in the single-field case. However, these
complications are relatively unimportant compared to the dramatic change in the pattern
of couplings cijk. In the single field case, we have seen that couplings near threshold, with
zero or minimal KK-number violation, are strongly enhanced, because I− ∼ λ−1

PS (away
from threshold) and I+ ∼ λ

−1/2
PS . This leads to events that, to a greater or lesser extent

depending on ν, tend to be quasi-spherical; jetty events are rare. But this behavior does
not extend to general νi.
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For the two field case, once ν for a decaying particle is significantly larger than the
sum of the νi for its daughters, KK-number violation becomes large. We can see this by
examining I+ (which typically is much greater than I− in this regime) using eq. (4.11)
and the paragraph following it; see also section 4.3.2. If, without loss of generality, we
take the decaying particle to be from field Φ1 and its daughters from fields Φ2,Φ3, and
set ∆ν ≡ ν1 − ν2 − ν3, then when ∆ν = 2k, where k is any positive integer, I+ goes to
a constant at threshold. Consequently branching fractions are suppressed near threshold
by λ+1/2

PS , and instead peak elsewhere in the branching fraction triangle. Moreover, I+ has
k − 1 lines of zeroes, and so the branching fraction triangle has k plateaus separated by
valleys. Some of these plateaus have large KK-number violation. When ∆ν 6= 2k these
plateaus survive, but are supplemented by a return of the λ−1/2

PS behavior near threshold.
Although this near-threshold enhancement favors KK-number-conserving decays, the large
KK-number violating decays in the more distant plateaus often remain dominant, making
jetty events common.7

Focusing now on ν2 = ν3 = 0, we will illustrate the behavior just described in the cases
ν1 = 2, 3, 4, whose branching fractions for np = 100 are shown in figure 7. For ν1 = 2,
using eq. (2.9), eq. (2.13), eq. (4.11), and the remark below Eq. (4.11) that F4 → 1 in this
case, we find (to a very good approximation)

cijk ∝
√
m2m3 . (3.7)

The branching fractions are then proportional tom2m3λ
1/2
PS , so they vanish at all boundaries

of the branching fraction triangle and are broadly distributed, as seen in figure 7(a), peaking
∼ 10% below threshold. For ν1 = 4, eq. (4.12) gives

cijk ∝
√
m2m3

(
1− 3m

2
2 +m2

3
m2

1

)
, (3.8)

which creates a zero between the threshold region at upper right and the m2,m3 → 0
corner at lower left. The branching fraction triangle then has two plateaus, one far from
threshold and one nearby, as seen in figure 7(c). The probability for a particle to decay via
either plateau is comparable. Finally, for ν1 = 3, the zero seen for ν1 = 4 is still present,
closer to threshold, but in addition there is enhancement right near threshold. Despite this
enhancement, there are so many decay paths in the plateau that the total probability to
decay at or near threshold is only ∼ 1/4, and so large KK-number violation is the norm.

A cascade in the two field case involves both φ1,i → φ2,jφ2,k and φ2,i → φ1,jφ2,k decays.
To compute the branching fractions for the latter, we need to exchange ν1 and ν2 (but not

7In this discussion we have neglected I−. It can be seen from the formulas of section 4 that |I+| � |I−|
for most decays, but there is a subtlety near threshold, where our approximation I− ∼ λ−1

PS seems to blow
up faster than I+ does. This effect is merely due to our approximation eq. (4.9), however, which is not
valid at threshold. Instead, when m1 −m2 −m3 → 0 for some decay, which requires tuning of the νi, both
I+ and I− ∼ λ

−1/2
PS extremely close to threshold, as noted in eq. (4.10), and in fact the original integral

in eq. (2.13) is always finite there. (See also appendix B.) In practice, then, our discussion here of I+

captures all the important features of the branching fraction triangles, except for the precise details in the
near-threshold region.
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ν3) in our analytic formulas. For reasons similar to those leading to eq. (3.5), I+ vanishes
for ν1 = 2, 4, giving the nearly KK-number-conserving result eq. (3.1), but is important
for ν = 3, leading to slightly higher KK-number violation. Thus it is no accident that
the branching fraction triangles for these decays, shown in figure 8, resemble those of the
single field case, figure 4. However, the KK-number violation in φ2,i decays is subleading
compared to the much larger KK-number violation that can occur in φ1,i decays, and its
details do not much impact the results.

As was true also for figure 4, the qualitative features of the branching fraction trian-
gles are present also for smaller values of np, and thus apply for the whole cascade. See
appendix B for further discussion of the np dependence.

Particle multiplicities are affected not only by these KK-number-violating processes
but also by the increasing number of HSHs. For ν2 = ν3 = 0, and ν1 & 1.75, the decay
φ1,1 → φ2,1 + φ2,1 is always open, so only states of Φ2 are stable against decays within the
hidden sector. The mode φ2,1, as the lightest mode in the hidden sector, is of course an
HSH, while φ2,2 is stable for ν1 ≥ 0.5, φ2,3 is stable for ν1 & 2.90, and φ2,4 is stable for
ν1 & 5.53. But the effect on event shapes of reduced multiplicity is subleading compared
to jet creation through boosts of daughter particles, as we will now see.

Our results are shown in figure 9, based again on cascades starting at the 100th KK
mode of the field Φ1, with 104 events per sample. Just as the branching fractions are
much more widely distributed in figure 7 than in figure 4, all the distributions in event
isotropy and thrust are much wider than for the single field case in figure 5. As is evident
by comparing these figures with figure 7, the plateaus and valleys in the branching fraction
triangles of the ν1 field lead directly to structure in the event shape variables.

It is easy to see why this is so. The early stages in the cascade are most important,
because decays far from threshold early in the cascade create boosted particles with a
substantial fraction of the event energy, and their collimated decay products lead to hard
jets, while reducing the overall multiplicity of hadrons. Such events will differ strongly from
the near-spherical events we saw in the single-field examples. If instead the initial decays
nearly conserve KK-number and create several slow heavy hadrons, KK-number violation
in their decays will still lead to jets, but these will have a much smaller fraction of the
event’s energy. Thus, depending on the details of a particular cascade decay, an event may
present a small number of hard jets at one extreme, or a small number of soft jets on top of
a quasi-spherical background at the other. As the probability for far-from-threshold decays
increases, so will the fraction of events with larger thrust and event isotropy.

