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1 Introduction

Soft theorems in quantum field theories are universal statements about factorisation of
scattering amplitudes in gauge theories and gravity [1–5]. Classical Soft theorems [6, 7] are
exact statement about low frequency radiation emitted during generic scattering processes.
As such they are a consequences of the under-lying gauge invariance of the theory and
capture the universality of low frequency radiation [7]. InD > 4 dimensions, these theorems
were first derived as classical limits of quantum soft theorems [6]. It was shown in [6]
that for a class of scattering processes which could be classified by either large impact
parameter or (in the case of 2 → 2 scattering) so-called probe scatterer approximation
(an approximation in which ratio of scatterer mass to probe mass is large), quantum soft
theorems could be used to compute low frequency classical radiation. More in detail, it
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was shown that extremizing the probability distribution of emitted soft quanta in a given
frequency bin is tantamount to taking the classical limit and results in classical radiation
arranged in soft frequency expansion. The probability distribution was in turn obtained
from the multi-soft graviton theorem [8]. The final result is rather simple to state. The
radiative field at long distances is proportional to the “classical limit” of a single soft factor
where momentum and angular momentum operators in quantum theory are replaced by
their classical counter-parts. Hence such low frequency radiative fields are called classical
soft factors.

In [9], these ideas were used to propose a definition of classical soft factor in D = 4
dimensions. The essential departure from higher dimensions was the long range infra-red
effect which causes scattering particles to radiate even asymptoticallly. The soft expansion
then contained a new term which was proportional to lnω (where ω is the frequency of
radiation). It was explicitly checked in a number of examples that in the soft expansion
of classical radiation in four dimensions, this term was indeed present. The soft factor is
called classical log soft factor. In a seminal paper, Sahoo and Sen [10] showed that soft
theorems in QED and quantum gravity were loop corrected in D = 4 dimensions. Although
the leading Weinberg soft factor remained un-effected, the tree-level soft expansion breaks
down at sub-leading order in the soft expansion due to a new term which is proportional
to lnω. Just like Weinberg soft factor, this term was shown to be universal and one loop
exact, resulting in a new factorisation theorem for loop corrected Scattering amplitudes in
QED and quantum gravity.

In [11], Saha, Sahoo and Sen extended the proof of [7] to four dimensions and proved
the proposal in [9]. However unlike in D > 4 dimensions, where the classical soft radiation
can be derived from quantum soft theorems by a careful analysis of classical limit, no such
derivation exists in four dimensions. And the proof is likely to be more intricate then the
corresponding proof in higher dimensions. In higher (D > 4) dimensions, the classical and
quantum soft factors were related by simply replacing the linear and angular momentum
operators in quantum theory with the classical counterparts. However the quantum log
soft factor derived in [10] was sum of two terms in which one term is precisely the classical
log soft factor proposed in [9]. The other term however is absent in the classical radiation.
This term is not manifestly quantum (in the sense of being higher order in ~) and the
precise reasons for it’s disappearence in the classical limit remains unclear. But as the
classical limit of soft theorem is subtle [6], it is expected that this term would vanish under
careful analysis of the classical limit.1

A novel formalism to obtain classical radiation and other classical observables such as
momentum impulse from scattering amplitude was developed in [12] by Kosower, Maybee
and O’Connell (KMOC). The central idea of the KMOC formalism could be summarised
in two steps. In a 2 → 2 scattering, we start with a wave packet in the far past which is
peaked around certain momenta of the two particles. We then evolve the state using the

1In D > 4 dimensions, the classical soft factor was essentially obtained by taking quantum soft fac-
tor and replacing quantum operators by their classical counter parts, this substitution did not produce
D = 4 classical log soft factor from the quantum counter part as the quantum log soft factor had certain
additional terms.
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S-matrix and use the final state to compute expectation values of quantum observables.
Classical limit of the expectation value is obtained by interpreting classical expansion as a
large impact parameter expansion.2

The formalism synthesized various recent developments of obtaining classical observ-
ables from quantum amplitudes in a coherent framework. Power of the formalism lies in
the fact that the classical limit is taken already at the level of loop integrands contained
in the perturbative expansion of the scattering amplitude. On one hand, this drastically
simplifies the “quantum” computation as only a subset of Feynman diagrams contribute
in this limit and on the other hand, the powerful techniques available for analysing higher
loop amplitudes could be used to perform the computations. Thanks to these advances
and a beautiful relationship between adiabatic invariants in a bound binary system with
observables for classical scattering processes (for a rigorous derivation of this relationship
in the classical theory itself, see [13, 14]) striking results in analysing various aspects of
the conservative dynamics of the spinning binary systems have been obtained in recent
years. For a sampling of some of these results we refer the reader to following papers and
references therein [15–27].

