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1 Introduction

The determination of renormalisation group equations (RGEs) has remained an active field,
driven by applications in precision calculations, critical phenomena, model building, grand
unification, UV completion and many more. While a plethora of perturbative results exist
for theories of special interest, there is also a solid underpinning of two-loop RGEs for all
renormalisable quantum field theories (QFTs) [1–8], as well as three-loop order expressions
for the gauge sector [9–12]. This is possible due to considering a template action [1–3, 8, 12]
of generalised couplings and fields, in which any renormalisable QFT can be embedded. For
such a model, loop integrations and spinor summations can be performed explicitly when
computing RGEs, while retaining contractions of the generalised couplings. Thus, results
are universally reusable with the reduced complication of inserting embedded couplings
into template expressions. In fact, this step can be automatised by existing software tools,
such as [13–16]. An extension of template framework to the next loop order represents a
monumental step which would benefit for all research areas making use of QFT. However,
due to the maximal generality of the template action, the computations required involve
a high number of Feynman diagrams, which are by themselves technically challenging at
three-loop level. Moreover, additional complications due to the γ5 problem arise [17]. It is
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hence appealing to cut corners by computing RGEs directly for QFTs of interest instead,
which however fails to deliver a contribution to the bigger picture.

And yet, such efforts are not in vain. An approach alternative to computing RGEs in
the template QFT directly is to formulate a general ansatz for them instead, consisting of all
possible combinations of coupling contractions with unknown coefficients. One thus obtains
β- and γ-functions depending on these open parameters, which can be compared term by
term to existing literature results. The advantage is that such results do not need to be as
general as the template theory itself. In fact, input models can be relatively simple, as long
as each of them contains enough distinctive features and they are available in sufficient
numbers. Hence, the problem of conducting a massive and complicated calculation is
broken down into several smaller and independent steps, from which a general result can
be collected.

The approach has previously been employed in, e.g., [12, 18, 19] to study Weyl consis-
tency conditions [20, 21], as well as in [22, 23] to compute pure scalar RGEs, and [21] to
gain three-loop Yukawa β-functions for complex scalars and chiral fermions. The former is
paving the way to obtain general 4-loop gauge β-functions — with SM expressions already
available [24] — and eventually general 3-loop Yukawa β-functions. However, three-loop
RGEs for the scalar potential are not covered in these efforts. On the other hand, the scalar
sector is often not technically natural due to the lack of a protective symmetry, and hence
cannot be neglected in RG studies. Therefore, we target scalar quartic and cubic couplings
as well as mass terms in this work. Following up on the pure scalar results [22, 23, 25, 26], we
also include fermionic contributions through Yukawa interactions and masses, while leav-
ing the entirety of the gauge sector for future studies. As our input, we utilise three-loop
results in the Two-Higgs-Doublet Model (THDM) [27], the Standard Model (SM) [28–32],
Gross-Neveu-Yukawa theories [33, 34] as well as supersymmetric RGEs [35, 36].

This paper is organised as follows: sections 2 and 3 introduce our notations and con-
ventions. In section 4–7, renormalisation group equations the general scalar-Yukawa mod-
els are obtained. As an application, three-loop RGEs for the Litim-Sannino model in the
gaugeless limit are computed for the first time in section 8, before concluding with section 9.

2 Setup

In this work, we consider a general QFT consisting of Weyl fermions ψi and real scalar
fields φa with the Lagrange density

L = 1
2∂

µφa∂µφa + i

2ψ
j σ̃µ∂µψj −

1
2y

ajk φa(ψjεψk)−
1
24λabcd φaφbφcφd

− 1
2mjk (ψjεψk)−

1
2m

2
ab φaφb −

1
6habc φaφbφc ,

(2.1)

featuring Yukawa couplings yaij , scalar quartic and cubic interactions λabcd, habc as well
as fermion and scalar masses mij and m2

ab. Here, ε denotes the two-dimensional Levi-
Civita symbol contracting spinor indices, which are not shown explicitly. Each of these
interactions are symmetric under permutation of their fermionic (i, j, k, l, . . .) and scalar
indices (a, b, c, d, . . .), respectively. Moreover, fermion indices in this convention run over
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Weyl components as well as their conjugates. This accounts for the additional factor 1
2 and

σ̃µ = σµ or σµ in the kinetic term, as well the missing complex conjugation of the fermion
mass and Yukawa interactions. Fields and couplings

ψi = ψ∗i , yajk φa(ψjεψk) = yajk φa(ψjεψk) and mjk (ψjεψk) = mjk (ψjεψk) (2.2)

with raised fermionic indices denote the conjugation of Weyl components. This distinction
is convenient to ensure that index contractions as in mijmjk are due to the propagation of
a fermion 〈ψj ψj〉. Since ψi already contains all Weyl fermions as well as their conjugates,
ψi has the same degrees of freedom. Raising and lowering of fermionic indices merely
represents a pairwise permutation of components in ψ, such that (2.2) holds. Note that
our notation is very close to the one suggested in [12], where each component of a fermion
Ψ contains both a Weyl spinor and its conjugate. Raising and lowering of fermionic indices
in [12] is made explicit by multiplication with the Pauli matrices σ1.

As the scalars are expressed in terms of real components, the raised or lowered position
of their indices has no significance.1 In the following, we suppress fermionic indices for con-
venience, where it is understood that, e.g., yaybm yc = yaij ybjk mkl yclr, and the additional
abbreviation yaybycyd . . . = yabcd... is utilised.