This is seen most dramatically for ν1 = 4, where the bimodal feature in the branching
fractions, figure 7(c), with one plateau that weakly violates KK-number and another that
violates KK-number significantly, leads to bimodal event shapes at small and large event
isotropy and thrust respectively. These correspond to two classes of events, one relatively
spherical and the other relatively jetty. Note that the lobe at larger event isotropy is
comparable to the event isotropy distribution for threshold tt̄ events, shown in figure 1,
and actually peaks at higher Isph

192 , though it is not as jetty as a qq̄ sample.
Comparing ν1 = 2 and ν1 = 3, one sees the latter’s ensemble of events is less spherical

on average. Despite the near-threshold enhancement for ν1 = 3, the majority of decays
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Figure 7. The branching ratios of the np = 100 mode for decays of the field corresponding to (a)
ν1 = 2, (b) ν1 = 3, and (c) ν1 = 4 into two ν2 = 0 fields with KK modes n1, n2. The centralization
of the plateau is a function of all νi, but generally the plateaus are more strongly centralized for
larger values of ∆ν ≡ ν1 − ν2 − ν3. The 1d projection of the branching ratios for all values of ν1
along the n1 = n2 + 1 line is given in (d).

occur in the plateau far from threshold. This plateau is located further from threshold than
that of ν1 = 2, so the most common decays for ν1 = 3 have larger boost on average than
those for ν1 = 2, and this leads to harder jets, moving the isotropy and thrust distributions
to larger values. The near-threshold decays partly compensate for this effect, making the
event-shape variable distributions particularly broad.

The multiplicities of massless particles are of order 80 for ν1 = 2 and (partly because of
the additional HSH) only 50 for ν1 = 3, 4. Although this was not evident in the single-field
cases, here one can see clearly that the event shape variables are not perfectly correlated
with multiplicity. For instance the multiplicity distribution for ν1 = 4 does not show the
obvious two-lobe structure seen in the event shape variables. We will return to this issue
briefly in section 3.5. It is also noteworthy that the isotropy distribution is narrower than
the thrust distribution, a hint of imperfect correlation which we will study further in [54].
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Figure 8. The branching fraction triangle of the np = 100 mode for the field corresponding to
ν2 = 0 into another ν2 field and a (a) ν1 = 2, (b) ν1 = 3, or (c) ν1 = 4 field. These decays do not
exhibit the same plateau structure as in figure 7. The 1d projection of the branching ratios for all
values of ν1 along the n1 = n2 line is given in (d).

Turning our attention to the energy distributions of figure 9, it is interesting to note
that all the spectra (including the reference case ν = 0) are peaked at the same value.
The peak is at half the lightest mass in the cascade: mν=0

1 /2 = 1.2. This tells us that for
all cascades there are many soft particles produced in the decay of nonrelativistic n = 1,
ν = 0 particles. The width of the distribution is much wider for ν1 = 2, ν2 = 0 than for
ν = 0, and even wider for ν2 = 3, 4. This tail is due to the fact that modes heavier than
the lightest mode are stable in the two field cases, whereas for ν = 0, only the lightest
mode is stable. Note that these observations also apply to all the single field cases shown
in figure 5.

Visualizations of characteristic events from each sample are shown in figure 10. The
effects of the unsuppressed KK violating decays are evident.
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Figure 9. Same as figure 5 but for the two field scenario with ν2 = ν3 = 0, and ν1 = 2 (blue),
ν1 = 3 (green), and ν1 = 4 (red). Note that average multiplicity is lower and event isotropy is
higher than the single field cases in figure 5. The appearance of plateaus in the branching ratios
can greatly increase the amount of KK violation per event.

(a) (b) (c) (d)

Figure 10. Visualizations of a characteristic final state radiation pattern for the (a) ν1 = 2, (b)
ν1 = 3, (c,d) ν1 = 4 and ν2 = ν3 = 0 samples. The chosen events for ν1 = {2, 3} have event isotropy
that are equal to the mean value of the distributions: (a) 〈Isph

192 〉 = 0.44 and (b) 〈Isph
192 〉 = 0.54. We

show two events for the ν1 = 4 sample, selected from the peaks of the bimodal distribution in event
isotropy: (c) 〈Isph

192 〉 = 0.31 and (d)〈Isph
192 〉 = 0.69. All momenta in the event are plotted, with the

length proportional to the magnitude.
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3.4 Cascades with boundary couplings

In the scenarios discussed above, we have assumed that fields interact in the bulk of the
extra dimension, as in (2.11), and we have taken the boundary conditions to be Dirich-
let. A very different phenomenology arises if we assume that the fields have Neumann
boundary conditions, and add the interaction term (2.15) localized on the IR boundary
of the space. As indicated in (2.10), the boundary values of the different KK modes are
approximately equal, and so decays are governed approximately by the phase space of the
final state. The branching ratios in this case are illustrated in figure 11, which also shows
the (similar) branching ratios that would result from pure phase space factors. Of course,
one can also consider a model containing both the bulk coupling c (2.11) and the boundary
coupling c̃ (2.15), obtaining physics that interpolates between the two. Below we will show
some results from such a case with c̃ = 0.015c, which turns out to produce event-shape
distributions roughly midway between those of the pure bulk and pure boundary cases.

In figure 12, we illustrate how boundary couplings affect the event shape. The blue
curve shows the case of pure bulk couplings with Neumann boundary conditions, for a
single self-interacting field with ν = 0.3; as in figure 5, this leads to approximately spherical
events with small values of Isph

192 and thrust.8 The orange curve shows events with boundary
decays, which are substantially less isotropic. They also have a broader distribution of both
event isotropy and thrust, although the event isotropy distribution is more peaked than the
thrust distribution. Comparing to figure 1, we see that the typical event with boundary
decays is more isotropic than a QCD dijet event, but has similar isotropy to a near-threshold
tt̄ event. Finally, we show the case with a mixed bulk/boundary coupling, c̃ = 0.015c, in
green. As expected, this interpolates between the bulk and boundary cases. It does so
by broadening the distribution, rather than producing a narrow peak in between the two
cases. Visualizations of typical events are shown in figure 13.

figure 12 also shows the typical multiplicity and energy of the individual final-state
massless particles in the events. We see that the boundary cascades have much lower
multiplicity, because the decays more often go directly to lighter daughters, so it takes
fewer steps to reach the HSHs at the bottom of the cascade. Consequently, the individual
particles also have more energy than they would for bulk couplings. This figure suggests
that the event isotropy may be highly correlated with the particle multiplicity. Although
this is true when we start all cascades with the same initial KK-number, it is not the
case in general: boundary cascades remain much less isotropic even if they begin with a
much larger choice of np. Thus event isotropy captures different information from particle
multiplicity, or even from pairs of observables like particle multiplicity and thrust. We will
discuss this more in the companion paper [54].

