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1 Introduction

One of the more phenomenologically interesting features of compactifications of heterotic
string theory is that they frequently exhibit textures of vanishing Yukawa couplings [1–16].
These are generically not associated to any known symmetry of the theory and appear to
be topological in nature. Ideally, one would like to study the physical Yukawa couplings
in discussing such an effect. Unfortunately, this would require the inclusion of normal-
ization considerations arising from the matter field Kähler potential and this object is
extremely difficult to compute. Some approximations to the Kähler potential do exist
in the literature [17–21], and its computation is the ultimate goals of much of the work
on numerical approaches to Ricci-flat metrics and gauge bundle connections on Calabi-
Yau manifolds [22–35]. Nevertheless, it is fair to say that there is still very little known
about the physically normalized Yukawa couplings. Despite this, the textures of vanishing
Yukawa couplings mentioned above can be observed by considering the Yukawa coupling
terms that appear in the four dimensional N = 1 superpotential. The goal of this paper is
to shed more light on the origins of this observed structure.
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Consider a compactification of heterotic string or M-theory which corresponds to a
vector bundle VX over a smooth Calabi-Yau threefold X. Matter fields in the heterotic
theory are in one to one correspondence with classes in the first cohomology groups valued
in certain associated bundles to VX . Such cohomology group elements can be represented
in terms of bundle valued 1-forms which we will denote as νi where i runs over the matter
fields of interest. The superpotential Yukawa coupling between three such fields is then
well known to be given by the following expression.

WYukawa =
∫
X

Ω ∧ tr (ν1 ∧ ν2 ∧ ν3) (1.1)

In this expression, Ω is the nowhere vanishing holomorphic 3-form and the trace denotes
the formation of a gauge singlet from the gauge indices on the 1-forms. Due to its quasi-
topological nature, the integral in (1.1) can be evaluated using any 1-forms which are
elements of the cohomology class associated to the matter fields of interest, with the same
result being obtained regardless of choice of element. In particular, harmonic bundle valued
1-forms need not be used.

The Yukawa coupling (1.1) can be equally well expressed in an algebraic manner. The
quantity tr (ν1 ∧ ν2 ∧ ν3) appearing in that formula is an element of H3(OX) and, given
that this cohomology is one dimensional, is therefore proportional to Ω. The constant of
proportionality that appears is the superpotential Yukawa coupling, up to some overall
normalization which is the same for all such interactions. Although all of the methods we
will describe in this paper generalize to other cases, we will restrict our considerations to
bundles VX with structure group SU(3). In such a case, then, the Yukawa coupling can be
simply presented as a mapping.

H1(VX)⊗H1(VX)⊗H1(VX)→ H3(∧3VX) ∼= H3(OX) ∼= C (1.2)

That is, the Yukawa coupling is a trilinear mapping (essentially a cup product composed
with an anti-symmetrization) which takes three copies of the cohomologies associated with
the families to a complex number. What has been observed in the literature is that the
expressions (1.1) and (1.2) frequently lead to vanishing couplings upon direct computation,
even in cases where no obvious symmetry is present that would forbid the associated term
in the superpotential (as just some examples of this see [1, 2, 12, 13, 36]).

There are two possibilities given the existence, and relative ubiquity [36], of such
vanishing Yukawa couplings. The first is that this truly is a topological effect and it is
indeed true that no associated symmetry is present. If this is the case then these textures
will survive to low energy scales, not as vanishing couplings but rather as hierarchies, with
those couplings that were present perturbatively at the compactification scale being large
relative to those that were not. This effect could be important in explaining features such
as the hierarchy in mass of the generations of the standard model, amongst others. Indeed,
many heterotic compactifications can be ruled out by such vanishing Yukawa couplings
making it impossible to obtain a sufficiently heavy top quark.

The second possibility is that these vanishings are secretly due to some symmetry,
and that, in some cases, that symmetry simply hasn’t been discovered yet. Indeed, in the
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relatively common case where a Yukawa coupling vanishes everywhere in complex structure
moduli space, this possibility fits the spirit, if not the letter, of some recent swampland
discussions [37]. A coupling between families vanishing everywhere in moduli space would
involve the vanishing of an infinite number of interaction terms in some sense. Specifically,
couplings between those three representations of the gauge group and all possible powers of
all of the complex structure moduli must vanish. Given this, reasoning such as that in [37],
might lead one to suspect that such vanishings should not occur without some underlying
cause related to symmetries. If this second possibility is indeed realized, then clearly
the identification of these mysterious symmetries is a priority in the theory of heterotic
compactifications.

Given the above general discussion, it is important to learn as much as possible about
the detailed structure of these vanishing Yukawa couplings and how they arise topologically.
Recently, a differential approach, based on (1.1), was used to explain the topological origin
of some vanishing Yukawa couplings [1, 2]. The authors of that work considered cases
where structures on the Calabi-Yau manifold descended nicely from related objects on a
larger ambient space in which the threefold was embedded. The presence of this structure
is what led to the vanishing of the Yukawa couplings. The current paper explains much of
the structure of those vanishing theorems in an algebraic setting using (1.2). In doing so,
we are also able to greatly generalize that work in several directions, removing restrictions
that are unavoidable in a differential approach. For example, we can deal with cases where
the bundle does not descend from an equivalent structure on an ambient space.

As was mentioned above, to illustrate the underlying structure that we wish to empha-
size, while minimizing technical complexity, we restrict our considerations in this paper to
SU(3) bundles VX . Analogous results can certainly be derived for other structure groups.
We then present a vanishing theorem on Yukawa couplings between the families of VX that
is rather generally phrased.

Consider a case where VX appears at the right hand end of an exact sequence of sheaves
(not necessarily vector bundles) of any length

. . .→ F2 → F1 → F0 → VX → 0 (1.3)

Then all of the elements of H1(VX) associated with the families of the associated four
dimensional effective theory descend from an element of H i(Fi−1) for some i. We call a
field type i when it is associated to an i’th cohomology group in this manner. Then we can
make the following statements.

• If H3(∧3F0) = 0 then all Yukawa couplings between three type 1 families vanish.

• If in addition H4(F1⊗∧2F0) = 0 then all Yukawa couplings between one type 2 and
two type 1 families also vanish.

A theorem such as this, which depends upon a set of cohomologies vanishing, may
not seem particularly generic, but in practice it is frequently extremely restrictive for the
types of examples that are considered in the physics literature. One reason for this is that
zeros in cohomology do frequently appear in examples. This is partially because, for an
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SU(3) bundle VX , h∗(∧3VX) = h∗(O). Therefore, sequences derived from (1.3) containing
∧3VX place strong constraints on the possible cohomology of combinations of the sheaves
Fi, simply due to the sparsity of the cohomology of the trivial bundle. Perhaps more
importantly, however, the vast majority of bundles VX considered in the physics literature
admit a plethora of different sequences of the form (1.3), any one of which has the potential
to constrain the Yukawa couplings.

To give an example of this, consider the case where the sequence (1.3) is taken to be
the Koszul sequence.

0→ ∧kN∨ ⊗ V → · · · → N∨ ⊗ V → V → VX → 0 (1.4)

Here the Calabi-Yau X has been taken to be described as a complete intersection of codi-
mension k in some ambient space A with normal bundle N . The bundle VX has been
taken to be the restriction of some sheaf1 V . First, the Calabi-Yau could be embedded
in many different ambient spaces, leading to many different possible descriptions of the
type (1.4) [1, 2]. Second, even for a given ambient space, the bundle VX could be obtained
by restricting many different sheaves V . In principle all of these possibilities could lead to
different constraints on the Yukawa couplings, and indeed in section 4 we will give concrete
examples where precisely this phenomenon occurs.

It should be emphasized that Koszul sequences are just one choice for (1.3), and many
other possibilities probably exist. Even just given all of the readily available resolutions of
the form (1.3) described in the previous paragraph, it is perhaps not surprising that when
Yukawa couplings are computed directly in examples in the literature, vanishings are often
discovered.

The rest of this paper is structured as follows. In section 2 we review the differential
geometric arguments of [1, 2] which explain the structure of vanishing Yukawa couplings
observed in some compactifications associated with a bundle VX descending from a bundle
on some ambient space. In section 3 we provide a more general, algebraic, analysis of
where vanishing Yukawa couplings can arise from, linking back to the case considered in
section 2 to illustrate our statements. Section 4 contains a number of different explicit
examples to which the results of section 3 are applied. These examples illustrate an array
of different compactification structures and show how different types of sequences of the
form (1.3) can interact in a single example to lead to highly constrained Yukawa couplings.
In section 5 we briefly discuss the relationship of our results to some other sources of
vanishing Yukawa couplings in heterotic compactifications. Finally, in section 6 we briefly
conclude our discussion.

2 Vanishing theorems from differential geometry

In this section we will review the basic argument of [1, 2]. We will focus here on the
situation where the Calabi-Yau threefold X is described as an anti-canonical hypersurface,
with defining relation p, in some ambient space A. A more general analysis was performed

1Subject to certain constraints that will be described in the main text.
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for the case of higher codimension in [2]. Given the similarity of the derivations, we will
only give details in codimension one and will simply content ourselves with a statement of
the result in the more general case.

The authors of [1, 2] consider the case where the bundle of interest VX is the restriction
of a bundle V on A. In fact, those authors restrict their attention to sums of line bundles,2
but their proof holds for arbitrary structure group. We will refer to a VX associated to
an ambient bundle in this way as being “ambiently defined”. They then take the bundle
valued 1-forms νi on X, corresponding to the matter fields of interest, to be the restriction
of bundle valued 1-forms ν̂i on A. Since, in the situation at hand, Ω can also be obtained as
the restriction of ambient space form Ω̂ one can manipulate the expression for the Yukawa
coupling (1.1) as follows

WYukawa =
∫
X

Ω ∧ tr (ν1 ∧ ν2 ∧ ν3) (2.1)

=
∫
A

Ω̂ ∧ tr(ν̂1 ∧ ν̂2 ∧ ν̂3) ∧ δ2(p)dp ∧ dp . (2.2)

Here the delta function with support over p has been introduced so that we can replace the
integral over X in (1.1) with one over the ambient space. Applying the Poincaré-Lelong
type identity

δ2(p)dp = 1
π
∂

(1
p

)
, (2.3)

we then arrive at the following expression

WYukawa =
∫
A

Ω̂ ∧ tr(ν̂1 ∧ ν̂2 ∧ ν̂3) ∧ dp ∧ 1
π
∂

(1
p

)
. (2.4)

At this stage an integration by parts can be performed. One might worry about potential
boundary terms in such a computation, but they have been shown to vanish in the detailed
analysis of [1, 2], and as such we will not mention them further here. Given this, (2.4)
becomes

WYukawa = − 1
π

∫
A

Ω̂ ∧ dp ∧ 1
p
∂ tr(ν̂1 ∧ ν̂2 ∧ ν̂3) . (2.5)

To simplify this expression further, we need a simple form for the ∂ν̂i. Consider the
Koszul sequence for the bundle of interest

0→ N∨ ⊗ V p−→ V
r−→ VX → 0 . (2.6)

Here, N is the normal bundle to X in A so that p ∈ H0(A,N ). The maps p and r in (2.6)
are given by the defining relation and restriction respectively. The form ∂ν̂i ∈ Ω2(V ) need
not be zero, i.e. ν̂i need not be an element of H1(A, V ). In fact, an examination of the long
exact sequence associated to (2.6) reveals that the forms ν̂i can be separated into the two

2A motivation to study such sums of line bundles is that they are often used in heterotic line bundle
standard model constructions. See, for example [38–50].
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following types. Either νi is associated with an element of H1(A, V ), which the authors
refer to as a type 1 field, or νi is associated with an element of H2(A,N∨ ⊗ V ), a type 2
field. In the former case ∂v̂i = 0. Therefore, we just need an expression for the form of ∂v̂i
in the type 2 case.