Connecting to the notation of e.g. [1–3], where Weyl fermions Ψi and their conjugates
Ψ∗i are treated separately

L = iΨ†jσ
µ∂µΨj −

1
2Y

a
jk φa(ΨjεΨk)−

1
2Y
†a
jk φa(Ψ∗jεΨ∗k)

− 1
2mjk (ΨjεΨk)−

1
2m†jk (Ψ∗jεΨ∗k) + . . . ,

(2.3)

the relation

tr(yaybycyd . . .) = tr(Y aY †bY cY †d . . .) + tr(Y †aY bY †cY d . . .) (2.4)

holds, while untraced products are simply expressed via Y aY †bY c . . . = yabc....
Through the course of this paper, we determine the RG evolution for general QFTs

without gauge interactions at three-loop in perturbation theory. At this loop order, results
depend on the regularisation and renormalisation procedure, for which we employ dimen-
sional regularisation (DREG) [37, 38] and the MS scheme [39, 40]. Due to this choice,
there is also an inherent ambiguity in the treatment of γ5, which is discussed in the next
section. As all gaugeless and renormalisable QFTs can be mapped onto our template (2.1),
we aim to determine β- and γ-functions for its generalised couplings and fields. Overall, we
will proceed to formulate our ansätze for three-loop RGEs in terms of contractions of the
dimensionless couplings λabcd and ya only, and employ the dummy field trick [4, 5, 41] to
extract β-functions for habc, m2

ab and mij . To facilitate the evaluation, a modified version
of ARGES [15] is employed.

1For instance, quartic couplings λabcd appear with lowered, while Yukawas ya with raised scalar indices
in this work, which has no other significance but being a style preferred by the author.
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3 Handling of γ5

The DREG procedure prescribes the evaluation of loop integrals in d = 4 − 2ε instead of
four dimensions. However, this is incompatible with the spinor algebra of Dirac matrices
γµ [42], as the definition

γ5 = i

24 εµνρσγ
µγνγργσ with ε0123 = −ε0123 = 1 (3.1)

being the Levi-Civita symbol, is closely tied to four dimensions. Different approaches to
reconcile the γ5 problem — see [17] for a review and [43] for a recent list of works — in
general lead to ambiguous computational results; this includes renormalisation group equa-
tions, see e.g. [44, 45]. The source of these ambiguities is the occurrence of the expression

tr [γµγνγργσγ5] =

 4i εµνρσ for d = 4,
0 naïvely in d dimensions with {γµ, γ5} = 0

(3.2)

in loop corrections. In [28, 46], a semi-naïve scheme has been chosen that renders the
ambiguity evanescent (∝ d−4) and hence drop out when computing three-loop Yukawa
β-functions. This scheme has also been employed in [27, 32–34], which serve as input in
this work. At four-loop order, the approach is not sufficient, but contributions affected by
the γ5 problem in [12, 19, 24] have been fixed using Weyl consistency conditions.

In our setup, tensor structures that explicitly distinguish the chiralities of the included
fermion lines have to be considered in the ansatz in order to account for possible γ5 cor-
rections. This could be achieved by inserting the quantity χij = ± δij on fermion lines,
providing opposite signs for left- and right-chiral fermions. Obviously, this is a direct adap-
tation of γ5 into the language of Weyl components. However, due to the absence of gauge
interactions, there are actually no γ5 ambiguities in this work. Following the argumenta-
tion in [12, 19, 28, 46], a non-vanishing term (3.2) only occurs if there is a combination of
four independent momenta and/or Lorentz indices. All RGEs are independent of external
momenta, which can be set to zero in the final result. As gauge fields are not present in our
work, four independent loop momenta are required to generate an ambiguity from (3.2).
This, however, cannot occur at three-loop order as investigated here, but would become
relevant at four-loop. In fact, all ambiguous three-loop terms in the general Yukawa β-
function, as well as scalar and fermion field anomalous dimensions, have been identified
in [12, 19] to contain gauge interactions. Consequently, the γ5 issue can be neglected both
in our ansatz as well as in the input data we use, as the gauge sector will be projected out.

4 Scalar anomalous dimension

The canonical renormalisation procedure of the scalar fields entails the introduction of
symmetric field strength renormalisation matrices Zφab = Zφba via φa 7→

√
Zφab φb in (2.1).

The running of this quantity under a change of the renormalisation scale µ is then encoded
in the scalar field anomalous dimension

γφab = d
√
Zφac

d lnµ
(√

Zφ
)−1

cb
=
∞∑
n=1

γφ,n`ab

(4π)2n . (4.1)
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 1. Fermionic (solid lines) and scalar (dashed lines) diagrams potentially giving rise to
three-loop corrections of scalar field anomalous dimensions. One additional diagram providing a
purely scalar contribution is not shown.

The one- and two-loop results γφ,1` and γφ,2` of this quantity are known for arbitrary
renormalisable QFTs [1, 4], and the pure scalar (quartic) three-loop contribution to γφ,3`

has been found in [22, 23, 25, 26]. Extending this progress with an arbitrary Yukawa
sector, we find 15 additional contractions, listed in figure 1. Among those are also (2) and
(9) which are manifestly asymmetric under exchange of external legs. While Zφab = Zφba,
the square root

√
Zφab is only symmetric up to an arbitrary an orthogonal transformation

of the scalar field species, which is translated into a potential asymmetry of γφ by virtue
of (4.1). Such rotations in the basis of scalar fields correspond to transformations of running
couplings, which drops out in physical observables and are absorbed by the antisymmetric
parts of the field anomalous dimensions [27, 32, 47]. We use [27] to fix all open coefficients,
where anomalous dimensions are chosen completely symmetric. This yields

γφ,3`ab = − 1
16λacdeλdefgλbcfg −

5
32λacdeλbcdf tr(yef )

