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1 Introduction

The focus of this paper is the A-cycle period for the N = 2 SYM with gauge group
SU(2) in Ω background (see [1, 2] and further developments [3–5]). The background is
parameterized by two parameters ε1 and ε2 which can be interpreted as angular velocities
on two orthogonal planes of the space time. We will be interested in the case when one of
the parameters say ε2 is sent to zero while the other one is kept finite, commonly referred
as Nekrasov-Shatashvili (NS) limit [6].
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According to the AGT relation [7] the instanton partition function in Ω background
is closely related to the conformal block of 2d Liouville CFT. Thus any result related
to the partition function can be reinterpreted in terms of the conformal block and vice
versa. The NS limit corresponds to the so called heavy classical limit of the conformal
block [8, 9]. The four point conformal block satisfies a well known recursion relation
discovered by Alexei Zamolodchikov [10, 11] (for the analog in gauge theory side see [12]
and for generalizations of CFT see [13–15]). Surely, Zamolodchikov’s recursion relation
may be explored to investigate the heavy conformal block, by computing first the exact
block and only afterwords tacking the heavy limit. Nevertheless this procedure appears to
be rather inefficient. Meanwhile constructing a heavy analog of Zamolodchikov’s recursion
relation directly is not straightforward, due to arising strong singularities [16–18]. A natural
question is whether a kind of alternative procedure, efficiently working in heavy limit, can
be found. The current article provides a positive answer to this question.

The method we suggest is the following: the Nekrasov partition function can be repre-
sented as a sum over pairs of (N -tuples if the gauge group is U(N)) Young diagrams [2, 3].
In NS limit only a single term of this sum contributes dominantly. A major role is played
by an entire function whose zeros are determined by the column length of dominant Young
diagrams mentioned above. This function satisfies a difference equation [19], which can
be reformulated in such a way that it closely resembles the ordinary Seiberg-Witten curve
equation [20, 21]. We have made use of this difference equation to obtain a recursion
relation in terms of continued fractions.

To demonstrate the simplicity of our approach we compere it with two other well known
methods. One of which is by making use of the combinatorial formula for the instanton
partition function and the other one performing contour integration of the deformed SW
differential and using generalized Matone relation [40]. Another well known way of deriving
the A-cycle is with the help of the holomorphic anomaly equations [22, 23]. Although the
result by this approach has the advantage of giving exact expressions in instanton parameter
q but now it is a series in ε.

In this paper we also investigate a numerical approach to derive the A-cycle period
again directly applicable in NS limit. Via Fourier transform from the already mentioned
difference equation a second order ordinary differential equation (ODE) can be derived [24]
(for earlier works using different approach see [25–27]). Since the coefficients entering in
this differential equation are periodic one deduces that it admits quasi-periodic solutions.
The index of quasi periodicity or the characteristic exponent commonly referred as Floquet
exponent is just the A-cycle period. In particular when one considers pure SU(2) SYM
the differential equation is just the (modified) Mathieu equation which is well studied in
mathematical literature (for example see [28]). The fact that it can serve as a basis for
numerical computations is emphasized in [29, 30]. In this work we demonstrate how the
corresponding differential equations for SU(2) SYM with several hypermultiplets can be
used for numerical computations in similar manner. In particular in the case when one
has four hypers, due to the AGT correspondence, this numerical approach can be used to
investigate the heavy conformal block.
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There was recent progress in generalizing the SW curve for generic Ω-background
too [31–33]. Extension of our analyses is an interesting task, though beyond the scope of
the current paper. The numerical approach via the monodromy matrix is applicable for
the case of N = 2∗ too but the analog for our recursion relation here is not clear since in
this case the difference equation is of infinite order [24, 34].

Using results of [29] we derive an analytic expression for a(q) for large values of in-
stanton counting parameter q and check its validity by numerical computations. This is
achieved only for the pure case and it would be interesting to find analogous expressions
in the presence of matter hypermultiplets.

This article is organized as follows: section 2 we review few known things connected to
instanton counting and the A-cycle period to make clear the notations we used. In section 3
we give our recursion relation for pure SYM. A numerical approach is presented in sub-
sections 3.2, 3.3 which is applied to investigate the A-cycle in SU(2) SYM. This numerical
method was previously used in [29] to investigate the Floquet exponent in the context of
Ordinary Differential Equation/Integrable Model (ODE/IM) correspondence [35, 36]1 and
also for SU(3) pure SYM [30]. We show that results obtained by this numerical method
are consistent with our recursion relation. In addition we derive an analytic formula for
a(q) valid in large q limit. The latter is achieved with the help of a conjecture about the
Floquet exponent of Mathieu equation [29, 38]. We end section 3 by checking the asymp-
totic formula for a(q) numerically. In section 4 we extend previous results to the case with
hypermultiplets. Equation (4.5) expresses our recursion relation for arbitrary number of
hypermultiplets. Using our new recursive method in final section 5 we compute the heavy
conformal block as a series in cross ratio of insertion points.

2 A brief review of instanton counting and A-cycle period

In this section we briefly review the combinatorial expression for instanton partition func-
tion, the difference relation emerging in NS limit and define the period cycles. Connection
between the differences relation and generalized SW curve is explained. We discus some
of the similarities and differences between the ordinary SW curve and its generalization
for NS limit of Ω background. The A-period computation is performed using two ap-
proaches, first, using instanton counting combined with Matone relation and the second by
integrating deformed SW differential.