Consider r(∂ν̂i) in the type 2 case.3 We have that r(∂ν̂i) = ∂(r(ν̂i)) = ∂νi = 0. Thus
∂ν̂i is in the kernel of r. Exactness of (2.6) then tells us that this form is also in the image
of p. Thus we have that ∂ν̂i = pω̂i for some ω̂i ∈ Ω2(N∨⊗V ). In fact ω̂i is closed, as can be
seen from p∂ω̂i = ∂(pω̂) = ∂

2
ν̂i = 0 and the fact that p is injective. (The above steps are

exactly the derivation of the co-boundary map in the long exact sequence in cohomology
associated to (2.6).) Finally then, we obtain a simple expression for ∂v̂i in the type 2 case.
We have

∂ν̂i = pω̂i , (2.7)

where ω̂ ∈ H2(A,N∨ ⊗ V ).
The results of the proceeding paragraph can then be used to further analyse (2.5). In

particular, in the case where all of the fields in the coupling are of type 1, we have that
∂v̂i = 0 ∀i. In such a case, the ∂ tr(ν̂1 ∧ ν̂1 ∧ ν̂1) factor in (2.5) clearly gives zero, leading
to a vanishing Yukawa coupling. If at least one of the fields is of type 2, however, the
situation is different. Take the case where ν1 is of type 2 for example. Then we have,

WYukawa = − 1
π

∫
A

Ω̂ ∧ dp ∧ 1
p

tr(∂(ν̂1) ∧ ν̂2 ∧ ν̂3 + . . .) (2.8)

= − 1
π

∫
A

Ω̂ ∧ dp ∧ tr(ω̂1 ∧ ν̂2 ∧ ν̂3 + . . .) , (2.9)

which is a coupling that is not necessarily vanishing. In the codimension one case, then,
the authors of [1], find that all Yukawa couplings between three type 1 fields vanish. In [2]
the authors generalized this result, using a similar analysis, to arbitrary codimension. Let
us recapitulate these results here, but in a slightly more general form:
Vanishing Theorem 1. Given a bundle VX , on a complete intersection Calabi-Yau X,
that descends from a bundle V on the ambient space A, we can define a notion of ‘type’
for elements of H1(VX). Namely, we say that such a cohomology element has type τ = i if
it descends from an element of H i(A,∧i−1N∨ ⊗ V0). Then,

τ1 + τ2 + τ3 < dimA ⇒ λ123 = 0 , (2.10)

where λijk is the Yukawa coupling between the indicated fields.

It should be emphasized that the work of [1, 2] provides us with much more than
this vanishing theorem. For example, their formalism enables the holomorphic Yukawa
coupling to be computed as a function of the moduli of the problem. Nevertheless, in this
paper we will focus on generalizing Vanishing Theorem 1 to a wider range of situations,
in addition to comparing the textures caused by these types of vanishings to those arising
from different sources of zeros. To achieve this, we need to rephrase the derivation of the
vanishing result in algebraic terms.

3We are abusing notation somewhat here, in cases where it should not cause confusion, by using the
same symbols for maps between bundles and the maps that they induce on bundle valued forms.
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3 Vanishing theorems from algebraic geometry

The vanishings seen in the previous section can be rephrased in purely algebraic terms.
Such a reframing of this structure exhibited by the Yukawa couplings has both benefits and
drawbacks. We will be able to generalize the result Vanishing Theorem 1 to a very wide
range of situations. In particular, we will not be tied to the structure of Koszul sequences
and ambiently defined bundles, which are integral to the approach of the preceding section.
A disadvantage of the algebraic approach will be that it will not be obvious in many
situations how to practically obtain the moduli dependence of couplings being studied.

The constructions we will use in this section are standard within homological algebra.
In particular, these techniques are at the heart of how the cup product underlying the alge-
braic definition of the Yukawa coupling (1.2) is defined. That such technology is necessary
is hardly surprising given that our goal is essentially to understand sub-structure of such
cup products in various situations. However, this technology may be less familiar to some
readers with a physics background. As such we have tried to be somewhat pedagogical in
what follows, and the reader who does not wish to see the details of the derivations can
simply skip to the result which is presented in Vanishing Theorem 4. Readers interested
in a more comprehensive review of homological algebra are referred to [51].

3.1 Sequence chasing via homological algebra

We will start our algebraic rephrasing of Yukawa coupling vanishing theorems by repro-
ducing a very well known result using techniques of homological algebra. This will allow
us to define our notation, introduce some relevant mathematical tools, and describe the
objects that will replace the ambient space forms ν̂, which appeared in the discussion of
section 2, in this algebraic setting.

Consider a situation where VX admits a short exact left resolution, that is where it
appears as the right most object of a short exact sequence of sheaves

0→ F1 → F0 → VX → 0 . (3.1)

For example, if we wanted to make contact to the case considered in section 2, we could
use the Koszul sequence which arises if a bundle is ambiently defined in codimension one

0→ N∨ ⊗ V → V → VX → 0 . (3.2)

Note that although VX is a bundle on the Calabi-Yau threefold X, it is, in general, a sheaf
on the ambient space A where this sequence is defined. As such, it will be essential in
what follows that we consider the case where the sheaves appearing in our sequence (3.1)
are not necessarily locally free.

Given any exact sequence of sheaves such as (3.1) we can form a diagram as follows.

0 → 0 → VX → 0
↑ ↑

0 → F1 → F0 → 0
(3.3)
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Here we interpret the vertical maps between the two rows as forming a map between
complexes [F1 → F0] → [VX ].4 This map is a quasi-isomorphism of the complexes. That
is, just by using the exactness of (3.1), one can see that the homology of the top and bottom
sequences in (3.3) are isomorphic.

A right resolution of a sheaf F is some exact sequence that has the sheaf at the left
hand end

0→ F → V0 → V1 → V2 → . . . . (3.4)

This is commonly denoted simply by [F → V•]. The two types of right resolution we will
apply are injective resolutions and, what is in our context a special case of these, Godement
resolutions. Injective resolutions have a few key properties that we will use in what follows.
Firstly, every sheaf admits an injective resolution. Secondly, an injective resolution can
be used to define the cohomology of a sheaf. Writing [F → I•(F)] for the injective
resolution, the homology of the sequence of global sections [Γ(I•(F))] is the definition of
the cohomology H•(F) of the sheaf F . The last property of injective resolutions that we
will use involves the existence of maps into them — we will discuss this as and when we
need it.

If we have a map of complexes as in (3.3) we can apply various types of resolutions to
all of the sheaves that appear. This results in a three-dimensional grid of objects which
can be viewed as a map of bi-complexes. We can write

0 → 0 → G•(VX) → 0
↑ ↑

0 → G•(F1) → G•(F0) → 0
(3.5)

where, for later use, we have used Godement resolutions G — a special type of injective
resolution whose features will be useful later on. This three dimensional grid of sequences
can be viewed as a map between two two dimensional grids, or ‘bi-complexes’, in analogy
to the interpretation of (3.3). This can be denoted as [G•(F1) → G•(F0)] → [G•(VX)]
and the resulting map is a quasi-isomorphism at a constant level in the resolutions, that
is, at any given subscript on the G’s. This is because the Godement resolution preserves
exactness of short exact sequences, and so applying Gi to (3.1) gives a short exact sequence
that can be built into such a map of complexes, just as we did in going from (3.1) to (3.3).

The last piece of technical toolkit we will need in this subsection is the notion of taking
a total complex of a bi-complex such as [G•(F•)]. The total complex is a single complex
whose entries are Tot([G•(F•)])q = ⊕

i−j=q Gi(Fj),5 and whose maps are built out of the
maps in the original bi-complex in a specific manner. A crucial result in homological algebra
states that if a map between bi-complexes is a quasi-isomorphism in its rows, such as was
the case for the one in the preceding paragraph, then the induced morphism between the

4We will use a notation [X → Y → Z] for sequences where 0’s are understood to be attached to the left
and right and only non-zero entries are indicated.

5The minus sign appearing in this definition is a consequence of the resolutions G• and F• being of
different types (right and left respectively). If both of the sequences were of the same type, then the total
complex would be defined with a plus sign.
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associated total complexes is a quasi-isomorphism of complexes [51]. If we use this on the
morphism [G•(F1) → G•(F0)] → [G•(VX)], then we obtain a quasi-isomorphism between
the sequence

0→ G0(F1)→ G1(F1)⊕G0(F0)→ G2(F1)⊕G1(F0)→ G3(F1)⊕G2(F0)→ . . . (3.6)

and

0→ 0→ G0(VX)→ G1(VX)→ G2(VX)→ . . . (3.7)

If we compare the homology of the global sections of (3.6) and (3.7) we obtain expressions
for the cohomology H•(VX) in terms of structure appearing in (3.6).

To see how this works, consider the case of the Koszul sequence (3.2) where we have
F0 = V and F1 = N∨⊗V . In this case, comparing the cohomology of global sections of (3.6)
and (3.7) gives exactly the same answer as sequence chasing the long exact sequence in
cohomology associated to (3.2). Indeed, this is essentially one way that long exact sequence
can be derived. So, for example, comparing the homology of global sections at the third
entry (corresponding to q = 1) in (3.6) and (3.7) in this case one quickly finds that

H1(VX) = ker
{
H2(N∨ ⊗ V )→ H2(V )

}
⊕ coker

{
H1(N∨ ⊗ V )→ H1(V )

}
, (3.8)

which is exactly the result we were utilizing earlier in section 2.

3.1.1 Type and an ambiguity

We can now discuss in more detail what is meant by type in this language. The fact,
mentioned above, that Godement resolutions preserve exactness of short exact sequences
means that the vertical map [G•(F0)]→ [G•(VX)] on the right of (3.5) is surjective. There-
fore any section of G1(VX), including those which correspond to elements of H1(VX), has
some pre-image in the sections of G1(F0) (or G1(V ) if we are utilizing the Koszul resolu-
tion (3.2)). If the element of H1(VX) is type 1 then this pre-image will be associated to
an element of cohomology. If it is of type 2 then the preimage will not be associated to an
element of cohomology. Roughly speaking, the notion of the lifted form ν̂ in section 2 is
replaced, in algebraic language, by sections of G1(V ). Note that this form of ‘lifting’ works
for any resolution (3.1), not just the specific case (3.2).