+ 5
8
[
λacde tr(ybcde) + tr(yacde)λbcde

]
+
[
tr(yabcd) + 9

16 tr(yacbd)
]

tr(ycd)

− 3
16 tr(yabccdd) + 5

16 tr(yabcddc)− 3
8 tr(yabcdcd) + 7

16
[
tr(yacbcdd) + tr(ybcacdd)

]
− 3

4 tr(yacbdcd) + 1
32 tr(yaccbdd) + 7

4 tr(yacdbdc) +
[3

2ζ3 − 1
]

tr(yacdbcd), (4.2)

employing the abbreviation yabcd... = yaybycyd . . . and ζ3 ≈ 1.202 is Apéry’s constant. It is
found that the graphs (13)–(15) in figure 1 do not contribute to the anomalous dimension,
which can be readily understood from the momentum flow.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16)

Figure 2. Three-loop diagrams giving contributions to the fermion field anomalous dimensions,
containing Yukawa and quartic interactions of fermions (solid lines) and scalar fields (dashed lines).

5 Fermion anomalous dimension

Similar to the scalar case, fermions are renormalised by introducing a field strength matrix
ψi 7→ (

√
Zψ) j

i ψj . Dropping the indices for convenience, the fermion anomalous dimension
is defined via

γψ = d
√
Zψ

d lnµ
(√

Zψ
)−1

=
∞∑
n=1

γψ,n`

(4π)2n (5.1)

Again, the leading and next-to-leading orders are available in full generality [1, 4]. Diagrams
contributing to the three-loop expression γψ,3` containing Yukawa and quartic interactions
are listed in figure 2. Here, (8), (13) and (14) are not symmetric under permutation of their
external legs. Similar to the scalar case

√
Zφ, these are linked to a potential ambiguity

of an unitary transformation for fermionic field multiplets in the definition of
√
Zψ, which

is unphysical, see [27, 32, 47] for a more detailed discussion. In this work, we use [27] to
determine all parameters, electing anomalous dimensions to be hermitian. This fixes the
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ambiguous diagrams in figure 2 to be symmetrised, thus leading to the general expression

γψ,3` = −11
96 λacdeλbcde (yab) + λabcd (yabcd)

− 3
32 tr(yac) tr(ybc) (yab) + tr(yabcc + 1

2y
acbc)(yab)

− 3
32tr(yab)

[4
3 y

accb − 3 ycabc + yacbc + ycacb
]

− 5
32 (yabbcca) + 1

16 (yabccba)− 5
16 (yabcbca) + 1

4 (yabccab)

+ 3
32 (yabbcac + yabaccb) +

[3
2ζ3 − 1

]
(yabcabc) + 1

2 (yabacbc).

(5.2)

In particular, this means that the two diagrams depicted by figure 2 (13) do not contribute
to the fermion anomalous dimension, while (8) and (14) are symmetrised.

6 Yukawa interaction and fermion masses

The β-functions of the renormalised Yukawa couplings yaij are defined via

βya = d ya

d lnµ =
∞∑
n=1

(4π)−2nβn`ya , (6.1)

and template formulas for the one- and two-loop expressions can be found in [2, 4, 5, 12].
The three-loop part β3`

ya consists of fermionic (5.2) and scalar leg contributions (4.2), as
well as proper Yukawa vertex corrections. In our setup without gauge interactions, the
latter are listed in figure 3 and give rise to 52 open parameters, considering that the vertex
is symmetric under permutation of its fermionic legs. This ansatz has been cross-checked
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(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(15) (16) (17) (18) (19) (20) (21)

(22) (23) (24) (25) (26) (27) (28)

(29) (30) (31) (32) (33) (34) (35)

(36) (37) (38) (39) (40) (41) (42)

(43) (44) (45) (46) (47) (48) (49)

(50) (51) (52)

Figure 3. Yukawa proper vertex diagrams at three-loop order, including scalar (dashed lines) and
fermionic propagators (solid lines).
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with diagram list provided with [12]. Using [27], the three-loop expression

β3`
ya = γφ,3`ab yb + γψ,3`ya + ya

(
γψ,3`

)ᵀ
− 3

8λbdefλcdef (ybac)

+ 1
2
[
λaebfλbfcd + λabcd tr(ybe)

] [
ycde + yecd + 3 yced

]
+ λbcde (2 ybcade + 3 ybacde + 3 ybcdae)

+ λabcd

[
5 yebcde + 3 ybeced + 1

2 y
beecd + 1

2 y
bceed

]
+ λabcd

[
−yebecd − ybcede + 2 yebced + 2 ybecde

]
− 1

2 tr(ybd) tr(ydc)(ybac)

+ 2 [3ζ3 − 2] tr(yabcd)
[
ybdc + ycbd

]
+
[5

4tr(ybdcd) + 25
8 tr(ybcdd)

]
(ybac)

+ tr(ybc)
[
2 ydbacd − ybdadc − 1

2 y
bdacd − 1

2 y
dbadc + 25

16 y
dbcad + 25

16 y
dabcd

]
+ 3

2 tr(ybc)
[
ybdcad + ydabdc − ydbdac − ybadcd − 1

3y
bddac − 1

3y
baddc

]
+ 4 ybcdadcb − 3 ybcdadbc + [6ζ3 − 5] ybcdacdb + [6ζ3 − 2]

[
ybcdacdb + ybcdabdc

]
+ 2 ybcdabcd − 2 ybcbadcd − 1

2 y
bccaddb − 3

2
[
ybcbaddc + ybddacbc

]
+ ybc(yadd + ydda)(2 ycb − 3

2 y
bc)− ybc(yadc + ydca)ydb

+ [6ζ3 − 3] (ybcadbdc + ybdcdabc)− 4 (ybcadcbd + ydbcdacb)− ybcacddb − ybddcacb

+ [6ζ3 − 2] (ybcadbcd + ydbcdabc)− 1
2 (ybcabddc + ybddcabc)− 3 (ybcacdbd + ybdbcacd)