2.1 The deformed prepotential in the NS limit

Consider N = 2 SYM with gauge group SU(2) and four hypermultiplets in Ω-background
parameterized by ε1 and ε2. The instanton part of the partition function [2] of this theory
can be represented as [3, 5]

Zinst(a, ε1, ε2, q) =
∑
~Y

Zf (~Y )
Zg(~Y )

q|
~Y |, (2.1)

1For a nice review on ODE/IM correspondence see [37].
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s1

s3

s2

Figure 1. Arm and leg length with respect to the Young diagram whose borders are outlined
by dark black: A(s1) = −2, L(s1) = −2, A(s2) = 2, L(s2) = 3, A(s3) = −3, L(s3) = −4. The
coordinate (i, j) of the box s2 is (3, 1).

where ~Y is a pair of Young diagrams ~Y = (Y1, Y2) and |~Y | is the total number of boxes. The
sum is over all possible pairs of Young diagrams and q is the instanton counting parameter
related to the gauge coupling g and the CP violating parameter θ in the standard manner:
q = exp(2πiτ), with τ = i

g2 + θ
2π . We denote the VEV of adjoint scalar of N = 2 vector

multiplet by a1 = −a2 = a. The contribution of antifundamental hypermultiplets Zf and
the gauge multiplet Zg can be represented as [3, 5]

Zf (~Y ) =
Nf∏
`=1

2∏
u=1

∏
(i,j)∈Yu

(m` + au + (i− 1)ε1 + (j − 1)ε2) , (2.2)

Zg(~Y ) =
2∏

u,v=1

∏
s∈Yu

(
au − av − ε1Lµ(s) + ε2(1 +Aλ(s))

)
× (2.3)

×
∏
s∈Yv

(
au − av + ε1(1 + Lλ(s))− ε2Aµ(s)

)
.

Here by m` we denote the masses of the hypermultiplets, Aλ(s) and Lλ(s) are the arm-
length and leg-length of the box s with respect to the Young diagram λ respectively. The
arm-length Aλ(s) (leg-length Lλ(s)) is the number of steps needed to reach from the box
s to the outer boundary of λ in vertical (horizontal) direction as demonstrated in figure 1.
The coordinates (i, j) in (2.3) specify the position of a box (see figure 1).

The deformed prepotential in the NS limit is defined as

Finst(a, ε1, q) = − lim
ε2→0

ε1ε2 logZinst(a, ε1, ε2, q) . (2.4)

From here on the notation ε1 ≡ ε will be used. We will need also the Matone relation [39]

u = 〈trφ2〉 = 2a2 + 2q∂Finst
∂q

= 2q∂F
∂q

, (2.5)

which holds also in the presence of Ω background [40]. With the help of this expressions
one can derive the A-cycle period as a power series in q (see appendix B.2 for explicit
calculations). Most of the time instead of the VEV parameter u we will us the parameter
p defined as

p2 ≡ u

2 = 〈trφ
2〉

2 . (2.6)
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2.2 The difference equation and the SW curve equation

According to [19] the sum (2.1) in NS limit is dominated by a single term corresponding
to a unique pair of Young diagrams ~Y (cr). By using this fact one defines an entire function
Y (z) whose zeros zu,k are determined by (rescaled) column lengths λu,k of ~Y (cr):

zu,k = au + (k − 1)ε+ λu,k , u = 1, 2. (2.7)

For later use we will also need the fact that λu,k ∼ O(qk). It was shown in [19] that such
function Y (z),2 if defined properly satisfies the difference equation

Y (z + ε) + ε−4QNf
(z + ε)Y (z − ε) = ε−2PNf

(z + ε)Y (z) . (2.8)

This difference equation leads to a kind of generalization of the Seiberg-Witten curve
equation. Introducing the meromorphic function

y(z) = ε2
Y (z)

Y (z − ε) , (2.9)

from (2.8) one immediately gets

y(z) +
QNf

(z)
y(z − ε) = PNf

(z) . (2.10)

In the case Nf = 4 one has

Q4(z) = q
4∏
j=1

(z +mj − ε) ; (2.11)

P4(z) = (1 + q)z2 + (s1 − 2ε) qz + q
(
s2 − εs1 + p2 + ε2

)
− p2 , (2.12)

where s1 and s2 are elementary symmetric polynomials of masses

s1 =
4∑
i=1

mi; s2 =
∑

1≤i<j≤4
mimj ; s3 =

∑
1≤i<j<k≤4

mimjmk; s4 = m1m2m3m4. (2.13)

As usual less number of flavors can be obtained from above expressions by sending some
of the masses to infinity simultaneously rescaling the instanton parameter appropriately
(for details see appendix A). Notice that by setting ε = 0 in (2.10) one obtains the usual
SW curve equation [20, 21] presented as in [4]

y(z) +
QNf

(z)
y(z) = PNf

(z) , (2.14)

where y(z) is related to Seiberg-Witten differential as

λSW = z
d

dz
log y(z) . (2.15)

2We adopted a convention (not universally used), where Y (z) is dimensionless.
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CB
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z1 z2 z3 z4

z

Figure 2. Branch points and cycles on z plane.

From the curve equation (2.14)

y(z) = 1
2
(
PNf

(z) +
√
PNf

(z)2 − 4QNf
(z)
)
. (2.16)

We have chosen the plus sign to ensure the appropriate large z behavior y(z) ∼ z2. The
branch points on z plane can be found from vanishing discriminant condition

PNf
(z)2 − 4QNf

(z) = 0 . (2.17)

Let us denote the roots by zj , j = 1, 2, 3, 4 ordered as z1 < z2 < z3 < z4 (here for simplicity
we assume that the parameters m and q are real and q � 1). We choose the branch cuts
to be extended from z1 to z2 and from z3 to z4 (see figure 2). The Seiberg-Witten curve is
obtain by gluing two Riemann sheets along the cuts.

The monodromy cycles a and aD are integrals of SW differential (2.15) along non
contractible curves CA, CB respectively (see figure 2)

a =
∮
CA

dz

2πiz∂z log y(z) , (2.18)

aD =
∮
CB

dz

2πiz∂z log y(z) . (2.19)

If ε 6= 0, everything goes surprisingly similar to the original Seiberg-Witten theory. For
example the analogue of Seiberg-Witten differential is defined by the same expression (2.15).
The VEV’s of adjoint scalar of vector multiplet φ 〈trφJ〉, J = 1, 2 is given by

〈trφJ〉 =
∮
C

dz

2πiz
J∂z log y(z) , (2.20)
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where C is a large contour, enclosing all zeros and poles of y(z). Thus according to (2.9)
these are exactly the zeros of Y (z) and Y (z − ε). Due to the symmetry a → −a the
contributions of zeros associated with z1,k and z2,k (2.7) in (2.20) for the case J = 1 cancel
each other, so that 〈trφ〉 = 0. The deformed A-cycle is naturally defined by the same
formula (2.18), where CA is assumed to enclose only the zeros associated with z1,k. For the
simplest case Nf = 0, in appendix B.1, we have explicitly demonstrated the calculation
of A-cycle up to two instanton order. Notice that in this appendix we set ε = 1. This is
not a restriction because the ε dependence can be recovered easily on dimensional grounds.
From now on we will keep using this convention.

