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1 Introduction

It is expected that classically integrable 2d σ-models should be stable under the renor-
malization group flow, the intuition being that hidden symmetries will constrain the RG
evolution. Constraints on coupling constants required for integrability should thus be
RG-invariant. At the leading 1-loop order, this has been observed for some time (see,
e.g., [1–3]). It was recently found on various examples [4, 5] that the RG stability for
integrable theories extends also to higher-loop orders (provided the classical actions are
supplemented by particular finite counterterms or if RG evolution is considered on a larger
configuration space).

The aim of this paper is to explore the connection between integrability and the RG
flow on some new examples — integrable G × G and G × G/H models that were derived
from the affine Gaudin construction [6–8]. These models may be viewed as generalizations
of the PCMk,1

LPCMk
= LPCM + kLWZ(g) , LPCM = −1

2 h Tr[J+J−] , J ≡ g−1dg , g ∈ G , (1.1)

1In our conventions the action is S = 1
4πα′

∫
d2ξ L with the “string” notation for the loop counting

parameter α′ ≡ ~ that may be set to 1 in some of the equations below. We also use ∂± = ∂0 ± ∂1.
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i.e. the principal chiral model (with inverse coupling h) with the WZ term (with “level”
k). The conformal WZW model is obtained at the special points h = ±k.

The PCMk admits various integrable deformations (see, e.g., [9–13]), which have been
interpreted [6, 7] as particular cases of integrable affine Gaudin models. The affine Gaudin
construction also produces natural generalizations of the PCMk to integrable models on
products of group spaces GN = G× . . .×G [6, 7].

Here we shall consider a subclass of such models defined by

L = −1
2 ρij Tr[J (i)

+ J
(j)
− ] + ki LWZ(g(i)) , (1.2)

J (i) ≡ g(i)−1
dg(i) , g(i) ∈ GN , i = 1, . . . , N .

We denote by J (i) the Maurer-Cartan 1-form corresponding to i-th copy of G and ρij is a
constant coupling matrix (summation over repeated i, j is assumed).

The PCMk (1.1) corresponds to the special case N = 1 (with ρ11 = h and k1 = k),
and is integrable for any values of its couplings. However, for N > 1, the model (1.2) is
classically integrable only for special couplings (ρij , ki) that correspond to the affine Gaudin
models [6, 7]. These are selected as the solutions of certain polynomial equations. We will
focus on the first non-trivial case of N = 2, i.e. on G×G models.

As we shall find in section 2, the classical integrability condition for G×G theories (1.2)
is automatically stable under the 2-loop RG flow in a particular subtraction scheme (ex-
tending the 1-loop results of [14]). Here the 2-loop stability is obtained without the need
for any finite counterterms.

The model (1.2) is a special case of the 2d σ-model

S = 1
4πα′

∫
d2ξ L = 1

4πα′
∫
d2ξ [Gmn(x) +Bmn(x)] ∂+x

m∂−x
n . (1.3)

This is a “two-coupling” theory, so the 2-loop β-functions for (G,B) generally depend on
a choice of a renormalization scheme [15, 16]. There exists a special 2-loop scheme [15–17]
that effectively treats Gmn and Bmn as symmetrically as possible (with the respective β-
functions being the symmetric and antisymmetric parts of a single tensor expression). We
shall refer to this G–B symmetric scheme as the “GB scheme”. Explicitly, in this scheme
one finds for the 2-loop β-functions [15, 16] (see also [18–20])2

d

dτ
(Gmn +Bmn) = α′ β(1)

mn +α′2 β(2)
mn + . . .

= α′ R̂mn +α′2
1
2

[
R̂klpnR̂mklp−

1
2R̂

lpk
mR̂nklp + 1

2R̂kmnlH
kpqH l

pq

]
+ . . . .

(1.4)

2Here τ is the RG parameter. In general, the β-functions may contain also diffeomorphism and B-gauge
transformation terms corresponding to freedom of field renormalizations and shifts of the Lagrangian by
total derivatives depending on RG scale. We omit these terms since they automatically vanish in the
examples considered below due to manifest global GL ×GL symmetry.
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Here Hmnk = 3∂[mBnk] and R̂ is the curvature of the generalized connection Γ̂kmn =
Γkmn(G)− 1

2H
k
mn. Applied to the case of the PCMk in (1.1), the expression in (1.4) gives

(here we set α′ = 1)

d

dτ
h = cG

(
1− k2

h2

)[
1 + cG

2h

(
1− 3 k2

h2

)]
,

d

dτ
k = 0 , (1.5)

so that the position of the WZW fixed point h = ±k remains unchanged at the 2-loop
order. The 2-loop PCMk β-function (1.5) was found in [17] using a scheme equivalent (at
the 2-loop level) to the one of [15, 16] that leads to (1.4).3

The GB scheme is naturally “adapted” to the vicinity of the WZW conformal point:
the derivative ∂hβh

∣∣
h=k of the β-function for h at the fixed point correctly reproduces [17]

the anomalous dimension of the Tr(J+J−) operator (PCM Lagrangian) as computed [22]
using the underlying infinite dimensional Kac-Moody symmetry of the WZW model. Thus
this scheme is apparently consistent with the preservation of the KM symmetry in the
vicinity of the conformal point.

It is then natural to expect that this scheme should also play a special role in a
more general class of integrable models (1.2) containing WZW models as special limits,4

and should facilitate preservation of the hidden integrable structure of these models at
the quantum level. We will indeed see evidence for this below: the classical integrability
conditions for the G × G model (1.2) will be automatically preserved by the 2-loop RG
evolution provided one uses the β-functions in the GB scheme (1.4).

We shall also study, in section 3, a gauged analog of the models (1.2) defined on a coset
space G×G/H. This theory, which was recently derived from affine Gaudin models in [8],
may be viewed as a generalization of the standard G/H symmetric space σ-model, also
including WZ terms. For these G×G/H theories to be gauge invariant, the corresponding
couplings must satisfy certain linear relations. In addition, for a gauge invariant model to be
classically integrable, the couplings should further satisfy certain polynomial relations [8].

We will compute the RG flow for these integrable G×G/H theories, finding that they
are stable under the 1-loop RG flow. However, at the 2-loop level, RG stability does not
automatically arise and, in general, requires certain finite redefinitions of the couplings.
These are equivalent to adding specific finite counterterms, which may be interpreted as
required for preservation of integrability at the quantum level (this is analogous to what
was observed on other examples in [4, 5]). There are still a few special cases, in particular
the integrable T 1,1 model of [8], that are automatically stable under the 2-loop RG flow
(see section 3.2).

3To recall, part of the scheme freedom comes from the prescription of how one treats the antisymmetric 2d
tensor εab appearing in the B-term in (1.3) in dimensional regularization. Ref. [17] used ’t Hooft-Veltman
prescription of treating εab as effectively 2-dimensional. In [15, 16] it was assumed that, in d = 2 + ε

dimensions, εabεcd = f(ε)(δac δbd − δadδbc) where f = 1 + f1ε + . . . , and then the GB scheme corresponds to
the choice f1 = −1. As noted in [21], the scheme used in [17] is equivalent (at least at the 2-loop level) to
f(d) = 1

d−1 = 1− ε+ . . . , i.e. to the choice f1 = −1 [15, 16] of the GB scheme (1.4).
4Similar logic was recently used in [23] in the discussion of the 2-loop RG evolution of a “squashed” SU2

variant of PCMk.
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In section 4 we shall present a new integrable σ-model with target space metric
T 1,q = SU2 × SU2/U1 [24–27] and a particular B-field. The model admits as a special
limit the conformal GMM model with unequal levels [28–30]. Our central observation is
that, in the case of the subgroup H in G×G/H being abelian, the gauge invariance con-
ditions of [8] are too restrictive and there is also a second “branch” of gauge invariant
theories. This allows a natural generalization of the integrable T 1,1 model of [8] to T 1,q

with a general parameter q. We demonstrate that the resulting T 1,q model is classically
integrable, admitting a Lax representation. We observe that the T 1,q model is self-dual
under T-duality in one isometry direction, and argue that this property forces it to be
stable under the RG flow. We verify this fact explicitly by computing the corresponding
2-loop RG flow of the two coupling constants.

A few concluding remarks will be made in section 5. In appendix A we shall discuss
the integrability conditions for the GN model (1.2). In appendix B we shall provide the
explicit formulae for the 2-loop β-functions of the G×G and G×G/H models and explain
how they were derived.