3.5 Evolution of multiplicity, event isotropy in cascade

To investigate further the correlations between multiplicity and isotropy, it is interesting
to see how these evolve through the decay cascade. We do the following exercise. At each

8In the Neumann case, I− is suppressed and I+ dominates; consequently the checkerboard pattern seen
in figure 4 is absent.
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Figure 11. The branching ratios for ν = 0.3 of the 100th KK mode into all kinematically allowed
two-body final states, in scenarios with Neumann boundary conditions. The cases are (a) bulk
couplings; (b) boundary-localized coupling; and (c) pure phase space. In (d), we show a 1d plot
of the branching ratios along the n1 = n2 line. For the boundary-localized case (b), in contrast to
figure 4 and the bulk case, the decays significantly populate the full triangle, and favor daughter
particles with substantial momentum. The distribution is similar to that of pure phase space (c).

step in the cascade, we take all the hadrons present at that step (independent of whether
they are stable against hadronic decays in following steps) and artificially force them to
decay to massless particles. At the initial step of the cascade, with just the np mode at
rest, every event has a pencil-dijet with Isph

192 = T̃ = 1, while at the end of the cascade
we obtain the samples studied above. In between, the multiplicity in each event gradually
increases and Isph

192 decreases.
In figure 14, we plot the average multiplicity and the average isotropy (averaged over

104 events) at each step in the cascade. We also show, as a dashed line, the theoretical
lower limit on Isph

192 for the corresponding multiplicity; see eq. (1.5). If multiplicity and event
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Figure 12. The distributions of (a) event isotropy Isph
192 ; (b) rescaled thrust T̃ ; (c) particle multi-

plicity; and (d) energy of final-state particles for three different scenarios, all with ν = 0.3, Neumann
boundary conditions, and a decay cascade beginning with the 100th KK mode. The couplings are:
in blue, pure bulk (c̃ = 0); in orange, pure boundary (c = 0); in green, a mixed case (c̃ = 0.015c).
For ease of comparison with other figures, we also show the ν = 0 Dirichlet case (originally displayed
in figure 3). We see that the cascade with a boundary coupling produces less isotropic events (larger
Isph

192 ). Turning on both couplings interpolates between the bulk and boundary case, with a broad
distribution of Isph

192 .

isotropy were perfectly correlated, then all of the cascades would lie on the same curve, even
though at any given step, and at the end of the cascade, they would sit at different values.
Instead, we see that the cascades for different choices of νi can give different curves. This
is additional evidence that isotropy measures more than multiplicity. We will explore the
independence and correlation of multiplicity, isotropy, thrust and other event shapes in [54].

4 Analytical estimates for couplings

In section 3, we saw that different parameter choices lead to qualitatively different pat-
terns of couplings cijk and branching fractions, and from there to qualitatively different
event shapes. In this section, we provide analytic calculations of the overlap integrals that
determine the couplings, in order to substantiate and explain the results presented above.
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(a) (b) (c)

Figure 13. Visualizations of a characteristic final state radiation pattern for the (a) bulk coupling,
(b) boundary coupling, (c) mixed (c̃ = 0.015c) samples. In each case, ν = 0.3 and we assume
Neumann boundary conditions. Each event has event isotropy equal to the mean value for the
corresponding event sample: (a) 〈Isph

192 〉 = 0.33; (b) 〈Isph
192 〉 = 0.67; and (c) 〈Isph

192 〉 = 0.55. The plots
show that events with boundary couplings are visibly less isotropic than the sample with only a
bulk coupling.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Multiplicity

〈ℐ
19
2

sp
h
〉

Single Field, ν = 0

Single Field, ν = 0.15

Single Field, ν = 0.75

Two Field, ν1 = 2

Two Field, ν1 = 3

Two Field, ν1 = 4

Finite Sphere Bound

np = 100

Figure 14. The average multiplicity vs. average event isotropy at each step in the cascade decays
for the single field samples and two field samples.

In particular, an inverse dependence on the phase-space function λPS will be manifest in
our results, explaining the cases in which we have observed a preference for near-threshold
decays. We will also understand the oscillatory behavior that gives rise to the observed
plateaus in the two-field case.

4.1 Basic ingredients and general strategy

Our goal is to gain an analytic understanding of integrals of the form

I(νi,mi) ≡
∫ 1

0
dz z Jν1 (m1z) Jν2 (m2z) Jν3 (m3z) . (4.1)
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Figure 15. Examples of the decomposition of the integral I (solid) into a sum of I+ (dashed) and
−I− (dotted), in the single-field case where ν1 = ν2 = ν3 ≡ ν = 0.75. In both plots, the inset
triangle shows the slice of the branching ratio triangle (as in figure 4) along which we have done
the calculation. At left, we take near threshold decays (right-hand edge of the triangle); at right,
we take decays along a slice through the middle of the triangle. For near-threshold decays, we see
that I+ and I− are comparable. Away from threshold, I+ dominates, with I− contributing a small
oscillatory pattern.

We choose a convention where particle #1 is the heaviest particle, i.e., we assume without
loss of generality that m1 ≥ m2 +m3. We can separate our integral into two pieces,

I(νi,mi) = I+(νi,mi)− I−(νi,mi), where:

I+(νi,mi) ≡
∫ ∞

0
dz z Jν1 (m1z) Jν2 (m2z) Jν3 (m3z) ,

I−(νi,mi) ≡
∫ ∞

1
dz z Jν1 (m1z) Jν2 (m2z) Jν3 (m3z) . (4.2)

The reason for doing this is that when all of the masses (in units of the IR brane scale)
are sufficiently large, i.e., when mi � ν2

i , we can approximate the Bessel functions in
the integrand of I−(νi,mi) by their large-argument asymptotic expansions. This makes
approximating I−(νi,mi) into an analytically tractable problem. On the other hand, the
integral I+(νi,mi) over the whole positive real axis is known analytically. By combining
the exact analytic answer for I+ and the approximate answer for I−, we obtain an analytic
approximation to the I(νi,mi) and hence to the couplings among Kaluza-Klein modes.