3 Recurrence relation for pure SYMA-cycle and comparison with results
obtained by numerical investigation of Mathieu equation

In this section a recursion relation is derived for both the A-cycle and the VEV parameter
p (2.6). We briefly review derivation of Mathieu differential equation whose Floquet-Bloch
monodromy matrix eigenvalues are identified with exp(±2πia). It is explained how one
can use the monodromy matrix to derive the A-cycle numerically for an arbitrary value
of the instanton counting parameter q. Finally we will explicitly demonstrate the power
of this approach by checking the conjecture [29] on the asymptotic behavior of Baxter’s T
function, which emerges from the Mathieu equation.

3.1 From difference equation to the recursion relation

From (2.10), (2.6) and (A.1) we see that the generalized Seiberg-Witten curve equation for
pure SYM is

y(z) + q

y(z − 1) = z2 − p2 . (3.1)

Formally one can represent y(z) as a continued fraction in two alternative ways, by subse-
quently shifting the parameter z either in negative or positive direction. We will see below
that the latter continued fraction is divergent for generic values of z. But, fortunately, at
z = a this continued fraction becomes convergent (at least when q is sufficiently small), a
key fact which eventually leads to our recursion relation.

First let us write y(z) as a continued fraction with negative shifts. From (3.1) we see
that

y(z) = z2 − p2 − q
y(z−1) , . . . , y(z − k + 1) = (z − k + 1)2 − p2 − q

y(z−k) ,

therefore

y(z) = z2 − p2 −
q

(z − 1)2 − p2 −
q

(z − 2)2 − p2 − . . .
−

q

y(z − k)

. (3.2)
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Formally sending k →∞ we get

y(z) = z2 − p2 −
q

(z − 1)2 − p2 −
q

(z − 2)2 − p2 −
q

(z − 3)2 − p2 − . . .

. (3.3)

As we will see, this continued fraction is convergent for generic values of z.
Now let us write y(z) as a continued fraction with positive shifts of z. From (3.1)

y(z) = q
(z+1)2−p2−y(z+1) , . . . , y(z + k − 1) = q

(z+k)2−p2−y(z+k) ,

so that

y(z) =
q

(z + 1)2 − p2 −
q

(z + 2)2 − p2 − . . .
−

q

(z + k)2 − p2 − y(z + k)

. (3.4)

Again in formal k →∞ one would obtain

y(z) =
q

(z + 1)2 − p2 −
q

(z + 2)2 − p2 −
q

(z + 3)2 − p2 − . . .

. (3.5)

In this case however as explained later this continued fraction converges only for very
specific values of z.

Coming back to (3.3) Re(z) → −∞ the asymptotic behavior y(z) ∼ z2 is valid, thus
truncating the fraction (3.3) at sufficiently large positive integer k, the reminder term (3.2)

q
y(z−k) ∼

q
k2 → 0.

As for the fraction (3.5) the analogous argument fails since now the remainder term
y(z+k) (3.4) for generic z diverges at k →∞. Luckily at specific values e.g. when z = a the
situation is much better. From the definition (2.9) of y(z) we see that it is a meromorphic
function with zeros, and poles located at

a+ (k − 1) + λ1,k , a+ k + λ1,k ; k = 1, 2, 3 . . . (3.6)

respectively. So, separating k + 1’th zero and k’th pole (which are close to each other at
large k) y(z) can be represented as

y(z) = ỹ(z)z − (a+ k + λ1,k+1)
z − (a+ k + λ1,k)

, (3.7)

where ỹ has neither zero nor pole at z = a+ k. Hence

y(a+ k) = ỹ(a+ k)λ1,k+1
λ1,k

∼ q , (3.8)
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since λ1,k ∼ O(qk). This is why truncating (3.4) at z = a on the level k produces only an
error of order O(qk+1).

Now we can use the continued fractions we have built to obtain the recursion relation.
From (3.3) and (3.5) it is straightforward to see that

y(a) + y(−a)− a2 + p2 = 0 , (3.9)

where the equality holds in the sense of power expansion in q.
By using (3.9) and (3.3) we will obtain p2 as a series in q with a dependent coefficients.

For instance up to order O
(
q3) from (3.3) we get

y(a) = a2 − p2 −
q

(a− 1)2 − p2 −
q

(a− 2)2 − p2

+O
(
q3) , (3.10)

y(−a) = a2 − p2 −
q

(a+ 1)2 − p2 −
q

(a+ 2)2 − p2

+O
(
q3) . (3.11)

Representing p2 as power series in q

p2 = v0 + v1q + v2q
2 +O

(
q3
)

(3.12)

and inserting it in (3.10) and (3.11) from (3.9) we get(
a2 − v0

)
− q

(
1

(a−1)2−v0
+ 1

(a+1)2−v0
+ v1

)
− (3.13)

−q2
(

(a2v1−4av1−v0v1+4v1+1)
(a2−4a−v0+4)(a2−2a−v0+1)2 + (a2v1+4av1−v0v1+4v1+1)

(a2+2a−v0+1)2(a2+4a−v0+4) + v2

)
+O

(
q3) = 0 .

This equality uniquely specifies v0, v1 and v2 inserting which in (3.12) one obtains

p2 = a2 + 2q
4a2 − 1 +

(
20a2 + 7

)
q2

2 (a2 − 1) (4a2 − 1)3 +O
(
q3
)
. (3.14)

In fact without much efforts with simple mathematica code we have extended this series up
to 10 instantons. Of course inverting the series (3.14) one can express a in terms p and q,
but this goal can be achieved also directly from the recursion relation. In a similar manner
without having to derive the series (3.14) we will get a as a series in q. We consider p2

fixed and represent the A-cycle as a series in q

a = a0 + a1q + a2q
2 +O

(
q3
)
. (3.15)

Again with the help of (3.9)–(3.10) we find

(
a2

0 − p2)+ q
(
− 1

(a0−1)2−p2 − 1
(a0+1)2−p2 + 2a0a1

)
+ q2

(
4a0a1(a2

0(a2
0−2p2+2)+(p2−1)(p2+3))

(−2a2
0(p2+1)+a4

0+(p2−1)2)2 −

− 1
((a0+1)2−p2)2((a0+2)2−p2) −

1
((a0−2)2−p2)((a0−1)2−p2)2 + a2

1 + 2a0a2

)
+O

(
q3) = 0 , (3.16)

– 9 –
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which immediately determines a0, a1 and a2. The result is

a = p+ q

p(1− 4p2) + 5(7− 12p2)p2 − 2
8(p2 − 1)p3(4p2 − 1)3 q

2 +O
(
q3
)
. (3.17)

The results for the A-cycle and p (3.14) could be derived using at least two other methods,
presented in appendix B.2 and B.1, which are in agreement with our result. Notice that the
symmetry a→ −a is manifest in equation (3.9). In the cases with extra hypermultiplets this
property no longer holds. Nevertheless exploring two inequivalent representations of y(a)
as continued fractions we will find analogues recursive representation for these cases too.

