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1 Introduction

There has recently been a flurry of interest in Feynman integrals associated with elliptic
curves. Many different ways to represent these integrals have been developed [1–24], cul-
minating in bases of functions that are believed to be powerful enough to represent all such
integrals [25–27]. A common feature of most of these representations is the characteriza-
tion of each integral in terms of a single, specific family of elliptic curves depending on
the kinematic data of the Feynman integral. With the family specified, relations can be
found between functions defined on the same family, allowing for the choice of a linearly
independent basis.
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What these representations typically do not consider are relations between Feynman
integrals associated with distinct families of elliptic curves.1 This deficit is thrown into
sharp relief by a pair of papers, one by Adams and Weinzierl [15], and the other by Bogner,
Müller-Stach, and Weinzierl [28], investigating the two-loop sunrise integral with all equal
masses and with distinct internal masses respectively. These integrals have long been
known to involve elliptic curves [1, 2, 4–6, 8, 13, 29–43]. What they found was that the
sunrise integral can in fact be described by two distinct elliptic curves in different contexts,
with the curves related by a quadratic transformation, characterized in the latter paper as
an isogeny [28]. One curve appeared when analyzing the integral in terms of its Feynman-
parametric representation, while another emerged from the maximal cut expressed in the
Baikov representation [44] (see also [45–50]). They refer to these as the curve from the
graph polynomial and the curve from the maximal cut, respectively.

In this work, we investigate the origin of the distinction between these two curves:
whether they differ because one comes from the maximal cut, or due to their origin in
different representations. We examine two diagrams, the sunrise with all distinct internal
masses and the elliptic double-box [51, 52], in a variety of representations. In particular,
we compare maximal cuts of these diagrams both in Baikov representations and in other
representations (a light-cone representation in two dimensions, and a momentum twistor
representation in four dimensions). We find that in general these representations can
all give identical elliptic curves. Instead, we explain the observations of refs. [15, 28] as
a consequence of a particular choice those references made when extracting an elliptic
curve from the Baikov representation, involving combining two square roots. If we instead
rationalize one of the roots, we find not an isogenous curve, but an identical curve to that
found in Feynman parametrization.

The paper is organized as follows: after a quick review of the relevant mathematics in
section 2, in section 3 we consider the sunrise integral with three distinct masses. We review
the Feynman-parametric representation in subsection 3.1, and the loop-by-loop Baikov
representation found in ref. [28] in subsection 3.2. We then derive two more representations,
the traditional Baikov representation in subsection 3.3 and a representation in light-cone
coordinates in subsection 3.4, and compare the resulting curves. In subsection 3.5 we
explain the differing curves as a result of combining distinct square roots, and extract an
alternate curve by rationalizing a quadratic root instead, finding consistency with other
methods. We give another view on the relation between the curves that avoids introducing
square roots in subsection 3.6. In subsection 3.7 we close with a brief discussion of how
the elliptic j-invariants of these curves shed light on the singularities of the diagram. In
section 4 we investigate the elliptic double-box, where we compute Baikov representations
of the maximal cut to compare to curves extracted in prior work. Specifically, we compare
a d-dimensional Baikov representation (subsection 4.1) and a Baikov representation derived
in strictly four dimensions (subsection 4.2) finding agreement between the two. We then
conclude and raise some topics for future investigation in section 5.

1From here on, we will in a slight abuse of language refer to distinct elliptic curves instead of distinct
families of curves. This terminology is typical in the physics literature, and can be justified in cases where
one compares representatives of both families at the same, fixed kinematic point.
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Our paper also includes an appendix, reviewing both the loop-by-loop and the standard
approach to the Baikov representation in A.2 and A.3 respectively, as well as deriving our
d-dimensional Baikov representation of the elliptic double-box in A.4 and presenting more
details of our four-dimensional derivation in A.5. We also include two files as supplementary
material: doublebox_curve.txt, presenting the elliptic curve for the double-box, and
doublebox_baikov_rep.txt, presenting the Baikov representation for the double-box.

2 Lightning review: elliptic curves and isogenies

An elliptic curve is a smooth projective algebraic curve of genus one, together with a
rational point which serves as the origin for its group structure.

There are many ways to represent such curves. One can write them as the vanishing
loci of cubic polynomials in projective plane, or in terms of a quartic in a single variable
with no repeated roots. One standard form is the so-called Weierstrass normal form, the
equation

y2 = 4x3 − g2x− g3 , (2.1)

for some coefficients g2 and g3.
Two elliptic curves are called isogenous when there is a non-constant map between them

given by rational functions which sends the origin of the first to the origin of the second. To
every isogeny corresponds a dual isogeny and their composition is a homomorphism from
an elliptic curve to itself. If this homomorphism is the multiplication by two, we call the
initial isogeny a two-isogeny. If an isogeny has an inverse (that is, when the inverse map
is also rational), one further calls the two curves isomorphic [53]. Isomorphic curves have
the same j-invariant, which can be specified in terms of the coefficients of the Weierstrass
normal form as follows2

j = 1728g
3
2

∆ , (2.2)

where the elliptic discriminant ∆ = g3
2−27g2

3. The elliptic curve defined by the Weierstrass
model (2.1) is smooth if and only if ∆ 6= 0.

3 The elliptic sunrise integral

The two-loop sunrise integral shown in figure 1 is given by

I(p2,m2
1,m

2
2,m

2
3) =

∫ d2k1d2k2(
k2

2 −m2
1
) (

(k1 − k2)2 −m2
2
) (

(p− k1)2 −m2
3
) . (3.1)

This integral is finite in two dimensions, so it is often studied in that context. In this
section we will extract an elliptic curve from this integral in several ways, constructing the
j-invariant for each such curve. We will find that the different methods we use provide
only two distinct j-invariants, and are grouped as follows:

2The factor of 1728 = 26× 33 is required for various number theoretic reasons which will not be relevant
for us. We choose to keep it in order to minimize confusion, but also because some of the formulas we will
find below actually look nicer when including this factor.
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p k1 − k2 p

k2

p− k1

Figure 1. Sunrise integral. All internal propagators are massive and we consider the most general
case where all masses can be unequal. The momentum labeling is chosen such as to make the
loop-by-loop Baikov representation easier to derive.

• Feynman parametrization (subsection 3.1), solving the cut equations in light-cone
coordinates (subsection 3.4)

• Loop-by-loop Baikov representation with 4 inverse propagators (subsection 3.2), full
Baikov representation with 5 inverse propagators (subsection 3.3)

These two j-invariants correspond to two distinct elliptic curves, which are not iso-
morphic. However, as described in [28], the two curves are related by a two-isogeny.