In figure 15, we show examples of how I breaks down into contributions from I+ and
−I−, along two slices of the branching ratio triangles in the single-field case with ν = 0.75.
Typically, I+ dominates, and the integral is suppressed for decays to light modes. Near
threshold, I− gives a contribution comparable to that of I+. As we will see below, in certain
special cases (like ν = 0), the integral I+ is identically zero, but the behavior seen in the
plot is representative of more general ν values.

Our goal in the remainder of this section is to provide some analytic insight into the
behavior of the integrals I+ and I−. We will first discuss an analytic approximation to
I−(νi,mi), and compare it to numerical results. Then we will present an exact analytic
formula for I+(νi,mi), and comment on a special case to elucidate the “plateau” structure
observed in figure 7.
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4.2 Approximating the integral I−(νi,mi)

We apply the large-argument asymptotic approximation of the Bessel function, (2.6), to
estimate I−(νi,mi):

I−(νi,mi) ≈ I(0)
− (νi,mi) ≡

∫ ∞
1

dz z
3∏
i=1

√
2
πmiz

cos
(
miz −

1
2πνi −

1
4π
)
. (4.3)

We can rewrite the product of three cosines as a sum of four cosines by repeated use of the
identity 2 cos a cos b = cos(a+ b) + cos(a− b). Given signs σ, σ′ ∈ {+1,−1}, we define

mσσ′ ≡ m1 + σm2 + σ′m3, νσσ′ ≡ ν1 + σν2 + σ′ν3. (4.4)

In labels, we will suppress the “1” and write the σ’s as + or −; for example, we denote
m1 +m2 −m3 by m+−. Then (4.3) is equivalent to

I
(0)
− (νi,mi) = 1

π3/2√2m1m2m3

∫ ∞
1

dz√
z

∑
σ,σ′∈{+,−}

cos
(
mσσ′z −

π

2νσσ
′ − π4

(
1 + σ + σ′

))
.

(4.5)
This integral can be performed analytically in terms of the Fresnel cosine and sine integrals.
Our conventions for these are specified in appendix A.1. We obtain:

I
(0)
− (νi,mi) = 1

π
√
m1m2m3

∑
σ,σ′∈{+,−}

√
1

mσσ′

[
cos

(
π

2νσσ′+
π

4 (1+σ+σ′)
)(1

2−C
(√

2mσσ′

π

))
+

sin
(
π

2νσσ′+
π

4 (1+σ+σ′)
)(1

2−S
(√

2mσσ′

π

))]
.

(4.6)

This is already a useful approximation to I−(νi,mi). We can go further by noting that,
provided the masses are all large and that we do not consider decays too close to threshold,
we can exploit the large-argument asymptotics of the Fresnel integrals, (A.2). In this
case, we find that the answer depends on sin and cos of mσσ′ , so we make use of the
mass eigenvalue estimates in (2.7). We will provide the estimate in the case of Dirichlet
boundary conditions.

4.2.1 I−(νi,mi) estimate for Dirichlet boundary conditions

Keeping the first subleading, O(1/z), term in the Fresnel integral asymptotics, the expres-
sion in brackets in (4.6) becomes

1√
2πmσσ′

[
−cos

(
π

2νσσ
′+ π4(1+σ+σ′)

)
sin(mσσ′)+sin

(
π

2νσσ
′+ π4(1+σ+σ′)

)
cos(mσσ′)

]
,

(4.7)

Using the sine sum-of-angles identity, then using (2.7) to replace the masses in the argument
of the sine by an approximate expression in terms of the KK mode numbers ni, we obtain
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a simple approximate formula for the Dirichlet case:

I
(1)
− (νi,mi) ≡ −

1
π3/2√2m1m2m3

∑
σ,σ′∈{+,−}

1
mσσ′

sin
(
π(n1 + σn2 + σ′n3)− π2(1 + σ + σ′)

)

= (−1)n1+n2+n3+1

π3/2√2m1m2m3

∑
σ,σ′∈{+,−}

σσ′

mσσ′
, (4.8)

where ni is the integer mode number of the corresponding KK mode. In particular, there is
a term that scales as 1/(m1−m2−m3) that dominates when the phase space is relatively
small (but not so small that our approximations break down). We can write this term
using the phase space factor (2.17)

I
(1)
− (νi,mi) ≈

(−1)n1+n2+n3+14
√

2
π3/2

√
m1m2m3

λPS(m2
1,m

2
2,m

2
3) , (4.9)

which we used in (3.1).
The large-argument expansion of the Fresnel functions breaks down at mσσ′ . 1, very

close to threshold. This case generally only arises if we tune the values of ν so that the offsets
in the Bessel function zeros align to allow for m3 ≈ m1 +m2, so we do not expect that it is
generally relevant, but we discuss it for completeness. In this case, the sum is dominated
by the small-argument expansion of the Fresnel functions for the σ, σ′ = −1 case,

I
(threshold)
− (νi,mi) ≈

1
π
√

2m1m2m3

1
√
m−−

sin
(
π

2(ν1 − ν2 − ν3)
)

≈ 2
π

sin
[
π

2(ν1 − ν2 − ν3)
]

λ
1/2
PS (m2

1,m
2
2,m

2
3)

. (4.10)

Thus, very close to threshold, we expect that the divergence is ameliorated to λ−1/2
PS , except

in cases where ν1 − ν2 − ν3 is an even integer, when this term has coefficient zero and
subleading terms dominate. As we will see below, this is also the near-threshold behavior
of the integral I+, so we predict that I− does not parametrically dominate over I+ in the
small phase-space region. In fact the original integral is finite at threshold, so the singular
behavior of I+ and I− must cancel there.

Unlike the Dirichlet case, note that the large-argument approximation for the Fresnel
function would have given zero for the Neumann case, because the different constant term
in (2.7) removes the π2(1 + σ + σ′) term in the argument of the sine and leads to zero. To
obtain a similar approximation in the Neumann case, we must keep subleading terms in
the various approximations we have made. We will not do so here.