In this paper, we analyse radiative (as opposed to conservative) sector in soft frequency
expansion. The radiative sector has been relatively less studied using modern tools of
scattering amplitudes. Notable exceptions are ([28–30]). The question we ask is if we
can use the KMOC formalism to prove classical soft theorem from quantum soft theorem
in D ≥ 4 dimensions in QED and gravity. As we work in the large impact parameter
regime, where the contribution of spin angular momenta to the soft factor is sub-dominant
compared to orbital angular momenta, we work with particles without spin. We show that
the classical limit of soft photon/graviton theorem produces the classical log soft factor
upto next to leading order (NLO) in the coupling. We believe this provides important first
steps towards giving a comprehensive proof of the classical soft theorem from quantum soft
theorem. We note that at leading order in the frequency, that is when we consider Weinberg
soft photon theorem in the quantum amplitude, this result was already established in a
seminal paper by Bautista and Guevara [29]. We generalise this result to sub-leading order
in the soft expansion.

Our analysis also reveals a rather nice surprise when using KMOC formalism to analyse
soft radiation. Namely that in D = 4 dimensions, even tree-level scattering amplitudes
produce soft radiation that has logarithmic dependence on radiation frequency. The log
dependence on soft frequency arises due to integration over phase space of initial scattering
states. We also remark that apriori, there is a puzzling aspect to the KMOC formalism
in that as the amplitude is contructed with Feynman propagators, it is unclear how the
classical limit of quantum radiation will match with a classical computation based on
retarded propagator. In fact, as was argued in [10], it was precisely this difference that was
responsible for the discrepancy between classical and quantum log soft factors as shown
in [10, 11]. However the reason, poles of Feynman propagator do not directly contribute in

2This formalism assumes that we are in the large impact parameter regime and to the best of our
knowledge, it is not clear how to generalise it to other scenarios, e.g. the Probe scatterer approximation.
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the classical limit is precisely due to the fact that all the states are on-shell. In the classical
limit, this constraint ensures that the corresponding poles have vanishing residues.3

We would like to emphasize that none of our results are new. They merely re-affirm
(in the context of large impact parameter scattering) the results establlished in [6, 7, 9–11].
However we believe that the KMOC formalism sheds new light on the relationship between
quantum and classical soft theorems and provides a potentially powerful framework to
analyse higher order terms in soft expansion directly from scattering amplitudes. Our
work is a small step in this direction.

The paper is organised as follows. In section 4, we derive the soft electro-magnetic
radiation at O(ω0) in D > 4 dimensions by starting with the set up of [31, 32]. In section 5,
we show that one obtains the same result via KMOC formalism when we use sub-leading
soft photon theorem to evaluate tree-level scattering amplitude. In section 5.3, we extend
the computation of 5 to four dimensions and show that one obtains soft radiation which
scales as lnω with soft frequency. This result matches with the classical log soft factor
obtained in [11] at leading order in the coupling. In section 5.3, we analyse the soft
electromagnetic radiation using KMOC formalism at next to leading order (NLO), which
requires computation of one loop soft amplitude. We use quantum soft theorems in four
dimensions of Sahoo and Sen [10] and show that the resulting classical limit is in agreement
with classical log soft factor at NLO. In sections 6, 6.2 we repeat this analysis for gravity.
We end with some discussion on open issues. Appendices contain proof of certain key
identities used in the main text of the paper.

Set up. Classical soft theorems are stated in terms of initial and final momenta. Our
analysis is based on the set up proposed in [31] in which in the classical theory, one starts
with initial momenta and use the equations of motion to determine the final momenta
and computes the radiation in small deflection (large impact parameter) regime. It is this
set up which is the basis of KMOC formalism. Due to this, there are several technical
differences with the computations of [6, 11].

In particular, the soft theorems as stated are exact statements and seen from the
perspective of the set up used in [12, 31], they are obtained by resumming the perturbative
expansion of final momenta in terms of initial momenta. Hence a complete derivation of
the soft theorem from perturbative amplitudes appears to be formidable. We do not meet
this challenge in this paper and only confine ourself to give a “perturbative evidence” for
the proof of classical soft theorem from quantum amplitudes.