It will be useful for the following sections of the paper to be a little more specific about
the form of sections of Godement sheaves that correspond to elements in the cohomologies
appearing in (3.8). Consider (w, v) ∈ Γ(G2(F1))⊕ Γ(G1(F0)), a section of the third entry
in (3.6), where w 6= 0. Under the map induced from the total sequence (3.6), this is
mapped to (dw, dv − f(w)) ∈ Γ(G3(F1))⊕ Γ(G2(F0)) (here d is the map associated to the
Godement sequence and f that associated to the resolution (3.1)). Therefore, for (w, v)
to be in the kernel of the map, we require that w is closed and that f(w) = dv. This
corresponds to an element of the kernel in (3.8). The remaining structure necessary to
correctly identify elements in the same cohomology class comes from the quotient of this
kernel in the total sequence by the appropriate image to form the homology. For later use
it will be important to note that this kind of type 2 element is therefore represented by
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a pair of sections of Godement sheaves. Indeed, the v ∈ Γ(G1(F0)) obeying dv = f(w) is
precisely the non-closed ‘lift’ associated to the element of H1(VX) being described, as was
discussed in the previous paragraph.

By contrast if w = 0 then (0, v) is mapped to (0, dv). This describes an element
of H1(V ) in the cokernel appearing in (3.8) with the quotienting associated to taking
homology leading to both the cokernel condition and the remaining structure required to
define the classes in the cohomology appearing in (3.8). Thus each element in a basis of
the cokernel in (3.8) can be written in terms of just a single section of a single Godement
sheaf, G1(F0), with no further structure.

An important consequence of the above discussion is that there is no such thing as a
“pure” type 2 field. We see this from the above description in that any closed section of
G1(F0) can be added to the v associated to a type 2 field and the condition f(w) = dv will
still be satisfied. In other words, there is an ambiguity in defining the type 2 field in this
language which corresponds exactly to adding an arbitrary type 1 degree of freedom.

Let us see where this ambiguity arises in an approach based upon chasing long exact
sequences in cohomology. Consider the following sequence.

H1(F1)→ H1(F0) f−→ H1(VX) δ−→ H2(F1)→ H2(F0) (3.9)

Type 1 fields are well defined. They are simply associated to elements of H1(VX) which are
in the image of f . One would like to define type 2 fields as those descending from H2(F1),
that is as elements of H1(VX) that are in the preimage of δ. This is ambiguous however.
The exactness of the sequence (3.9) implies that δ ◦ f = 0. Therefore if ν is an element of
the preimage under δ of some element of H2(F1) then so is ν + f(n) for any n ∈ H1(F0).
That is we can add an arbitrary cohomology element associated to a type 1 field to one
describing a type 2 field and get another type 2 degree of freedom. Clearly this is exactly
the same ambiguity that we observed in terms of Godement resolutions.

Fortunately, the ambiguity just described will not prevent us from deriving vanishing
theorems which hold however one chooses to resolve this ambiguity. In deriving these
theorems, however, it will be important to be aware of this issue.

3.2 Cup products and vanishing theorems via homological algebra

Having established how one would describe type in an algebraic setting, and having intro-
duced a few basic technical tools, let us proceed to apply some of the standard discussion
from the mathematics literature concerning how one would go about computing the triple
product corresponding to the Yukawa coupling. In this subsection we will continue to focus
on the case where the resolution (3.1) is short exact. We will generalize away from this
restriction in the next subsection.

It is possible to write the following commutative diagram where the vertical maps are
quasi-isomorphisms.

Tot[VX ]⊗3 → ∧3[VX ]
↑ ↑

Tot[F1 → F0]⊗3 → ∧3[F1 → F0]
(3.10)
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This diagram deserves some explanation. In forming a grid of sequences involving tensor
products of the objects in [F1 → F0 → VX ] we must be cautious. In general, the objects in
this resolution are sheaves, not vector bundles, so the tensor product operation does not
preserve short exactness of the sequences involved. The tensor product operation is right
exact, however (the relevant left derived functor being Tor). Thus we can construct what
are called third quadrant bi-complexes such as the following.

0 0
↑ ↑

→ F1 ⊗F0 → F0 ⊗F0 → 0
↑ ↑

→ F1 ⊗F1 → F0 ⊗F1 → 0
↑ ↑

(3.11)

All of the rows and columns in this grid of sequences are exact, except in their final entry.
Indeed we can construct a three dimensional grid of sequences analogously. There is an
associated, possibly infinite, total sequence associated to such grids which terminates on
the right (we say it is ‘bounded above’). From an appropriate definition of the maps in such
a total complex, in terms of the maps appearing in the complexes in grids such as (3.11),
one can show that this total complex is exact, except at the last entry. It is this complex
which is denoted by Tot[F1 → F0]⊗3 in (3.10). There exists a quasi-isomorphism between
this complex and Tot[VX ]⊗3, which is the left hand vertical map in (3.10). This can be
straightforwardly proven by showing that the relevant mapping cone is acyclic, see [51] for
details. Finally, one can apply anti-symmetrization of an appropriate type to these objects
to obtain the rest of the diagram (see for example [14]).

In fact the right hand map of (3.10) resembles something which is used in the liter-
ature on heterotic compactifications routinely. Consider the exterior power sequence [52]
associated to (3.1)

. . .→ F1 ⊗ ∧2F0 → ∧3F0 → ∧3VX → 0 . (3.12)

This sequence is somewhat different to that associated to short exact sequences of bundles,
for example as used in describing the spectra of monad bundles (see [53] for a review), in
that it does not terminate on the left. Nevertheless, (3.12) can be turned into a quasi-
isomorphism of complexes in exactly the same way that we turned (3.1) into (3.3). The
resulting quasi-isomorphism is the right hand map in (3.10).

Given the diagram (3.10) we can produce the following commutative diagram of bi-
complexes.

tot[G•(VX)]⊗3 → [I•(∧3VX)]
↑ ↑

tot[G•(F1)→ G•(F0)]⊗3 → [I•(∧3[F1 → F0])]
(3.13)

Here the two quantities on the left are partial total complexes, hence the use of ‘tot’
rather than ‘Tot’. By this we simply mean that (tot[G•(VX)]⊗3)i = ⊕

i=j+l+lGj(VX) ⊗
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Gk(VX) ⊗ Gl(VX) where the rest of the top left bi-complex is filled out with zeros and in
tot[G•(F1)→ G•(F0)]⊗3 we take the total complex on the G indices and F indices sep-
arately. That we can write the left hand side of the square in (3.13) is guaranteed by a
property called ‘Universal Exactness’ of the Godement resolution (see [14] for a descrip-
tion appearing in the physics literature). The remaining three maps have their existence
guaranteed by the existence of (3.10) and the properties of injective resolutions ([54], propo-
sition 1.1.15).

The diagram (3.13) is the algebraic structure associated to computing the Yukawa cou-
pling. The top right hand corner is an injective resolution of ∧3VX = OX . The homology
of global sections of this resolution is the definition of the sheaf cohomology of the trivial
bundle. Thus the third such entry is the copy of C in which the Yukawa coupling between a
given set of matter fields, as in (1.2), resides. The top left of (3.13) is a combination of three
copies of Godement resolutions of VX . Thus it describes (upon considering homologies of
global sections of the sheaves involved) a combination of three copies of the cohomology
VX . The top map in the diagram then contains the structure necessary to compute the
Yukawa coupling, that is it contains all of the necessary information about the map (1.2).
The remainder of the commutative diagram (3.13) describes the structure that is imposed
on this map by the existence of the resolution (3.1). Roughly speaking, the left hand side
of the diagram describes how the cohomology of VX is described in terms of cohomology
of the sheaves F , that is in terms of ambient space objects in the case that we consider
a Koszul resolution such as (3.2). It essentially encodes the sequence chasing of the long
exact sequence associated to (3.1), or (3.2) in the Koszul special case. This is mapped
along the bottom of the diagram to the anti-symmetrized product of the objects involved,
which then maps to the Yukawa coupling in the top right again due to the exactness of the
exterior power sequence and the properties of the resolutions involved.

Having gained (3.13) we now wish to use it to understand where vanishing theorems
such as Vanishing Theorem 1 come from using a purely algebraic point of view. To see
this it is instructive to write out the right hand side map of (3.13) a little more explicitly.
We have

. . . → 0 → I•(∧3VX) → 0
↑ ↑

. . . → I•(F1 ⊗ ∧2F0) → I•(∧3F0) → 0
(3.14)

What we see from this diagram is that all of the non-trivial maps into I•(∧3VX) come
through I•(∧3F0). Therefore, if one were to construct the maps explicitly between the
total complexes of the bi-complexes appearing in (3.13), and from there determine the
maps between the cohomologies of the objects involved, then these would all be constructed
following such a path.

Consider computing a (type 1)3 coupling in the language of section 2. Any element
of H1(VX) will be associated with a section of G1(F0) according to (3.5). As mentioned
in the preceding subsection, a field of type 1 will be associated to a section that is in the
cohomology of the sequence Γ(G•(F0)) (that is, Γ(G•(V )) in the case that (3.1) is taken
to be the Koszul sequence (3.2)). It is not hard to show that taking a tensor product
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of three such elements and following them along the bottom map in the diagram (3.13)
leads to an element α ∈ Γ(I3(∧3F0)) which is in the cohomology of the Γ(I•(∧3F0))
sequence.6 In some cases this cohomology will vanish. For example, if we are using the
Koszul sequence (3.2), then H3(∧3F0) = H3(∧3V ) = 0 because we are restricting ourselves
to the case of SU(3) bundles in this paper for simplicity. In such a case, the element
α ∈ Γ(I3(∧3F0)) is the image of an element β ∈ Γ(I2(∧3F0)). Using the commutativity of
the following piece of the previous diagram (which still holds once we take global sections),

I2(∧3F0) → I2(∧3VX)
↓ ↓

I3(∧3F0) → I3(∧3VX)
(3.15)

we then see that the element which α maps to in Γ(I3(∧3VX)) is the image of some element
in Γ(I2(∧3VX)). Thus any such global section in Γ(I3(∧3VX)) which is a cohomology
element is the zero element in cohomology. Thus the Yukawa coupling vanishes.

In the case of other couplings, we see no such restriction. For example, a (type 2)3

coupling is formed, in part, by mapping sections of G1(F0) (that is G1(V ) in the Koszul
case) which are not in the cohomology of Γ(G•(F0)) (respectively Γ(G•(V ))). This means
that they do not map to an element α ∈ Γ(I3(∧3F0)) which is in the cohomology of the
sequence Γ(I•(∧3F0)) and the same logic as above does not hold.

It is useful to note how closely this argument mimics the less abstract discussion of
section 2. We have a notion of type with sections of G1(F0) replacing the forms ν̂ of the
more concrete argument. We then find a type selection rule on Yukawa couplings which
is the exact analogue of (2.10) from the algebraic approach. The only additional piece of
information that goes into either computation, beyond the existence of a resolution such
as (3.1), is the fact that H3(∧3F0) = 0. This is used explicitly above, and in the argument
of section 2 it is used implicitly when it is stated that H3(∧3VX) = H4(N∨).

Finally, therefore, by abstracting the algebraic structure of Vanishing Theorem 1 we
can now easily generalize its codimension one formulation as follows.