In the rest of this section, we will describe how to extract an elliptic curve using each
of these methods, and finish by reconciling the Baikov representations with the first set of
methods, before briefly discussing this integral’s Landau singularities.

3.1 Feynman-parametric representation

We begin by reviewing the two representations considered in ref. [28]. The first representa-
tion considered in that reference was for the full integral expressed in Feynman parameters.
In Feynman parameters, the integral can be written as

∫ ω
F where F is the second graph

polynomial,

F = m2
1x

2
1(x2 + x3) +m2

2x
2
2(x3 + x1) +m2

3x
2
3(x1 + x2) + (−p2 +m2

1 +m2
2 +m2

3)x1x2x3
(3.2)

and

ω = x1dx2dx3 − x2dx1dx3 + x3dx1dx2. (3.3)

The variables x1, x2 and x3 are homogeneous coordinates on P2 and the equation F = 0
defines an elliptic curve in P2.3

To compute the j-invariant of this curve we may first divide by p2 to make the ex-
pression dimensionless, then transform to the Weierstrass normal form. For the purpose of
writing the j-invariant for this curve, we define the following notation: writing µ2

i = m2
i

p2 ,
we then write,

ξ0 = µ1 + µ2 + µ3, ξ1 = −µ1 + µ2 + µ3, ξ2 = µ1 − µ2 + µ3, ξ3 = µ1 + µ2 − µ3.

(3.4)
3In this paper we always write Pn for the complex projective space Pn(C).
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With this notation, we can specify the j-invariant:

jF =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 16µ2

1µ
2
2µ

2
3
]3

µ4
1µ

4
2µ

4
3 (ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) (3.5)

where we have used a subscript F to indicate that this is computed from the Feynman
parameter representation.

3.2 Loop-by-loop Baikov representation

Ref. [28] presented the maximal cut of the two-loop sunrise integral in a loop-by-loop
Baikov representation (as distinct from the traditional, or “full” Baikov representation, see
ref. [49], appendix A, or the next section to clarify the difference). We review below how
to derive this representation in the case of this integral.

In the Baikov representation we want to change the integration variables in the integral
I(p2,m2

1,m
2
2,m

2
3) from the loop momenta k1 and k2 to the inverse propagators. For the

integral in eq. (3.1) the inverse propagators are

D1 = k2
2 −m2

1, D2 = (k1 − k2)2 −m2
2, D3 = (p− k1)2 −m2

3, D4 = k2
1, (3.6)

where we had to add D4 to be able to express all scalar products between the momenta. In
the following we consider the integral in the Euclidean region which corresponds to p2 < 0
and m2

i > 0 for all masses.
The first step is to decompose the loop momenta into a part that is parallel and one

that is orthogonal to the external momentum p:

k1 = xp+ k1,⊥, k2 = yp+ k2,⊥. (3.7)

The orthogonal parts satisfy p · ki,⊥ = 0. As we are in two dimensions, k1,⊥ and k2,⊥ are
proportional and we can write them as k1,⊥ = up⊥ and k2,⊥ = vp⊥. Here p⊥ is chosen
so that p · p⊥ = 0 and p2

⊥ = p2. Expressing the inverse propagators in terms of the
dimensionless quantities x, y, u and v we obtain

D1 = p2(y2 + v2)−m2
1 , D2 = p2(x− y)2 + p2(u− v)2 −m2

2 ,

D3 = p2(x− 1)2 + p2u2 −m2
3 , D4 = p2(x2 + u2) . (3.8)

Moreover, the integration measure becomes d2k1d2k2 = p4 dx dy du dv.
We now want to change integration variables from (x, y, u, v) to (D1, D2, D3, D4) under

which the measure transforms as dx dy du dv = J−1 dD1 dD2 dD3 dD4. For the Jacobian
factor J we get

J ≡
∣∣∣∣∂(D1, D2, D3, D4)

∂(x, y, u, v)

∣∣∣∣ = −16p8u(uy − vx). (3.9)

This Jacobian now has to be expressed in terms of the new variables Di. The equations (3.8)
are quadratic in (x, y, u, v) and J can therefore not be expressed rationally in terms of the
Di. However, one can solve for the squares of u and uy − vx in eq. (3.9) rationally. While
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this is possible for the full integral, here we only give the expression for the maximal cut
corresponding to D1 = D2 = D3 = 0:4

Q1 := u2 = − 1
4p4

[
D4 − (m3 − p)2

] [
D4 − (m3 + p)2

]
,

Q2 := (uy − vx)2 = − 1
4p4

[
D4 − (m1 +m2)2

] [
D4 − (m1 −m2)2

]
.

(3.10)

Note that in the Euclidean region p2 is negative implying that the equation D1 = 0 does not
have a real solution. In order to impose the cut conditions we are thus forced to consider
the analytic continuation of the integral.

Multiplying Q1 and Q2 from the previous two equations we obtain an expression for
J2 as a polynomial of degree four in D4. This approach was followed in refs. [15, 28] and is
equivalent to extracting the square root of each line in eq. (3.10) and combining the square
roots under a common square root, i.e. to writing J = −16p8√Q1Q2. Another, inequivalent
approach is to keep the square roots separate, i.e. to write J = −16p8√Q1

√
Q2. As Q1

and Q2 are quadratic in D4, one can again change variables to rationalize either
√
Q1 or√

Q2. In subsection 3.5 we will show that this connects the elliptic curve arising from the
first approach to the curve defined by the vanishing of the F-polynomial in subsection 3.1.

Following the approach taken in ref. [28], we define an elliptic curve by the equation
J2 = (−16p8)2Q1Q2. We can transform it to Weierstrass form and compute its j-invariant
as in the previous section, obtaining:

jB =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 256µ2

1µ
2
2µ

2
3
]3

µ2
1µ

2
2µ

2
3 (ξ2

0 − 1)2(ξ2
1 − 1)2(ξ2

2 − 1)2(ξ2
3 − 1)2 , (3.11)

where we have again made use of µ2
i = m2

i
p2 and the variables ξi defined in eq. (3.4). This

clearly differs from the j-invariant computed in the previous subsection, see eq. (3.5).
However, as observed in ref. [28], the two curves are isogenous. This has been checked in
ref. [28] by computing the complex structure parameter τ of the elliptic curve. Here we
check it by using the relations between the j-invariants of the two elliptic curves. The j-
invariants for a pair of two-isogenous elliptic curves are related by the modular polynomial
Φ2(X,Y ) (see e.g. [54, Chapter 5])

Φ2(X,Y ) =X3 + Y 3 −X2Y 2 + 1488
(
X2Y +XY 2

)
− 162000

(
X2 + Y 2

)
+ 40773375XY + 8748000000 (X + Y )− 157464000000000.