+ ybc(yabd + ybda)ycd − 1
2(ybaccddb + ybccddab)− ybacdcdb − ybcdcdab

+ 7
16(ybacddcb + ybcddcab) + 1

2(ybacddbc + ybcddbac)− 2(ybadcdbc + ybcdbdac)

− 3
2(ybaddcbc + ybcbddac) + ybacdbdc + ybdcdbac + 3 [2ζ3 − 1] (ybadcbdc + ybdcbdac)

+ 3
2(ybacbddc + ybddcbac) + 2(ybadbcdc + ybdbcdac)

(6.2)

is obtained. This automatically provides the renormalisation group evolution for the
fermion mass term β3`

m after the replacement

γφ,3`ab yb 7→ 0, ya 7→ m, λabcd 7→ hbcd (6.3)

in (6.2). Furthermore, the result (6.2) has been cross-checked against [21, 28, 32, 46]. For
convenience, we have collected all coefficients of β3`

y in the basis from [12] in appendix A.

7 Scalar quartic interactions

For scalar quartic interactions λabcd, the β-functions

βλabcd
= dλabcd

d lnµ =
∞∑
n=1

(4π)−2nβn`λabcd
(7.1)
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(1) × 6 (2) × 12 (3) × 3 (4) × 3 (5) × 3

(6) × 3 (7) × 3 (8) × 3 (9) × 12 (10) × 12

(11) × 12 (12) × 12 (13) × 6 (14) × 6 (15) × 6

(16) × 6 (17) × 12 (18) × 12 (19) × 12 (20) × 12

(21) × 6 (22) × 6 (23) × 6 (24) × 12 (25) × 12

(26) × 12 (27) × 4 (28) × 24 (29) × 6 (30) × 6

(31) × 3

Figure 4. Three-loop diagrams contributing to the scalar quartic vertex renormalisation, contain-
ing both quartic and Yukawa vertices. Solid [dashed] lines correspond to fermionic [scalar] propaga-
tors. The number of inequivalent permutations of the external legs for each diagram is also indicated.
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(32) × 6 (33) × 12 (34) × 12 (35) × 12 (36) × 12 (37) × 12

(38) × 24 (39) × 24 (40) × 24 (41)× 24 (42) × 12 (43) × 12

(44) × 12 (45) × 12 (46) × 6 (47) × 6 (48) × 6 (49) × 24

(50) × 24 (51) × 24 (52) × 12 (53) × 12 (54) × 12 (55) × 6

(56) × 3

Figure 5. Three-loop diagrams contributing to the scalar quartic vertex renormalisation, contain-
ing only Yukawa couplings with a single fermion loop (solid lines) and scalar propagators (dashed
lines) propagators. The number of inequivalent permutations of external legs is listed below each
diagram.

have been computed for general QFTs at two-loop order [3–5, 12], and will now be ex-
tended to three-loop in the gaugeless limit via the ansatz (2.1). These expressions contain
scalar leg corrections (4.2) which have been already determined. Moreover, the expression
features proper scalar quartic vertex corrections that reflect the overall symmetrisation of
the quartic interaction terms. These are listed in figure 4 and figure 5, not including the
six pure quartic contributions given in [22, 23, 25]. Thus, 56 open parameters are implied.
Three-loop SM results [28–32] as well as β- and γ-functions in Gross-Neveu-Yukawa the-
ories, in particular chiral Ising, XY and Heisenberg models [33, 34], can be utilised for
matching unknown coefficients. Additional input data can be extracted when comparing
to N = 1 supersymmetric QFTs as detailed in appendix B. Overall, from the 56 open
parameters, 29 coefficients can be determined directly, and 14 supplementary conditions
apply, leaving only 13 pieces of information missing.

We are currently unaware of pre-existing calculation that would fix these open coeffi-
cients. No data from the THDM is available, as [27] does not include three-loop quartic β

– 11 –
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functions, while [48] lacks the Yukawa contributions in question. Moreover, no conditions
in [12] apply to coefficients at this loop order. Similarily, no three-loop quartic RGEs are
included in [21] either.

Concretely, we obtain the three-loop β-function of the scalar quartic as

β3`
λabcd

= γφ,3`ae λebcd + γφ,3`be λaecd + γφ,3`ce λabed + γφ,3`de λabce

+ βλ:λ4
abcd + βλ:λ3y2

abcd + βλ:λ2y4

abcd + βλ:λy6

abcd + βλ: y8

abcd

(7.2)

where the pure scalar part has been computed earlier [22, 23, 25] and reads

βλ:λ4
abcd = 12ζ3 λaefgλbehiλcfhjλdgij −

1
2 [λaefgλbfghλceijλdhij + 5 perm.]

+ 1
2 [λabefλegijλfhijλcdgh + 2 perm.]− 3

8 [λabefλehijλghijλcdfg + 2 perm.]

− 1
2 [λabefλceghλghijλdfij + 5 perm.] + 2 [λabefλceghλfgijλdhij + 11 perm.] .

(7.3)

Insertions of a single Yukawa bubble tr(y2) give rise to the correction

βλ:λ3y2

abcd = 2
[
λabefλceghλdfgi tr(yhi) + 5 perm.

]
− 1

2
[
λabefλceghλdghi tr(yfi) + 11 perm.

]
.

(7.4)

Further, λ2 tr(y2) tr(y2) and λ2 tr(y4) terms contribute to the β-function via

βλ:λ2y4

abcd = −1
4 [λabefλcdgh + 2 perm.]