2 Brief review of classical soft theorems

In this section we review the classical soft theorems derived by Sen and his collaborators in
a series of papers. Our primary focus is on the remarkable soft theorems proved by Saha,
Sahoo and Sen in D = 4 dimensions [11].

3This will becomes empirically clear through the number of computations we do in the main sections of
the paper.
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We first review the classical soft photon theorem in D ≥ 4 dimensions. Given a
scattering process, where incoming classical particles4 with momenta {p1, . . . , pn} and
charges {q1, . . . qn} scatter into outgoing states with momenta {p′1, . . . , p′m} and charges
{q′1 . . . , q′m}, the theorem states that the radiative gauge field at sub-leading order in fre-
quency is given by,

Jµ(ω, k̂) ∼ fD(ω)
(

n∑
a=1

qaS
(1)µ({pa}, k̂) +

m∑
a=1

q′aS
(1)µ({p′a}, k̂)

)
(2.1)

where we have suppressed the leading order term in the soft expansion given by the Wein-
berg’s soft photon factor. fD(ω) = ω0 for D > 4 and = lnω for D = 4.5 S(1)µ({pa}, k̂) is
known as classical sub-leading soft photon factor and is defined as,

S(1)µ({pa}, k̂) ≈ Jµνa kν
pa · k

if D > 4

= 1
4π

∑
b|σ(a,b)=1

qaqb
1

((pa · pb)2 −m2
am

2
b)

3
2

kρ
pa · k

(pa ∧ pb)µρ if D = 4
(2.2)

where in the first line in eq. (2.2) Jµνa is the total angular momentum of the a-th particle.
In the second line σ(a, b) = 1 depending on whether the pair of particles (a, b) are both
incoming or both outgoing.

The approximation sign in the first equation in eq. (2.2) is to emphasize that the
soft factor is not universal [35]. The non-universal terms depend on higher derivative
contact interactions that may be present. However in the large impact parameter regime,
these terms are sub dominant and upto sub-leading order in the frequency, the radiative
gauge field is universal, depending only on the asymptotic linear momentum and angular
momentum of scattering particles. In D = 4 dimensions the situation is significantly more
subtle, although the result is even stronger than in higher dimensions. The new soft factor
at order lnω is due to Coulombic interactions which persist even when particles are far
apart in the asymptotic region. The log soft factor is universal and does not change under
addition of higher dimensional operators in the Lagrangian.

The classical soft graviton theorems at sub-leading order are statements regarding
universality of low frequency gravitational field in the radiation regime. If we denote the
radiative field as Jµν(ω, k̂) then,

Jµν(ω, k̂) ∼ fD (ω)
(

n∑
a=1

S(1)µν({pa}, k̂) +
m∑
a=1

S(1)µν({p′a}, k̂)
)

(2.3)

fD(ω) = κω0 for D > 4 and = κ2

16π lnω for D = 4 with κ =
√

32πG.

4These particles can have infinitely many multipole moments and hence also describe composite objects
like stars and black holes.

5Strictly speaking the frequency dependence in D = 4 dimensions is more subtle. It is ln(ω ± iε) for
incoming/out-going particles respectively. This detail will be important in the main section of the paper,
but we suppress it in eq. (2.1).
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S(1)µν({pa}, k̂) is known as classical sub-leading soft graviton factor and is defined as,

S(1)µν({pa}, k̂) = p
(µ
a J

ν)ρ
a k̂ρ

pa · k̂
ifD > 4

=
∑

b|σ(a,b)=1

pa · pb
((pa · pb)2 −m2

am
2
b)

3
2

{3
2p

2
ap

2
b − (pa · pb)2

}
kρp

(µ
a

pa · k
(pa ∧ pb)ν)ρ

if D = 4 (2.4)

As we have emphasized before, soft theorems are exact statements describing electro-
magnetic or gravitational radiation in soft frequency expansion. However in the more
standard approach to classical radiation (see [31] and references therein), one starts with
an initial configuration of scattering particles with certain boundary conditions and then
computes outgoing radiation in the far future using equations of motion. Seen from this
perspective, the soft factors are really “re-summed results” obtained from classical per-
turbation theory once we know the exact final momentum of a particle in terms of initial
momenta. That is, consider a 2→ 2 scattering process with large impact parameter. These
processes can be studied within perturbation theory (with respect to q or κ). If pfa is the
final momentum of a particle with initial momenta pa then for gravitational scattering,

pfµa = pµa +
∞∑
n=1

κ2n
(n)
4pµa (2.5)

where
(1)
4pµa is the leading order (LO) impulse and κ2n-th term is the NnLO order impulse.