2 G×G models

As was mentioned in the Introduction, the GN model (1.2) is classically integrable for spe-
cial values of its couplings (ρij , ki) satisfying certain polynomial relations, which originate
from the affine Gaudin construction [6, 7]. For such values of the couplings the model
admits a Lax connection of the form

L+ = αi J
(i)
+ , L− = βi J

(i)
− , (2.1)

whose flatness condition, F+−(L) ≡ ∂+L− − ∂−L+ + [L+, L−] = 0, is equivalent to the
equations of motion following from (1.2). Moreover, the affine Gaudin construction guar-
antees that the Poisson brackets of the Lax matrix Lσ = 1

2(L+ − L−) can be written in a
‘twist’ form, i.e. a special form of the standard non-ultralocal r/s Poisson bracket [31, 32].
This implies the existence of a tower of conserved commuting higher-spin charges [33].

Below we shall consider the simplest N = 2 case of the GN model (1.2) for a simple Lie
group G. We shall parametrize the 2× 2 matrix ρij in (1.2) in terms of the 4 components
s, t, u, b as follows

L = −1
2

(
s t+ b

t− b u

)
ij

Tr[J (i)
+ J

(j)
− ] + ki LWZ(g(i)) . (2.2)

Then the affine Gaudin condition for integrability is the vanishing of a cubic polyno-
mial [6, 7, 14],

f(s, t, u, b, k1, k2) ≡ −t (s+ t) (t+ u) + b2 (s+ t+ u) + t k1 k2 + b (u k1 − s k2) = 0 . (2.3)

Let us note that the affine Gaudin conditions for integrability (e.g. (2.3) in the N = 2
case) are certainly sufficient for integrability. However, it is not a priori clear if they are
necessary, since there could also be integrable theories of the form (1.2) that are unrelated
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to the affine Gaudin construction of [6, 7]. In appendix A we presented a check that the
condition (2.3) is also necessary for the integrability of the G × G model (2.2), assuming
the natural ansatz (2.1) for the corresponding Lax connection.

2.1 RG flow in G×G models

The general GN model (1.2) has global (GL)N ×GR symmetry acting as

g(i) → u
(i)
L g

(i)uR , (u(i)
L , uR) ∈ (GL)N ×GR . (2.4)

In fact, (1.2) is the most general 2-derivative local Lagrangian having this symmetry. This
implies that only ρij can run under the RG flow (with the WZ parameters ki not renor-
malized as usual).5

Starting with the σ-model couplings (Gmn, Bmn) corresponding to the G × G

model (2.2) and computing the corresponding 2-loop β-functions in the GB scheme (1.4),
we find

d

dτ
ρij = α′ β

(1)
ij + α′2 β

(2)
ij + . . . ,

β
(1)
ij = cG F

(4)
ij (s, t, u, b, k1, k2) , β

(2)
ij = c2

G
(su− t2)−5 F

(9)
ij (s, t, u, b, k1, k2) ,

(2.5)

where the matrices F (4), F (9) are homogeneous polynomials of degrees 4 and 9 in their
arguments and cG is the dual Coxeter number of the group G, as in the PCMk case
in (1.5). The explicit expressions for F (4), F (9) are given in appendix B.1 and also in some
special cases below.

Remarkably, despite the complicated expressions for the β-functions, one is able to
verify that the integrability condition (2.3) is, in fact, preserved by the 2-loop RG flow:

df

dτ

∣∣∣∣
f=0

=
(
α′ β

(1)
ij + α′2 β

(2)
ij + . . .

) ∂f

∂ρij

∣∣∣∣
f=0

= α′ × 0 + α′2 × 0 + . . . (2.6)

The vanishing of the 1-loop O(α′) term in (2.6) was already established in [14], and the
vanishing of the 2-loop term is a new non-trivial result. Let us stress that this property
of the integrability condition (2.3) not being deformed at the 2-loop level is specific to the
GB scheme (1.4).

2.2 Some special cases

Let us consider some particular examples of the integrable G×G models (2.2), (2.3).

2.2.1 ρ21 = 0 and the G×G model related to λ-model

The most general integrable model with ρ21 = 0 corresponds to the following choice of the
parameters in (2.2) (this case was also considered in appendix C of [14])

b = t , u = −k2 . (2.7)
5As in the PCMk case, the RG invariance of ki follows from the fact that the corresponding field strength

H = dB is covariantly constant.
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After the redefinition (g(1), g(2)) ≡ (g, g̃−1), the corresponding Lagrangian (2.2) depending
on s, t, k1, k2 may be written as (cf. (1.1))

L = [sLPCM(g) + k1LWZ(g)]− k2 [LPCM(g̃) + LWZ(g̃)] + tTr [J+(g)K−(g̃)] , (2.8)

where J = g−1dg, K(g̃) = dg̃ g̃−1. This is just a PCMk1 and WZW model (with level −k2)
coupled via the J+(g)K−(g̃) term. In this case the global GR symmetry in (2.4) is enlarged
to a chiral symmetry GR(ξ+),6

(g, g̃)→ (u g v, v−1g̃ w(ξ+)) , (u, v, w(ξ+)) ∈ GL ×GL ×GR(ξ+) . (2.9)

These symmetries protect the structure of (2.8) under renormalization so that only the
parameters s and t are expected to run with the RG scale. Indeed, in this case the RG
equations (2.5) take the following explicit form7

d

dτ
s = c

G
(s− k1)

(k2s+ t2)2
[
k2

2(k1 + s) + 4k2t
2 − 2t3

]
+

c2
G

(s− k1)
2 (k2s+ t2)5

[
2k2t

5 (38t2 − 11k1t+ 2s2 + 41st
)

(2.10)

+ 2k3
2t

3 (−8k1s− 42k1t+ 9k2
1 − 5s2 + 18st

)
− 2k2

2t
4 (−7k1s− 46k1t+ s2 + 48st+ 28t2

)
+k5

2(k1 + s)
(
s2 − 3k2

1
)

+ 2k4
2t

2(3k1 + 2s)(3s− 5k1)− 4t7(5s+ 6t)
]
,

d

dτ
t = c

G
t(t− k2)

(k2s+ t2)2 [k2(k1 − s) + 2t(s+ t)]

+
c2

G
t(t− k2)

2 (k2s+ t2)5
[
4t5
(
t(4t− k1) + 5s2 + 10st

)
− k4

2(s− k1)
(
s2 − 3k2

1
)

(2.11)

+ 2k2
2t

2 (s2(28t− 3k1) + 2st(13t− 16k1) + 6k1t(k1 − 4t) + 3s3)
−2k2t

3 (−k1t(13s+ 19t) + 2s3 + 31s2t+ 45st2 + 10t3
)
− 2k3

2t(s− k1)(5st− 3k1(s+ 4t))
]
.

At the obvious fixed point s = k1, t = k2, the model (2.8) becomes [14] the sum of two
decoupled WZW models, L = (k1 + k2)LWZW(g) − k2LWZW(gg̃). As discussed in [14],
the fixed points are all decoupled WZW models of this type. The RG trajectories either
interpolate between such WZW-type fixed points or flow to them in the IR from the
asymptotically free UV fixed point s, t→∞.

An interesting special case of (2.8) is s = k1 = −k2 ≡ −k′, when it becomes

L = −k′
(
LWZW(g) + LWZW(g̃)− λ′Tr [J+(g)K−(g̃)]

)
, λ′ ≡ k′−1t . (2.12)

This particular G×G model appears from the “tripled” version [5] of the λ-model [34, 35]
after removing the decoupled WZW part. It is also a special case of the “doubly λ-
deformed” model of [36–39]. Here the β-functions (2.10), (2.11) reduce to just λ′ running as

d

dτ
λ′ = 2cG λ′2

k′(1 + λ′)2 +
4c2

G
λ′4(1− 2λ′)

k′2(1− λ′)(1 + λ′)5 . (2.13)

6We denote by G(ξ+) right G multiplications depending on light-cone coordinate ξ+ = 1
2 (ξ0 + ξ1).