(3.12)

See ref. [55] for details about how these modular polynomials are computed. It can be
checked that Φ2(jF , jB) = 0. This is an infinite precision test of two-isogeny. Ref. [28]
used the approach of comparing the periods which are computed using elliptic integrals.
This involves transcendental functions while the approach we followed here only requires
algebraic operations with rational functions.

4By abuse of notation we are here writing p for the absolute value of the momentum pµ.
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3.3 Full Baikov representation

For a “full” Baikov approach to an L-loop integral with E + 1 external legs one needs
1
2L(L+ 1) +LE Baikov variables Da. In the present case (L = 2, E = 1, M = L+E = 3),
the variables areD1, . . . , D5 and the maximal cut corresponds to setting D1 = D2 = D3 = 0
at the end of the computation.

We now follow [49] to derive the Baikov representation. The inverse propagators are

D1 = k2
2 −m2

1 , D2 = (k1 − k2)2 −m2
2 , D3 = (p− k1)2 −m2

3 ,

D4 = k2
1 , D5 = (p− k2)2 . (3.13)

Loosely following the notation of the paper above we set q1 = k1, q2 = k2 and q3 = p and
write sij = qi · qj . The Gram determinant5 is

G(k1, k2, p) = det

s11 s12 s13
s12 s22 s23
s13 s23 p2


= s11

(
p2s22 − s2

23

)
− s12

(
p2s12 − s13s23

)
+ s13 (s12s23 − s13s22) .

(3.14)

The Baikov polynomial is obtained by rewriting the Mandelstam variables sij in terms of
the inverse propagators Da in this Gram determinant,

P (D1, . . . , D5) = G(k1, k2, p)
∣∣∣
sij(Da)

. (3.15)

The cut integral (D1 = D2 = D3 = 0) is of the form∫ dD4dD5
Dα4

4 Dα5
5
P (0, 0, 0, D4, D5)(d−M−1)/2. (3.16)

Where α4 and α5 are the exponents of D4 and D5 in the original integral respectively.
Since M = 3, d = 2 and α4 = α5 = 0 we get∫ dD4dD5

P (0, 0, 0, D4, D5) , (3.17)

where P is a polynomial of overall degree three in D4 and D5,

P = 1
4
[
−D2

4D5 +D5(m2
1 −m2

2)(m2
3 − p2)− (m2

1m
2
3 −m2

2p
2)(m2

1 −m2
2 +m2

3 − p2)

−D4(D2
5 + (m2

2 −m2
3)(m2

1 − p2)−D5(m2
1 +m2

2 +m2
3 + p2))

]
. (3.18)

The equation P = 0 defines an elliptic curve. We may again transform this curve to
Weierstrass form. As it turns out, this curve has the same j-invariant as that from the
loop-by-loop Baikov computation in the previous section. Rather than repeating it here
we thus refer back to eq. (3.11).

5The astute reader may notice that this Gram determinant vanishes when in strictly two dimensions. If
one is uncomfortable with this one can instead derive a Baikov representation strictly in two dimensions.
We will do something similar for the elliptic double-box in section 4.2. Details relevant for either case (in
particular, how to handle cases when the internal momenta are spanned by the external momenta) are
presented in appendix A.5.
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3.4 Light-cone coordinates

One convenient way to enforce on-shell conditions in two dimensions is via light-cone co-
ordinates. We wish to enforce the conditions for the maximal cut:

k2
2 −m2

1 = 0, (k1 − k2)2 −m2
2 = 0, (p− k1)2 −m2

3 = 0. (3.19)

We define the auxiliary momentum k3 = k1−k2 and use that in light-cone coordinates
the square of a momentum is given by k2

i = k+
i k
−
i . Then the first two conditions in

eq. (3.19) are solved by

k−2 = m2
1

k+
2
, k−3 = m2

2
k+

3
. (3.20)

The last condition in eq. (3.19) becomes

(p+ − k+
2 − k

+
3 )(p− − k−2 − k−3 )−m2

3 = (p+ − k+
2 − k

+
3 )
(
p− − m2

1
k+

2
− m2

2
k+

3

)
−m2

3 = 0.

(3.21)

Introducing dimensionless quantities as k+
2 = p+x, k+

3 = p+y and again using µ2
i = m2

i
p2 ,

the previous equation becomes

(1− x− y)
(

1− µ2
1
x
− µ2

2
y

)
− µ2

3 = 0. (3.22)

In homogeneous coordinates [x : y : z] and after multiplying by xyz we are left with a cubic
curve in P2 given by the equation

PL ≡ xyz
(
1 + µ2

1 + µ2
2 − µ2

3

)
+ x2

(
µ2

2z − y
)

+ y2
(
µ2

1z − x
)
− z2

(
µ2

2x+ µ2
1y
)

= 0.
(3.23)

This is an elliptic curve whose defining equation is closely related to the F-polynomial
in (3.2). Specifically, their discriminants with respect to z are related by

discz PL(x, y, z) = discz F(y, x, z). (3.24)

Once again we can transform the curve to Weierstrass form, and evaluate its j-invariant.
As suggested by the relationship in eq. (3.24), we find it has the same j-invariant as the
Feynman parametric representation (given in eq. (3.5)), and a distinct (but isogenous)
j-invariant to those in the two Baikov representations.

3.5 Rationalizing the square roots in the Baikov representation

In subsection 3.2 we derived a loop-by-loop Baikov representation of the sunrise integral
and explained how the equation J = −16p8√Q1Q2 defines an elliptic curve isogenous to
the one obtained by Feynman parameters and the light-cone computation as in ref. [28].
Combining

√
Q1 and

√
Q2 in this way is safe if both Q1 and Q2 are positive. However, for

complex kinematics it may lead to an incorrect phase.

– 8 –



J
H
E
P
0
5
(
2
0
2
1
)
0
6
4

Instead of combining the two roots, we can rationalize one of them. Recall that Q1
and Q2 were given in eq. (3.10) as

Q1 = − 1
4p4

[
D4 − (m3 − p)2

] [
D4 − (m3 + p)2

]
,

Q2 = − 1
4p4

[
D4 − (m1 +m2)2

] [
D4 − (m1 −m2)2

]
.

(3.25)

Choosing to rationalize
√
Q2, the change of variables amounts to replacing

D4 → 2t
[
m2

1
t− 1 + m2

2
t+ 1

]
,

√
Q2 →

(t(m1 −m2) + (m1 +m2))(t(m1 +m2) + (m1 −m2))
2p2(t2 − 1) .