Thus when we compute soft radiation perturbatively in the coupling, a necessary condi-
tion for consistency with the soft factor is that the radiation at any perturbative order is
consistent with classical soft factor.

3 Brief review of the KMOC formalism

In this section we give a cursory review of the KMOC formalism introduced in [12]. We
can not do justice to the several nuances and technicalities in their work and hence limit
ourselves to the bare essentials which are directly needed in the main sections of the paper.
Interested reader is encouraged to consult the original reference as well as [33].

It appears to be a rather convoluted idea to compute classical observables like flux
of radiation or Scattering angle by first quantizing the theory and then taking classical
limit of quantum observables. However for past two decades it has been recognised that
computing classical observables using scattering amplitudes offer enormous simplifications.
The reason this is possible is because of the realisation that only a subset of Feynman
diagrams contribute in the classical limit and hence the main idea is to isolate this set
of diagrams before doing the integration over loop momenta! The recent computations of
gravitational potential at third and fourth Post Minkowskian orders are some of the most
striking outcomes of this endeavour [22, 24].

In [12], Kosower, Maybee and O’Connell synthesized these ideas in a formalism using
which classical observables can be computed from scattering amplitudes. Their basic idea
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is to take wave packets for incoming (classical) particles, evolve them using quantum S-
matrix operator and then compute expectation value of an observable in the final state.
Classical limit was obtained by recognising that in large impact parameter regime, the
small |q| (q being the momentum transfer) expansion is precisely the classical expansion.
Their beautiful analysis has many caveats but in a nutshell, it turns the intuition of defining
classical limit as a small |q| expansion into concrete formulae.

In four dimensions, any classical observable (e.g. linear momentum impulse suffered
by one of the scattering states or flux of radiation emitted in a given frequency bin) is
obtained from a quantum field theory computation through following formula,

OA(p1, p2 . . . ) = lim
~→0

~βO [in〈Ψ|S†ÔAS|Ψ〉in − in〈Ψ|ÔA|Ψ〉in] (3.1)

This formula expresses expectation value of any observable in a final state which is obtained
by evolving an initial 2 particle coherent state in which the 2 particles are separated by an
impact parameter b.

The index A on OA(p1, p2 . . . ) is an abstract index as OA maybe a vector as in the case
of momentum impulse or a tensor as in the case of angular momentum impulse. The dots
on the right hand side indicate possible dependence of O on other degrees of freedom such
as spin. βO is the exponent that depends on the observable O and |Ψ〉in is the incoming two
particle coherent state in which the particles are separated by impact parameter b and their
momenta are localised around p1, p2. In the large impact parameter regime, the expectation
value of the momenta of the two particles are also centered around p1, p2 respectively. The
spread in the initial coherent state is responsible for the momentum transfer between the
two particles. (As the impact parameter is large, we expect the momentum transfer to be
small as compared to the incoming momenta of the particles.) We now describe the initial
state in slightly more detail.

If we choose origin of the co-ordinate system to coincide with the initial position of
the second particle (that has momentum p2)

|Ψ〉in =
∫
dµ(p′1)dµ(p′2)φ1(p′1)φ2(p′2)e

ib·p′1
~ |p′1, p′2〉 (3.2)

where the measure,

dµ(p′i) = d4p′i
(2π)4 (2π)θ(p′0i )δ(p′2i −m2

i ) (3.3)

φi(p′i) are relativistic generalisation of non-relativistic Gaussian coherent state, defined as,

φ1(p′1) = N (ζ)
m1

exp
−
p′1·p1
m2

1ζ (3.4)

This exponent in the wave function is linear in p′1. But it can be readily verified by going
to rest frame of p1 that in the non-relativistic limit, it reduces to the familiar Gaussian. p1
is the 4 momenta “around which the wave packet is peaked”.
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ζ is the classicality parameter used in the non-relativistic Gaussian coherent states,
ζ := ( lclw )2. where lc is the Compton wavelength associated to the particle and lw is the
spread and N is a normalisation constant.6