7As in (1.5), here we set the loop counting parameter α′ to be 1. The 1-loop terms in (2.10), (2.11)
match those in [14] (after reversing the sign of the WZ terms ki → −ki to match the conventions).
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This is the 2-loop β-function [5] for the λ-model based on the group G with parameters
(k, λ) related to (k′, λ′) as k′ = k + 2cG , λ′ = k

k+2c
G
λ−1.8

2.2.2 k1 = k2 = 0

Setting the WZ levels to zero, k1 = k2 = 0, the integrability condition (2.3) implies that

b = b(s, t, u) ≡
[
t(t+ s)(t+ u)
t+ s+ u

]1/2
. (2.14)

We thus obtain from (2.2) an integrable G×G model with 3 independent couplings s, t, u,

L = −1
2

(
s t+ b(s, t, u)

t− b(s, t, u) u

)
ij

Tr[J (i)
+ J

(j)
− ] . (2.15)

Since ki do not run, this special case of the model (2.2), (2.3) should also be stable under
the RG flow, i.e. (2.15) should be renormalizable with only s, t, u running. Indeed, using
for convenience the redefined couplings (s, t, u)→ (x, y, z) with

x = s+ t+ u , y = s

t
, z = u

t
, (2.16)

the 2-loop β-functions (2.5) become

d

dτ
x = 2cG −

c2
G

2x(yz− 1)3

[
16 + 32(y+ z) + 16(y2 + z2) + 88yz+ 68yz(y+ z)

+12yz(y2 + z2 + 5yz) + 8y2z2(y+ z)− y2z2(y+ z)2
]
, (2.17)

d

dτ
y = F (x; y, z) , d

dτ
z = F (x; z, y) , (2.18)

F (x; y, z) ≡ y(y+ 1)(y+ 2)
(zy− 1)2

(
cG
x

[
1− zy− 3(z+ 1)2

]

−
c2
G

2x2
1

(zy− 1)3

[
−z6y2− y6(3zy− 38z− 44) + 2z(y+ 1)(26zy+ 101y+ 58) + 20(y+ 1)2

− z4(y(3y((y− 14)y− 100)− 296)− 38)− z3(y(y(y((y− 4)y− 178)− 728)− 708)− 152)

+2z2(y+ 1)(y(y(5y+ 89) + 262) + 105)
])

. (2.19)

The obvious symmetry between s and u in (2.15) is translated into the symmetry of the
RG equations under y ↔ z.

The fact that these 2-loop β-functions are much simpler than the general (not necessar-
ily integrable) case of (2.5) (see also appendix B.1) suggests that a substantial simplification
happens upon specifying the couplings to be at the integrable locus f = 0 in (2.3) (this
was already observed at the 1-loop order in [14]).

8See also [40]. For the 1-loop beta functions of the λ-models based on G and G/H, see [41] and [42]
respectively.
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3 G×G/H models

Let H be a subgroup of G such that G/H is a symmetric space (we assume that both G
and H are simple real Lie groups). Then the Lagrangian for the gauged G ×G/H model
of [8] takes the form9

L = −1
2 ρij Tr[P (i)

+ P
(j)
− ]− 1

2 rij Tr[I(i)
+ I

(j)
− ] + ki LWZ(g(i)) , (3.1)

P (i) = PG/HJ
(i) , I(i) = PHJ

(i) , J (i) = g(i)−1
dg(i) . (3.2)

Here PG/H and PH are projectors to the corresponding parts of the algebra of G, and
ρij , rij are constant 2 × 2 matrices. The global symmetry consists of left multiplication
GL × GL, as well as the discrete Z2 corresponding to the symmetric space structure of
G/H. The action for (3.1) is required to be gauge invariant under the local right action by
an element of H (acting the same on both g(i))

g(i) → g(i)w , w(ξ+, ξ−) ∈ H . (3.3)

For general choices of G and H, gauge invariance imposes the linear constraints [8]10

k1 = −k2 ≡ k , rij =
(

r −r − k
−r + k r

)
. (3.4)

The remaining free parameters of the gauge invariant model are then r, k and the 2 × 2
matrix ρij .

Requiring integrability imposes further constraints which, as for the GN models (1.2),
can be obtained from the affine Gaudin construction. The following parametrization of the
6 constants r, k, ρij in terms of 4 parameters K,x, ζ+, ζ− was shown in [8] to be sufficient
for integrability

r=r11 =r22 =K
ζ2
−− ζ2

+
(1−x2)2 , r12 =2K

(1− ζ2
+)(x2− ζ2

−)
(1−x2)3 , r21 =−2K

(1− ζ2
−)(x2− ζ2

+)
(1−x2)3 ,

(3.5)

ρ11 =K
1− 2ζ2

+ + ζ2
−ζ

2
+

(1−x2)2 , ρ12 =x r12 =2K
x(1− ζ2

+)(x2− ζ2
−)

(1−x2)3 , (3.6)

ρ21 =x−1 r21 =−2K
(1− ζ2

−)(x2− ζ2
+)

x(1−x2)3 , ρ22 =K
x4− 2ζ2

+x
2 + ζ2

−ζ
2
+

x2(1−x2)2 , (3.7)

k=k1 =−k2 =−K
2x2 + 2ζ2

−ζ
2
+− (1 +x2)(ζ2

−+ ζ2
+)

(1−x2)3 . (3.8)

9Our conventions in (3.1) are related to the ones of [8] by rij → 2ρ(0)
ij , ρij → 2ρ(1)

ij and the opposite sign
for the WZ terms, i.e. ki → −ki.

10The special case of abelian H will be discussed below in section 4.
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This parametrization is simply equivalent to the gauge invariance conditions (3.4) combined
with the two extra polynomial integrability conditions

f1 ≡ r2 − k2 − ρ12ρ21 = 0 ,
f2 ≡ (r − k)4ρ12 + (r − k)2(r − k − 2ρ11)(r − k + 2ρ22)ρ21

− 2(r − k)(ρ11 + ρ22)ρ12ρ
2
21 + (ρ12 + ρ21)ρ12ρ

3
21 = 0 .

(3.9)

Two simple solutions of these conditions are found by setting r = k (i.e. r21 = 0 in (3.4))
and either ρ21 = 0 or ρ12 = 0.

3.1 RG flow in G×G/H models

The structure of the gauge invariant G×G/H action (3.1), (3.4) is protected by the right
H gauge symmetry (3.3) and the global GL × GL and Z2 symmetry. This rules out all
counterterms except those corresponding to renormalizations of the 6 couplings r, k, ρij (of
which k is not renormalized as usual). Let us parametrize ρij as in (2.2),

ρij =
(

s t+ b

t− b u

)
. (3.10)

Computing the β-functions (1.4) corresponding to the σ-model couplings (Gmn, Bmn) for
the model (3.1), (3.4), (3.10), we find for the 1-loop β-functions of the 5 running couplings

d

dτ
hp = α′β

(1)
hp
, hp ≡ (r, s, t, b, u) , (3.11)

β(1)
r = cG − cH

(t2 − su)2

(
r2s2 − 2b2t2 − 2r2t2 + 2t4 − 2b2su− 2st2u+ r2u2

+4bstk + 4btuk − s2k2 − 2t2k2 − u2k2
)

+ cH

(
1− k2

r2

)
, (3.12)

β(1)
s = cG

r(t2 − su)
[
b2s− st2 + r2u+ 2r(t2 − su)− 2btk + uk2

]
, (3.13)

β
(1)
t = cG

r(t2 − su)
[
−b2t+ b(s+ u)k + t(r2 − su− k2)

]
, (3.14)

β
(1)
b = cG

r(t2 − su)
[
−b(t2 + su) + t(s+ u)k

]
, (3.15)

β(1)
u = cG

r(t2 − su)
[
r2s+ b2u− t2u+ 2r(t2 − su)− 2btk + sk2

]
. (3.16)

We observe that the integrability conditions (3.9) are stable under the 1-loop RG
flow (3.12)–(3.16),

∂fa
∂τ

∣∣∣∣
f1=f2=0

= α′β
(1)
hp

∂fa
∂hp

∣∣∣∣
f1=f2=0

+O(α′2) = 0 +O(α′2) , a = 1, 2 . (3.17)

However, it turns out that (as for some examples discussed in [4, 5]) this property of RG
stability does not, in general, extend to the 2-loop order. Computing the 2-loop β-functions
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for the model (3.1), (3.4) in the GB scheme (1.4) (given explicitly in appendix B.2), we
find that the subleading correction to (3.17) is non-zero at general values of the couplings,

β
(2)
hp

∂fa
∂hp

∣∣∣∣
f1=f2=0

6= 0 , a = 1, 2 . (3.18)

Moreover, we checked that (3.18) is also non-vanishing in arbitrary covariant 2-loop sub-
traction schemes.11

As in other examples [4, 5], one may expect to restore the property of RG stability
at the 2-loop order by adding certain finite quantum α′-corrections to the target space
geometry. Because of the global and local symmetries, the only possible corrections would
correspond to redefinitions hp → h̄p of the couplings hp = (r, s, t, b, u),

hp = h̄p + α′Qp(h̄) + . . . . (3.19)

Such redefinitions may be interpreted as quantum corrections to the integrability condi-
tions (3.9): if the original couplings hp satisfied fa(h) = 0, then the corrected ones h̄p
would satisfy a corrected version of the integrability conditions,

f̄a(h̄) = 0 , f̄a ≡ fa + α′Qp ∂hpfa + . . . . (3.20)

3.2 Some special RG-stable cases

There are still special exceptional cases of the integrable G×G/H model (3.1), (3.4), (3.9)
that are automatically stable under the 2-loop RG flow in the GB scheme. Two of them
are discussed below.