3.2 Numerical computation of the A cycle via Floquet-Bloch monodromy ma-
trix

As demonstrated in appendix D.1 from the difference equation one can derive a second
order ordinary differential equation which, in the pure case, coincides with the Mathieu
equation. We will use this differential equation as a basis for numerical computations. This
method was explored earlier in [30] for pure SU(3) SYM case. Here we will start with pure
SU(2) and then generalize to the case with one fundamental hypermultiplet (generalization
to the cases with more hypermultiplets is straightforward). In our context the Mathieu
equation conveniently is presented as (see appendix (D.1))

f ′′(x)−
(
2Λ2 cosh x+ p2

)
f(x) = 0 , q = Λ4 . (3.18)

Consider solutions f1(x), f2(x) satisfying the standard initial conditions

f1(0) = 1 , f ′1(0) = 0 , (3.19)
f2(0) = 0 , f ′2(0) = 1 , (3.20)

where f1(x) and f2(x) are commonly referred as basic solutions. From the initial conditions3

we see that the Wronskian

W [f1(x), f2(x)] ≡ f1(x)f ′2(x)− f2(x)f ′1(x) = 1

is different from zero so that the basic solutions are linearly independent. Hence an arbi-
trary solution can be expressed as their linear combination. Thanks to periodicity of the
coefficients in equation (3.18) it is obvious that f1(x + 2πi) and f2(x + 2πi) are solutions
too. The monodromy matrix M is defined as

fn(x+ 2πi) =
2∑

k=1
fk(x)Mkn . (3.21)

Thus, from (3.19) and (3.20) for the matrix elements we get

Mk,n = f (k−1)
n (2πi) . (3.22)

3From (3.18) we see that the Wronskian from two of its solutions does not depend on x.
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As it is well known the Mathieu equation (3.18) admits two quasi-periodic solutions (see
e.g. [28] for more details on Mathieu equation and its solutions):

f±(x+ 2πi) = e2πiaf±(x) . (3.23)

Obviously the function f(x) defined by (D.1) coincides with f+(x) (up to an x independent
multiplayer). Representing above quasiperiodic solutions as linear combinations of basic
solutions from (3.21) we deduce that e±2πia are the two eigenvalues of monodromy matrix
Mk,n. So that

trM = 2 cos(2πa) . (3.24)

Now we have everything in our disposal to evaluate the A-cycle numerically. For given
p and Λ one numerically evaluates the solutions f1(x) and f2(x) with initial data (3.19)
and (3.20) respectively in the interval x ∈ [0, 2πi].4 Then one inserts this data into (3.22)
and obtains the two by two monodromy matrix M . Finally the A-cycle can be found
using (3.24).

It is essential that this numerical method can be applied also for large values of the
Λ-parameter,5 which is beyond the scope of analytic methods described in previous section
and in appendix B.

3.3 Explicit demonstration of the numerical approach

Here we demonstrate the numerical approach and compere it with the result of our recursion
relation, then for large q we give an analytic expression for a and demonstrate that it is in
agreement with the numerical method too.

To apply (3.24) we need the monodromy matrix, defined as in (3.22), where f1 and f2
are solutions to the Mathieu equation (3.18) with boundary conditions (3.19) and (3.20)
respectively. As an example using Mathematica for p = 0.17 and Λ = 0.2 we find these
solutions and their first order derivatives by solving the Mathieu equation numerically. The
resulting monodromy matrix is

M =
(

0.423191 + 21.6727i 15.6243
30.0101 0.423193 − 21.6727i

)
, (3.25)

so that from (3.24) we get a = 0.180455.
For p = 0.17 and several values of Λ we derived the A-cycle up to ten instantons using

our recursion formula and compered it against the non perturbative numerical approach
described above.

As it was expected these two approaches give close results provided the instanton
counting parameter is small enough, in the table 1 we kept five significant digits. To
visualize this in figure 3 for the fixed value p = 0.17 we have plotted a(Λ).

4In Mathematica this can be achieved the command NDSolve.
5Remind that the Ω-background parameter is also treated non perturbatively and set to ε = 1. As

already mentioned earlier, an arbitrary value of ε can be restored using simple dimensional arguments.
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Λ a by monodromy a by recursion
0.1 0.1706 0.1706
0.2 0.1804 0.1804
0.3 0.2202 0.2202
0.34 0.2508 0.2504
0.37 0.282 0.26819
0.4 0.3238 -0.0348
0.5 0.5 -0.1853 i -3504.7

Table 1. Here we compere the results from the numerical approach via the monodromy matrix
against the recursion relation results applied for a(Λ). As is expected for small Λ they are in
agreement.

0.1 0.2 0.3 0.4
Λ

-0.1

0.1

0.2

0.3

0.4

0.5

a(Λ)

Figure 3. The black dashed line is the a cycle derived with the recursion relation until ten
instantons for p = 0.17, the blue (cyan) line is the real (imaginary) part of the A-cycle derived
with (3.24).