We compare a numerical computation of the integral I− with the two approximations
I

(0)
− (4.6) and I(1)

− (4.8) in figure 16. The first approximation, based on the large-argument
expansion of the Bessel functions, works extremely well. The subsequent approxima-
tions made in the Dirichlet case lead to an imprecise estimate, but one which is useful
since the formula (4.8) makes the enhancement of the integral in the small phase-space
region obvious.
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Figure 16. Comparison of a numerical computation of the integral I− (solid curves) with the two
analytic approximations I(0)

− , (4.6) (dashed curves) and I
(1)
− , (4.8) (dotted curves). The dashed

curves always fall so close to the solid curve that they are indistinguishable. The simpler analytic
formulation, I(1)

− , works very well away from threshold but deviates close to the threshold, leading
to the visible dotted curves. As in figure 15, the inset triangles illustrate the slice through the
branching ratio triangle that is plotted. We show the case ν = 0.3 because it shows a larger
discrepancy, and thus a more visible dotted curve, than the case ν = 0.75.

4.3 Computing the integral I+(νi,mi)

4.3.1 General formula

In the case of I−, we used the asymptotic expansion of the Bessel function to obtain an
analytic approximation. We can do better with I+: the integral is analytically known
(eq. (7.1) of [86], in the special case λ = 2) to be:

I+(νi,mi) =
2mν2

2 m
ν3
3 m

−ν2−ν3−2
1 Γ

(ν1+ν2+ν3
2 +1

)
Γ(ν2+1)Γ(ν3+1)Γ

(ν1−ν2−ν3
2

)
×F4

(
1+ ν2+ν3−ν1

2 ,1+ ν1+ν2+ν3
2 ;ν2+1,ν3+1;m

2
2

m2
1
,
m2

3
m2

1

)
. (4.11)

The function F4 is known as an Appell function; it is a two-variable generalization of a
hypergeometric function. This integral has previously appeared in the physics literature
on 3-point correlators in momentum space in conformal field theories [87–89] and de Sitter
space [90, 91]. For convenience, we include its definition in appendix A.2.

The behavior of the Appell function leads to one of the important qualitative features
we have observed in our numerical results: the existence of plateaus of large branching
fractions separated by valleys of suppressed branching fractions. It is manifest from the
series definition of the Appell function that it becomes a polynomial when its first argument
is a non-positive integer. When ν1 = ν2 + ν3 + 2k, for k a positive integer, the polynomial
has degree k−1, and has k−1 curves of zeroes. Numerical results, supported by incomplete
analytic arguments, indicate that these zeros always lie in the physical region m2 +m3 <

m1.9 Two special cases of interest to our two field case are k = 1, for which the Appell
9Along the line m3 = 0, this follows from the fact that F4 is simply 2F1, discussed in appendix A.2,
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function is 1, and k = 2, ν2 = ν3, for which it is

F4

(
−1, 2ν2 + 3; ν2 + 1, ν2 + 1; m

2
2

m2
1
,
m2

3
m2

1

)
= 1− 2ν2 + 3

ν2 + 1

(
m2

2 +m2
3

m2
1

)
. (4.12)

The zeros of the Appell functions form the valleys between plateaus observed in figure 7.
Even in cases where the Appell function is not a polynomial, we expect that

⌊ν1−ν2−ν3
2

⌋
,

when positive, approximately counts the number of plateaus.
The expression eq. (4.11) can always be reduced to an expression in terms of ordinary

hypergeometric functions [93–96]

I+(νi,mi) =(
m2

m1

)ν2 (m3

m1

)ν3 2
λ

1/2
PS (m2

1,m
2
2,m

2
3)

Γ
(
ν1+ν2+ν3

2 +1
)

Γ(ν3+1)Γ(ν2+1)Γ
(
ν1−ν2−ν3

2

)
×
[
ν1+ν3−ν2

2ν1
2F1

(
1+ ν2+ν3−ν1

2 ,

∑
i
νi

2 ,ν2+1;X
)

2F1

(
ν2+ν3−ν1

2 ,1+
∑

i
νi

2 ,ν3+1;Y
)

+ ν1+ν2−ν3

2ν1
2F1

(
1+ ν2+ν3−ν1

2 ,

∑
i
νi

2 ,ν3+1;Y
)

2F1

(
ν2+ν3−ν1

2 ,1+
∑

i
νi

2 ,ν2+1;X
)]

,

where X ≡ 2m2
2

m2
1+m2

2−m2
3+λ1/2

PS (m2
1,m

2
2,m

2
3)
, Y ≡ 2m2

3

m2
1−m2

2+m2
3+λ1/2

PS (m2
1,m

2
2,m

2
3)
. (4.13)

The variablesX and Y are defined so that (m2/m1)2 = X(1−Y ) and (m3/m1)2 = Y (1−X).
We comment on some details of the reduction from F4 to 2F1 in appendix A.3.

We can extract from (4.13) a few simple, general points:

• The integral I+ has a phase-space factor λ1/2
PS (m2

1,m
2
2,m

2
3) in the denominator. Thus,

precisely when the general decay width formula (2.16) would lead one to naively
expect a decay to be rare, the coupling squared enhances it via an inverse dependence
of the decay width on the phase space. This accounts for the general tendency of the
5d models to feature many near-threshold decays.

• The hypergeometric functions have the property limz→0 2F1(a, b, c; z) = 1, so they are
unsuppressed when X or Y is small. However, the prefactors (m2/m1)ν2(m3/m1)ν3

indicate that, in general, the decay rates to light daughters are suppressed. Even in
the special case ν2 = ν3 = 0 when this suppression is absent, the normalization factor
N

(ν)
n is smaller for light daughters than heavy ones, as indicated in (2.9). Thus,

in general, we expect that decays to light daughters are rare, as confirmed by the
numerical results in figure 7, for example.

• Recall that Γ(x) has poles whenever x is a nonpositive integer. As a result, whenever
ν2 + ν3− ν1 is a positive even integer, the integral I+(νi,mi) vanishes. In the special

together with Theorem 3.2.i of ref. [92]. In the special case ν2 = ν3, it can also be proven along the
line m2 = m3, using the same theorem together with eq. (4.13) below. However, we lack a completely
general proof.
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case ν1 = 0, there are also zeros in the denominator, but taking the limit from nonzero
ν1’s shows that I+ vanishes in this case as well (as we saw in figure 15, where all ν’s
were zero).