Vanishing Theorem 2. Given any short exact sequence,

0→ F1 → F0 → VX → 0 , (3.16)

we can define a notion of ‘type’ for elements of H1(VX). Namely, we say that such a
cohomology element has type τ = 1 if it descends from an element of H1(F0) and type τ = 2
if it descends from an element of H2(F1). Then, if H3(∧3F0) = 0, a Yukawa coupling will
vanish unless the sum of the types of the cohomology elements involved is greater than or
equal to the length of the resolution (3.16) plus three (in this case greater than or equal
to four). Denoting the types of the matter fields of interest by τi with i = 1, . . . , 3, and
denoting the length of the resolution (3.16) by L (= 1 in this case), we have the following

τ1 + τ2 + τ3 < L+ 3⇒ λ123 = 0 . (3.17)
6To see this one uses that the maps in the Godement resolution directions in the bottom left complex

of (3.13) are given by a Liebniz type rule up to sign (see [14] for details), together with the defining properties
of a map of bi-complexes as applied to the morphism in the lower row of (3.13).
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In stating the above we have used conventions that make the relation between (3.17)
and (2.10) most apparent. The historical definition of type is, however, rather unfortunate
given the structure we see in the current discussion. It would be more natural to label
types 1 and 2 as 0 and 1 respectively. That is, we would label the type of a field associated
to a cohomology element in H•(Fi) as i. Then, (3.17) would simply read as follows

τ1 + τ2 + τ3 < L⇒ λ123 = 0 . (3.18)

We will now generalize this argument beyond the case of length one resolutions, i.e. we
will go beyond short exact sequences such as (3.16). This will provide us with a generaliza-
tion of the vanishing theorems obtained in [2] from higher codimension Koszul sequences.
The essential core of the argument, however, will be unchanged from the structure we have
stated above.

3.3 Generalization to longer resolutions

Let us now consider performing a similar analysis for the case where the resolution of VX
can be of any length, not simply a short exact sequence as in (3.1). In particular, this
analysis will include as a special case Koszul resolutions of Calabi-Yau manifolds described
as complete intersections of codimension two and higher. We start with the following left
resolution

. . .→ F2 → F1 → F0 → VX → 0 . (3.19)

An example of such a resolution would be Koszul in codimension two

0→ ∧2N∨ ⊗ V → N∨ ⊗ V → V → VX → 0 . (3.20)

In such a case one would have that F0 = V , F1 = N∨ ⊗ V , F2 = ∧2N∨ ⊗ V and Fi = 0
for all i ≥ 3.

Introducing suitable kernels/images (3.19) can be split into a set of short exact se-
quences.

0 → k1 → F0 → VX → 0
0 → k2 → F1 → k1 → 0
0 → k3 → F2 → k2 → 0

...

(3.21)

Given that the first sequence in (3.21) is short exact we can reproduce much of the
analysis of the previous subsection with the simple replacement of F1 with k1. In particular,
the vanishing theorem concerning couplings corresponding to three matter fields all of type
1, that is all corresponding to an element of H1(F0), still holds. However, some extra
structure can be observed in addition, corresponding to the vanishing that is found in [2]
for couplings involving higher types, once one considers codimensions above one.

In the situation at hand, the diagram (3.13) is replaced with

tot[G•(VX)]⊗3 → [I•(∧3VX)]
↑ ↑

tot[G•(k1)→ G•(F0)]⊗3 → [I•(∧3[k1 → F0])]
(3.22)
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The first sequence in (3.21) has an associated exterior power sequence [52] that is exact on
the right — and it is essentially an injective resolution of this that forms the right hand
side of (3.22). Note also that from the second sequence in (3.21) we can write,

0 → 0 → G•(k1) → 0
↑ ↑

0 → G•(k2) → G•(F1) → 0
(3.23)

which gives a quasi-isomorphism at each level in the Godement resolutions. Note that this
set of sequences is analogous to (3.5) in subsection 3.1. This allows us to follow elements
of G2(F1) through to G2(k1) and from there into the bottom left of (3.22).

We will now use the above to study the structure of couplings between one type 2 and
two type 1 fields. The type 1 degrees of freedom will be associated to two global sections, ν1
and ν2 of G1(F0) which are closed under the Godement map. The type 2 field is associated
to a Godement closed section w ∈ Γ(G2(F1)) and a non-closed section v ∈ Γ(G1(F0)). As
discussed in section 3.1, these two are related by dv = f(w) where d is the Godement map
and f is a map associated to the resolution (3.19). The global section w is associated,
via (3.23), with a global section w̃ ∈ Γ(G2(k1)). It is straightforward to show, using the
commutativity of the following piece of (3.23),

G2(F1) → G2(k1)
↓ ↓

G3(F1) → G3(k1)
(3.24)

which also holds at the level of global sections, that if w is closed under the Godement
map then so is w̃.

The sections of Godement sheaves described in the previous paragraph combine to form
global sections A ∈ Γ(G1(F0)⊗G1(F0)⊗G2(k1)) and B ∈ Γ(G1(F0)⊗G1(F0)⊗G1(F0))
which appear inside certain objects in the bi-complex in the bottom left of (3.22). Following
the properties of the induced maps in that bi-complex these global sections obey dB = f(A)
where d is the induced Godement and f the other, horizontal, map (where by a slight abuse
of notation we use the same symbols for these as for the maps from which they are derived).

Denoting the morphism of bi-complexes along the bottom of (3.22) by φ, the global
sections A and B map to B′ = φ(B) ∈ Γ(I3(∧3F0)) and A′ = φ(A) ∈ Γ(I4(k1 ⊗ ∧2F0))
which appear inside certain objects in the bi-complex on the bottom right of (3.22). To be
a morphism of bi-complexes, the map φ obeys two intertwining conditions, which in our
language can be written as d′φ = φd and f ′φ = φf . Here the morphism d′ is the morphism
associated to the injective resolutions and the morphism f ′ is the other, horizontal, set of
maps. Using this one can easily prove that d′B′ = f ′A′.

Consider now a situation where H4(F1 ⊗∧2F0) = 0. Given the universal exactness of
Godement resolutions, our global sections ν1, ν2 and w can be mapped to a global section
Ã ∈ Γ(I4(F1⊗∧2F0)) which is closed under the map associated to the injective resolution.
By tensoring up the middle sequence in (3.21) by ∧2F0 and taking injective resolutions we
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can write the following commutative diagram.

I3(F1 ⊗ ∧2F0) → I3(k1 ⊗ ∧2F0)
↓ ↓

I4(F1 ⊗ ∧2F0) → I4(k1 ⊗ ∧2F0)
(3.25)

Our section A′ of the proceeding paragraph is the image under the lower map in this
diagram of Ã. The vanishing of H4(F1⊗∧2F0) ensures that Ã is the image of some element
C̃ ∈ Γ(I3(F1⊗∧2F0)). Commutativity of this diagram immediately shows that any section
in the image of the vertical map on the left maps to a section in the image of the vertical
map on the right. Thus our section A′ is the image of some element C ′ ∈ Γ(I3(k1⊗∧2F0)).

We now have all of the information we require to compute the Yukawa coupling between
these fields. The exterior power sequence [52] that is used to form the right hand side
of (3.22) can be split into pieces by appropriate use of kernels and cokernels. The first two
such short exact pieces are as follows.

0 → α1 → ∧3F0 → ∧3VX → 0 (3.26)
0 → α2 → k1 ⊗ ∧2F0 → α1 → 0

This leads to the following pieces of grids of sequences describing some of the objects that
appear in the right hand side of (3.22).

I3(α1) f ′→ I3(∧3F0) g′→ I3(∧3VX) → 0
↓ ↓ ↓

I4(α1) → I4(∧3F0) → I4(∧3VX)
(3.27)

I3(k1 ⊗ ∧2F0) h→ I3(α1) → 0
↓ ↓

I4(α2) → I4(k1 ⊗ ∧2F0) → I4(α1)
(3.28)

Given the discussion up to this point, we have an element A′ ∈ Γ(I4(k1 ⊗ ∧2F0)) which
is the image of an element C ′ ∈ Γ(I3(k1 ⊗ ∧2F0)) and a Godement closed element B′ ∈
Γ(I3(∧3F0)) which we wish to map through the diagram to obtain the Yukawa coupling
which is given by a global section of I3(∧3VX).

To map A′ through the diagram to Γ(I3(∧3VX)) we can take its preimage C ′ ∈
Γ(I3(k1 ⊗ ∧2F0)) and map this to h(C ′) ∈ Γ(I3(α1)). One can then form g′(f ′(h(C ′))) ∈
Γ(I3(∧3VX)), following along the top line of the diagram (3.27). Now the exactness of the
top line of that diagram implies that g′ ◦ f ′ = 0 and this extends to global sections. There-
fore A′ maps through to a vanishing contribution in Γ(I3(∧3VX)). Mapping a different
route through the diagrams will lead to the same element in Γ(I3(∧3F0)) up to a piece
that is closed under the map of the injective resolution.

Mapping B′ ∈ Γ(I3(∧3F0)) through the diagram is much simpler. By commutativity
of all of the diagrams involved and the fact that dB′ = f(A′) (where f is actually a
combination of maps in the above diagrams) we have that B′ is equal to f ′(h(C ′)) up

– 16 –



J
H
E
P
0
5
(
2
0
2
1
)
0
8
5

to a closed piece. This possible closed piece is exactly the same as that described in the
previous paragraph. Thus, we need only consider a closed element of Γ(I3(∧3F0)) and how
it would contribute to the Yukawa couplings. If we impose the additional condition that
H3(∧3F0) = 0 then the same arguments as those given in the previous subsection tell us
that this contribution to the Yukawa coupling will vanish as well.

Returning to the special case of the Koszul resolution, the vanishing H4(F1⊗∧2F0) =
0 becomes H4(N∨ ⊗ V ⊗ ∧2V ) = 0. Such a vanishing would not hold, in general, in
the higher codimension cases considered in [2]. To see what happens there consider that
H4(N∨⊗V ⊗∧2V ) = H4(N∨⊗V ⊗V ∨) = H4(N∨)⊕H4(N∨⊗End0(V )), where we have
used the fact that V is an SU(3) bundle in that case. In the case of a complete intersection
Calabi-Yau H4(N∨) = 0, that is part of the cohomology H4(N∨ ⊗ V ⊗ ∧2V ) vanishes.
Because of the anti-symmetrization structure in the maps in (3.22), this is enough to
secure the vanishing Yukawa coupling. The direct generalization of the types of vanishing
theorems seen in the Koszul complex at codimension two and beyond [2] is thus somewhat
baroque. We have the following.

Vanishing Theorem 3. Given any exact sequence,

. . .→ F2 → F1 → F0 → VX → 0 , (3.29)

we can define a notion of ‘type’ for elements of H1(VX). Namely, we say that such a
cohomology element has type τ = i if it descends from an element of H i(Fi−1). Then, if
H3(∧3F0) = 0, all Yukawa couplings between three type τ = 1 fields will vanish. If, in
addition, F1 = U ⊗ F0 for some U and if H4(U ⊗ ∧3F0) = 0 then all Yukawa couplings
between one type τ = 2 and two type τ = 1 fields will vanish.