We can find analytically the large Λ asymptotic behavior of a from known results
of (ODE/IM) correspondence [35, 36]. In this context two linearly independent solution
U0(x,Λ) and V0(x,Λ) of Mathieu equation (3.18), uniquely specified by their behavior:

for x → ∞ U0(x) ∼
√

1
u
e−u where u = 2Λe

x
2

for x → −∞ V0(x) ∼
√

1
v
e−v where v = 2Λe−

x
2

are considered. In [29, 38] it was shown that one can define a Baxter’s X(θ) as the
Wronskian of these two solutions (up to a p independent factor it coincides with the spectral
determinant of Mathieu operator)

X(θ) = W [V0(x, θ), U0(x, θ)] (3.26)

satisfying the functional relations

X

(
θ + iπ

2

)
X

(
θ − iπ

2

)
= 1 +X2(θ) , (3.27)

T (θ)X(θ) = X

(
θ + iπ

2

)
+X

(
θ − iπ

2

)
. (3.28)
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Λ cos 2πa asymptotics cos 2πa for p = 0.17 r for p = 0.17 r for p = 2
0.1 2.6471 0.9562 2.7683 1.3237
9 2.1446× 1013 2.1536× 1013 0.9958 1.4011
13 2.7087× 1019 2.6793× 1019 1.0109 2.2280
25 −1.2382× 1037 −1.2321× 1037 1.0049 1.3694
50 7.5854× 1073 7.5668× 1073 1.0025 1.1397
100 2.7545× 10147 2.7517× 10147 1.0011 1.0473

Table 2. Here the large asymptotic behavior (3.32) for the A-cycle is checked through numerical
calculations. The ratio of the asymptotic and numerical values of cos 2πa is denoted by r. It
approaches to 1 for large instanton counting parameter.

Here T (θ) is an entire function and

Λ =
Γ2
(

1
4

)
16
√
π
eθ. (3.29)

The specific choice of prefactor in (3.29) ensures a simple form of large θ asymptotic
behavior for X:

X(θ) ∼ exp
(
−π2 e

θ
)

= exp

−8π3/2Λ
Γ2
(

1
4

)
 , (3.30)

valid inside the strip |Imθ| < π. It was conjectured that the Floquet exponent µ of Mathieu
equation is connected to T (θ) as

T = 2 cos (2πµ) . (3.31)

In [41, 42] it was noticed that the Floquet exponent in the context of N = 2 SYM coincides
with the A-cycle period a.

We can find the asymptomatic behavior for a(Λ) straightforwardly by inserting (3.30)
into (3.28) and taking into account (3.31), the result is

cos (2πa) ∼ exp

8π3/2Λ
Γ2
(

1
4

)
 cos

8π3/2Λ
Γ2
(

1
4

)
 , (3.32)

valid inside the strip | arg Λ| < π.
Though a is not a single valued function of q nevertheless cos(2πa) behaves much

better since T is an entire function.
These behavior is in agreement with the numerical results as presented in the table 2,

where r is the ratio of the asymptotic and numerical values of cos 2πa. Figure 4 demon-
strates that cos(2πa) is quite regular in the interval 0 ≤ Λ ≤ 14, which includes the branch
point of a depicted in figure 3. As one can see from (3.32) large Λ asymptotic behavior is
independent of p, nevertheless the smaller p is, the faster the asymptotic region is reached.
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0.5 1.0 1.5 2.0
Λ

500

1000

1500

2 cos(2π a)

13.2 13.4 13.6 13.8 14.0
Λ

-8×1020

-6×1020

-4×1020

-2×1020

2 cos(2π a)

Figure 4. The graphics present the dependence of 2 cos(2πa) on Λ. The blue is for p = 0.1, cyan
for p = 0.2, gray for p = 0.5 and purple dashed for p = 2. The black dotted line is the asymptotic
curve given by (3.32). Notice that in the second picture Λ reaches 14 corresponding to q = 38416.

4 SU(2) SYM with hypermultiplets

In this section we are going to obtain a recursion relation for the A-cycle in the presence
of several hypermultiplets. We will generalize the numerical approach using the differen-
tial equation for one fundamental hypermultiplet and demonstrate that the results are in
agreement with the recursion relation.

From (2.10) we see

y(a) = PNf
(a)−

QNf
(a)

y(a−1) , y(a− 1) = PNf
(a− 1)−

QNf
(a−1)

y(a−2) , . . . . (4.1)

So that

y(a) = PNf
(a)−

QNf
(a)

PNf
(a− 1)−

QNf
(a− 1)

PNf
(a− 2)−

QNf
(a− 2)

PNf
(a− 3)− . . .

. (4.2)

Again from (2.10) we observe that

y(a) =
QNf

(a+1)
PNf

(a+1)−y(a+1) , y(a+ 1) =
QNf

(a+2)
PNf

(a+2)−y(a+2) , . . . , (4.3)

hence

y(a) =
QNf

(a+ 1)

PNf
(a+ 1)−

QNf
(a+ 2)

PNf
(a+ 2)−

QNf
(a+ 3)

PNf
(a+ 3)− . . .

. (4.4)

By taking the difference of (4.2) and (4.4) we will obtain our final recursion relation for
the A-cycle (or alternatively p2) for arbitrary number of flavors

PNf
(a)−

QNf
(a)

PNf
(a− 1)−

QNf
(a− 1)

PNf
(a− 2)− . . .

−
QNf

(a+ 1)

PNf
(a+ 1)−

QNf
(a+ 2)

PNf
(a+ 2)− . . .

= 0 , (4.5)
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where PNf
and QNf

for arbitrary Nf can be found in appendix A and like in the pure
case the equality holds in the sense of power expansion in q. Below we do some explicit
demonstration of these approach for four hypermultiplets.

The recursion (4.5) in one instanton order is

P4(a)− Q4(a)
P4(a− 1) −

Q4(a+ 1)
P4(a+ 1) +O

(
q2
)

= 0 , (4.6)

where P4 and Q4 are given in (2.12) and (2.11) respectively. After inserting

a = a0 + a1q +O
(
q2
)

(4.7)

one gets two equations which determine a0 and a1 uniquely. Here is the result

a = p+ −2
(
p4 + s4

)
+ p2 (s1 − 2s2) + s3

8p3 − 2p q +O
(
q2
)
. (4.8)

Results for two instantons can be found in appendix B. Alternatively we could considered

p2 = v0 + v1 +O
(
q2
)

(4.9)

leading to

p2 = a2 − −2
(
a4 + s4

)
+ a2 (s1 − 2s2) + s3
4a2 − 1 q +O

(
q2
)
. (4.10)

To carry out computations for less number of flavors one should use coefficients (A.2)–(A.6).
Notice also that due to the AGT duality the four point conformal block in 2d CFT

is related to the instanton partition function with four hypermultiplets. This allows us
to derive the heavy conformal block directly from recursions relation, as demonstrated in
section 5.