• We have X,Y ∈ (0, 1), so that the hypergeometric functions are nonsingular in
the physical region except perhaps near threshold. In the near threshold region
m2 + m3 → m1, we have X → m2/m1 and Y → m3/m1. The hypergeometric
functions may be singular when X → 1 or Y → 1. For concreteness, consider the
case X → 1. This requires that m3 → 0,m2 → m1. In this case, the 2F1 functions of
X diverge as (1−X)−ν3 . However, this is compensated by the prefactor (m3/m1)ν3 .
As a result, the prefactor of λ−1/2

PS is the only source of singularities at the boundary
of the physical region.

4.3.2 Plateau structure in the special case ν2 = ν3 = 1/2, ν1 ∈ Z

We already noted that F4 becomes a polynomial when ν1−ν2−ν3 is a positive even integer;
in this case, the hypergeometric functions in (4.13) are also simply polynomials in X and
Y . We will now present a special case for which we can give a straightforward derivation
of the integral I+ in terms of Chebyshev polynomials. This is one of the simplest cases in
which the existence of plateaus and valleys can be deduced.

Spherical Bessel functions have simple expressions in terms of trigonometric functions.
In particular, for ν = 1/2, we have the identity

J1/2 (x) =
√

2
πx

sin x. (4.14)

In the special case ν2 = ν3 = 1/2, this reduces our overlap integral to

2
π

∫ zIR

0
dzJν1(m1z)sin(m2z)sin(m3z) = 1

π

∫ zIR

0
dzJν1(m1z)[cos((m2−m3)z)−cos((m2+m3)z)] .

(4.15)
The infinite integral

∫∞
0 dt Jν (at) cos(bt) is known [97, section 13.42]. Here, we will provide

a clear derivation in the special case when ν is an integer. The result is 0 if ν is odd, whereas
if ν is even and b < a, it is given by (−1)ν/2Tν(b/a)/

√
a2 − b2 [98, 99].

The link between Chebyshev polynomials, defined by Tn(cosφ) = cos(nφ), and Bessel
functions of integer index arises from the decomposition of plane waves in cylindrical co-
ordinates (ρ, z, φ):

eix = eiρ cosφ =
∞∑

n=−∞
inJn (ρ) einφ. (4.16)

One could take this to be a definition of the integer-index Bessel functions via a generating
function. Sending i 7→ −i, we learn that J−m (ρ) = (−1)mJm (ρ). By integrating both
sides of (4.16) against cos(nφ) from −π to π and exploiting orthogonality, we obtain the
integral representation

Jn (ρ) = i−n
π

∫
π

0
dφ eiρ cosφ cos(nφ), (4.17)
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where we have used that the cosine is even to rewrite the integral from 0 to π instead of
−π to π. In this expression we see that taking a derivative with respect to ρ brings down
a factor of i cosφ. Using the fact that cos(nφ) = Tn(cosφ), we then obtain the identity

Jn (ρ) = i−nTn
(
−i d

dρ

)
J0 (ρ) . (4.18)

This will allow us to easily compute the integral
∫∞

0 dt Jn (at) cos(bt) for arbitrary integer
n once we know the integral for the special case n = 0.

For n = 0, we directly use the representation (4.17) of J0:

∫ ∞
0

dt J0 (at) cos(bt) = 1
π

∫
π

0
dφ

∫ ∞
0

dt eiat cosφ cos(bt) =


1√

a2−b2 , 0 < b < a

0, 0 < a < b
. (4.19)

One way to see this is to view the integral over φ as a contour integral, which picks up
poles where cosφ = ±b/a which are in the domain of integration (−1 ≤ cosφ ≤ 1) when
b < a but not otherwise. Next, we can obtain the result for general Jn by using (4.18)
and then integrating by parts to move the derivatives onto the cos(bt) factor. If n is even,
Tn(x) contains only even terms and the derivatives produce a cos(bt) factor; if n is odd, a
similar argument leads to a sin(bt) factor. Every two derivatives acting on a cos(bt) factor
will multiply by −b2 = (ib)2, effectively absorbing an extra factor of ib into the argument
of the polynomial. Hence:∫ ∞

0
dt J2k (at) cos(bt) = i−2k

∫ ∞
0

dt cos(bt)T2k

(
−i 1
a

d
dt

)
J0 (at)

= (−1)k
∫ ∞

0
dt J0 (at)T2k

(
−i 1
a

d
dt

)
cos(bt)

= (−1)k T2k(b/a)
∫ ∞

0
dt J0 (at) cos(bt) = (−1)k T2k(b/a)√

a2 − b2
,

(4.20)

agreeing with the results in the literature [98, 99].
The polynomial behavior of T2k(b/a) leads to several zeros as a function of b/a, and

hence to “plateau” structure in the Bessel overlap integrals like that we have previously
observed (for different choices of ν) in figure 7. More generally, the plateau structure arises
due to similar oscillatory behavior in the hypergeometric functions in (4.13).

5 Conclusions

One of the challenges facing LHC studies is that new physics with unusual signatures
might be able to escape trigger strategies or hide in the large data sets. It is important
therefore to consider these unusual signatures carefully, especially those that rarely appear
in classic BSM models and are difficult or impossible to calculate with confidence. Among
these signatures are complex high-multiplicity final states. Events with a small number
of QCD-like jets are well-studied, and various approximately spherical high-multiplicity
signals have also been considered, but little is known about signatures that, in some sense,
lie between these extremes.
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It is well-known that large ‘t Hooft coupling gauge theories can produce spherical
events [13, 32, 33], and that RS-like 5d models with cascade decays of Kaluza-Klein modes
can produce approximately spherical events [52]. Here we have shown that, in fact, 5d
simplified models with tunable parameters (including a small number of bulk fields with
bulk or boundary interactions) can produce a wide range of event shapes in cascade decays
of their heavy states. These 5d simplified models are well-suited to serve as templates when
designing collider searches for unusual events that might be hiding in samples of events
with high jet multiplicity.

Specifically, we saw that a key determinant in the cascade decays was the degree to
which KK-number is violated, which in turn determines how close to threshold are the
majority of decays. With some choices of bulk parameters, KK-number is approximately
conserved, leading to quasi-spherical event samples; see figure 5. For other choices of bulk
parameters, or with the addition of boundary interactions, KK-number can be strongly
violated, making events with a few hard jets commonplace. In the latter cases, one can
find samples as jetty as threshold tt̄ events, with many individual events as jetty as SM qq̄

events; compare figure 9 or figure 12 to figure 1. In demonstrating this, we have relied not
only on thrust, a classic event shape variable, but also on event isotropy, a newly-introduced
variable which appears well-suited to this purpose.