(3.26)

It turns out that the Jacobian from the change of variables cancels against the trans-
formed

√
Q2 and a factor of t2 − 1 coming from

√
Q1. In the end we obtain

I(p2,m2
1,m

2
2,m

2
3)
∣∣∣
cut

= p4
∫ dD4

J
= − 1

16p4

∫ dD4√
Q1
√
Q2

= − 1
16p2

∫ dt√
R
, (3.27)

where R is a polynomial of degree four in t,

R ≡ 1
64p4

[(
(m3 − p)2 − 2(m2

1 +m2
2)
)
t2 − 2(m2

1 −m2
2)t− (m3 − p)2

]
×
[(

(m3 + p)2 − 2(m2
1 +m2

2)
)
t2 − 2(m2

1 −m2
2)t− (m3 + p)2

]
.

(3.28)

The equation y2 = R(t) defines an elliptic curve as a hypersurface in a weighted projective
space P1:1:2. It turns out that this curve has the same j-invariant as that from the graph
polynomial (given in eq. (3.5)). Note that this is not the same j-invariant as in the Baikov
representations above, even though the loop-by-loop Baikov representation was our starting
point: by rationalizing instead of combining roots we have achieved agreement with the
graph polynomial and light-cone derivations of the elliptic curve.

Another way to think about how the two curves emerge is to track what happens
to the branch points of the curves under the change of variables above. In ref. [28] and
subsection 3.2 the elliptic curve arising from the Baikov representation is defined by J2 =
(−16p8)2Q1Q2. This is a double cover of P1 branched over four points. Since Q1 and Q2
are already factorized, the branch points are easy to read off:

D
(1)
4,± = (m1 ±m2)2, D

(2)
4,± = (m3 ± p)2. (3.29)

These are four points on a projective line parametrized by the coordinate D4. They have
a cross-ratio λ with corresponding j-invariant j = 256 (λ2−λ+1)3

λ2(1−λ)2 . This approach gives the
“Baikov” j-invariant shown in eq. (3.11).

On the other hand, when rationalizing the quadric Q2 we write x as the image of a
map from a different P1 with coordinate t,

t 7→ x(t) = 2t
[
m2

1
t− 1 + m2

2
t+ 1

]
. (3.30)

– 9 –
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Under this change of variables, Q1 becomes a polynomial of degree four and we again define
an elliptic curve as a double cover of P1, but this time the P1 has coordinate t. The branch
points are the preimages of the two points D(2)

4,+ and D(2)
4,−. Since the change of variables is

quadratic each point has two preimages and we indeed get four branch points as required.
As we now again have four points on a projective line, we can form a cross-ratio and the
corresponding j-invariant. This is the j-invariant that comes from the F-polynomial and
the light-cone approach in eq. (3.5).

The analysis presented here applies to the loop-by-loop Baikov representation, and
at first this may make the full Baikov result seem mysterious, as unlike the loop-by-loop
representation it does not obviously involve combining square roots. However, if one derives
the Baikov representation by dividing each loop momentum into perpendicular and parallel
subspaces, as for example in ref. [46], then one naturally passes through a form closely
related to the loop-by-loop representation in which there are indeed multiple square roots.
In particular, the individual equations that need to be solved to land on the cut solution
will be the same. If one understands the Baikov representation as a result of this kind of
procedure, then the elliptic curve we found for it earlier can be explained in the same way
as the loop-by-loop curve, and a similarly more careful treatment (especially one along
the lines of the next section) will result in the same curve as was found from Feynman
parameters and light-cone coordinates.

3.6 Derivation of the double cover relation

In this section we study the relation between the two genus-one curves from a different point
of view. We describe the curves purely by polynomial equations and we avoid introducing
square roots.

On the maximal cut we have D1 = D2 = D3 = 0 and these equations together with
D4 = p2(x2 + u2) define a curve. We introduce a dimensionless variable d4 = D4

p2 . Then,
the equations (3.8) can be simplified by solving

x = d4 − µ2
3 + 1

2 , (3.31)

u2 = − 1
4(d4 − (1 + µ3)2)(d4 − (1− µ3)2), (3.32)

v2 =µ2
1 − y2, (3.33)

uv = (1− y)d4 − µ2
3 + 1

2 + µ2
1 − µ2

2 + µ2
3 − 1

2 . (3.34)

We now obtain the equation for the curve in variables y and d4, by substituting the ex-
pressions above in (uv)2 = u2v2. This equation is

P (y, d4) = − 4y2d4 + 2yd2
4 + 2

(
µ2

1 − µ2
2 − µ2

3 + 1
)
yd4 −

(
µ2

1 + 1
)
d2

4

+ 2
(
−µ2

1µ
2
3 + µ2

2µ
2
3 + µ2

1 − µ2
2

)
y + 2

(
µ2

1µ
2
3 + µ2

2

)
d4

− µ2
1µ

4
3 − µ4

1 + 2µ2
1µ

2
2 − µ4

2 + 2µ2
1µ

2
3 − µ2

1 = 0, (3.35)
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and is a cubic equation in y and d4. It is not in Weierstrass form. The expression for the
Jacobian can also be written in the variables y and d4:

J = p8

4
(
4yd4 − (d4 + µ2

1 − µ2
2)(d4 − µ2

3 + 1)
)
. (3.36)

Note that this approach avoids introducing square roots, at the cost of working with
two variables constrained by an algebraic relation.

Let us show that dd4
J is the holomorphic one-form on this curve. Taking the differential

of P (y, d4) = 0 we obtain(
∂P

∂y

)
dy +

(
∂P

∂d4

)
dd4 = −2J(y, d4) dy +K(y, d4) dd4 = 0, (3.37)

where

K(y, d4) = −4y2 + 4yd4 + 2(µ2
1 − µ2

2 − µ2
3 + 1)y − 2(µ2

1 + 1)d4 + 2µ2
1µ

2
3 + 2µ2

2. (3.38)

Since we assume that the curve described by P = 0 is nonsingular, we have that
∂P
∂y = −2J and ∂P

∂d4
= K can not vanish simultaneously. Then, we have dd4

J = 2dy
K . Hence,

one can see that at the zeros of J this holomorphic form does not have poles, when written
with the denominator K. It can be checked that this curve is the same as the one obtained
by the more traditional Baikov approach.

However, one can see that the curve we started with, in the variables x, y, u, v and
d4 is a double cover of the curve P (d4, y) = 0. Given a point (d4, y), we can uniquely
find x and u2, v2 and uv. This allows us to solve for u and v up to a sign. Hence, to
a point on the curve P (d4, y) = 0 correspond two points on the initial curve defined by
D1 = D2 = D3 = 0 and d4 = x2 + u2.