[
tr(yeg) tr(yfh) + 2 δeg tr(yfi) tr(yih)

]
+ [λabefλcdgh + 2 perm.]

[
(3ζ3 − 1) tr(yegfh) + 2 tr(yefgh)

]
+ [λabefλcdeg + 2 perm.]

[25
8 tr(yfghh) + 5

4 tr(yfhgh)
]

+
[
λaefgλbefh

(
tr(ycgdh) + 3 tr(ycdgh)

)
+ 11 perm.

]
+ 2

[
λabefλcegh

(
tr(ydfgh) + (3ζ3 − 2) tr(ydgfh)

)
+ 11 perm.

]
.

(7.5)

While terms of the form λ tr(y2)3 are absent, λ tr(y2) tr(y4) and λ tr(y6) contractions read

βλ:λy6

abcd = 3
[
λabef tr(yfg) tr(ygecd) + 11 perm.

]
+ 2

[
λabef tr(yfg) tr(ygced) + 5 perm.

]
−
[
λabef

(
4 tr(yecfdgg) + 3 tr(ycdggef )

)
+ 11 perm.

]
+
[
λabef

(
c(13) tr(ycdgefg)− 10 tr(ycgdegf )

)
+ 5 perm.

]
−
[
λabef

(
c(15) tr(ycggdef )−

(
4− 3

2ζ3

)
tr(ycdeggf )

)
+ 5 perm.

]
+
[
λabef tr

(
c(18) y

cdgegf + c(19) y
cgdgef

)
+ 11 perm.

]
−
(

17− 15
2 ζ3 + 2c(13) + 2c(15)

) [
λabef tr(ycegdfg) + 5 perm.

]
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+ c(24)
[
λabef tr(ycegdgf ) + 11 perm.

]
−
[
17− 27

2 ζ3 + 2 c(24)

] [
λabef tr(ycgegdf ) + 5 perm.

]
−
(23

2 + 6ζ3 + 1
2c(13) + 3

2c(15)

) [
λaefg tr(ybcdefg) + 11 perm.

]
− 3

2(3 + 19ζ3 + c(13) + c(15))
[
λaefg tr(ybecfdg) + 3 perm.

]
+
(

2− 9 ζ3 + 1 + 1
2c(13) + c(15)

) [
λaefg tr(ybcedfg) + 23 perm.

]
, (7.6)

where the coefficients corresponding to contractions figure 4 (13), (13), (18), (19) and (24)
could not be determined completely, and are retained as c(13), c(15), c(18), c(19) and c(24).
Finally, pure Yukawa terms tr(y4) tr(y4), tr(y2) tr(y6) and tr(y8) are given by

βλ: y8

abcd = −8
[
tr
(
yabef + 3

2 y
aebf

)
tr(ycdef ) + 5 perm.

]
− 4

[
tr(yaebf ) tr(ycedf ) + 2 perm.

]
− 3

[
tr(yabecdf ) tr(yef ) + 5 perm.

]
− tr(yef )

[25
8 tr(yabcdef ) + 4 tr(yabcedf ) + 11 perm.

]
+
[
tr(yabeecdff ) + 5 perm.

]
+
[
tr(yabcdeeff ) + 11 perm.

]
+
[
−7

8 tr(yabcdeffe) + c(37) tr(yabcdefef ) + 11 perm.
]

+
[
c(38) tr(yaffebecd) + c(39) tr(yaeffbecd) + 23 perm.

]
+
[
c(40) tr(yaefebfcd)− 3

2ζ3 tr(yaffebced) + 23 perm.
]

+
[
c(42) tr(yaefebcfd) + tr(yaeebffcd) + 11 perm.

]
+
[
c(44) tr(yaefbfecd) +

(23
2 − 6ζ6 + 1

2c(13) + 3
2c(15)

)
tr(yaefbefcd) + 11 perm.

]
+
[
−(8 + 2 c(13)) tr(yaefbcfed) + c(48) tr(yaefbcefd) + 5 perm.

]
+
[
c(49) tr(yaebecffd) + c(50) tr(yaefbfced) + c(51) tr(yaefbecfd) + 23 perm.

]
− (4 + c(15))

[
tr(yabecffde) + 11 perm.

]
+
[
c(53) tr(yabecefdf ) +

(
3− 3

2ζ3 + c(13)

)
tr(yabecfedf ) + 11 perm.

]
+ c(55)

[
tr(yaebfcedf ) + 2 perm.

]
+ c(56)

[
tr(yaebecfdf ) + 5 perm.

]
. (7.7)

while no one-particle-irreducible diagrams are formed by tr(y2)4 bubbles. For notational
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compactness, we have not inserted the relations

c(19) = 1
2c(13) + 1

2c(15) − c(18) −
13
2 + 3

2ζ3 ,

c(51) = −5− 6ζ3 + c(13) + c(15) + c(13) + 2 c(37) + c(39)

− c(40) + c(42) − c(44) + 3[c(38) + c(49) + c(50)] ,

c(53) = 14
(

1− 3
2ζ3 − c(49) − c(50)

)
− 8 c(37) − 12 c(38) + 2 c(44)

− 4(c(13) + c(15) + c(39) + c(42)) ,
c(55) = −4(11 + 15ζ3 + c(13) + c(15) + c(37) + c(42))

− 2 c(48) − 8(c(38) + c(39) + c(49) + c(50)) ,
c(56) = 21ζ3 − 1 + 5(c(13) + c(15)) + 8 c(37) + 12 c(38)

+ 4(c(39) + c(42))− 2 c(44) + 16(c(49) + c(50)) .