3.2.1 G×G/H model related to G/H λ-model

One solution of the integrability conditions (3.9) is

r = k , ρ21 = 0 , ρ11 = ρ22 = k , i.e. r = s = u = k , t = b , (3.21)

on which (3.1), (3.4) become (redefining (g, g̃) ≡ (g(1), (g(2))−1))

L = −k′
(
LWZW(g) + LWZW(g̃)− Tr

[
J+(g)

(
PH + λ′ PG/H

)
K−(g̃)

])
,

J+(g) ≡ g−1∂+g , K−(g̃) ≡ ∂−g̃ g̃−1 , k′ ≡ −k , λ′ ≡ k′−1t .
(3.22)

This model is a “gauged” version of (2.12), similarly being constructed from a combination
of two WZW Lagrangians coupled by a current-current term. This particular G × G/H
model appears from the “tripled” formulation [5] of the G/H λ-model [34, 35] (after re-
moving a decoupled third WZW part). Compared to generic G×G/H models, the G×G
global symmetry is enhanced to a chiral gauge symmetry G(ξ−) × G(ξ+) acting as (see
footnote 6)

(g, g̃)→
(
u(ξ−) g, g̃ v(ξ+)

)
,

(
u(ξ−), v(ξ+)

)
∈ G(ξ−)×G(ξ+) . (3.23)

11More precisely, we considered arbitrary subtraction schemes related to the GB scheme (1.4) by covariant
redefinitions of Gmn and Bmn.
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This symmetry protects the structure of (3.22), allowing only the coupling λ′ to run. The 1-
and 2-loop β-functions in (3.12)–(3.16) and appendix B.2 lead to the following RG equation
for λ′

d

dτ
λ′ = cGλ′

k′
+ cGλ′

[
cH − (2cG − cH )λ′2

]
k′2(1− λ′2) . (3.24)

This is the 2-loop β-function [5] for the λ-model based on the symmetric space G/H with
parameters (k, λ) related to (k′, λ′) by k′ = k + 2cG , λ′ = k

k+2c
G

(λ−1 + 2cG).

3.2.2 Integrable deformation of GMM model on G×G/H and T 1,1 model

Let us consider a particular solution of the integrability conditions (3.9) that was studied
in [8],

r = k , ρ12 = ρ21 = 0 , i.e. t = b = 0 . (3.25)

The Lagrangian of the corresponding theory (3.1), (3.4) is given by

L = − 1
2 Tr

[
hP+P− + h̃ P̃+P̃−

]
− 1

2kTr
[
I+I− + Ĩ+Ĩ− − 2I+Ĩ−

]
+ k [LWZ(g)− LWZ(g̃)] ,

(3.26)

where we have set12

(g(1), g(2)) ≡ (g, g̃) , P̃± = P±(g̃) , Ĩ± = I±(g̃) , h ≡ ρ11 = s , h̃ ≡ ρ22 = u .

(3.27)
This is an integrable deformation of the special point h = h̃ = k that corresponds to the
conformal GMM model [28, 29] on the homogeneous space G×G/H with equal levels.

Specializing the 1-loop and 2-loop β-functions in (3.12)–(3.16) and appendix B.2 to this
case, we find that the model (3.26) is automatically stable under 2-loop renormalization
with only h and h̃ running,

d

dτ
h = 2cG

(
1− k

h

)(
1 + 1

h

[
2(cG − cH )− (3cG − 2cH )kh

])
,

d

dτ
h̃ = 2cG

(
1− k

h̃

)(
1 + 1

h̃

[
2(cG − cH )− (3cG − 2cH )k

h̃

])
,

d

dτ
k = 0 .

(3.28)

Remarkably, the RG evolution of h and h̃ is decoupled. Note that the structure of their
β-functions is similar to the one in the PCMk case (1.5). As expected, the GMM model
h = h̃ = k is a fixed point.

Let us consider the simplest example of this theory (3.26) with G = SU2 and H = U1
and choose the parametrization

g = eφ1T1eθ1T2eψT3 , g̃ = e−φ2T1e−θ2T2e−ψ̃T3 , (3.29)

12Ref. [8] used the notation (k, h, h̃) ≡ (λ2, λ2
2, λ

2
1).

– 11 –



J
H
E
P
0
5
(
2
0
2
1
)
0
7
6

where the SU2 generators are TA = i
2σA and the generator of H = U1 is T3. We shall fix

the H gauge freedom by setting ψ̃ = 0. As a result, we get an integrable 5-dimensional
σ-model (cf. (1.3))

L = (Gmn +Bmn)∂+x
m∂−x

n = 1
4k
[
∂+ψ∂−ψ + cos2 θ1 ∂+φ1∂−φ1 + cos2 θ2 ∂+φ2∂−φ2

+ 2 cos θ1 ∂+φ1∂−ψ + 2 cos θ2 ∂+ψ∂−φ2 + 2 cos θ1 cos θ2 ∂+φ1∂−φ2
]

+ 1
4h
[
∂+θ1∂−θ1 + sin2 θ1 ∂+φ1∂−φ1

]
+ 1

4h̃
[
∂+θ2∂−θ2 + sin2 θ2 ∂+φ2∂−φ2

]
.

(3.30)

The resulting target space geometry corresponds to the T 1,1 metric and a particular B-
field [8]13

ds2
T 1,1 = Gmndx

mdxn = 1
4k (dψ + cos θ1 dφ1 + cos θ2 dφ2)2

+ 1
4h (dθ2

1 + sin2 θ1 dφ
2
1) + 1

4h̃ (dθ2
2 + sin2 θ2 dφ

2
2) , (3.31)

B = 1
2Bmndx

m ∧ dxn = 1
4k (dψ + cos θ1 dφ1) ∧ (dψ + cos θ2 dφ2) . (3.32)

The 3 parameters h, h̃, k of (3.26) are thus mapped to the 3 parameters of the T 1,1 metric
in [24–27].14 The 2-loop RG equations (3.28) become in this case (cG = 2, cH = 0)

d

dτ
h = 4

(
1− k

h

)[
1 + 4

h

(
1− 3 k

2 h

)]
,

d

dτ
h̃ = 4

(
1− k

h̃

)[
1 + 4

h̃

(
1− 3 k

2 h̃

)]
. (3.33)

As we shall discuss in section 4, the 2-loop RG stability of this T 1,1 model may be under-
stood as consequence of the fact that the σ-model (3.30) is self-dual under T-duality in the
ψ-direction.

4 Integrable T 1,q model

Let us now introduce a new integrable σ-model with target space metric T 1,q and a par-
ticular B-field, which is a one-parameter generalization of the T 1,1 model (3.30) of [8].
Its special conformal case will be the SU2 × SU2/U1 GMM model, now with unequal WZ
levels [28–30] (with their ratio related to the parameter q).

Our central observation is that, starting with the G×G/H model (3.1) and considering
the case when the subgroup H is abelian, the gauge invariance condition (3.4) of [8] is too

13Due to differing conventions, the B-field here is opposite in sign to that in [8]. This difference is not
significant, and can be removed by a parity transformation.

14To recall, the T 1,1 metric (3.31) is an Einstein space if h = h̃ = 3
2k. It then serves as a base of a Ricci

flat 6d conifold with metric dr2 + r2ds2
T1,1 if we formally set k = 1

9 so that Rij = 4gij . In general, the non-
zero components of the Ricci tensor of the cone geometry ds2 = Gmn(X)dXmdXn = dr2 + r2gij(x)dxidxj

(with i = 1, . . . , d) are Rij(G) = Rij(g)− (d− 1)gij . Thus it vanishes if gij is an Einstein metric with a
particular value of the scalar curvature R(g) = d(d − 1) (this condition is satisfied, e.g., for a unit-radius
sphere Sd when Gmn is flat).
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restrictive. At the particular point ρ12 = ρ21 = 0, there is also a second “branch” of gauge
invariant models,15

L = −1
2 ρij Tr[P (i)

+ P
(j)
− ]− 1

2 rij Tr[I(i)
+ I

(j)
− ] + ki LWZ(g(i)) ,

ρ12 = ρ21 = 0 , rij =
(

r q(−r − k1)
q(−r + k1) q2r

)
, q2 ≡ −k2/k1 ,

(4.1)

where k1, k2 are assumed to be of opposite sign. The action for (4.1) is invariant under
the modified gauge transformation16

(g(1), g(2))→ (g(1)wq, g(2)w) , w = w(ξ+, ξ−) ∈ H . (4.2)

Here wq is the q-th power of the abelian group element w. In the case when the abelian H is
compact then, to make wq single-valued, one should assume that q =

√∣∣∣k2
k1

∣∣∣ is an integer.17

At the value q = 1 (i.e. k1 = −k2), this model intersects with the gauge invariant G×G/H
model (3.1), (3.4) considered above.