One of the main results of this paper is an approximate analytic understanding of the
Bessel function overlap integrals eq. (4.1) that determine the couplings among different KK
modes in the 5d simplified model, which are the most important source of the KK-number
violation. We are not aware of any previous detailed studies of this definite integral. In
particular, we have seen that, aside from decays very near threshold, the integral over the
finite fifth dimension is generically well approximated by the integral I+ over an infinite
interval; see eq. (4.2). This integral has an analytic expression, (4.13), in terms of hyper-
geometric functions. This integral has a factor of the phase space function λ

1/2
PS , defined

in (2.17), in the denominator. As a result, the naive expectation that decays far from
threshold are favored due to the larger available phase space is precisely inverted within
the context of these extra-dimensional models. Decays with small phase space are often
favored. Similar results hold for the complementary integral I−, which dominates in special
cases, and for which we have provided an approximate analytic understanding. However,
there are also cases where I+ exhibits quasi-polynomial behavior with multiple zeroes, and
is consequently enhanced far from the threshold region and/or suppressed at the threshold
region. Then decays near threshold are no longer dominant and the cascades are more
likely to produce kinematic jets.

In a companion paper [54], we will explore the event shapes that arise from our 5d
simplified models in more depth. In particular, we will illustrate, using both simulation
and analytic estimates, that event isotropy provides an important complementary probe,
capturing aspects of event shapes that are distinct from those captured by thrust, the
eigenvalues of the sphericity tensor, or jet multiplicities.

A remaining task is to connect our 5d simplified models with the Standard Model. In
this paper, we have started our events with a single heavy KK mode which then cascades
into many daughter particles. In order to use event shape observables based on massless
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momenta, we have assumed that all of the final-state daughter particles decay into two
massless particles. However, we have stopped short of a full model for the interaction
with the SM, which would allow for the production of many different modes and for a
more general set of decays. More complete models could be an interesting topic of further
investigation, and could allow our 5d simplified models to be used in full event generators
for experimental studies. In this regard, it would be interesting to determine the effect on
event shape variables of replacing our massless particles, which stand in for SM particles in
the current study, with QCD jets from quarks and gluons, or with relatively soft photons. In
the LHC context, one would need to consider carefully the impact of initial state radiation,
the underlying event and pileup. It is also not clear what event-shape variables would be
most effective in reducing backgrounds at a hadronic collider. All of these issues must be
addressed before optimized searches for phenomena of this type can be designed.
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A Definitions and useful properties of special functions

A.1 Fresnel integrals

We define the Fresnel cosine and sine integrals by

C (x) =
∫ x

0
dt cos

(
π

2 t
2
)
,

S (x) =
∫ x

0
dt sin

(
π

2 t
2
)
. (A.1)

This convention follows [101] and Mathematica, and differs from another common conven-
tion in which the argument is simply t2. With this normalization, both of these functions
tend to 1/2 when their argument tends to infinity. In more detail, the large-argument
asymptotics are

C (z →∞)→ 1
2 + 1
πz

sin
(
πz2

2

)
− 1
π2z3 cos

(
πz2

2

)
+ · · · ,

S (z →∞)→ 1
2 −

1
πz

cos
(
πz2

2

)
− 1
π2z3 sin

(
πz2

2

)
+ · · · . (A.2)

A.2 Appell function

The fourth Appell hypergeometric function F4 is defined by

F4(a, b; c, d;x, y) ≡
∞∑

m,n=0

(a)m+n(b)m+n
(c)m(d)nm!n!x

myn, (A.3)

– 38 –



J
H
E
P
0
5
(
2
0
2
1
)
0
9
6

where the Pochhammer symbol (a)n denotes the rising factorial a(a + 1) · · · (a + n − 1),
and (a)0 ≡ 1.

In particular, notice that if y = 0, only terms with n = 0 contribute, and the formula
becomes independent of d and reduces to an ordinary hypergeometric function 2F1:

F4(a, b; c, d;x, 0) =
∞∑
m=0

(a)m(b)m
(c)mm! x

m

= 2F1(a, b; c;x). (A.4)

Similarly, F4(a, b; c, d; 0, y) = 2F1(a, b; d; y).

A.3 Hypergeometric function reduction

There is a well-known identity that relates the fourth Appell hypergeometric function of two
variables z and w, F4(α, β; γ, δ; z, w), to a product of two single-variable hypergeometric
functions 2F1 in the special case α+ β = γ + δ − 1. Specifically [93]:

F4(α, β; γ, 1 + α+ β − γ; z, w) = 2F1(α, β; γ;X) 2F1(α, β; 1 + α+ β − γ;Y ), (A.5)

where X and Y are chosen so that z = X(1− Y ) and w = Y (1−X).
There is a general result that relates an infinite integral of products of three Bessel

functions times a power to the function F4 [86]:∫ ∞
0

dz zλ−1Jν1 (m1z)Jν2 (m2z)Jν3 (m3z)

=
2λ−1mν2

2 m
ν3
3 Γ

(
ν1+ν2+ν3+λ

2

)
mν2+ν3+λ

1 Γ(ν2+1)Γ(ν3+1)Γ
(
1− ν1−ν2−ν3−λ

2

)
×F4

(
λ+ν2+ν3−ν1

2 ,
λ+ν1+ν2+ν3

2 ;ν2+1,ν3+1;m
2
2

m2
1
,
m2

3
m2

1

)
, (A.6)

valid (at least) when the λ, ν and m parameters are real, m1 > m2 + m3, λ +∑
i νi > 0,

and λ < 5/2.
Notice that the couplings we wish to calculate, (4.1), have the form of this integral in

the special case λ = 2. On the other hand, identifying the first four arguments of the F4
function as α, β; γ, δ, we see that they obey

α+ β = γ + δ + λ− 2. (A.7)

Thus, the reduction (A.5) to ordinary hypergeometric functions applies when λ = 1, which
is not the case of our interest.