(7.8)

It may be possible to recover additional restrictions when comparing diagrams (38) with
(49), (44) with (53) and (55), as well as (41) with (52) in figure 5 with a more sophisticated
analysis of momentum integrals. Similar relations arise between diagrams (35), (43) and
(46), as well as (3) and (4) in figure 4. However, this is insufficient to resolve all open
parameters and will not be attempted here.

Just as in the Yukawa case, the renormalisation group equations for scalar cubic cou-
plings habc and scalar masses m2

ab can be obtained from eq. (7.2)ff. using the dummy field
method [4, 5, 41]. This entails substituting external scalar indices by dummy ones: ∅, cor-
responding to a classical, non-propagating and uncharged singlet. Using the substitutions

λabc∅ = habc, λab∅∅ = 2m2
ab, y∅ = m, γφ,3`∅e = 0 (7.9)

on both sides of eq. (7.2)ff. allows us to extract RGE parameters with positive canonical
mass dimension. The last condition in (7.9) reflects that there is no field strength renor-
malisation for the dummy field. In general, the procedure will generate several distinct
terms from permutations of the external indices in βλabcd

. For instance, the correction

βλabcd
= . . .+ c(23)

[
λabef tr(ycegdgf ) + 11 perm.

]
+ . . . (7.10)

from (7.6) will lead to a contribution to the scalar mass RG evolution that reads

βm2
ab

= . . .+ c(23)λabef tr(m yegm ygf ) + c(23)m
2
ef tr(yaegbgf + ybegagf )

+ c(23) haef tr(m yegbgf + ybegm ygf ) + c(23) hbef tr(m yegagf + yaegm ygf )
(7.11)

which is significantly less compact. Hence, the overall expressions for βhabc
and βm2

ab
are

rather long compared to eq. (7.2)ff. and are omitted. For the sake of reducing the cross
section of transcription errors alone, the author recommends to automate the application
of the dummy field method onto the latter equations instead.
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8 Example: Litim-Sannino model

In this section, we apply the obtained results by computing the three-loop RGEs of the
Litim-Sannino model [49, 50] with vanishing gauge couplings. The model is described in
terms of the Lagrangian

L = tr
[
Ψ i/∂Ψ

]
+ tr

[
∂µH

†∂µH
]
−m2 tr

[
H†H

]
− y tr

[
ΨHPR Ψ + ΨH†PL Ψ

]
− u tr

[
H†HH†H

]
− v tr

[
H†H

]
tr
[
H†H

] (8.1)

and exhibits a U(Nc) × U(Nf )L × U(Nf )R global symmetry. The Dirac fermions Ψ and
complex scalars H are Nc ×Nf and Nf ×Nf matrix fields, respectively. PL,R = 1

2(1∓ γ5)
in (8.1) represents the left- and right chiral projectors. Moreover, we employ the limit
Nf,c →∞, while the quantity

ε = Nf

Nc
− 11

2 (8.2)

remains finite, along with the rescaled couplings

αy = Nc y
2

(4π)2 , αu = Nf u

(4π)2 , αv =
N2
f v

(4π)2 . (8.3)

In this limit, two-loop results are available from [51]. At three-loop, all unknown coefficients
drop out and one obtains

γH
∣∣
3-loop =−4α3

u−
15
2 α

2
uαy+

[
5αu+ 1

32 (183+10ε)αy
](11

2 +ε
)
α2
y,

γΨ
∣∣
3-loop =

[
−11

4 α
2
u+(11+2ε)αuαy+

(1217
128 + 41

32ε−
3
32ε

2
)
α2
y

](11
2 +ε

)
αy,

βαy

∣∣
3-loop =−8α3

uαy+5
(5

2 +ε
)
α2
uα

2
y+12

(11
2 +ε

)
(8+ε)αuα3

y

+
(11

2 +ε
)(1583

32 + 23
4 ε−

3
8ε

2
)
α4
y,

βαu

∣∣
3-loop =104α4

u+34α3
uαy+(889+166ε)α2

uα
2
y−

1
8

(11
2 +ε

)2
(21−26ε)α4

y

−
(2601

16 + 283
8 ε+3ζ3(11+2ε)

)
(11+2ε)αuα3

y,

βαv

∣∣
3-loop =12α2

vα
2
u+480αvα3

u+(772+384ζ3)α4
u+66αvα2

uαy+192α3
uαy

+
(427

2 +41ε
)
α2
vα

2
y+
(

788+152ε+96ζ3

(11
2 +ε

))
αvαuα

2
y

+
(1985

2 +187ε+192ζ3

(11
2 +ε

))
α2
uα

2
y

−
(11

2 +ε
)(

552+112ε+60ζ3

(11
2 +ε

))
αuα

3
y

− 1
8

(11
2 +ε

)(
1897+438ε−96ζ3

(11
2 +ε

))
αvα

3
y

−3
(11

2 +ε
)2(

17+2ε+2ζ3

(11
2 +ε

))
α4
y,
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m−2βm2
∣∣
3-loop =12αvα2

u+240α3
u+33α2

uαy+
(

394+76ε+48ζ3

(11
2 +ε

))
αuα

2
y

+
(427

2 +41ε
)
αvα

2
y−

1
16

(11
2 +ε

)(
1897+438ε−96ζ3

(11
2 +ε

))
α3
y (8.4)

as a consequence of (4.2), (5.2), (6.2) and (7.2)ff. These results are compatible with [23, 26].