4.1 Numerical method via the monodromy matrix when Nf = 1

We shall generalize the method explored in subsection 3.3 for the cases with one hyper-
multiplet. Here instead of the Mathieu equation we have

ψ′′(x)− Λ2
1

(
e2x + m

Λ1
ex + e−x

)
ψ(x)− p2ψ(x) = 0 . (4.11)

Once again, we have two solutions such that

ψ1(0) = 1 , ψ′1(0) = 0 , (4.12)
ψ2(0) = 0 , ψ′2(0) = 1 .

Notice that their Wronskian is W [ψ1(x), ψ2(x)] = 1. The monodromy matrix M as in
Mathieu case is defined by

ψn(x+ 2πi) =
2∑

k=1
ψk(x)Mkn . (4.13)
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0.1 0.2 0.3 0.4
Λ1

0.5

1.0

a(Λ1)

Figure 5. The black dashed line is the a cycle derived with the recursion relation until five
instanton for p = 0.17, m = 0.7, the blue line is the real part of the A-cycle and the cyan is its
imaginary part derived with (4.16).

Now it is easy to check that W [ψ1(2πi), ψ2(2πi)] = detMkn = µ1µ2 , where µ1 and µ2 are
the eigenvalues of Mkn. So, taking into account that the Wronskian does not depend on x
we conclude that

µ1µ2 = 1 . (4.14)

It follows from (E.3) that (4.11) admits a quasiperiodic solution

ψ+(x+ 2πi) = e2πiaψ+(x) . (4.15)

Hence one of the eigenvalues of M is e2πia but due to (4.14) the remaining eigenvalue must
be e−2πia. Consequentially as in Mathieu case

trM = 2 cos(2πa) (4.16)

and we can derive A-cycle numerically.
To summarize for fixed values of Λ1, p and m we can numerically solve the differential

equation (4.11) along the imaginary axis and find ψi(2πi) and ψ′i(2πi), i = 1, 2. As in the
pure case we obtain the monodromy matrix (4.13) which with the help of (4.16) allows to
derive a. Figure 5 demonstrates that numerical results derived with the instanton series
(obtained through our recursion method) is in agreement with this numerical approach.

Notice that the above numerical approach based on differential equations can be suc-
cessfully applied also for the cases with more hypermultiplets as well as in quiver theories
and theories with higher rank gauge groups. The differential equations for these cases can
be found in [43, 44].

5 The recursion relation for the conformal block

In this section we will demonstrate how to use our recursion (4.5) to derive the conformal
block. According to AGT conjecture [7] the instanton partition function with Nf = 4
antifundamental hypermultiplets is related to the generic 4-point conformal block B as

Z
(4)
inst(a,mi, q) = x∆1+∆2−∆(1− x)2(λ2+ Q

2 )(λ3+ Q
2 )B(∆,∆i, x), (5.1)
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where ∆i, i = 1, 2, 3, 4 are the dimensions of external (primary) fields (placed at the points
0, x, 1 and ∞ respectively) and ∆ is the internal dimension parameterized as

∆i = Q2

4 − λ
2
i , ∆ = Q2

4 − α
2 . (5.2)

Q = b+ 1/b is related to the central charge of the Virasoro algebra through

c = 1− 6Q2. (5.3)

To define the heavy asymptotic limit let us introduce new parameters ηi and η by

λi = ηi
b
, α = η

b
(5.4)

and assume that in b → 0 limit ηi and η are kept fixed. In this limit the conformal block
B is conveniently represented as

B(∆,∆i, x) = e
1

b2 f(η,ηi,x) (5.5)

where the function f(η, ηi, x) has a finite limit at b→ 0.
AGT maps the instanton counting parameter q to the cross ratio x of insertion points

in CFT block. The background charge parameter b is related to the Ω background param-
eters by

b =
√
ε2
ε1
, (5.6)

the masses of anti-fundamental hypermultiplet mi are related to the CFT parameters as

m1√
ε1ε2

=
(
λ1 + λ2 + Q

2

)
,

m2√
ε1ε2

=
(
λ2 − λ1 + Q

2

)
, (5.7)

m3√
ε1ε2

=
(
λ3 + λ4 + Q

2

)
,

m4√
ε1ε2

=
(
λ3 − λ4 + Q

2

)
(5.8)

and finally the expectation value a is related to the internal conformal dimension through
a
√
ε1ε2

= α . (5.9)

Thus from (5.9) and (5.6) in heavy limit we get
a

ε1
= η (5.10)

and similarly from (5.7) and (5.4)

m1
ε1

=
(
η1 + η2 + 1

2

)
,
m2
ε1

=
(
η2 − η1 + 1

2

)
, (5.11)

m3
ε1

=
(
η3 + η4 + 1

2

)
,
m4
ε1

=
(
η3 − η4 + 1

2

)
. (5.12)

From (2.4) and (5.1) we see that
Finst
ε2

1
=
(
η2

1 + η2
2 − η2 − 1

4
)

log x− 2
(
η2 + 1

2
) (
η3 + 1

2
)

log(1− x)− f(η, ηi, x) . (5.13)
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With the recursion relation (4.5)6 we can derive u as a series in instanton counting pa-
rameter q (see (4.10)) which can be inserted in the formula (2.5) allowing us to obtain
∂Finst
∂q . Integrating the result with respect to q (integration constant is fixed from condition

finst → 0 when q → 0) we can apply (5.13) and restore f as a series in cross ratio x. The
result is

f(η, ηi, x) =
(
η2

1 + η2
2 − η2 − 1

4

)
log x− (4η2+4η2

2−4η2
1−1)(4η2+4η2

3−4η2
4−1)

8(4η2−1) x+ . . . , (5.14)

which is in agreement with known results in literature (for a recent paper see [45]). The
second order calculation can be inferred from (C.14).
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A PNf
and QNf

for less then four flavors

It is obvious from the expressions of Q4(z) and P4(z) above that they are invariant under the
exchange of the masses. From here we can obtain the cases with less flavors by renormalizing
the instanton coupling and sending some of the masses to infinity. To get the Nf = 0 case
from (2.11) and (2.12) we must simultaneously m1 → µ, . . . ,m4 → µ, q → q