To find a one-to-one projection of the curve which is easily recognizable as an elliptic
curve, we proceed as follows. We can use a kind of Euclidean lightcone construction and
transform the equations to

y + iv = µ2
1

y − iv
, (3.39)

(x− y) + i(u− v) = µ2
2

(x− y)− i(u− v) , (3.40)

(x− 1) + iu = µ2
3

(x− 1)− iu . (3.41)

Combining them, we find

µ2
1

y − iv
+ µ2

2
(x− y)− i(u− v) −

µ2
3

(x− 1)− iu = 1. (3.42)

If we introduce ζ = y − iv and ξ = x− iu, we have a curve

µ2
1
ζ

+ µ2
2

ξ − ζ
− µ2

3
ξ − 1 = 1, (3.43)
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which is a cubic equation in (ζ, ξ). Once we have ζ and ξ we obtain

y = 1
2

(
ζ + µ2

1
ζ

)
, v = 1

2i

(
− ζ + µ2

1
ζ

)
, (3.44)

and similarly for x and u. Finally, we obtain d4 = x2 + u2. This time, given a point (ζ, ξ)
we can find a unique point on the initial curve.

This second curve looks very similar to the lightcone solution of section 3.4 and indeed
it has the same j-invariant.

3.7 Singularities of the geometry and Landau analysis

Recall that the j-invariant of an elliptic curve is

j = 1728g
3
2

∆ , (3.45)

where ∆ is the elliptic discriminant. When ∆ vanishes, j is singular, and the elliptic curve
degenerates.

For the curve arising from Feynman parametrization and the light-cone computation
we obtained

jF =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 16µ2

1µ
2
2µ

2
3
]3

µ4
1µ

4
2µ

4
3 (ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) (3.46)

while for the curve arising from the Baikov representation we obtained

jB =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 256µ2

1µ
2
2µ

2
3
]3

µ2
1µ

2
2µ

2
3 (ξ2

0 − 1)2(ξ2
1 − 1)2(ξ2

2 − 1)2(ξ2
3 − 1)2 . (3.47)

The denominators of these expressions are distinct, but they clearly have the same
zeros, just with different multiplicities. These zeros all correspond to physical singularities
of the diagram, either to thresholds, pseudo-thresholds, or vanishing internal masses. Each
corresponds to a consistent Landau diagram, for particular choices of the sign of the energies
of each particle. The easiest to recognize are the thresholds, occurring when (ξ0)2 = 1 and
thus (m1 +m2 +m3)2 = p2, which is the condition for energy conservation when all of the
intermediate particles are traveling in the same direction. The Landau analysis also reveals
that there are other singularities, arising at pseudo-thresholds p2 = (−m1 + m2 + m3)2,
p2 = (m1 − m2 + m3)2 and p2 = (m1 + m2 − m3)2. In terms of variables ξ these are
(ξ1)2 = 1, (ξ2)2 = 1 and (ξ3)2 = 1. Finally, the singularities arising when one of the masses
vanishes are of a different type. They arise due to the fact that when one of the masses
vanishes the integral becomes divergent.

4 The elliptic double-box integral

The elliptic double-box integral has previously been analyzed in ref. [52] from the point of
view of direct integration in a Feynman parametric representation, and in ref. [56] from the
point of view of the maximal cut in twistor space. In both papers the same elliptic curve
was found using very different methods. In this section we derive a Baikov representation
of the double-box, and show that it also defines the same curve.

– 12 –



J
H
E
P
0
5
(
2
0
2
1
)
0
6
4

p2

p3
p4

p1
p6

p5

k2 + p12 k1 + p123

k1 + p12345k2

k2 + p1 k1 − k2 k1 + p1234

Figure 2. Double-box integral in momentum space. Incoming momenta are assumed to be off-
shell, i.e. p2

i 6= 0, and pi1···in
≡ pi1 + · · ·+ pin

. The internal propagators are massless.

4.1 Baikov representation

The Baikov representation is a rewriting of Feynman integrals where the integration is
over Lorentz-invariant quantities, such as dot products. In appendix A we derive such
a representation for the elliptic double-box integral shown in figure 2 (see in particular
appendix A.4).

The maximal cut of the elliptic double-box can be written in a loop-by-loop Baikov
representation as an integral over two Baikov parameters. The cut integrand takes the
following form:

J
√
G1 dx8dx9

B1(x8, x9)
√
B2(x8, x9)

, (4.1)

where x8 and x9 are the two remaining Baikov variables after all propagators have been
cut. The polynomials B1 and B2 are of degree two in x8 and also of degree two in x9. The
factors J and G1 only depend on the external kinematics. We include expressions for these
polynomials in the supplementary material, doublebox_baikov_rep.txt.

To obtain an elliptic curve, we may begin by taking a residue around B1(x8, x9) = 0.
Without loss of generality, let us take this residue in x9. Solving B1(x8, x9) = 0 for x9
introduces a square root that contains x8, and this square root can be rationalized by
Euler substitution as done in subsection 3.5 for the sunrise integral. Denoting by t the
variable that replaces x8 to rationalize the square root we find that B2(t) becomes a quartic
polynomial in t. We can therefore define an elliptic curve by y2 = B2(t) and compute its
j-invariant through standard changes of variables.

The problem with this approach is that the change of variables from x8 to t may itself
introduce a square root in the kinematic parameters. Since the j-invariant of the elliptic
curve is expected to be a rational function of the kinematics, this root is spurious and must
cancel in j.

The spurious kinematic root can be avoided if we view x8 and x9 as a subset of the
coordinates on a P3 with homogeneous coordinates [x8 : x9 : y : z]. From the denominator
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in the integrand in eq. (4.1) we define the two quadrics6

S1 :=
{

[x8 : x9 : y : z] ∈ P3 | B1(x8, x9, z) = 0
}
,

S2 :=
{

[x8 : x9 : y : z] ∈ P3 | y2 − B2(x8, x9, z) = 0
}
.

(4.2)

The integrand in eq. (4.1) corresponds to a differential form on the intersection of S1 and
S2. For generic quadrics S1 and S2 this intersection is a smooth curve of genus one.

We now review briefly how this curve may be characterized and refer to [57, Chapter
22] for further details. The quadrics S1 and S2 generate a family of quadrics{

λ0s1 + λ1s2 | [λ0 : λ1] ∈ P1, s1 ∈ S1, s2 ∈ S2
}
. (4.3)

This family is called the pencil of quadrics and the intersection C = S1 ∩ S2 is called the
base locus of the pencil. The members Sλ of the pencil are quadrics in P3 and for some
choices of λ ∈ P1 they may be singular. If S1 and S2 intersect transversely, there are four
such singular members Sλi with i = 0, . . . , 3. Out of the four points λi we can form a
cross-ratio κ and subsequently the invariant combination

j = 256(κ2 − κ+ 1)3

κ2(κ− 1)2 , (4.4)

which characterizes the pencil of quadrics up to isomorphism. One can now moreover show
that the base locus C of the pencil is isomorphic to a genus-one curve in the plane with
the same j-invariant as the pencil.