9 Discussion and outlook

In this work, we have investigated the three-loop renormalisation group evolution of general
QFTs with scalars and fermions, featuring Yukawa, scalar quartic and cubic interactions,
as well as fermion and scalar mass terms. Using literature results, we have completely
determined the general result for all field anomalous dimensions, Yukawa and fermion mass
β-functions, as well as terms ∝ λ4, ∝ y2λ3 and ∝ y4λ2 for scalar quartics. In the scalar
potential, the number of unknown parameters has been vastly reduced to 13, which can be
fixed by future calculations. That is, either by direct computation of the diagrams listed
herein, or as a side product of determining RGEs in specific theories. Unfortunately, there is
little hope to utilise Weyl consistency conditions [12, 20, 21] to constrain these coefficients,
as five- and four-loop gauge and Yukawa β-functions would be required. Rather, it is the
other way around that computations of the latter profit from three-loop quartic RGEs. The
results obtained here may already be sufficient to completely determine three-loop RGEs
for certain QFTs. Trivial examples include the works [28–34] used as input, and it was
demonstrated in section 8 that this selection is not exhaustive. In the absence of fermion
masses, only three unknown parameters remain in the general RG evolution of scalar mass
and cubic interactions.

Once the remaining parameters in this setup are determined, the next step towards
a complete three-loop result would be the inclusion of gauge interactions. The gauge β-
function itself is already known at three-loop [9–12], and progress towards a general four-
loop expression is being made [12, 19, 24, 44, 45]. In particular, a basis of tensor structures
has been formulated in [12], which also covers three-loop fermion and scalar anomalous
dimensions, as well as Yukawa β-functions. The work spells out explicitly how involved the
determination of these fully general RGEs is — an effort likely to be eclipsed by the three-
loop quartic β-functions, for which a complete basis remains to be determined. This vision
profits from the gaugeless contribution to be handled separately here in this work. As for
the coefficients involving gauge interactions in γφ,3`, γψ,3` and β3`

ya , substantial amount may
be fixed using the explicit computation [27] and the conditions in [12]. Likewise, as the SM
gauge group is relatively large and structurally diverse, one should be cautiously optimistic
that available results [28–32] determine a sizeable number of contributions to β3`

λabcd
.
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A Conversion to Weyl consistency condition basis

In this appendix, we provide the results (6.2) in the basis of [12], wherein Weyl consistency
condition between four-loop gauge, three-loop Yukawa and two-loop quartic RGEs have
been studied. With the help of the program [16], we obtain the 86 coefficients

y
(3)
43 = − 1

16 , y
(3)
128 = 3

2 , y
(3)
129 = −3

8 , y
(3)
130 = −11

48 ,

y
(3)
131 = 1, y

(3)
132 = − 5

32 , y
(3)
224 = 3, y

(3)
225 = −2,

y
(3)
226 = 4, y

(3)
227 = 5, y

(3)
228 = 2, y

(3)
229 = 6,

y
(3)
230 = 2, y

(3)
231 = 5

8 , y
(3)
232 = 5

8 , y
(3)
233 = 1,

y
(3)
234 = 3

2 , y
(3)
235 = 1, y

(3)
236 = −3, y

(3)
237 = 4(3ζ3 − 1),

y
(3)
238 = 6(2ζ3 − 1), y

(3)
239 = 4(3ζ3 − 2), y

(3)
240 = 2, y

(3)
241 = 2,

y
(3)
242 = 4(3ζ3 − 1), y

(3)
243 = 6(2ζ3 − 1), y

(3)
244 = 6ζ3 − 5, y

(3)
245 = 3ζ3 − 2,

y
(3)
246 = 3

2ζ3 − 1, y
(3)
247 = −3, y

(3)
248 = −1, y

(3)
249 = −1,

y
(3)
250 = −8, y

(3)
251 = −6, y

(3)
252 = 0, y

(3)
253 = −2,

y
(3)
254 = −4, y

(3)
255 = 2, y

(3)
256 = 4, y

(3)
257 = 5

4 ,

y
(3)
258 = −2, y

(3)
259 = 4, y

(3)
260 = −2, y

(3)
261 = −5

8 ,

y
(3)
262 = 1, y

(3)
263 = 1, y

(3)
264 = 0, y

(3)
265 = 0,

y
(3)
266 = −3

8 , y
(3)
267 = −3

4 , y
(3)
268 = 7

4 , y
(3)
269 = 1,

y
(3)
270 = 25

8 , y
(3)
271 = 7

8 , y
(3)
272 = −3, y

(3)
273 = 4,

y
(3)
274 = 3, y

(3)
275 = −2, y

(3)
276 = −3, y

(3)
277 = 3

16 ,

y
(3)
278 = 1

2 , y
(3)
279 = 2, y

(3)
280 = 1

8 , y
(3)
281 = 3

16 ,

y
(3)
282 = 7

16 , y
(3)
283 = 5

16 , y
(3)
284 = 7

16 , y
(3)
285 = 2,

y
(3)
286 = 25

8 , y
(3)
287 = −3, y

(3)
288 = 3, y

(3)
289 = −1,

y
(3)
290 = − 3

16 , y
(3)
291 = − 9

16 , y
(3)
292 = − 3

16 , y
(3)
293 = 9

16 ,

y
(3)
294 = 1, y

(3)
295 = −1

2 , y
(3)
296 = −1, y

(3)
297 = − 5

16 ,

y
(3)
298 = 1

32 , y
(3)
299 = − 3

16 , y
(3)
300 = −1, y

(3)
301 = −1

4 ,

y
(3)
302 = −1

2 , y
(3)
303 = − 3

16 .