We claim that model (4.1) is integrable (admitting a Lax representation) if18

r = k . (4.3)

In this case it becomes a generalization of (3.26) to the case of unequal levels k, k̃,

L = −1
2 Tr

[
hP+P−+ h̃ P̃+P̃−

]
− 1

2 Tr
[
k I+I−+ k̃ Ĩ+Ĩ−− 2

√
kk̃ I+Ĩ−

]
+ kLWZ(g)− k̃LWZ(g̃) ,

(4.4)

where we have set (cf. (3.27))

(g(1), g(2)) ≡ (g, g̃) , P̃± = P±(g̃), Ĩ± = I±(g̃),

h ≡ ρ11, h̃ ≡ ρ22 , k ≡ k1, k̃ ≡ −k2 , q =

√
k̃

k
.

(4.5)

The fact that the k̃ = k limit (3.26) is an integrable theory provides a first check of
the integrability of (4.4). Indeed, starting from the Lax connections [8] for (3.26) (with z

15Note that, in generic cases, WZ terms present a topological obstruction to gauging [43]. There are, how-
ever, special “anomaly-free” subgroups of the WZ term’s global symmetry GL×GR that can be gauged [44],
satisfying TrL[TATB ]−TrR[TATB ] = 0. This condition is satisfied here by the gauge transformations (3.3)
and (4.2) on both “branches” of theories, due to cancellation between the two copies of G in G×G/H.

16The reason for the restriction of H to be abelian if q 6= 1 is that the variation of the Lagrangian (3.1)
under (4.2) with w ∈ H will be proportional to (q− 1)LWZ (w), which vanishes for abelian H for any q. We
also need to assume ρ12 = ρ21 to prevent mixing between P (1) and P (2) terms, which transform differently
under w and wq respectively.

17More generally, one could consider a “twisted” action of the abelian subgroup, (g(1), g(2)) →
(g(1)wq, g(2)wp) characterized by integers p, q satisfying q2/p2 = −k2/k1. In the SU2 × SU2/U1 exam-
ple discussed below, that would lead to the T p,q model.

18The case r = −k is also integrable since it is related to (4.3) by parity.
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as spectral parameter),19

L+(z) = I+ + z−1P+ , L−(z) = 1
kz2 − h

[
(k − h)(I− + zP−) + k(z2 − 1)Ĩ−

]
, (4.6)

L̃−(z) = Ĩ− + zP̃− , L̃+(z) = 1
kz−2 − h̃

[
(k − h̃)(Ĩ+ + z−1P̃+) + k(z−2 − 1)I+

]
, (4.7)

we have found the following Lax connections for (4.4) by replacing some factors of k by k̃,

L+(z) = I+ + z−1P+ , L−(z) = 1
kz2 − h

[
(k − h)(I− + zP−) +

√
kk̃(z2 − 1)Ĩ−

]
, (4.8)

L̃−(z) = Ĩ− + zP̃− , L̃+(z) = 1
k̃z−2 − h̃

[
(k̃ − h̃)(Ĩ+ + z−1P̃+) +

√
kk̃(z−2 − 1)I+

]
.

(4.9)

Assuming the simplest case G = SU2, H = U1 (see footnote 29), using the same
coordinate parametrization of this SU2 × SU2/U1 model as in (3.29), and fixing again the
H = U1 gauge as ψ̃ = 0, we find the following generalization of (3.30)

L = (Gmn +Bmn)∂+x
m∂−x

n = 1
4k
[
∂+ψ∂−ψ + cos2 θ1 ∂+φ1∂−φ1 + q2 cos2 θ2 ∂+φ2∂−φ2

+ 2 cos θ1 ∂+φ1∂−ψ + 2q cos θ2 ∂+ψ∂−φ2 + 2q cos θ1 cos θ2 ∂+φ1∂−φ2
]

(4.10)

+ 1
4h
[
∂+θ1∂−θ1 + sin2 θ1 ∂+φ1∂−φ1

]
+ 1

4h̃
[
∂+θ2∂−θ2 + sin2 θ2 ∂+φ2∂−φ2

]
, q =

√
k̃

k
.

The resulting target space metric is that of the T 1,q space [24–27] and the B-field is a
natural generalization of the one in (3.32),

ds2
T 1,q = Gmndx

mdxn = 1
4k (dψ + cos θ1 dφ1 + q cos θ2 dφ2)2

+ 1
4h (dθ2

1 + sin2 θ1 dφ
2
1) + 1

4h̃ (dθ2
2 + sin2 θ2 dφ

2
2) , (4.11)

B = 1
2Bmndx

m ∧ dxn = 1
4k (dψ + cos θ1 dφ1) ∧ (dψ + q cos θ2 dφ2) . (4.12)

Like the q = 1 case [8] in (3.30), the presence of the B-field is crucial here for integrability
(the T 1,q σ-model without B-field is not integrable [47, 48]). The coordinate form of the

19These Lax connections were obtained in [8] from the affine Gaudin Lax connection of the general
integrable G × G/H model (3.1), (3.4), (3.9) by taking the limit r = k, ρ12 = ρ21 = 0. It was found that
certain components of the Lax connection degenerate to zero and thus the flatness condition of the resulting
connection L± does not imply some of the equations of motion. However, one can consider a generalized
limiting procedure by infinitely rescaling the spectral parameter while taking this limit, thus obtaining a
second connection L̃± that “misses” a different subset of equations of motion. The flatness conditions of
the two Lax connections together encode the full set of the equations of motion. The fact of having two
separate Lax connections may seem unusual but should be sufficient for the integrability applications: for
example, each Lax connection will lead to its own family of conserved charges. Note also that for k = 0 the
two Lax connections (4.6), (4.7) become the familiar ones of the two decoupled G/H σ-models so the fact
of having two connections may not be totally surprising (we thank B. Hoare for this comment).
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Lax connections (4.8), (4.9) is (TA are the SU2 generators in (3.29))

L′+(z) = cos θ1 ∂+φ1 T3 + z−1 (∂+θ1 T2 + sin θ1 ∂+φ1 T1) ,

L′−(z) = 1
kz2 − h

[
(k − h) (cos θ1 ∂−φ1 T3 + z(∂−θ1 T2 + sin θ1 ∂−φ1 T1))

−(z2 − 1)
(√

kk̃ cos θ2 ∂−φ2 + k ∂−ψ

)]
, (4.13)

L̃+(z) = 1
k̃z−2 − h̃

[
(k̃ − h̃)

(
− cos θ2 ∂−φ2 T3 + z−1(−∂+θ2 T2 + sin θ3 ∂+φ3 T1)

)
+
√
kk̃(z−2 − 1) (cos θ1 ∂+φ1 + ∂+ψ)

]
,

L̃−(z) = − cos θ2 ∂−φ2 T3 + z (−∂−θ2 T2 + sin θ2 ∂−φ2 T1) . (4.14)

To simplify the expressions we followed [8] here in replacing L± by its gauge transformed
version L′± = w−1L±w + w−1∂±w, with w = exp(−ψT3).

At the special point h = k, h̃ = k̃ = q2k, the model (4.10) becomes the SU2×SU2/U1
case of the conformal GMM model with levels k1 = k, k2 = −k̃. It was pointed out in [30]
that the SU2 × SU2/U1 GMM model corresponds to the T 1,q metric and a particular B-
field, and its 2-loop conformality was explicitly checked (see also [45]). The general GMM
model has a current algebra symmetry [28, 29] and is also integrable in the Lax connection
sense [46]. What we have shown above is that it admits an integrable extension (4.10)
away from the conformal point h = k, h̃ = k̃.

4.1 Stability under the 2-loop RG flow

Let us now show that the integrable T 1,q model (4.10) is stable under the 2-loop RG flow.
The general gauge invariant model (4.1) (with the r = k condition (4.3) relaxed) must

be stable under the RG with only (r, h, h̃) as running couplings.20 This is due to its H gauge
invariance and global GL×GL symmetry prohibiting any new counterterm structures. We
shall see that the T 1,q model, obtained by fixing r = k, is a “fixed line” of its RG flow.