If the resolution (3.29) is of length 2 and both of the above cohomological vanishings
hold, then a Yukawa coupling will vanish unless the sum of the types of the cohomology
elements involved is greater than or equal to the length of the resolution (3.29) plus three
(in this case greater than or equal to five). Denoting the types of the matter fields of
interest by τi with i = 1, . . . , 3, and denoting the length of the resolution (3.29) by L (= 2
in this case), we have

τ1 + τ2 + τ3 < L+ 3⇒ λ123 = 0 . (3.30)

This is the direct analogue of the vanishing theorem given for the codimension two Koszul
complex in [2]. As with the previous vanishing theorem, the above conventions make the
relation between (3.30) and (2.10) most apparent. However, it would be more natural in
the general context to change the definition of type by subtracting unity.

It is clear from the discussion of this section that we could have a less complicated van-
ishing result that applied to a less restrictive set of resolutions, at the expense of requiring
a stronger cohomological vanishing condition than that appearing in Vanishing Theorem 3.

Vanishing Theorem 4. Given any exact sequence,

. . .→ F2 → F1 → F0 → VX → 0 , (3.31)
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we can define a notion of ‘type’ for elements of H1(VX). Namely, we say that such a
cohomology element has type τ = i if it descends from an element of H i(Fi−1). Then, if
H3(∧3F0) = 0, all Yukawa couplings between three type τ = 1 fields will vanish. If, in
addition, H4(F1 ⊗ ∧2F0) = 0 then all Yukawa couplings between one type τ = 2 and two
type τ = 1 fields will also vanish.

It is important to stress at this stage that, with the simple analysis being carried out
here, we can not go further and analyze the analogue of vanishings of couplings between
even higher type fields seen in [2]. The reason for this is that exterior power sequences such
as (3.12) associated to (3.19), as presented in decomposed form in (3.26), start to become
more complicated at the next entry beyond the ones explicitly shown in those formulae.
Tor functors start to appear in the relevant entries in the sequences and, while it would be
interesting to analyze this structure further, such work is beyond the scope of this paper.

As one final point in our general discussion we would like to highlight that the reso-
lution (3.31) must be over some space whose dimension is greater than that of X if the
vanishing theorems are to be useful (as is the case in the Koszul resolution for example).
The reason for this is that the exterior power sequence associated to (3.31) ends as follows.

∧3F0 → ∧3VX → 0 (3.32)

If the variety over which this sequence is being written is three dimensional then cohomology
groups are concentrated in degrees less than or equal three and this leads to the following
fragment of the long exact sequence

H3(∧3F0)→ H3(∧3VX)→ 0 . (3.33)

The bundle VX has structure group SU(3) and thus H3(∧3VX) = H3(OX) = C. Thus,
in such a situation H3(∧3F0) can never vanish and so none of the theorems we have
discussed hold.

Although the resolution (3.31) can not be one over X, it is hopefully clear from the
analysis of this section that it does not have to be the Koszul resolution. However, even
restricting attention to the Koszul case, the same bundle VX admits a plethora of different
resolutions of that type, involving both different ambient spaces for X and different sheafy
lifts of VX . This can frequently lead to a variety of different patterns of vanishing Yukawa
couplings enforced by the different possible choices for (3.31). We will illustrate this rather
ubiquitous phenomenon with concrete examples in the next section.

4 Examples

4.1 Ambiently defined monad bundles

A simple case in which the theorems of the previous section can be applied is that of
ambiently defined bundles. This is a very simple generalization of the results presented
in [1, 2]. Consider an SU(3) bundle VX on a Calabi-Yau X which is the restriction of
an SU(3) bundle V on an ambient space A of one dimension higher. Further, consider a
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case where h3(O) = 0 on the ambient space. In such a situation we have that h3(∧3V ) =
h3(O) = 0 and thus Vanishing Theorem 3, as applied to the Koszul resolution,

0→ N∨ ⊗ V → V → VX → 0 (4.1)

says that all couplings between three fields descending from elements of H1(V ) will vanish.
To give a concrete example of this, consider the following monad bundle

0→ VX → OX(1, 1)⊕3 ⊕OX(3,−2)→ OX(6, 1)→ 0 , (4.2)

over the CICY [55–64] defined by the following configuration matrix

X =
[
P1 2
P3 4

]
. (4.3)

The matrix (4.3) simply indicates that X is defined as the vanishing locus of a degree
(2, 4) polynomial in P1 × P3. The bundle VX is the restriction of a similar object on the
ambient space

0→ V → O(1, 1)⊕3 ⊕O(3,−2) f−→ O(6, 1)→ 0 . (4.4)

Note in particular that the first three entries in the map f here would be a set of 3 quintics
in P1. As such the rank of a sufficiently general f is maximal everywhere on P1 × P3 and
thus V is a bundle. A straightforward computation using the usual techniques (see for
example [65] for a brief description) reveals that VX is stable below the line of slope 4 in
the Kähler cone.

Finally, one can easily show that

h1(VX) = 4 and h2(N∨ ⊗ V ) = 0 . (4.5)

Thus all of the families in this example are of type 1 with respect to the sequence (4.1)
and thus all of their superpotential Yukawa couplings in the associated four dimensional
effective theory vanish.

This example was chosen specifically because this result can be verified by completely
distinct means. In studying the origins of the generations (as opposed to anti-generations)
in this example, the line bundle OX(3,−2) in (4.2) plays no role. Thus (4.2) acts much
like a positive monad in terms of computing the Yukawa couplings between the families.
As such, the methods espoused in [11, 14] can be employed and we find that the couplings
between families do indeed vanish as expected. Note that the methodology appearing
in [14] uses similar technology to that seen in the last section. However, in that work only
sequences of bundles are studied. In particular the defining sequence of the monad and its
long exact exterior power sequence plays the central role. As such those techniques can
not be directly applied to a sequence of sheaves such as (4.1).
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4.2 Multiple constraints from different ambient spaces

In this section we wish to consider an example that demonstrates that a single bundle
can obtain different constraints from different possible resolutions. In order to keep this
example as simple as possible we will study a case which could have easily been analyzed
using the techniques of [1, 2]: a sum of line bundles descending directly from the ambient
space. By considering different ambient spaces we will then obtain different constraints
on the same VX . In the next section, we will show that an array of different constraints
can also be obtained for different resolutions associated to different sheaves on the same
ambient space that restrict to the same bundle VX on the Calabi-Yau. For those examples
we will need the flexibility of our algebraic analysis.

Consider the bundle

VX = OX(−1,−1, 1)⊕2 ⊕OX(2, 2,−2) (4.6)

over the CICY,

X =

 P
1 1 1

P1 1 1
P3 4 0

 . (4.7)

This bundle has 8 generations and 30 anti-generations. With respect to the long exact
Koszul resolution associated to the above construction all of the generations are of type 2
descending from H2(O(−2,−2, 1)⊕2) ⊂ H2(N∨ ⊗ VX). Thus, with this description of VX ,
one can not use the vanishing theorems described in the previous sections to say anything
about the structure of the couplings. All Yukawa couplings of three families are between
three type 2 degrees of freedom.

However, the same manifold can, of course, be embedded in different ambient spaces.
Consider the following configuration matrix.

X =
[
P1 2
P3 4

]
(4.8)

This manifold is in fact the same as that described by (4.7). There are several different
ways of observing this equivalence. One is to simply note that (4.7) is an ineffective split
of (4.8) [57]. Another is to observe that

P1 =
[
P1 1
P1 1

]
, (4.9)

which can then be used to argue the equivalence of (4.8) and (4.7) [57].
In the description (4.9) of P1 the line bundle OP1(a, b) can be shown to be the (a+b)’th

power of the hyperplane line bundle, or O(a+ b) in the more standard description. Given
this equivalence, the line bundle OX(a, b, c) on (4.7) is the same bundle as OX(a + b, c)
on (4.8). Thus, describing X via (4.8) the bundle (4.6) corresponds to the following.

VX = OX(−2, 1)⊕2 ⊕OX(4,−2) (4.10)
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In terms of the Koszul sequence associated to (4.8), the eight generations of VX in this de-
scription are all of type 1, descending from H1(O(−2, 1)⊕2) ⊂ H1(V ). Thus the vanishing
theorems we have seen in sections 2 and 3 tell us that all of the Yukawa couplings between
families in this compactification vanish.

The above is an explicit demonstration that the vanishing theorems we have been dis-
cussing, applied to different resolutions of the same bundle, lead to different restrictions on
the Yukawa couplings. In this example the Koszul sequence associated to (4.7) gives us no
information whereas that associated to (4.8) reveals that all of the Yukawa couplings vanish.

The above example was chosen for two reasons. First, this result can be confirmed
by examining the constraints due to certain U(1) symmetries that are present in the four
dimensional theory associated to the bundle VX . The bundle (4.6) is an S(U(1) × U(1) ×
U(1)) bundle rather than a true SU(3) object. As such, the four dimensional effective
theory to which it is associated will have two U(1) symmetries, in addition to the usual E6
commutant of SU(3) inside E8. It is a simple matter to show that these U(1) symmetries do
indeed forbid all couplings between families in this example — in agreement with the above
result from the vanishing theorems (see [38, 39, 66–68] for a few examples of such analyses).

The second reason for chosing this example is that it can be used as a precursor case for
the next source of multiple resolutions that we will discuss. Because (4.7) is hyperfavorable,
having a number of ambient space factors larger than h1,1, many different ambient space
bundles can restrict to the same object on the Calabi-Yau. Given the correspondence
between line bundles on (4.8) and (4.7) discussed above, VX on (4.7) could equally well be
described as follows, rather than as was presented in (4.6).

VX = OX(0,−2, 1)⊕2 ⊕OX(0, 4,−2) (4.11)

In the description (4.11) all of the families are of type 1, descending from H1(O(0,−2, 1)⊕2)
⊂ H1(V ). Thus the constraints one would get from the vanishing theorems discussed in
this paper, actually depend on not only the ambient space that is being discussed, but
also the lift of the bundle VX to that ambient space. In what follows we will give a more
complex example of this phenomenon where some of the lifts of VX are sheaves on the
ambient space rather than bundles. For this we will need the more general framework for
vanishing theorems provided by the algebraic approach of section 3.

4.3 Multiple constraints from different sheafy lifts of the bundle

Let us look at some examples where a bundle on X descends from a sheaf on an ambient
space A. We will consider the following Calabi-Yau threefold,

X =
[
P1 2
P3 4

]
, (4.12)

together with the simple sum of line bundles,

VX = OX(1,−2)⊕2 ⊕OX(−2, 4) . (4.13)

This bundle has h1(VX) = 32 with all 32 generations arising from H1(OX(−2, 4))
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Naturally, (4.13) can be viewed as the restriction of an analogous sum of line bundles
on the ambient space. However, (4.13) can also be obtained by the restrictions of certain
sheaves. For example, let us specify four points in P1 × P3, via the vanishing locus of four
degree (1, 1) polynomials. Let us define the ideal sheaf associated to these points as I4.
We then have the following defining sequence for that sheaf.

0→ I4 → O → O4 → 0 (4.14)

Here O4 is the trivial bundle restricted to the four points. By comparing (4.14) to the
Koszul resolution for the four points we find that we have another exact sequence describ-
ing I4.