An advantage of this description is that it allows us to compute the elliptic discriminant
of the curve using only rational operations. Writing S1 and S2 for the 4 × 4 symmetric
matrices associated to the quadrics S1 and S2 in eq. (4.2) respectively, the locations λi
of the singular members of the pencil are given by the eigenvalues of the matrix S−1

2 S1.
The curve degenerates if two of those points in P1 are the same, i.e. if S−1

2 S1 has a double
eigenvalue. This leads to the expression

∆ = discλ det(λ− S−1
2 S1) (4.5)

for the elliptic discriminant. Moreover, a defining equation for the curve is given by y2 =
det(x−S−1

2 S1) = 0. This depends rationally on the kinematic variables contained in S1 and
S2 and a Weierstrass form and the j-invariant can subsequently be computed by rational
transformations.

It turns out that the elliptic curve obtained in this way has the same j-invariant as
those computed from twistor space in ref. [56] and from the parametric representation of
ref. [52]. As we do not need to combine distinct square roots in this representation, this is
consistent with our observations in the previous section.

In the supplementary material of this paper, we provide the file doublebox_curve.txt
that contains an expression for the defining equation of the curve. With minor modifications
the file should be readable with most computer programs.

6Note that here we are writing B1(x8, x9, z) for the homogenization of the polynomial B1 in eq. (4.1)
and similarly for B2.
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4.2 Four-dimensional derivation of the Baikov form

In this section we present a derivation of the Baikov form without using dimensional reg-
ularization. This avoids having to take the potentially somewhat tricky limit d → 4.
Equivalently, one can obtain the cut integrand as a one-form and it is not necessary to take
one extra residue as in section 4.1.

Consider the loop parametrized by k2 in the elliptic double-box. This loop has
denominators

D1 = k2
2, D2 = (p1 + k2)2, D3 = (p12 + k2)2, D4 = (k1 − k2)2. (4.6)

It has “external” momenta p1, p2, k1 + p12 and k1. The integral measure ddk2 decomposes
into an integral d3k

‖
2 over the space spanned by the independent “external” momenta p1,

p2 and k1, and an orthogonal integral dd−3k⊥2 . The dot products of k2 with the “external”
momenta are

k2 · p1 = 1
2(D2 − p2

1 −D1), (4.7)

k2 · p2 = 1
2(D3 −D2 − p2

12 + p2
1), (4.8)

k2 · k1 = −1
2(D4 −D1 − k2

1). (4.9)

Using identities from appendix A.5, it follows that

d3k
‖
2 = d(k2 · p1)d(k2 · p2)d(k2 · k1)

detG(p1, p2, k1) 1
2

= −1
8

dD2dD3dD4 + dD1(· · · )
detG(p1, p2, k1) 1

2
, (4.10)

dd−3k⊥2 = 1
2Ωd−3

(detG(k2, p1, p2, k1)
detG(p1, p2, k1)

) d−5
2

dD1. (4.11)

Of course, we do not need to keep the dimension d arbitrary and we can set d = 4 here. In
that case we have Ω1 = 2.

When computing the full d4k2 measure the extra terms in d3k
‖
2 proportional to dD1

drop out:

d4k2 = −2 1
16dD1dD2dD3dD4

(
detG(p1, p2, k1)

)− 1
2

(detG(k2, p1, p2, k1)
detG(p1, p2, k1)

)− 1
2
. (4.12)

Note that we have not canceled the factor detG(p1, p2, k1) since we do not allow ourselves
to combine square roots. Note also that we have some Gram determinants whose entries
contain k1 · p1, k1 · p2 and k2

1. We need to keep these dot products in mind when analyzing
the k1 integral, to which we turn next.

For the k1 integral we have new denominators

D5 = (k1 + p123)2, D6 = (k1 + p1234)2, D7 = (k1 − p6)2, (4.13)

while in the Jacobian of the ddk2 integral we have k2
1, k1 · p1 and k1 · p2. We introduce two

new Lorentz-invariant quantities D8 = k2
1 and D9 = (k1 + p12)2.
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However, not all quantities D5, . . . , D9 can be independent; there are five such quanti-
ties and only four components for the vector k1. The relation connecting these quantities
can be obtained by computing the Gram determinant detG(k1, p12, p123, p1234, p12345) = 0.
Equivalently, we can antisymmetrize in five different vectors to obtain

kµ1 ε(p12, p123, p1234, p12345)− pµ12ε(k1, p123, p1234, p12345) + pµ123ε(k1, p12, p1234, p12345)

− pµ1234ε(k1, p12, p123, p12345) + pµ12345ε(k1, p12, p123, p1234) = 0. (4.14)

When decomposed over the basis p12, p123, p1234 and p12345, k1 has components k1 ·p12,
etc., with a metric given by the inverse of the Gram matrix G(p12, p123, p1234, p12345). The
scalar products k2

1, k1·p1 and k1·p2 can be computed from this decomposition. In particular,
this implies that we can compute D8 = k2

1 in terms of the other Di (since here there are
no transversal components there is no need to introduce D8 at all). Let us compute the
measure d4k1 in terms of D9, D5, D6 and D7. Using eq. (A.39), we find

d4k1 = 1
24

(detM0)− 1
2 detM0(

detM1 detM0
) 1

2
dD9dD5dD6dD7, (4.15)

where

M0 = G(p12, p123, p1234, p12345), (4.16)

M1 =


D9

1
2(D9 +D5 − p2

3) 1
2(D9 +D6 − p2

34) 1
2(D9 +D7 − p2

345)
D5

1
2(D5 +D6 − p2

4) 1
2(D5 +D7 − p2

45)
D6

1
2(D6 +D7 − p2

5)
D7

 . (4.17)

Here we have written only some of the matrix entries, the others can be determined from
these by symmetry.

When taking the cuts we need to set D1 through D7 to zero, and thus we only need
the expression for detM1 when D1 = · · · = D7 = 0. Then detM1 is a quadratic polynomial
in D9. Taking the squares of the Jacobians obtained in this section we obtain a genus-one
curve as an intersection of two quadrics. This curve has the same j-invariant as the one
obtained by considering the curve embedded in momentum twistor space as described in
ref. [56].