20At the point q = 1 or k1 = −k2 where the two “branches” of gauge invariant theories (4.1), (3.4)
intersect, one may worry that the couplings ρ12, ρ21 may also run, since this is no longer prevented by the
gauge invariance. However, in the abelian H case this is forbidden by an extra global “center” symmetry [8,
24–27], (g, g̃) → (g z, g̃) , z ∈ Z(H) ⊂ H preserving the non-mixing of the coset parts of the current P
and P̃ in (3.26). Note that this symmetry alone would not be sufficient to explain the stability of the T 1,q

model since it does not prevent r from running.
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Relaxing r = k has the effect of replacing k → r in the metric, with k still appearing
in the B-field (cf. (4.11), (4.12))21

ds2 = 1
4r (dψ+ cos θ1 dφ1 + q cos θ2 dφ2)2 + 1

4h (dθ2
1 + sin2 θ1 dφ

2
1) + 1

4h̃ (dθ2
2 + sin2 θ2 dφ

2
2) ,

B = 1
4k (dψ+ cos θ1 dφ1)∧ (dψ+ q cos θ2 dφ2) , q =

√
k̃

k
. (4.15)

The corresponding 2-loop β-functions in the GB scheme following from (1.4) are (k, k̃ do
not run)22

d

dτ
r = 2(r2 − k2)

[
1
h2 + k̃

k

1
h̃2

+ r2 − 3k2

r

(
1
h4 + k̃2

k2
1
h̃4

)]
, (4.16)

d

dτ
h = 4

[
1− r

2h

(
1 + k2

r2

)]
+ 2

h3r2

[
8h2r2 − 8hk2r − 12hr3 + 4r2k2 + 3k4 + 5r4

+ k̃

k

h2

h̃2
(r2 − k2)(3r2 − k2)

]
, (4.17)

d

dτ
h̃ = 4

[
1− k̃

k

r

2h̃

(
1 + k2

r2

)]
+ 2

h̃3r2

[
8h̃2r2 − 8h̃k̃kr − 12 k̃

k
h̃r3 + 4r2k̃2 + 3k̃2k2 + 5 k̃

2

k2 r
4

+ k̃

k

h̃2

h2 (r2 − k2)(3r2 − k2)
]
. (4.18)

Thus r = ±k are fixed lines of (4.16), both at 1-loop and 2-loop order. The couplings
(r, h, h̃) grow linearly with τ → ∞ in the UV (reflecting asymptotic freedom), while they
decrease to the GMM fixed point (r, h, h̃) = (k, k, k̃) in the IR.23

Specialising to the fixed line r = k of (4.16), the expressions (4.17), (4.18) simplify,
giving the 2-loop β-functions of the integrable T 1,q model (4.4), (4.10),

d

dτ
h = 4

(
1− k

h

)[
1 + 4

h

(
1− 3 k

2 h

)]
,

d

dτ
h̃ = 4

(
1− k̃

h̃

)[
1 + 4

h̃

(
1− 3 k̃

2 h̃

)]
. (4.19)

21Rescaling r → r′k and ψ → 1√
k
ψ′ this background can be put into the form symmetric under k ↔

k̃, h↔ h̃:

ds2 = 1
4r
′
(
dψ′ +

√
k cos θ1 dφ1 +

√
k̃ cos θ2 dφ2

)2
+ 1

4h (dθ2
1 + sin2 θ1 dφ

2
1) + 1

4 h̃ (dθ2
2 + sin2 θ2 dφ

2
2) ,

B = 1
4
(
dψ′ +

√
k cos θ1 dφ1

)
∧ (dψ′ +

√
k̃ cos θ2 dφ2) .

22Note that for k = k̃ (i.e. q = 1) this system of RG equations is obviously symmetric under interchanging
h and h̃. Note also that setting k = k̃ → 0 with k

k̃
= 1 and h = h the 1-loop β-functions become

d
dτ
r = 4 r

2

h2 ,
d
dτ
h = 4− 2 r

h
so that d

dτ
r
h

= 6 r
h2

(
r
h
− 2

3

)
. The point r

h
= 2

3 corresponds to the case when the
T 1,1 metric is an Einstein space (cf. footnote 14), i.e. Rmn = ΛGmn with Λ = 16

9r .
23As was argued in [28, 29], the GMM model on G × G′/H is an exact CFT, assuming at least one of

the cosets G/H or G′/H is a symmetric space (as is indeed the case for the SU2 × SU2/U1 model).
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These are a natural generalization of the β-functions for the T 1,1 model in (3.33) to the
case of k̃ 6= k. Like in (3.33), the RG evolution of h and h̃ happens to be decoupled (while
this is not the case for r 6= k in (4.17), (4.18)).

Let us note that, in addition to the r = k case of the T 1,q model, the σ-model corre-
sponding to (4.15) admits another integrable limit, k̃ = 0. In this case it factorizes into
a squashed S3 with WZ term and a round S2.24 Then the β-functions (4.16) and (4.17)
both become the same as those of this squashed S3 model in [23] (for 1-loop β-functions
see [49–51]).25 Taking further limits, the β-functions (4.16), (4.17), (4.18) agree with other
previously known expressions:

(i) Setting k̃ = 0 and r = h, we get from (4.15) the direct sum of the PCMk (round S3

with a WZ term) and the S2 σ-model. In this case (4.16), (4.17) are indeed equivalent
to the β-function of PCMk, i.e. (1.5) with cG = 2.

(ii) Setting k̃ = 0 (i.e. q = 0) and then k = 0, we instead get the direct sum of a squashed
S3 (with no WZ term) and a round S2. The β-functions for r and h agree with those
of the “squashed” PCM in [5] (with G = SU2 and the “squashing” parameter ε = r

h):
d

dτ
r = 2r2h−2 + r3h−4 ,

d

dτ
h = 4

(
1− 1

2rh
−1
)

+ 2h−3
(
8h2 − 12hr + 5r2

)
.

4.2 Covariance under T-duality

One can argue that the RG stability of the integrable T 1,q model (4.10), i.e. the presence
of the fixed line r = k of (4.16), is related to its property of being self-dual under T-
duality in the isometric ψ-direction. To see this, let us write the Lagrangian (4.10) in the
following form26

L = 1
4k
[
(∂+ψ + U+)(∂−ψ + V−)− 1

2U+V−

]
+ L̂ , (4.20)

U± ≡ 2 cos θ1 ∂±φ1 , V± ≡ 2q cos θ2 ∂±φ2 , (4.21)

L̂ ≡ 1
4h
[
∂+θ1∂−θ1 +

(
sin2 θ1 + k

h cos2 θ1

)
∂+φ1∂−φ1

]

+ 1
4h̃
[
∂+θ2∂−θ2 +

(
sin2 θ2 + kq2

h̃
cos2 θ2

)
∂+φ2∂−φ2

]
. (4.22)

Starting from the interpolating Lagrangian (obtained by ∂±ψ → A± and adding the con-
dition ∂+A− − ∂−A+ = 0 with a Lagrange multiplier ψ̄)

Lint = 1
4k
[
(A+ + U+)(A− + V−)− 1

2U+V− − ψ̄(∂+A− − ∂−A+)
]

+ L̂ , (4.23)

24The β-function (4.18) for the coefficient h̃ then matches that of the S2 σ-model, i.e. a special case of
the G/H symmetric space β-function [5] (here G/H = SO(3)/SO(2), i.e. cG = 2, cH = 0):

d

dτ
h̃ = 2cG + 4cG (cG − cH )h̃−1 = 4 + 16h̃−1 .

25The relation to the notation used in [23] is η = kh−1, λ2 = 2πh−1, κ = 1− rh−1.
26Note that L̂ becomes simply quadratic in the fields at the GMM point h = k, h̃ = k̃ = q2k.
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and integrating out A±, we obtain the following T-dual Lagrangian

L̄ = 1
4k
[
(∂+ψ̄ + U+)(∂−ψ̄ − V−) + 1

2U+V−

]
+ L̂ . (4.24)

This is the same as the original theory (4.20), with ψ → ψ̄ and a coordinate redefinition
φ2 → −φ2 (under which V− → −V−).

To appreciate the special structure of (4.20), let us relax the condition r = k and go
back to the general model (4.1) corresponding to the background (4.15). Using again the
notation (4.21), we find the following generalization of (4.20)

L = r+ k

8

[
(∂+ψ+U+)(∂−ψ+V−)− 1

2U+V−

]
+ r− k

8

[
(∂−ψ+U−)(∂+ψ+V+)− 1

2U−V+

]
+ L̂ .

(4.25)

Applying the T-duality ψ → ψ̄ to (4.25) we get, instead of (4.24),

L̄ = 1
4r
[(
∂+ψ̄+ r+ k

2r U+ + r− k
2r V+

)(
∂−ψ̄−

r− k
2r U−−

r+ k

2r V−

)
+ r+ k

4r U+V−+ r− k
4r U−V+

]
+ L̂ .

(4.26)

For general values of r and k, (4.26) is different from (4.25); the only self-dual theory
where (4.25) and (4.26) coincide is the T 1,q model (4.20) corresponding to r = k (or its
parity-conjugate r = −k).

By the standard path integral argument, the T-dual models (4.25), (4.26) should be
quantum-equivalent.27 Since the model (4.25) is stable under the RG due to its symmetries,
with the 3 running couplings r, h, h̃, its T-dual (4.26) must also be stable. Given that the
self-dual points r = ±k are part of both RG-stable families (4.25) and (4.26), then they
must also remain in both families after the renormalization. Hence r = ±k must be fixed
lines of the RG flow. This was indeed confirmed above by the explicit computation of the
β-functions leading to (4.16).

5 Concluding remarks

In this paper we discussed some new instances of a close connection between the conditions
of integrability and a consistent restriction of the RG flow to a subspace of couplings.