0→ ∧4N∨4 → . . .→ N∨4 → I4 → 0 (4.15)

In this expression N4 = O(1, 1)⊕4 is the normal bundle to the four points.
With these preparations, we can now define a sheaf on A that restricts to VX on X

V = O(1,−2)⊕2 ⊕O(−2, 4)⊗ I4 . (4.16)

The essential point is that the points where the rank of the stalks of the sheaf O(−2, 4)⊗I4
degenerate miss the Calabi-Yau. Therefore O(−2, 4)⊗I4 restricts to OX(−2, 4) as can be
verified by restricting the sequence (4.14) to the Calabi-Yau.

Despite the fact that V is a sheaf, not a vector bundle, we can write a short exact
Koszul sequence in this case of the usual form

0→ N∨ ⊗ V → V → VX → 0 . (4.17)

The reason for this is that the exactness or not of a sequence of sheaves is a local issue.
It can, therefore be checked using a fine enough open cover. Choose an open cover such
that no element intersects both the four points associated to the ideal sheaf and the locus
of the Calabi-Yau threefold X. If we consider an open set of our cover that intersects X
then V is locally free on this set and we can tensor the sequence

0→ N∨ ⊗O → O → OX → 0 (4.18)

by V while maintaining exactness. Conversely, if we consider an open set which intersects
one of the four points associated to I4 then all of the bundles in the sequence (4.18) are
locally free on this set. Thus we can tensor that sequence by V while maintaining exactness.

By using combinations of long exact sequences in cohomology associated to (4.14)
and (4.15) (once the latter is broken up into short exact pieces) tensored by appropriate
line bundles, one can compute7

h∗(N∨ ⊗O(−2, 4)⊗ I4) = (0, 7, 0, 0, 0) (4.19)
h∗(O(−2, 4)⊗ I4) = (0, 39, 0, 0, 0) .

7To expedite and check some of the longer computations in this section the authors made use of the
CICY package [69].
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Using these values in the long exact sequence in cohomology associated to (4.17) we find
that all of the families in this example are of type 1. From (4.16) we can easily see that
∧3V = I4. From the long exact sequence in cohomology associated to (4.14) we therefore
see that h3(∧3V ) = h3(I4) = 0. Thus, from Vanishing Theorem 4, we find that all Yukawa
couplings between the families vanish in this example.

As in the previous subsection, this example has been chosen in part because this answer
can be verified. The bundle (4.13) is an S(U(1)× U(1)× U(1)) bundle rather than a true
SU(3) object and, as such, the four dimensional effective theory to which it is associated will
again have two U(1) symmetries. It is a simple matter to show that these U(1) symmetries
do indeed forbid all couplings between families in this example.

In the example we just looked at we obtain the same results if we lift (4.13) to the
ambient space as the obvious simple sum of line bundles rather than the more exotic sheafy
object (4.16). Therefore, to illustrate the importance of considering all possible sheaf and
bundle lifts of VX to the ambient space, we now give a slightly more complex example
where such a coincidence of constraints does not occur.

Consider defining, on the Calabi-Yau manifold given by the configuration matrix

X =


P1 1 1
P1 1 1
P1 1 1
P1 1 1
P1 1 1

 , (4.20)

the following sum of line bundles.

VX = OX(2,−2, 0, 0, 0)⊕OX(−1, 1, 0, 0, 0)⊕2 (4.21)

This bundle has the following cohomology,

h∗(VX) = (0, 3, 3, 0) , (4.22)

with all of the non-zero entries coming from the cohomology of OX(2,−2, 0, 0, 0).
We will define the locus associated to an ideal sheaf IL via the following configuration

matrix in the same ambient space.

L =


P1 1 1 1 1
P1 1 1 1 1
P1 1 1 1 1
P1 1 1 1 1
P1 1 1 1 1

 (4.23)

That is, L is a one dimensional locus determined by the vanishing of four degree (1, 1, 1, 1, 1)
polynomials. We then have that the following sheaf restricts to VX on the Calabi-Yau
threefold.

V = O(2,−2, 0, 0, 0)⊗ IL ⊕O(−1, 1, 0, 0, 0)⊕2 (4.24)
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Using the same techniques which were employed in the proceeding example, we can
then write down a Koszul sequence for this case,

0→ ∧2N∨ ⊗ V → N∨ ⊗ V → V → VX → 0 (4.25)

and compute the dimensions of the cohomologies which appear. This uses the direct
analogue of the sequences (4.14) and (4.15) for this case. In fact, in this example it turns
out to simplify the computation if one also uses the Koszul sequence associated to (4.23).

0→ ∧4N∨L → ∧3N∨L → ∧2N∨L → N∨L → O → OL → 0 (4.26)

Here NL = O(1, 1, 1, 1, 1)⊕4. This is used to compute the cohomology of OL, the trivial
bundle restricted to L, in a straightforward fashion.

One finds the following cohomological dimensions for the sheaves appearing in (4.25)

h∗(∧2N∨ ⊗O(2,−2, 0, 0, 0)⊗ IL) = (0, 0, 360, 0, 3, 0) (4.27)
h∗(N∨ ⊗O(2,−2, 0, 0, 0)⊗ IL) = (0, 0, 480, 0, 0, 0)

h∗(O(2,−2, 0, 0, 0)⊗ IL) = (0, 0, 117, 0, 0, 0) .

Using this data it is trivial to show that all families are of type 2 with respect to the reso-
lution (4.25). In addition, we have that ∧3V = IL and it is simple to see from the defining
sequence of IL that h3(∧3V ) = h3(IL) = 0. Therefore, in this case Vanishing Theorem 3
gives us no information about any possible vanishing couplings.

Let us now compare this (negative result) to that which we obtain from considering
the following “lift” of VX to the ambient space

Vbundle = O(2,−2, 0, 0, 0)⊕O(−1, 1, 0, 0, 0)⊕2 . (4.28)

The bundle Vbundle also restricts to (4.21) on the Calabi-Yau threefold. In this case, a
straightforward analysis of the Koszul sequence reveals that all of the families are of type
1. We have that h3(∧3Vbundle) = 0 so this lift of VX shows, using Vanishing Theorem 4,
that all of the Yukawa couplings between families vanish. One can, once again, confirm
that this result is indeed correct in this case using the U(1) symmetries associated with
the line bundle model.

This example illustrates an important fact in applying the types of vanishing theorems
we are discussing in this paper to the Koszul sequence. Not only will different ambient
space embeddings of the Calabi-Yau threefold lead to different constraints in such a context.
Considering different sheaves on the ambient space that restrict to VX on the Calabi-Yau
will also lead to different textures of vanishing couplings. Especially in higher codimensions,
the array of different ideal sheaves alone that you could utilize in the fashion we have
employed here becomes vast, and they are presumably only a subset of the possibilities.
Thus we see that we end up with a plethora of possible sources of vanishing Yukawa
couplings from Koszul sequences in such contexts, even before the possible use of other
resolutions are considered.
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5 Comparisons to other sources of vanishing Yukawa couplings

The results of the prior sections hopefully make clear that the explicit form of the bun-
dle and Calabi-Yau manifold (as encoded in a resolution such as that in (3.19)) chosen
in heterotic compactification can provide powerful vanishing criteria on the perturbative
superpotential. It is natural to wonder how the effects described here overlap (if at all)
with similar “topological vanishing criteria” that have been seen elsewhere in the heterotic
literature? In this section we will explore vanishing conditions on Yukawa couplings due
to two such phenomena

• Elliptic fibration structure in the Calabi-Yau threefold (see e.g. [12, 13]).

• Stability structure of the holomorphic vector bundle (i.e. vanishing couplings due to
“stability walls” [16, 70, 71]).

Note that both of these effects can be traced back to the presence of a symmetry, higher
dimensional diffeomorphism invariance and gauge invariance respectively. Our goal will
be to consider several examples in which the effects above are present and the resulting
vanishing conditions can be compared to the results of our theorems given in previous
sections.

5.1 Vanishing tri-linear couplings on elliptically fibered manifolds

Recent work has highlighted the fact that the vast majority of known Calabi-Yau threefolds
exhibit genus one fibrations [61, 72–80]. That is, they can be written as a fibration (i.e.
a surjective morphism, π : X3 → B2, for some complex surface, B2) in which the generic
fiber, π−1(b) for some point b ∈ B2, is a genus one curve. Moreover, in [61, 72, 74, 81] it was
demonstrated that many Calabi-Yau manifolds can be written as fibrations in a multitude
of distinct ways.

Just as it was observed in previous sections that structure associated to the ambient
space of a complete intersection Calabi-Yau manifold can strongly constrain the heterotic
couplings (as in the vanishing criteria of sections 2 and 3), so too can the “decomposition”
of a Calabi-Yau manifold into a fiber/base. This effect was first illustrated explicitly in [12].

As in prior sections, the origin of the constraint on couplings arises from the constrained
form that cohomology must take — this time in a fibered geometry. To make this clear,
we must decompose bundle-valued cohomology groups in terms of the fiber/base of the
Calabi-Yau geometry. Technically, this is achieved via a Leray spectral sequence.

Let π : X3 → B2 be a genus-one fibered Calabi-Yau threefold as above and VX be any
holomorphic vector bundle defined over X3. Then the Leray spectral sequence8 provides a
simple tool to relate the cohomology of VX over X3 to some associated cohomology groups
on the base, B2 as

Hp(X,VX) =
⊕

p=l+m
H l(B2, R

mπ∗(VX)) . (5.1)

8Note that in general the Leray spectral sequence can contain multiple non-trivial terms. However, in
the present case, the complex dimension of the fiber is 1, and hence Rmπ∗(V ) is non-vanishing only for
m = 0, 1. This causes the spectral sequence to terminate at the first level and we will thus omit details of
the spectral sequence itself in this section, only stating the result in (5.1).
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Here Rmπ∗(VX) is the m-th direct image sheaf of the bundle VX (pushed forward under
the fibration π). Rmπ∗(VX) can be locally defined via the pre-sheaf over any open set U
on B

U → Hm(π−1(U), VX |π−1(U)) . (5.2)

The form above makes it clear that the tri-linear couplings of the theory will be con-
strained. As in previous sections, in order for the map

H1(X,VX)×H1(X,VX)×H1(X,VX)→ H3(X,∧3VX) = H3(X,OX) (5.3)

to give a non-zero result it must be the case that the representation of the cohomology can
be re-written as a consistent/unique morphism in whatever geometry it is described in. In
the present discussion, the form of (5.1) makes it clear that the trilinear pairing must map
into a top-form on the complex base surface B2. It can be verified that under push-forward
to the base

H3(X,OX) = H2(B2, R
1π∗OX) = H2(B2,KB2) = C . (5.4)

Thus, in order to produce a non-trivial mapping under the Yoneda pairing, it is clear that
the tri-linear coupling must take the form

H0(B2, R
1π∗(VX))×H1(B2, R

0π∗(VX))×H1(B2, R
0π∗(VX))→ C . (5.5)

The requirement that the couplings must be “filtered” in this way on an elliptically fibered
Calabi-Yau manifold was first observed in [12] where it was referred to as a “(p,q) Leray
selection rule”.