(A.1)

Our findings are not in contradiction to the general 265 Weyl consistency condition formu-
lated in [12]. In fact, y(3)

226 and y
(3)
228 fit their direct prediction therein. While the two-loop
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quartic RGEs merely reduce the number of conditions by 4, the results (A.1) leave only
219 such conditions. In particular, the direct predictions of coefficients are updated to

g
(4)
55 = −27

2 , g
(4)
60 = 1

2 , g
(4)
67 = − 1

12 , g
(4)
110 = −4, g

(4)
112 = 1

4 ,

g
(4)
158 = 0, g

(4)
160 = −5

2 , y
(3)
2 = −3, y

(3)
4 = −3

2 , y
(3)
39 = −12,

y
(3)
40 = 5

4 , y
(3)
41 = −17

48 , y
(3)
42 = 19

16 , y
(3)
47 = 3

4 , y
(3)
49 = 0,

y
(3)
122 = 0, y

(3)
123 = −17

2 , y
(3)
124 = −17, y

(3)
125 = 19

2 , y
(3)
126 = 2,

y
(3)
127 = 0.

(A.2)

B Comparison to supersymmetric RGEs

The non-renormalisation theorem [52, 53] suggests that only superfield anomalous dimen-
sions γAB, contribute to the β-functions of superpotential parameters, while quantum cor-
rections to the vertex renormalisations are finite. Expressions for the superfield anomalous
dimensions are available at three-loop [35, 36] or using dimensional reduction (DRED) [54,
55] and the DR scheme. In renormalisable QFTs without gauge interactions, DRED is
equivalent to DREG since no ε-scalars are introduced, up to ambiguities due to the γ5 which
are absent in our setup as argued earlier.2 At two-loop order, this is verified explicitly by
the scheme conversions provided by [57]. Therefore, we can express N = 1 QFTs in the lan-
guage of a non-supersymmetric ones, see for instance [57, 58], and directly compare our MS
ansatz against the supersymmetric RGEs in the DR scheme — similar to the conduct in [5,
18, 21]. The perturbatively renormalisable N = 1 superpotential of dimensionless couplings

W = 1
6Y

ABCΦAΦBΦC , (B.1)

only contains Yukawa interactions Y ABC and is holomorphic in the chiral superfields ΦA.
Here, the corresponding complex conjugate Yukawa interaction will be denoted as YABC ,
counting only over antichiral fields ΦA. Each superfield ΦA contains the complex scalar
φA and Weyl fermion ψA as well as auxiliary fields. Integrating the latter out from the
action, one obtains the Yukawa and quartic interactions

1
2Y

ABC (φAψ
ᵀ
BεψC) + h.c. and 1

4Y
ABEYECD (φA φB φ∗C φ∗D) . (B.2)

As the β-function for the Yukawa interaction is given by

βABC = γADY
DBC + γBDY

ADC + γCDY
ABD, (B.3)

the renormalisation group evolution of the quartic λABCD = Y ABEYECD is constructed via

βABCD =
(
γAFY

FBE + γBFY
AFE

)
YECD + Y ABE

(
YEFD γ

F
C + YECF γ

F
D

)
+ 2Y ABFγEF YECD .

(B.4)

2See [56] for a recent overview of various regularisation schemes.

– 18 –



J
H
E
P
0
5
(
2
0
2
1
)
0
6
0

c(3) = −1
4

c(4) = −1
2

c(6) = 25
8

c(8) = 3ζ3 − 1

c(14) = −6− 2 c(11)

c(21) = −4 c(2)

c(25) = −2− c(1)

c(29) = −2 c(7) − 4 c(9) − 2 c(13) − c(47)

c(31) = 4− 8 c(10)

c(32) = −1− 2 c(1) − 2 c(16)

c(34) = −2− c(1) − c(36)

c(35) = 1

c(41) = −2− 2 c(2) − c(17) − c(20)

c(43) = −2 c(2)

c(45) = −8− 2 c(12) − c(26)

c(46) = 1

c(52) = 1− c(1) − c(9) − c(15)

c(54) = −6(1 + 2ζ3)− 2 c(11) − c(22) − 2 c(28)

Table 1. Relations between coefficients for tensor structures in figure 4 and figure 5 (left), inferred
from comparison with supersymmetric RGEs. The corresponding graphs on the right contain round
vertices denoting an insertion of Y ABC while squared nodes mark YABC interactions.
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Here, γAB denotes the chiral superfield anomalous dimensions, with the three-loop part
given by [35, 36]

(4π)6γAB = Y ACDYDEFY
FGHYGHIY

EIJYBCJ

− 1
8 Y

ACDYCEFY
EFGYDHIY

HIJYBGJ

− 1
4 Y

ACDYDEFY
EFGYGHIY

HIJYBCJ

+ 3
2ζ3 Y

ACDYCEFYDGHY
EGIY FHJYBIJ .

(B.5)

To compare to non-supersymmetric RGEs, the QFT defined by the action

L = ∂µφ∗A∂µφA + iψ†Aσ
µ∂µψA

− 1
2
[
yABC (φAψ

ᵀ
BεψC) + y∗ABC

(
φ∗Aψ

†
Bεψ

∗
C

)]
− 1

4 λ
AB

CD (φA φB φ∗C φ∗D) ,
(B.6)

consisting of Weyl fermions ψA and complex scalars φA is analysed. The β-function of the
quartic λABCD can be computed using eq. (7.2)ff. After insertion of the supersymmetry
relations

yABC = Y ABC , y∗ABC = YABC , λABCD = Y ABEYECD , (B.7)

the result can be directly compared to (B.4), constraining unknown coefficients c(n) of
tensor structures (n) in figure 4 and figure 5. However, certain features are inaccessible:
contractions (5), (18), (19), (23), (24), (27), (30), (33), (37)–(40), (42), (44), (48)–(51),
(53), (55) and (56) vanish, since all scalars are complex and the Yukawa interaction
reflects the holomorphism of the superpotential. Choosing a basis of contractions of Y ABC

and YABC , after the insertion of (B.7), the extracted relations are listed in table 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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