We have found the 2-loop β-functions of the 6-parameter G×G model (2.2) and have
shown that its integrability condition (2.3) is automatically preserved by the RG flow.
In [14], the 1-loop β-functions for this integrable model were written in a universal form in
terms of the twist function, revealing a hidden simplicity. It would be interesting to see if

27In general, the T-duality transformation rules may be subject to quantum α′ corrections [52–54] that
may be attributed to extra finite counterterms resulting from integration over the auxiliary gauge field A±
(see, e.g., [4]). If the kinetic term of the isometric coordinate is non-trivial, i.e. the term quadratic in A±
is A+M(x)A−, then the leading quantum correction to the effective Lagrangian is represented by the term
∆L ∼ α′ ∂+ logM ∂− logM (as well as a shift of the dilaton [55, 56]). In the case of (4.25) we have M = 1
and thus this correction is absent.
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the complicated expressions we have found for the 2-loop β-functions (see appendix B.1)
simplify on the “integrable surface” once expressed in terms of the twist function.28

We also studied the 6-parameter gauged G×G/H model (3.1), (3.4), which is integrable
under the conditions (3.9). The latter were found to be stable under the 1-loop RG flow
but, in general, require a certain deformation (i.e. the addition of finite counterterms) at
the 2-loop level to preserve integrability. It is possible that there exists an extended target
space formulation of the G × G/H model in which no additional 2-loop counterterms are
needed (as was demonstrated for the λ-model examples in [5]).

We have found that there are still some special cases in which integrable G × G/H
models are automatically stable under the 2-loop RG flow. One simple example is the T 1,1

model of [8]. We also constructed a new class of integrable G × G/H models (4.4) in the
case when the subgroup H is abelian (see (4.1), (4.3), (4.4)). For G = SU2 and H = U1,
this led to an integrable T 1,q model generalizing the T 1,1 model, which we also found to
be stable under the 2-loop RG flow for any value of the parameter q. This model may
be interpreted as an integrable deformation of the conformal GMM model with unequal
levels [28, 29]. Since the GMM model admits a G × G′/H generalization (with G 6= G′),
this raises the question of whether there is a larger class of integrable G × G′/H models
that flow to such conformal theories.29 Another open question is whether the integrable
T 1,q model admits a description in terms of affine Gaudin models (like the T 1,1 case) or if
it is outside of that formalism.

Given a σ-model with running couplings, it can be promoted to a conformal theory (and
thus embedded into string theory) by adding two light-cone directions u and v, replacing
the RG “time” in the coupling constants by u and adding a dilaton linear in v [59, 60].
Fixing the light-cone gauge on u, one then gets back the original σ-model with “local”
couplings depending on 2d time according to the RG equations. It would be interesting to
study whether the connection between the classical Lax integrability of such local-coupling
models and the RG evolution of couplings observed in [61] applies also to the models
discussed in this paper.
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28One may try to follow the method of [14] at the 2-loop order, computing the Riemann tensor and then
the 2-loop β-function in terms of the twist function. It would also be interesting to investigate the connection
to the “doubled” approach of [57, 58] which studied the model (2.2), (2.3) with additional integrable η- or
λ-deformation parameters turned on.

29One obvious possibility is to consider some analytic continuations, e.g., take G′ to be a different real
form of the complexification of G (assuming the resulting σ-model couplings G,B remain real). For example,
the counterpart of the SU2 × SU2/U1 model would be SL2(R)× SU2/U1.
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A Deriving the integrability conditions for the GN model

It was shown in [6, 7] that the coupled model (1.2) is integrable for particular choices of
the couplings (ρij , ki) corresponding to realisations of the affine Gaudin models. Here we
shall try to demonstrate the converse statement: these affine Gaudin models are the only
integrable cases of the coupled models (1.2).

We will assume a natural ansatz (2.1) for the Lax connection, valued in Lie(G) (here
we explicitly indicate the summation over i = 1, . . . , N)30

L+ =
∑
i

αi(z) J (i)
+ , L− =

∑
i

βi(z) J (i)
− , (A.1)

where z is the spectral parameter. The curvature of this Lax connection takes the form

F+−(L) =
∑
i

(
βi(1− αi) ∂+J

(i)
− − αi(1− βi) ∂−J

(i)
+

)
+
∑
i 6=j

αiβj [J (i)
+ , J

(j)
− ] . (A.2)

The equations of motion of the model (1.2) are (for GN with arbitrary N)

Ei ≡
∑
j

(
(ρij − δijkj) ∂+J

(j)
− + (ρij + δijkj) ∂−J (j)

+ + ρij [J (i)
+ , J

(j)
− ] + ρji [J (i)

− , J
(j)
+ ]
)

= 0 .

(A.3)

We note that (A.2) and (A.3) are the unique ways to write these expressions without any
terms of the form [J (i)

+ , J
(i)
− ], which have been eliminated using the identity F+−(J (i)) = 0.

If the model (1.2) is integrable then,31 for some vi(z), we have

F+−(L) =
∑
i

vi(z)Ei , (A.4)

which implies that

βj(1− αj) =
∑
i

vi(ρij − δijkj) , αj(1− βj) =
∑
i

vi(−ρji − δijkj) ,

αiβj = (vi − vj)ρij , i 6= j (no summation) .
(A.5)

This is a system of N +N + (N2−N) = N2 +N equations. Fixing the freedom to redefine
the spectral parameter by setting v1 = z, there are N +N + (N − 1) = 3N − 1 “artificial”
variables, αi, βi, vi 6=1. After solving for these, there are (N2 +N)− (3N−1) = N2−2N+1
remaining equations to be solved for the N2 + N variables ρij , ki. After solving all the

30While (A.1) is the natural ansatz for the Lax connection arising from affine Gaudin models, it does
degenerate at certain points in coupling space. For example, taking ρij to be diagonal (i.e. decoupled PCMk

models), one instead requires a Lax connection valued in Lie(G)N . Thus it would also be interesting to
consider other ansatze for the Lax connection.

31Here we are assuming integrability and deriving necessary conditions on the couplings. Thus we do not
need to worry about whether the vi(z) in (A.4) are independent functions (which would be relevant for the
converse question).
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equations, this leaves (N2 +N)−(N2−2N+1) = 3N−1 free parameters for the integrable
theory (including the WZ levels, which may be continuous for non-compact groups).32

Thus the space of integrable models is (3N − 1)-dimensional, which coincides with the
number of free parameters following from the affine Gaudin construction (see [14] and refs.
therein).

Specializing to the N = 2 case of G×G, this counting suggests a 5-dimensional space
of integrable models. Then the 6 free parameters (s, t, u, b, k1, k2) in (2.2) should be subject
to only one relation to ensure integrability. Solving the equations (A.5) in this case, one
indeed obtains the condition (2.3) originally found from the affine Gaudin construction.

To summarize, for general N , the space of integrable models has the same dimension
as the space of affine Gaudin models. It remains to understand if there may still be extra
branches of integrable theories not corresponding to the affine Gaudin models (cf. the
G × G/H models, where this seems to be the case for abelian H, see section 4). For the
N = 2 case of G × G models, we found exact matching between the space of integrable
models (A.5) and the space of affine Gaudin models satisfying the condition (2.3).

B Explicit form of the 2-loop β-functions

Here we shall provide the explicit formulae for the 2-loop β-functions of the general G×G
and G×G/H models that were used in the main text.33 We will also briefly explain how
they were derived.

B.1 G×G model

For the G×G model (2.2), let us use the notation

ρij = h(ij) + b[ij] =
(
s t

t u

)
+
(

0 b

−b 0

)
. (B.1)

Let the 2× 2 matrix nij be the “square root” of hij = h(ij), and let mij be its inverse,

nik njk = hij , mik nkj = δij , nij = n(ij), mij = m(ij) . (B.2)

The target space metric of the σ-model (2.2) is “diagonalised” by the vielbein 1-form34

EAi = nik J
(k)A, A = 1, . . . , dimG , i = 1, 2 ,

J (k) ≡ TAJ (k)A =
(
g(k))−1

dg(k) .
(B.3)

32One might worry that the integrability constraints on the couplings ρij , ki resulting from (A.4) might
depend on the spectral parameter v1 = z. However, this will not happen because there is a rescaling
ambiguity Ei → ciEi in the definition of the equations of motion (A.3). One may thus rescale E1 to
effectively set v1 = z = 1 in (A.4). Since the constraints on the couplings from (A.4) must be invariant
under such rescalings, then they must not depend on z.

33The formulae derived in this appendix are also available in the Mathematica file attached to this paper
as supplementary material.