µ4 and µ→∞

P0(z) = z2 − p2 , Q0(z) = q . (A.1)

The procedure is similar for higher flavors:

• For Nf = 1 mi → µ, i = 1, 2, 3, q → q
µ3 and then µ→∞

P1(z) = z2 − p2 , (A.2)
Q1(z) = q (m4 + z − 1) . (A.3)

• For Nf = 2 mi → µ, i = 1, 2 q → q
µ2 and then µ→∞

P2(z) = z2 − p2 + q , (A.4)
Q2(z) = q (m3 + z − 1) (m4 + z − 1) . (A.5)

• For Nf = 3 m1 → µ q → q
µ and then µ→∞

P3(z) = z2 − p2 + q(z − 1) + (m2 +m3 +m4) q , (A.6)
Q3(z) = q (m2 + z − 1) (m3 + z − 1) (m4 + z − 1) . (A.7)

6Of course the ε dependence should be recovered.
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B A-cycle derivation for pure SYM

B.1 A-cycle derivation with the SW differential

We will derive the A-cycle from the formula (2.20) for pure SYM

a =
∮
CA

dz

2πiz∂z log y(z) , (B.1)

where the contour CA contains half of the poles in SW differential to be specified below.
Let us write y(z) as a series in q

y(z) = z2 − p2 + qy1(z) + q2y2(z) +O(q)3 (B.2)

after inserting this in (3.1) we will get

y1(z) = 1
p2 − (z − 1)2 ; y2(z) = 1

(p2 − (z − 2)2) (p2 − (z − 1)2)2 . (B.3)

From here and (B.2) by direct computation we obtain

z∂z log y(z) = 2z2

z2−p2 + q

(
2z2

(z2−p2)2 ((z−1)2−p2)
+ 2z(z−1)

(z2−p2) ((z−1)2−p2)2

)
+ (B.4)

+q2
(

2z2

(p2−(z−1)2)2 (z2−p2)3 + 2z(1−z)
(p2−(z−1)2)3 (z2−p2)2 −

− 2z2

(p2−(z−1)2)2 (p2−(z−2)2) (z2−p2)2 +

+ 4(z−1)z
(p2−(z−1)2)3 (p2−(z−2)2) (z2−p2)

+ 2(z−2)z
(p2−(z−1)2)2 (p2−(z−2)2)2 (z2−p2)

)
+O

(
q3) .

To derive the A-cycle we need to insert the last result in (B.1) and perform integration.
From the above expression we observe that the poles of it are located at:

q0 : ±p
q1 : ±p, ±p+ 1
q2 : ±p, ±p+ 1, ±p+ 2

The contour CA encloses all the poles where p appears with plus sign (the alternative choice
with minus signs would give −a instead). The final result is (3.17).

B.2 A cycle period for pure SYM via instanton counting

We can derive u by using (2.1) together with (2.3). The result is

Zinst = 1 + 2q
ε1ε2(−2a+ε1+ε2)(2a+ε1+ε2) + (B.5)

+ q2(−8a2+8ε21+8ε22+17ε1ε2)
ε21ε

2
2(−2a+ε1+ε2)(2a+ε1+ε2)(−2a+2ε1+ε2)(2(a+ε1)+ε2)(−2a+ε1+2ε2)(2(a+ε2)+ε1) +O

(
q3) .
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After inserting this in (2.4) we will obtain

Finst(a, ε, q) = 2q
4a2 − ε2

+ q2 (20a2 + 7ε2
)

4 (a2 − ε2) (4a2 − ε2)3 +O
(
q3
)
. (B.6)

Thus from (2.5) we will get

u = 2a2 + 4q
4a2 − ε2

+ q2 (20a2 + 7ε2
)

(a2 − ε2) (4a2 − ε2)3 +O
(
q3
)
. (B.7)

This coincides with (3.14) after setting ε = 1. By inverting this series we will arrive
at (3.17).

C Two instanton expressions for the A cycle period with Nf = 4, 3, 2, 1
flavors

In this section we perform two instanton computations using our recursion relation (4.5).
In two instanton approximation we have

0 = PNf
(a)−

QNf
(a)

PNf
(a− 1)−

QNf
(a− 1)

PNf
(a− 2)

−
QNf

(a+ 1)

PNf
(a+ 1)−

QNf
(a+ 2)

PNf
(a+ 2)

+O
(
q3) . (C.1)

Using (2.11), (2.12) (or (A.2)–(A.6) for the cases with less number of flavors) and inserting
the expansion

a = a0 + a1q + a2q
2 +O

(
q3
)

(C.2)

into (C.1) we’ll find equations, uniquely specifying the coefficients a0, a1 and a2. Here are
the results:
• For Nf = 1

a = p+ (1−2m4)q
8p3−2p + q2(−2(m4−1)m4(60p4−35p2+2)+24p6−42p4+19p2−1)

8p3(p2−1)(4p2−1)3 +O
(
q3) , (C.3)

p2 = a2 + (1−2m4)q
1−4a2 + q2(−12a4+(20a2+7)(m4−1)m4+11a2+1)

2(a2−1)(4a2−1)3 +O
(
q3) , (C.4)

• For Nf = 2

a = p+ s1 − 2
(
p2 + s2

)
8p3 − 2p q + A2

8p3 (p2 − 1) (4p2 − 1)3 q
2 +O

(
q3
)
, (C.5)

p2 = a2 + 2
(
a2 + s2

)
− s1

4a2 − 1 q + p2

2 (a2 − 1) (4a2 − 1)3 q
2 +O

(
q3
)
, (C.6)

where

A2 = 2s1
(
(p− 1)(p+ 1)

(
12p2 + 1

)
p2 +

(
60p4 − 35p2 + 2

)
s2
)
− (C.7)

−2
(
p2 + s2

) (
(p− 1)(p+ 1)

(
12p2 + 1

)
p2 +

(
60p4 − 35p2 + 2

)
s2
)

+

+
(
24p6 − 42p4 + 19p2 − 1

)
s2

1 ,

p2 =
(
20a2 + 7

)
s2

2 +
(
a2 − 1

) (
a2
(
4a2 − 5

)
−
(
12a2 + 1

)
(s1 − 1) s1

)
+ (C.8)

+s2
(
24a4 −

(
20a2 + 7

)
s1 − 2a2 + 5

)
,
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where s1 and s2 are elementary symmetric polynomials in m3 and m4 (i.e. s1 = m3 + m4
and s2 = m3m4).