In the next subsection we will consider an explicit example of a bundle on a fibered
Calabi-Yau manifold and the ensuing vanishing conditions on its couplings.

5.1.1 An elliptic CICY example

In this section our goal will be to compare the vanishing criteria induced from (5.5) to that
explored in the previous sections. To that end, it is helpful to consider an example of a
Calabi-Yau manifold that is both genus one fibered and described as a complete intersection
variety in a product of projective spaces. In particular, we will consider a Calabi-Yau
threefold which is elliptically fibered (i.e. a genus one fibration that also admits a section
σ : B2 → X3) and described as

X3 =


P1 1 1
P2 1 2
P1 1 1
P1 1 1

 . (5.6)

For this threefold h1,1(X3) = 4 and h2,1(X3) = 50. This manifold is elliptically fibered
π : X3 → P1 × P1 with the elliptic fiber described as[

P1 1 1
P2 1 2

]
(5.7)
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(i.e. the elliptic curve defined via the anti-canonical hypersurface in dP1). In addition, X3
can be shown to have a non-trivial (rank one) Mordell-Weil group (see e.g. [82]). That is,
it admits two rational sections in the classes

S1 = −D1 +D2 +D3 +D4 (5.8)
S2 = 2D1 −D2 + 4D3 + 4D4 (5.9)

where Di are the restrictions of the hyperplanes in the ambient projective space factors
(note that these divisor classes are related to the actual section morphisms σi : B2 → X3
via the Shioda map [83]).

Over this threefold we can define the following gauge bundle, chosen for simplicity to
be a sum of line bundles

VX = L1 ⊕ L2 ⊕ L3 = OX(−1, 1,−2, 2)⊕OX(−1, 1, 2,−2)⊕OX(2,−2, 0, 0) . (5.10)

Written in a basis defined by S1, S2 and π∗(D3), π∗(D4) (the latter being the pullbacks of
the basis of divisors in the base, P1 × P1) we have

VX = OX(S1)⊗OX(−3D3 +D4)⊕OX(S1)⊗OX(D3−3D4)⊕OX(2S1)⊗OX(2D3 +2D4) .
(5.11)

This decomposition will make it particularly straightforward to calculate the higher derived
push-forwards Riπ∗(VX) and hence the coupling constraints induced by (5.5).

The bundle VX in (5.10) has structure group embedded into SU(3) and leads to a
4-dimensional heterotic theory with gauge group E6 × U(1) × U(1). A straightforward
calculation yields that h1(X,VX) = 8 and h1(X,V ∨X ) = 6 and hence we obtain a simple,
two-generation E6 toy model. The bundle is chosen to be slope poly-stable within the
Kähler cone of X3 and to satisfy the anomaly cancellation conditions of the heterotic
theory.

To begin, let us consider the tri-linear couplings of the form 273 defined as the triple
product of elements of H1(X,VX). Here, H1(X,VX) = H1(X,L1)⊕H1(X,L2). A straight-
forward calculation (see e.g. [84, 85] for techniques) yields that

R0π∗L1 = R0π∗(OX(S1)⊗π∗(OX(−3D3+D4))) = R0π∗(OX(S1))⊗O(−3D3+D4) (5.12)
R0π∗L1 = 0 (5.13)
R0π∗L2 = R0π∗(OX(S1)⊗ π∗(OX(D3 − 3D4))) = R0π∗(OX(S1))⊗O(D3 − 3D4) (5.14)
R0π∗L2 = 0 . (5.15)

In the present example, it can be verified that R0π∗(OX(S1)) = OB2 and R1π∗L1 =
R1π∗L2 = 0. Hence

H1(X,L1) = H1(P1 × P1,O(−3D3 +D4)) (5.16)
H1(X,L2) = H1(P1 × P1,O(D3 − 3D4)) . (5.17)

From this result, it is clear that no coupling of the form (5.5) is possible. Thus, due to
the fiber/base decomposition of the Calabi-Yau threefold, we have determined that all 64
possible 273 couplings must vanish in this example.
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Interestingly, in this particular example, it is the case that the elliptic fibration cri-
teria above actually imposes more vanishing conditions on the Yukawa couplings than
arise from the results of sections 2 and 3 (i.e. constraints determined from the Koszul
sequence associated to the ambient space of the CICY threefold in (5.6)). For exam-
ple, the line bundle L1 = O(−1, 1,−2, 2) has cohomology H1(X,L1) that descends from
H2(A,OA(−2, 0,−3, 1)) and thus is of type τ = 2, as is the cohomology associated to
H1(X,L2). Since the ambient space is 5-dimensional, this coupling would in fact not be
forced to vanish by Vanishing Theorem 1. It should be noted however, that neither of
these two approaches carries intrinsically more information and for another example Van-
ishing Theorem 1 could impose more vanishing criteria than that obtained from fibration
structure. The over-arching message should simply be that the geometric origins of topo-
logical vanishings criteria are myriad and all of them should be taken into account to gain
a complete picture of the heterotic effective theory.

It should be observed that it is also possible to determine that these couplings must
vanish due to the presence of Green-Schwarz massive U(1) symmetries in the effective
theory that arise from heterotic stability walls. This effect will be examined in detail in
the next subsection.

Finally, it should be noted that not only do recent results indicate that the majority of
known Calabi-Yau threefolds are elliptically fibered, but further that a given manifold can
be described as a fibration in many ways (in [74] manifolds were found with order 10s, 100s
and in one case an infinite number of inequivalent genus one fibrations). In such cases,
the fibrations will impose vanishing conditions on the trilinear couplings such as (5.5) for
each distinct fibration. In general this will be a large number of constraints that imply
that the majority of couplings will vanish in such models. This is very analogous to the
observations of sections 3 and 4 that one bundle could have multiple resolutions and thus
inherit constraints on its couplings from many distinct sources. Thus, in the same spirit,
the ubiquity of genus one fibrations in known datasets of Calabi-Yau threefolds further
indicates the non-genericity of couplings in 4-dimensional heterotic compactifications over
such manifolds.

5.2 Vanishing tri-linear couplings due to stability walls

In this section we will consider another effect that can constrain the form of the perturba-
tive superpotential in heterotic theories — namely the constraints that so-called “stability
walls” [15, 65, 86–88] place on the tri-linear couplings. These vanishing conditions have
been studied extensively in [15, 16, 70] and we will briefly summarize some of those results
here and relate them to the vanishing conditions studied in this work.

Simply stated, the notion of “stability walls” in heterotic theories is related to the
conditions for N = 1 supersymmetry in the low-energy effective theory — namely that the
vector bundle be slope poly-stable. Equivalently, due to theorems of Donaldson, Uhlenbeck
and Yau [89, 90], the gauge connection must satisfy the Hermitian-Yang Mills (HYM)
equations

gab̄Fab̄ = 0 and Fab = 0 . (5.18)
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Here gab̄ is the Ricci-flat metric on the Calabi-Yau manifold, F is the field strength, and
a, b = 1, 2, 3. It is clear from the form of these equations that they manifestly depend on
the Kähler and complex structure of the base Calabi-Yau threefold and that a solution to
this equation is not guaranteed for all values of the Calabi-Yau moduli. The moduli that
violate the HYM equations are “lifted” by a combination of D- and F-term effects in the
effective N = 1 theory [15, 65, 71, 87, 88] (or more generally should simply never be counted
in the massless modes of the low energy theory). In particular, the constraint of stability
can form an allowable sub-cone within the Kähler cone of the Calabi-Yau threefold. On
the boundaries of this sub-cone — called stability walls — the bundle moves from being
stable to poly-stable and decomposes as a direct sum

Vwall =
⊕
i

Vi (5.19)

with Vi stable for all i and satisfying µ(Vi) = 0.
In the limit shown in (5.19) the structure group, H of the vector bundle becomes

reduced, leading to its commutant, G within E8 to be enhanced. Such enhancements in
gauge symmetry at special loci in moduli space is of course a common effect in string
compactifications. In the present case the enhancement of symmetry appears as additional
Abelian factors to the gauge group. For example, suppose that the initial bundle VX has
structure group H = SU(3) with commutant E6 in E8. At the special locus it could for
example, split into a sum of two sub-bundles with ranks 2 and 1 respectively or become a
sum of three line bundles. In the former case the gauge group is enhanced to E6 × U(1)
and in the latter E6 ×U(1)×U(1).

It is these enhanced Abelian gauge symmetries that constrain the form of the E6
effective theory, even though the U(1) gauge fields are generically Green-Schwarz massive.
As a result, it is possible to explicitly see the constraints that these enhanced Abelian gauge
factors place on the effective theory — in particular the Yukawa couplings are constrained
to be gauge invariant under these enhanced U(1) symmetries near the stability wall [15, 70].
Importantly, as was argued in [15], since the superpotential is a holomorphic function of
the fields, any vanishing couplings that are detected near the enhanced symmetry locus
must remain zero as the theory is moved to a more general point in moduli space. Since
vector bundles do in general exhibit a rich sub-cone structure due to stability (with many
“walls” arising in higher-dimensional Kähler moduli spaces), this effect can contribute
powerful vanishing conditions on the Yukawa couplings of heterotic theories. We turn now
to a simple example of this effect and compare it to the vanishing constraints obtained in
sections 2 and 3.

5.2.1 An example monad bundle exhibiting stability walls

As an illustration of these techniques, we consider the following SU(3) bundle defined via
the monad construction and first studied in [15]:

0→ VX → OX(1, 1)⊕OX(2, 0)⊕OX(3,−1)⊕OX(−2, 1) f−→ OX(4, 1)→ 0 (5.20)
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Representation Field Name Cohomology Multiplicity
27−1 f1 H1(X,F1) 13
271 f̄3 H1(X,F∨1 ) 1

27−2 f̄4 H1(X,K∨1 ) 8
(1,2)−3 C1 H1(X,F1 ⊗K∨1 ) 70

Table 1. Field content of the E6 × U(1) theory determined by the bundle VX in (5.20) which
decomposes as VX = K1 ⊕F1 on a stability wall.

This bundle is defined over the Calabi-Yau hypersurface

X3 =
[
P1 2
P3 4

]
(5.21)

with Hodge numbers (h1,1, h2,1) = (2, 86). Importantly for comparison with the results of
this paper, this bundle is actually ambiently defined,9 that is it is defined by restriction
of the analogous monad sequence given by (5.20) defined over the ambient space P1 × P3.
We’ll use this fact later in this section in applying the theorems from sections 2 and 3 to
constrain the tri-linear couplings.

To begin though, we review the constraints on the couplings obtained in [15] from a
stability wall analysis. As argued in section 5 of that reference, this bundle is only stable
within a sub-cone of the Kähler moduli space and inherits constraints from two distinct
stability walls which place different constraints on the couplings. We will summarize here
the constraints from only one of these (the lower wall of [15]) here where the bundle
decomposes as

VX = K1 ⊕F1 (5.22)

where
0→ F1 → O(1, 1)⊕O(2, 0)⊕O(−2, 1)→ O(4, 1)→ 0 (5.23)

and K1 = O(3,−1). Near this locus in moduli space, the effective theory enhances to yield
an E6 × U(1) symmetry. Analyzing the spectrum in terms of this decomposition of the
bundle then, we find the more detailed spectrum given in table 1 where subscripts denote
charges under the enhanced U(1) symmetry.