34We use the generators TA satisfying [TA, TB ] = ifCABTC and we define fABC = Tr[TCTD]fDAB . For
simple groups G, the structure constants satisfy fABCf

B
AD = −2cG Tr[TCTD] and fDEAf

E
GBf

G
DC =

cGfABC , where cG is the dual Coxeter number of G. Note that ifABC in our present conventions is
equivalent to fABC in the conventions of [5].
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Then the coefficients of the metric ds2 = GAi,BjE
AiEBj and the 3-form H = dB =

1
6HAi,Bj,CkE

Ai ∧ EBj ∧ ECk are given by35

GAi,Bj = −1
2 Tr[TATB] δij , (B.4)

HAi,Bj,Ck = i

2fABC [klmilmjlmkl + blp(mipmjlmkl +milmjpmkl +milmjlmkp)] .

(B.5)

From Cartan’s structure equation dEAi+ω̂Ai
Bj∧EBj =TAi with torsion TAi = 1

2H
Ai

Bj,CkE
Bj∧

ECk, we obtain the torsionful spin connection

ω̂AiBj = i

2f
A
BCMijk , (B.6)

Mijk ≡ milmjlnkl −milnjlmkl − nilmjlmkl (B.7)

+ klmilmjlmkl + blp(mipmjlmkl +milmjpmkl +milmjlmkp) .

The torsionful Riemann curvature R̂AiBj ≡ 1
2R̂

Ai
Bj,Ck,DlE

Ck ∧ EDl = dω̂AiBj + ω̂AiCk ∧
ω̂CkBj is then found in terms of Mijk to be

R̂AiBj,Ck,Dl = 1
4
[
2fABEfECDMijpnpqmkqmlq

+fACEfEBDMipkMpjl − fADEfEBCMiplMpjk

]
.

(B.8)

It is then straightforward to substitute (B.5), (B.7), (B.8) into the 2-loop β-functions
in the GB scheme (1.4), obtaining explicit formulae for the RG equations d

dτ ρij =
βij(n11, n12, n22, b, k1, k2) depending on the components of nij . Using a computer symbolic
algebra package (e.g. Mathematica) it is easy to rewrite these expressions in terms of the
components s, t, u of the “square” coupling hij = niknjk in (B.1), with all the square roots
cancelling out as the Riemann tensor and the H-field must clearly be rational functions of
hij . We thus obtain the β-functions in the form given in (2.5),
d

dτ
ρij = α′ β

(1)
ij + α′2 β

(2)
ij + . . . ,

β
(1)
ij = cG(su− t2)−2 F

(4)
ij (s, t, u, b, k1, k2) , β

(2)
ij = c2

G
(su− t2)−5 F

(9)
ij (s, t, u, b, k1, k2) ,

(B.9)

where the explicit form of the homogeneous polynomials F (4)
ij and F (9)

ij is:

35The overall factor of i in (B.5) simply reflects the fact that the vielbein (B.3) is imaginary. This makes
no difference and could be eliminated by just multiplying EAi → iEAi.
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B.2 G×G/H model

The computation of the β-functions for the gauge invariant G × G/H model (3.1), (3.4)
is similar to the G × G case above, except that one has to correctly handle the gauge
invariance.

We shall again use the notation (B.1) and (B.2), with the symmetric “square root” of
hij = ρ(ij) being nij , and its inverse being mij . In the computation below, we shall denote
certain combinations of nij and mij by

pij = m1im1j +m2im2j , νij = n1im1j − n2im2j ,

χij = k

2pij + b

2(m1im2j +m2im1j) , λij = m1im1j −m2im2j .
(B.10)

We shall split up the generators TA of G into Tα ∈ Lie(H) and Ta ∈ Lie(G)/Lie(H) (which
are orthogonal with respect to the Killing form).

Assuming from the beginning that the matrix rij satisfies the gauge invariance condi-
tion (3.4),36 the target space metric of the σ-model (3.1) is diagonalized by the vielbein37

EM = (eα, eα, eai) =
(√

r(I(1)α − I(2)α) , I(1)α + I(2)α , nikP
(k)a

)
,

I(k) ≡ TαI(k)α = PH
[(
g(k))−1

dg(k)] , P (k) ≡ TaP (k)a = PG/H
[(
g(k))−1

dg(k)]. (B.11)

In this frame, the metric ds2 = GMNE
MEN and the 3-form H = 1

6HMNPE
M ∧EN ∧EP

have the following non-zero components

Gαβ = −1
2 Tr[TαTβ ] , Gai,bj = −1

2 Tr[TaTb] , (B.12)

Hαβγ = i

2kr
−3/2fαβγ , Hα,bi,cj = ir−1/2χijfαbc . (B.13)

36Alternatively, one could obtain the same results by starting with rij unconstrained, i.e. without gauge
invariance imposed. One could first compute the torsionful Riemann tensor for the target space geome-
try (3.1) with general rij , ρij . The gauge invariance condition (3.4) would then be imposed and the resulting
Riemann tensor projected onto the non-degenerate directions of the metric GMN .

37The index M denotes all tangent space directions. In the G×G case in (B.3) we had M = (Ai), while
here M = (α, ᾱ, ai). Both G and H are assumed to be simple.
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The H gauge invariance is reflected in the vanishing of all α components of GMN and
HMNP , and, in particular, the fact that GMN is degenerate as a result. One could explicitly
fix a gauge, eliminating some target space directions and removing this degeneracy. Instead,
we find it more convenient to lift the degeneracy with a small parameter ε acting as a
regulator,38

Gαβ = −1
2εTr[TαTβ ] . (B.14)

Computing the torsionful Riemann tensor as in subsection B.1, one finds that it has a finite
ε→ 0 limit. This means that the resulting Riemann tensor for ε = 0 is unambiguous (since
there are no divergences that could create finite-term ambiguities). Finally, we project out
the α directions to obtain the non-zero components

R̂αβδε = − 1
4rf

α
βγf

γ
δε + k2

4r3 (fαδγfγβε − fαεγfγβδ) ,

R̂αβ,dk,el =
(
k

2rλkl −
1
2pkl

)
fαβγf

γ
de + 1

r
AkjAlj(fαdcf cβe − fαecf cβd) ,

R̂αbi,δ,el = − 1
2rAjigjlf

α
bcf

c
δe −

k

2r2Alif
α
δγf

γ
be + 1

r
AljCjif

α
ecf

c
bδ ,

R̂aibj,dk,el =
(
Cijλkl −

1
2δijpkl

)
fabγf

γ
de + 1

r
AkiAljf

a
dγf

γ
be −

1
r
AliAkjf

a
eγf

γ
bd ,

R̂aibk,δ,ε = − 1
4r δikf

a
bγf

γ
δε + 1

r
CijCjk(faδcf cbε − faεcf cbδ) ,

Aij ≡
1
4(νji − νij)− χij + r

2λij , Cij ≡ −
1
4(νji + νij) + χij + r

2λij .

(B.15)

All that remains is to substitute (B.13), (B.15) into the 2-loop β-functions (1.4) in
the GB scheme. The resulting expression is hard to evaluate as it contains hundreds of
terms, each proportional to a contraction of the form (ffff)αβ or (ffff)ab where each
f denotes a component fγδε or fγde of the structure constants, and indices are contracted
using the Killing form Tr[TaTb]. One can show, however, that there are only 11 independent
such contractions after accounting for the antisymmetry of the structure constants. This
allows for the efficient evaluation of the resulting β-functions for r and ρij . These are
first obtained depending on n11, n12, n22 but, as discussed in subsection B.1, they may be
rewritten in terms of s, t, u with all square roots cancelling. As a result, we obtain the
2-loop generalization of the 1-loop β-functions in (3.12)–(3.16)

d

dτ
hp = α′β

(1)
hp

+ α′2β
(2)
hp
, hp ≡ (r, s, t, b, u) , (B.16)

38The use of the “regulator” ε is a short-cut for the following gauge-fixing procedure. Fixing an “axial”
gauge iXu(I(1)

u + I
(2)
u ) = y(ξ) ∈ LieH (u = 1, 2 is the 2d index), the path integral should be independent of

the choice of the constant 2d vector Xu and the algebra-valued function of 2d coordinates y(ξ). Inserting
the δ-function of the gauge fixing condition into the path integral and then integrating over Xu and y with
a Gaussian measure, i.e. e−

1
2X

uXu− 1
2 ε
∫
d2ξTr[yy], the result should be independent of ε (here we assume

Euclidean 2d signature but the same is true also in Minkowski signature after an analytic continuation).
Integrating first over y we get

∫
d2X exp

[
− 1

2X
uXv

(
δuv − εTr[(I(1)

u + I
(2)
u )(I(1)

v + I
(2)
v )]

)]
. Integrating

over Xu restores the 2d Euclidean invariance and the result to leading order in the ε→ 0 limit is equivalent
to simply adding the regulator term ∆L = − 1

2 εTr[(I(1)
u + I

(2)
u )2] corresponding to (B.14).
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where β(2)
hp

are given by the following expressions:
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