5 Conclusions

We have shown that the maximal cut and the Feynman parametrization of the two-loop
sunrise integral do not necessarily correspond to different elliptic curves. The observation of
different curves for these two objects in the literature was an artifact due to combining two
square roots, and a more careful treatment shows the same curve for both the Feynman-
parametric and Baikov representation, reinforced by the observation of the same curve in
a light-cone parametrization of the maximal cut. We have shown that similarly the Baikov
and twistor representations of the elliptic double-box also describe the same elliptic curve.
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In some ways, the appearance of the same curve in different representations of these
integrals should not be surprising. If one thinks of the maximal cut as a variety in loop mo-
mentum space, that variety should already define an elliptic curve. Whether we parametrize
it with Baikov, light-cone, or twistor coordinates, we are performing changes of variables
which should preserve invariant features of the geometry, such as the j-invariant. From this
perspective, the surprise is actually that this curve is preserved in Feynman parameters.
Feynman parameters do not correspond straightforwardly to a change of variables from
the initial loop momenta, so the fact that they apparently preserve the geometry deserves
further explanation.

One of the implications of our work is that analytic continuation of the Baikov repre-
sentation away from the Baikov integration domain has to be done with some care. Inside
this domain the Jacobians involved in changing coordinates are positive and one can pick
the positive solution of any square roots that appear. However, while this is possible for
Euclidean kinematics, there is no canonical choice of square roots outside this region.

In ref. [58], an extension of the notion of leading singularity was put forward which
applies to integrals containing genus-one curves as well. The construction in that reference
implicitly assumes a fixed geometry for the genus-one curve. If there were a genuine
ambiguity in the underlying genus-one curve it is not clear how one should modify their
construction. Fortunately, the results of this paper imply that such a modification may
not be necessary.

In previous investigations of the elliptic double-box, conformal symmetry served as
an important constraint that allowed for particularly clean representations. The Baikov
representation is by its nature not conformal, as it uses momentum invariants as variables.
It would be interesting to find a variant of Baikov that preserves conformal symmetry,
to make better use of this kind of representation in the context of, e.g., N = 4 super
Yang-Mills.

Finally, there is a broader concern raised by the observations of refs. [15, 28] that we
do not fully address. While we do find the same curve for both the cut and Feynman
parametrization of the sunrise integral, this by no means shows that isogenies are never
relevant to the elliptic integrals that occur in physics. In particular, while our work suggests
that each elliptic Feynman integral has a preferred curve, it may be that there exist distinct
diagrams whose corresponding curves are isogenous. If such an example were to be found,
it would suggest the need for a formalism that relates not merely iterated integrals on the
same elliptic curve, but iterated integrals on isogenous curves as well.
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A Baikov representations with derivations

In this appendix we carefully derive the Baikov representation in its loop-by-loop and
its standard forms. This derivation mostly follows ref. [46] and the loop-by-loop part
additionally ref. [49].

A.1 The one-loop case

As both the loop-by-loop and standard Baikov representations build off of the Baikov
representation at one loop, we will start by reviewing the situation there. Writing a generic
one-loop integral,

I =
∫ ddk
iπd/2

N(k)
P1(k)a1 · · ·PP(k)aP

(A.1)

we then split the integral up in parts parallel and perpendicular to the space spanned by
the E independent external momenta:

ddk = dEk‖dd−Ek⊥ (A.2)
= dEk‖ |k⊥|d−E−1 d|k⊥| dd−E−1Ω. (A.3)

Using ∫
dn−1Ω = Ωn = 2πn/2

Γ(n/2) (A.4)

we get

I = 2
Γ((d− E)/2) iπE/2

∫
N(k) dEk‖ |k⊥|d−E−1 d|k⊥|

P1(k)a1 · · ·PP(k)aP
. (A.5)

We may write the parallel component as

k‖ =
E∑
i=1

zipi, (A.6)

which implies that

k‖ · pj = k · pj =
E∑
i=1

zipi · pj . (A.7)

We introduce the Gram matrix G with entries Gij = pi · pj . This allows us to write,

zi =
E∑
j=1

G−1
ij (k · pj). (A.8)
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We further have that

k2
‖ =

E∑
i,j=1

zizjGij =
E∑

i,j=1
(k · pi)(G−1)ij(k · pj). (A.9)

We may pick a basis in which the quantities

ςi := k · pi . (A.10)

are the components of the vector k‖. In that case, the metric is nontrivial and is given by
the inverse of the Gram matrix. The integration measure is then

dEk‖ = (detG−1)
1
2

E∏
i=1

dςi. (A.11)

The orthogonal part has norm k2
⊥ = k2 − k2

‖. Including the expression for k2
‖ we have

k2
⊥ = k2 −

E∑
i,j=1

(k · pi)(G−1)ij(k · pj). (A.12)

Let us form the (E + 1)× (E + 1) Gram matrix,

Ĝ =
(

k2 k · pi
k · pj Gji

)
. (A.13)

Using the expression for the determinant of a matrix written in terms of blocks, we have that

det Ĝ =
[
k2 −

E∑
i,j=1

(k · pi)(G−1)ij(k · pj)
]

detG. (A.14)

Hence, (k⊥)2 = det Ĝ
detG .

Using the expression of k2
⊥ from eq. (A.14), we find that |k⊥|d|k⊥| = |k|d|k| + . . . ,

where the missing terms contain components dςi which vanish when wedged into dEk‖.
This means that we get the relation

d|k⊥|dEk‖ = 1
2 |k⊥|

−1dς0 dEk‖ (A.15)

where we have used the notation ς0 = k2.
Inserting eqs. (A.15), (A.12), (A.11) into eq. (A.5) we get

I = G(E−d+1)/2

Γ((d− E)/2) iπE/2

∫
N(ς) B(ς)(d−E−2)/2 dE+1ς

P1(ς)a1 · · ·PP(ς)aP
, (A.16)

where we have defined

B := det Ĝ = detG(k, p1, . . . , pE) , G := detG = detG(p1, . . . , pE) , (A.17)

with G denoting the Gram matrix.
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Now the only step left is to change to the Baikov variables xi, which equal the propa-
gators. If there are too few propagators (P < E + 1) one will need to introduce additional
variables, but this is mostly relevant at higher loops. The Jacobian J for the change
of variables will depend on the exact expressions used for the propagators, but for most
conventions it equals,

J = ± 2−E . (A.18)

Thus the final result for a one-loop Baikov representation is

I = J G(E−d+1)/2

Γ((d− E)/2) iπE/2

∫
N(x) B(x)(d−E−2)/2 dE+1x

xa1
1 · · ·x

aP
P

. (A.19)

A.2 Multi-loop, the loop-by-loop approach

With this representation in hand, we now want to apply it to multi-loop cases. A multi-loop
Feynman integral is given by

I =
∫ ddk1
iπd/2 · · ·

ddkL
iπd/2

N({k})
P1({k})a1 · · ·PP({k})aP

(A.20)