• For Nf = 3

a = p+ −2p2s1 + p2 + s2 − 2s3
8p3 − 2p q + A2

8p3 (p2 − 1) (4p2 − 1)3 q
2 +O

(
q3
)
, (C.9)

p2 = a2 + −2a2s1 + a2 + s2 − 2s3
1− 4a2 q + p2

2 (a2 − 1) (4a2 − 1)3 q
2 +O

(
q3
)
, (C.10)

where
A2 = 2p2s1

(
(p− 1)(p+ 1)

(
12p2 + 1

) (
p2 + s2

)
+
(
−72p4 + 46p2 − 1

)
s3
)
−

−2
(
60p4 − 35p2 + 2

)
s2

3 + 2
(
60p4 − 35p2 + 2

)
s3
(
p2 + s2

)
+
(
−24p8 + 22p6 + 2p4) s2

1 −
−(p− 1)(p+ 1)

(
p2 + s2

) (
8p6 + 2p4 + p2 +

(
−24p4 + 18p2 − 1

)
s2
)
, (C.11)

p2 =
(
20a2 + 7

)
s2

3 +
(
a2 − 1

)
a2 (4a4 +

(
4a2 − 5

)
(s1 − 1) s1 − a2 − 1

)
+

+
(
−12a4 + 11a2 + 1

)
s2

2 −
(
a2 − 1

)
s2
(
8a4 −

(
12a2 + 1

)
s1 + 2a2 + 1

)
+ (C.12)

+s3
(
−36a4 −

(
20a2 + 7

)
s2 + 13a2 +

(
24a4 − 2a2 + 5

)
s1 − 4

)
.

In this case s1, s2 and s3 are the elementary symmetric polynomials in m1, m2 and m3
(i.e. s1 = m1 +m2 +m3, s2 = m1m2 +m1m3 +m2m3, s3 = m1m2m3).

• For Nf = 4

a = p+
−2
(
p4 + s4

)
+ p2 (s1 − 2s2) + s3

8p3 − 2p q + A2

8p3 (p2 − 1) (4p2 − 1)3 q
2 +O

(
q3) , (C.13)

p2 = a2 −
−2
(
a4 + s4

)
+ a2 (s1 − 2s2) + s3

4a2 − 1 q + p2

2 (a2 − 1) (4a2 − 1)3 q
2 +O

(
q3) , (C.14)

where
A2 = 2p2s1

((
p2 − 1

)
p2 (28p4 +

(
12p2 + 1

)
s2 + 2

(
4p2 − 5

)
s3 − 7p2 + 1

)
+
(
60p4 − 35p2 + 2

)
s4
)

−
−2
(
60p4 − 35p2 + 2

)
s2

4 + (p− 1)(p+ 1)
(
−2p4 (p2 + s2

) (
28p4 +

(
12p2 + 1

)
s2 − 7p2 + 1

)
+

+2p2s3
(
28p4 +

(
12p2 + 1

)
s2 − 7p2 + 1

)
+
(
24p4 − 18p2 + 1

)
s2

3
)

− 2s4
((

−60p4 + 35p2 − 2
)
s3+

+p2 (88p6 − 70p4 + 10p2 +
(
72p4 − 46p2 + 1

)
s2 − 1

))
+
(
−8p10 + 6p8 + p6 + p4) s2

1

p2 =
(
20a2 + 7

)
s2

4 +
(
a2 − 1

) (
−
(
12a2 + 1

)
s2

3 + a2 (a2 + s2
) (

52a4 +
(
4a2 − 5

)
s2 − 21a2 + 1

)
+

+s3
(
−20a4 +

(
12a2 + 1

)
s2 + 13a2 − 1

))
+
(
4a8 − 5a6 + a2) s2

1 + s1
((

−36a4 + 13a2 − 4
)
s4−

−
(
a2 − 1

) (
36a6 − 17a4 +

(
4a2 − 5

)
a2s2 + a2 +

(
8a4 + 2a2 + 1

)
s3
))

+
+s4

(
72a6 − 66a4 −

(
20a2 + 7

)
s3 + 22a2 +

(
24a4 − 2a2 + 5

)
s2 − 1

)

D From the difference equation to the differential equation

In this section we will derive differential equations from the difference equation (2.8) with
the help of inverse Fourier transform:

f(x) =
∑

z∈Z+a
ex(z+1)Y (z) . (D.1)
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D.1 From the difference equation to Mathieu equation

According to (2.8), the difference equation for pure SYM (A.1) is

Y (z + 1) + qY (z − 1)−
(
(z + 1)2 − p2

)
Y (z) = 0 . (D.2)

By means of inverse Fourier transform (D.1) we can derive the following second order
differential equation

f ′′(x)−
(
qex + e−x + p2

)
f(x) = 0 . (D.3)

Shifting x by √q one immediately arrives at the Mathieu equation (3.18), where q = Λ4.

E The differential equation for Nf = 1

The cases with flavors are similar to the pure one. When Nf = 1 we have (A.2), so
that (2.8) becomes

Y (z + 1) + q(m4 + z)Y (z − 1)− ((z + 1)2 − p2)Y (z) = 0 . (E.1)

From this and (D.1) we obtain

f ′′(x)− qexf ′(x)−
(
qm4e

x + e−x + p2
)
f(x) = 0 . (E.2)

By taking

f(x) = e
qex

2 ψ(x) , (E.3)

it is straightforward to see that

ψ′′(x)−
(1

4q
2e2x +

(
m4 −

1
2

)
qex + e−x + p2

)
ψ(x) = 0 . (E.4)

Shifting x→ x− 2
3 ln(q/2) one gets

ψ′′(x)−
(
q

2

)2/3
(
e2x + 2

(
m4 −

1
2

)(
q

2

)−1/3
ex + e−x

)
ψ(x)− p2ψ(x) = 0 . (E.5)

Using the notations

m ≡ 2
(
m4 −

1
2

)
, Λ1 ≡

(
q

2

)1/3
, (E.6)

we will obtain (4.11).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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