The first conclusion to be drawn from table 1 is that all of the 27 fields have the same
U(1) charge and hence all 273 couplings vanish perturbatively. Moreover, in [15] this result
was combined with the constraints from the other stability wall (and an analysis was done
to determine how the textures persisted into general points in field space) which showed
that only 9 out of a possible 165 273 couplings were possibly non-vanishing.

We can now compare these vanishing conditions to those obtained from the theorems
derived in the present paper. To begin, as noted above, the bundle VX in (5.20) is ambiently

9This is clear from the fact that the four polynomial entries of the map f given in (5.20) cannot all
vanish simultaneously over A = P1 × P3.
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defined on A = P1 × P3. A standard calculation yields that

h∗(X,VX) = (0, 13, 9, 0) (5.24)
h∗(A, V ) = (0, 13, 0, 0, 0) (5.25)

h∗(A,N∨ ⊗ V ) = (0, 0, 0, 9, 0) (5.26)
h∗(A, V ∨) = (0, 9, 0, 0, 0) (5.27)

h∗(A,N∨ ⊗ V ∨) = (0, 0, 0, 13, 0) (5.28)

Thus, all elements of H1(X,VX) (i.e. the 27s) are of type 1. Likewise, the elements of
H1(X,V ∨X ) (i.e. the 27s) are also all of type 1. Thus, the results of Vanishing Theorem 1
and Vanishing Theorem 3 (applied to VX and its dual) guarantee that in this example,
all 273 and 273 couplings must be zero! In summary then, we find for this example that
these diverse sources of vanishing conditions are all consistent and agree for a subset of the
possible Yukawa couplings. Moreover, the vanishing conditions arising from the theorems
of sections 2 and 3 are in fact stronger in this case than those arising from a stability wall
analysis and not directly tied to any obvious residual gauge symmetries of the theory.

6 Conclusions and future directions

So-called ‘topological vanishings’ of Yukawa couplings in heterotic compactifications have
frequently been observed in the literature. In this work, we have taken a systematic look
at the geometric effects previously shown to generate such vanishings and we have added
several new theorems to their ranks in sections 2 and 3.

Our primary results are the following:

• Vanishing Theorems 1–4: these provide generalizations of previous topological van-
ishing theorems that have appeared in [1, 2]. The various theorems vary in what
they assume and claim. They cover a range of cases from where VX descends from
a vector bundle on an ambient space, through where VX descends from an ambient
sheaf, all of the way to situations that don’t necessarily involve the Koszul sequence
that describes such structure at all. In the most general formulation, constraints on
the cubic couplings are provided based on the description of the underlying gauge
bundle via some explicit resolution

. . .→ F2 → F1 → F0 → VX → 0 (6.1)

in terms of sheaves Fi.

• A series of examples in section 4: these are primarily used to illustrate that a single
gauge bundle VX on a given Calabi-Yau X can be associated to many different reso-
lutions of the form (6.1). In the examples we provide these arise from embedding X
in different ambient spaces and also from isolating a variety of different sheaves on a
single ambient space, all of which descend to VX . Each of these descriptions of VX
can lead to different textures of vanishing Yukawa couplings utilizing the theorems
of the proceeding bullet point. Thus we observe that such vanishing theorems will
lead to a plethora of complementary constraints for a given compactification.
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• A comparison to other sources of vanishing couplings in section 5: here we discuss
some of the other sources of textures of vanishing Yukawa couplings that have arisen
in the heterotic literature, namely those due to elliptic fibration structure and stability
walls. We demonstrate that the constraints from such effects are complementary
to those from the vanishing theorems mentioned above, giving distinct information
about the same heterotic compactification. This leads to situations where one has
an even larger set of overlapping Yukawa vanishing conditions restricting a given
heterotic compactification.

In view of these results, we can consider their implications for the physics of 4-dimensional
heterotic compactifications. The first, clear consequence of the previous sections is the
following observation:

We expect the perturbative superpotential trilinear couplings of most 4-dimensional, N = 1
heterotic theories, obtained from compactifications on Calabi-Yau threefolds, to be highly
constrained — i.e. non generic.

These constraints seem to arise ubiquitously [1, 2, 36]. Almost all known Calabi-Yau
threefolds are elliptically fibered, and indeed often fibered in 10s or even hundreds of
different ways (see e.g. [74, 80]). Each of these different fibrations will contribute its own
vanishing conditions. Picking a given Calabi-Yau at random from the known set, one
finds that it is easy to describe it as an embedding in a plethora of different ambient
spaces. Gauge bundles on the threefold can, as described in section 4, be represented as
the restriction of a large variety of sheaves on each of those ambients. All of these different
choices lead to more potential constraints on the Yukawa couplings. Most vector bundles
also exhibit stability walls, which may be numerous in higher dimensional Kähler cones.
Each of these will also lead to constraints, and the effects we have just discussed do not
even include constraints from resolutions of the form (6.1) that are not associated to the
Koszul sequence.

Obviously, these textures of vanishing Yukawa couplings could play a fundamentally
important role in heterotic model building, both causing and solving problems. To give one
example of this, the physical quark masses in the Standard Model require a comparatively
heavy top quark. Such a mass hierarchy could be achieved by topological vanishings that
left only one family with perturbatively non-zero couplings, leaving the remainder to be
generated by non-perturbative effects.

Given any set of superpotential Yukawa couplings, it is clear that some interactions
could be set to zero by an appropriate change of basis on field space. One key question to
ask given the results presented in this paper is whether the vanishing of Yukawa couplings
that have been presented could simply be viewed as finding a suitable basis change in this
fashion. The answer to this is definitely not in general. We will illustrate this here for just
one of the many vanishing conditions described in this work: the case of a bundle defined
over an elliptically fibered space, π : X3 → B2 which pushes forward to a bundle on the
base, B2. As described in section 5, in this case, the bundle valued harmonic 1-forms,
elements of H1(X,VX), are ‘filtered’ according to their behavior under pushforward. For

– 32 –



J
H
E
P
0
5
(
2
0
2
1
)
0
8
5

an SU(3) bundle, the only possible non-vanishing 273 coupling must be of the form shown
in (5.5):

H0(B2, R
1π∗(VX))×H1(B2, R

0π∗(VX))×H1(B2, R
0π∗(VX))→ C (6.2)

Let us label elements of H1(X,VX) that are associated to elements of
H1(B2, R

0π∗(VX)), as xi where i = 1, . . . , nx and elements associated to H0(B2, R
1π∗(VX))

as ya where a = 1, . . . , ny. The total number of matter fields will be denoted n = nx + ny.
From the form of the product given in (6.2), it is clear that no coupling can exist except for
those of the form xxy and its permutations. We can thus ask: how many vanishing cou-
plings does this correspond to? There are a total of 1

3!n(n+ 1)(n+ 2) independent Yukawa
couplings. Since all except nxny of these vanish we have a total number of independent
vanishing couplings given by

1
6n(1 + n)(2 + n)− nx(n− nx) . (6.3)

This quantity is minimized at fixed n for nx = n/2, thus this value gives the minimum
number of vanishing couplings that will be present in any model. Using this value for nx
we obtain the following number of constraints:

1
12n(4 + 3n+ 2n2) (6.4)

Note that n/2 may not be an integer and so the above minimum number of vanishing
independent Yukawa couplings can be viewed as a conservative lower bound.

It only remains to compare this number to the largest number of independent Yukawa
couplings that can be arranged to vanish by a basis change on field space. Obviously this
cannot be larger than n2 — the number of degrees of freedom in a basis change matrix itself.
In fact, given that the overall scale in the matrix cannot affect vanishings, n2−1 independent
zeros can be obtained maximally in this fashion. So all that remains is to compare this
value with the minimum number of enforced vanishings (6.4) from the condition (6.2).
Doing a straightforward comparison we arrive at the following, conservative, conclusion: A
heterotic E6 model defined on an elliptically fibered Calabi-Yau geometry, π : X3 → B2 for
which VX3 pushes forward to a bundle on B2 has vanishing superpotential Yukawa couplings
that cannot be explained by a change of basis of the fields if the number of 27 matter fields
is n > 3.

There are a number of natural extensions of this work that it would be interesting to
investigate in the future. The extension to bundles of higher rank should pose no practical
problems and has simply been omitted here to try and prevent the discussion from becoming
overly complex. Another interesting extension of this work arises in the interpretation
of the perturbative, trilinear superpotential couplings in heterotic theories as objects in
the deformation theory of the underlying bundle. For instance, as studied in [91, 92],
the cubic singlet couplings 13 can be viewed as higher order obstructions in the bundle
moduli space (whose first order space of deformations is counted by h1(X,End0(VX))). In
that case, the deformations in question preserve the rank of the bundle. In the present
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case of SU(3) bundles, the trilinear couplings between charged matter fields are linked to
deformations/obstructions that change the rank of the gauge bundle, i.e. to deformations
of an augmented bundle

V
SU(3)
X ⊕O⊕mX (6.5)

where m = 0, . . . 5. In other words, viewing the chosen SU(3) bundle as a special point in
the moduli space of an E8 bundle, the charged matter of the theory can parametrize rank-
changing deformations which move in this broader moduli space. These deformations can
in turn be obstructed at various higher orders. In this context, it would be interesting to
understand if the vanishing conditions we are studying here correspond to some underlying
‘protected directions’ in the moduli space of E8 bundles, analogous to the Tian-Todorov
theorem [93, 94] which protects the infinitesimal deformation space of Calabi-Yau 3-folds
from higher order obstructions. While it is known that the first order deformations of
SU(n) bundles on Calabi-Yau can be fully obstructed [95], the structure of higher order
obstructions to the E8 moduli space in this context remains relatively unexplored.

Another natural question arising from the present work is what consequences do these
observations have in the context of string dualities? For example, recent work on the
ubiquity of elliptic fibrations in Calabi-Yau 3-folds and 4-folds has made clear that the
space of string effective theories which can be realized by both heterotic and F-theory
compactifications is potentially much larger than anticipated. In this context then, once we
consider heterotic vanishing conditions like the one described in detail above for elliptically
fibered manifolds, it is natural to ask what the consequences of this result are for F-theory?
Naively, F-theory calculations of Yukawa couplings do not seem to offer an obvious source
of such topological vanishings and instead seem generally generic in form (see e.g. [96] for
a recent perspective). However, many such investigations have thus far been undertaken
without a full global understanding of G-flux in 4-dimensional compactifications of F-
theory and its contributions to the superpotential. In the future it would be valuable to
explore these vanishing conditions in some explicit heterotic/F-theory dual pairs and to
determine what G-flux must be present and if these vanishings extend away from the stable
degeneration limit.

Finally, an obvious question in the context of Yukawa couplings in heterotic theories is
how many of these vanishings will persist to higher order in the theory or when including
contributions from non-perturbative effects. While non-perturbative effects do not have a
simple integral form as shown here, at least some of these geometric features (for example,
constraints arising from stability walls as reviewed in section 5) may have consequences for
such couplings as well. Recent progress in the development of tools for determining these
non-perturbative contributions (e.g. [97]) may make the exploration of such questions more
tractable in the future.
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