Our strategy will be to go through the steps from the previous section one loop at a time,
starting with loop number L and then going down towards 1. We call El the number
of momenta external to loop number l. This may include the loop momenta of lower-
numbered loops. We will denote with Gl the Gram-matrix of the momenta external to loop
l, while Bl is the same but with the loop-momentum kl included. If we follow the steps of
the previous section with this notation, we arrive at the correspondence

ddkl
iπd/2 →

G(El−d+1)/2
l Bl(ςl)(d−El−2)/2

Γ((d− El)/2) iπEl/2 dEl+1ςl (A.21)

where ςl corresponds to the set of dot-products between kl and itself along with the mo-
menta external to the lth loop. Putting this together for each loop gives

I = (−i)L π−(
∑

i
Ei)/2∏L

l Γ((d− El)/2)

∫ N(ς)
(∏L

l G
(El−d+1)/2
l B(d−El−2)/2

l

)
d(
∑

i
Ei)+Lς

P1(ς)a1 · · ·PP(ς)aP
(A.22)

and changing to the Baikov variables gives the final expression for the loop-by-loop Baikov
representation:

I = J (−i)L π−(
∑

i
Ei)/2∏L

l Γ((d− El)/2)

∫ N(x)
(∏L

l G
(El−d+1)/2
l B(d−El−2)/2

l

)
d(
∑

i
Ei)+Lx

xa1
1 · · ·x

aP
P

(A.23)

where the Jacobian for the final variable change still depends on the specific expressions
used for the propagators, but is usually given as

J = ± 2−(
∑

i
Ei). (A.24)

The expression of eq. (A.23) may also be found in ref. [59].
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A.3 Multi-loop, the standard approach

The standard approach to multi-loop Baikov parametrization can be thought of as a version
of the loop-by-loop approach, but with the assumption that all loops depend on all lower
loop-momenta and all external momenta. This means

El = E + l − 1 (A.25)

If this is the case then Gl = Bl−1 since their definitions will be the same. We also have that
the power of Gl which appears in the expression, (El−d+1)/2, is equal to minus the power
with which Bl−1 appears, making the two contributions cancel. This will happen pairwise
for each loop, leaving only BL and G1. Renaming these to B and G means we have

B = detG(p1, . . . , pE , k1, . . . , kL) and G = detG(p1, . . . , pE). (A.26)

Then eq. (A.23) becomes

I = J (−i)L πL−n G(E−d+1)/2∏L
l=1 Γ((d+1−E−l)/2)

∫
N(x) B(d−E−L−1)/2 dnx

xa1
1 · · ·x

aP
P

(A.27)

where we have used and defined

n ≡ L+
∑
i

Ei = EL+ L(L+ 1)/2 (A.28)

and where we (usually) have J = ±2L−n. We see that for L = 1 eq. (A.27) reduces nicely
to eq. (A.19).

A.4 The elliptic double-box

Let us look at the example of the elliptic double-box shown in figure 2. We have the
propagating momenta

q1 = k2, q2 = k2 + p1, q3 = k2 + p12,

q4 = k1 + p123, q5 = k1 + p1234, q6 = k1 + p12345, (A.29)
q7 = k1 − k2, q8 = k1, q9 = k1 + p12.

The last two q8 and q9 do not actually appear in the diagram, but they are needed to
express all scalar products in terms of the Baikov variables.

We have E2 = 3, counting the three momenta k1, p1, p2 that are external to the k2-
loop, while E1 = 4 since this is the maximum number of independent momenta in four
space-time dimensions. The four Gram determinants appearing are

B2 = detG(k2, k1, p1, p2), G2 = detG(k1, p1, p2),
B1 = detG(k1, p3, p4, p5, p6), G1 = detG(p3, p4, p5, p6). (A.30)

We have J = ±2−7
(

detG(p1,p2,p3,p4)
detG(p3,p4,p5,p6)

) 1
2 . Putting this together in eq. (A.23) we obtain the

expression

I = J π−7/2 G(5−d)/2
1

Γ((d−3)/2) Γ((d−4)/2)

∫
N(x)G(4−d)/2

2 B(d−5)/2
2 B(d−6)/2

1 d9x

xa1
1 · · ·x

a7
7

. (A.31)
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A.5 Derivation of a four-dimensional Baikov representation

In this section we consider the case when there is no orthogonal component k⊥ = 0,
which will be needed for our derivation of a Baikov representation in four dimensions. We
also introduce the vectors vi which are defined from the denominators Di = (k − vi)2,
corresponding to massless propagators. We take all of these vectors to be nonvanishing.
In other words, we will use as new coordinates the quantities Di, but k2 will not be one of
these coordinates.

Then, we have

ddk = (detG−1)
1
2

d∏
i=1

d(k · vi). (A.32)

We want to express this in terms of Di = (k − vi)2 instead of k · vi. We have
d∏
i=1

dDi =
d∏
i=1

2(k − vi) · dv = 2d
d∏
i=1

(k · dk − d(k · vi))

= (−2)d
[

d∏
i=1

d(k · vi)−
d∑
j=1

(−1)j−1(k · dk)
∏
i 6=j

d(k · vi)
]
.

(A.33)

Plugging in k · dk = ∑
k,l(k · vk)(G−1)kld(k · vl), we obtain

d∏
i=1

dDi = (−2)d
[
1−

d∑
j,k=1

(k · vk)(G−1)kj
]

d∏
i=1

d(k · vi). (A.34)

Let us rewrite the Jacobian in a simpler way[
1−

d∑
j,k=1

(k · vk)(G−1)kj
]

detG = det
(

1 k · vj
1 Gji

)
= det

ij
((vi − k) · vj). (A.35)

To compute this last determinant, consider the decomposition of k − vi and k − vj on the
basis of vectors vk. Upon taking the dot product in this basis we obtain

(k − vi) · (k − vj) =
d∑

k,l=1
((k − vi) · vk)(G−1)kl((k − vj) · vl), (A.36)

whence
det
ij

((k − vi) · (k − vj)) =
(
det
ik

((k − vi) · vk)
)2(detG)−1. (A.37)

Since

(k − vi) · (k − vj) = 1
2
[
(k − vi)2 + (k − vj)2 − (vi − vj)2

]
= 1

2
[
Di +Dj − (vi − vj)2

]
,

(A.38)
the determinant detij((k − vi) · (k − vj)) can be written in terms of D variables and con-
stants (vi − vj)2. This determinant is the Cayley-Menger determinant which arises when
computing the volume of a simplex in Euclidean space.

In the end, we find

ddk = (−1)d
2d

(detG)− 1
2 detG(

detij((k − vi) · (k − vj)) detG
) 1

2

d∏
i=1

dDi. (A.39)
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