However, integrals with different values of λ may be related to each other using
the identity

zJν(mz) =
(
∂

∂m
+ ν + 1

m

)
Jν+1(mz). (A.8)

This allows us to obtain the λ = 2 case of our interest from the λ = 1 case with a known
reduction by taking a derivative with respect to a mass parameter. This method of relating
different integrals was discussed in [94, 95], and a specific formula relevant for the case of
our interest was given in [96]. This approach leads to the equation (4.13) that we have
given in the main text.
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Figure 17. The event isotropy Isph
192 distributions for np = 100, 300, and 500 of the spherical toy

model (dashed lines) and ν = 0 (solid line) samples. As np increases, the ν = 0 sample approaches
the spherical toy distribution, and all distributions move towards the theoretical bound set by
eq. (1.5).

B Dependence on np

In this section we explore the event shape dependence on the initial mode np with Dirichlet
boundary conditions. As we increase np, this can affect both the coupling structure of the
initial decays (where the degree of KK-number violation affects the event shape) and the
kinematics of the final state.

To understand how the kinematics of the final state depends on np, we first reconsider
the spherical toy model described in section 3.1, i.e., events with np identical particles at
rest, which split into np pairs of massless particles with equal energy and random orien-
tation. For sufficiently large np, the randomly distributed particles will appear isotropic.
In figure 17, we see that as np increases, the distribution of event isotropy Isph

192 converges
toward the theoretical limit of approximately 0.1, by eq. (1.5).

Similar behavior is seen in figure 17 for the single field example with ν = 0, which
has slightly larger event isotropy than the spherical toy model due to non-zero KK-number
violation and energy anisotropy. More generally, we expect near-spherical examples to
converge to the theoretical bound at large np.

To explore the highly non-spherical regime, we consider another toy model that pro-
duces boosted particles early in the cascade. We generate a back-to-back pair of initial
particles of equal mass m = np

2 m0, where m0 is the mass of the lightest HSH, and with
boost γ. Each particle decays to np/2 HSHs which are at rest in the particle’s decay frame.
The HSHs then decay to two massless particles each. Thus the two initial particles produce
two quasi-spheres, made of np massless particles with equal energy, that are boosted by γ
in opposite directions.

We study the event shape dependence on np as we increase the boost γ. When the
initial particles are produced at rest (γ = 1), we recover the spherical toy model, as in
figure 17, where the isotropy gradually decreases with np. In the opposite limit of large
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boost (γ →∞), each initial particle decays to a pencil-like jets, giving unit event isotropy
for any np. Thus we expect the typical event isotropy to increase with γ, and to decrease
with np, albeit with reduced np dependence at large γ. These expectations10 are borne out
in figure 18, which shows event isotropy distributions for np = 2, 10, 40, 100, 300 and 500
and γ = 1.2, 4, and 8.

An independent source of np dependence is through the pattern of partial widths as
seen in the branching fraction triangles shown in figures 4, 7, and 8. It turns out that
for large np these patterns become constant, though for two different reasons, as we will
now show.

It is useful to divide the branching fraction triangles into three regions. The first is
the “immediate threshold” (IT) region, the upper-right edge of the triangle, where the
parent particle of mass m1 decays to particles with mass m2, m3, where all mi � π. Using
eq. (2.7), we define the mass splitting as

m−− ≡ m1 −m2 −m3 =
[
(n1 − n2 − n3) + 1

2(ν1 − ν2 − ν3) + 1
4

]
π. (B.1)

Note that the mass splitting is much less that the typical mass spacing in the KK tower:
m−− � π. The rest of the triangle may be divided roughly into an “unboosted” region
where neither decay product is boosted (the center-right of the triangle) and a “boosted”
region where at least one decay product is boosted.

Each decay in the IT region has a partial width of order n−3/2
p . This follows from

taking the integral (4.1), using the asymptotic expansion of the Bessel functions for large
argument (which is increasingly accurate across the integration region as the masses become
large), and subjecting it to the same approximations that lead to (4.5). The integrand is a
sum of four terms, of which one is constant at the extreme threshold m−− → 0 and nearly
so for m−− . π � mi. Its integral, combined with the overall coefficient N (ν)

i defined in
eq. (2.9), is then of order (m1m2m3)−1/2 ∼ n

−3/2
p . The couplings cijk of the IT region,

written explicitly in eq. (2.13), are therefore independent of np. Since the phase space
λPS ∼ n3

pm−− in this regime, partial widths for individual decays given by eq. (2.16) are
proportional to n−3/2

p . Summing over the ∼ np/2 decay modes in the IT region, we find
the partial width ΓIT ∼ (np)−1/2 for the region. This applies unless ν1 − ν2 − ν3 an odd
integer, in which case the partial widths fall even faster with np.

Away from the IT region, I+/I− ∼
√
λPS/

√
m1m2m3 ∼

√
np, so unless I+ vanishes, it

dominates at large np. A partial width of a typical decay dominated by I+ ∼ λ−1/2
PS scales

as n−2
p . Since there are of order np decay modes, the total width Γtot is independent of np.

The IT region is therefore subleading and scales away as np → ∞, while the rest of the
branching fraction triangle becomes constant at sufficiently large np. Thus if the events
are far from spherical at np = 100, they remain so at larger np. Alternatively, for events
that are already quasi-spherical at np = 100, we expect the distribution in event isotropy
to approach the theoretical bound as we increase np.

10The value of event isotropy at large np seems to increase as 1− 1/γ, though we have no analytic proof
of this.
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Figure 18. Distributions in event isotropy Isph
192 of the boosted toy model for np = 2, 10, 40,

100, 300, 500 at boost (a) γ = 1.2, (b) γ = 4, and (c) γ = 8. As the boost increases, all of the
distributions are shifted towards jettier values of event isotropy (Isph

192 ∼ 1) and overlap substantially.

If I+ vanishes, which occurs when ν2 +ν3−ν1 is a positive even integer, then there is a
subtlety. The partial width of a typical decay dominated by I− ∼

√
m1m2m3λ

−3/2
PS scales

as n−3
p . This would suggest that IT region dominates and that the total width scales as

n
−1/2
p . While the latter conclusion is correct, near-threshold decays, with small kinematic

boosts but larger KK-number violation, can be as important as the minimally-KK-violating
decays at the IT. There is therefore a band in the branching fraction triangle, including
but extending beyond the immediate threshold, which remains important as np →∞. The
boosted region scales away, so the events are far from jetty. However, because KK-number
violation is non-minimal, the events may not become spherical in the np →∞ limit.
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