The master formula in eq. (3.1) looks rather abstract. The Right hand side of the equa-
tion involves perturbative expansion of the S-matrix. It would be incredibly complicated
were it not for the happy facts that, (1) there have been remarkable advances in computing
the scattering amplitude at high loop orders in gravity and gauge theories and (2) in the
KMOC formalism, one only sums over those Feynman diagrams that dominate when the
momentum exchange and loop momenta scale with ~ in the classical limit.7 Two examples
analysed in great detail in [12] are momentum impulse in electro-magnetic scattering and
the electro-magnetic radiation at leading order in the coupling. In [33], KMOC formalism
was also used to compute the angular momentum impulse in scattering at leading order in
the coupling.

In the case of linear momentum impulse, let 4pµ1 be the impulse associated to the first
particle. Then, as was shown in [12],

4pµ1 = lim
~→0

i~2
∫ on-shell

l1,l2
e
−ib·l1

~ Iµ

Iµ = ~2lµ1A4(p1 + l1, p2 + l2 → p1, p2) +O(A · A?)
(3.5)

Our notation for exchange momenta is lµ rather then the standard qµ. This will help us
in comparing our integrands in the classical limit with results in [11, 31]. We will denote
loop momenta as qµ instead.
A4 is the unstripped amplitude. O(A · A?) denotes terms which are quadratic in

the amplitude. At leading order in the coupling only the first term contributes and is
proportional to the tree-level amplitude. The

∫ onshell
l1,l2

measure is defined as,

∫ onshell

l1,l2
:=
∫ ∏

i

d4li
(2π)4 δ̂(2pi · li + l2i )θ(p0

i + l0i ) (3.6)

It ensures that in the incoming coherent state, one is only summing over on-shell states.
While taking the ~→ 0 limit, one first scales the exchange momenta (and loop momenta)
with ~ as lµ = ~lµ, keeps only the leading order terms and integrates over lµ, qµ. The final
integration is over wave numbers lµ, qµ and produces the classical limit.

Another important result in [12] which will be of central importance to us is that of
computing emitted radiation.

For simplicity we review their formula in the case of electro-magnetic scattering, al-
though in section 6 we will use the formalism to compute gravitational radiation. To

6As p2
1 = m2

1, it can be shown that the wave function is normalisable with respect to Lorentz invariant
measure, [12].

7In the KMOC formalism, along with taking the small exchange momentum limit, one also takes the
limit where loop momenta become small as qµ = ~qµ. This is motivated by the fact, in the large impact
parameter regime, if one considers inelastic scattering then the radiated massless quanta has small momenta.
Unitarity constraints then motivate us to scale loop momenta with ~ as well.
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compute radiation, an important intermediate quantity introduced by KMOC is the so-
called radiation kernel Rµ(k,X). Radiation kernel is simply the gauge field radiated at
momentum kµ =: (ω, ωk̂) and is a result of in-elastic scattering where the out-going states
can include in addition to the two massive particles and a photon, additional states which
are collectively denoted as X. Rµ(k,X) is associated to the radiation emitted in a given
bin J µ as,

J µ =
∫
dµ(k)kµ

∑
X

|εµ(k) · Rµ(k,X)|2 (3.7)

The reason Rµ was introduced is because it’s formula has the following compact expression.

Rµ(k,X) = lim
~→0

~
3
2

∫ on-shell

l1,l2
δ4(l1 + l2 − k − rX)A5+X(p̃1, p̃2 → p1, p2, k,X) (3.8)

where p̃i = pi + li. Kosower, Maybee and O’ Connell also showed in their paper that
classical limit of the electro-magnetic radiation kernel at leading order in the coupling
equals the clasical result computed directly from equations of motion [31].

KMOC formalism in [12] was developed to evaluate classical observables from quantum
field theory in four dimensions. But one can readily generalise their formulae to arbitrary
dimensions. For example, the formula for electro-magnetic radiation kernel in eq. (3.8) can
be generalised as,

Rµ(k,X) = lim
~→0

~
3
2−(D−4)

∫ on-shell

l1,l2
δD(l1 + l2 − k − rX)A5+X(p̃1, p̃2 → p1, p2, k,X) (3.9)

where the measure is the on-shell momentum space measure in D space-time dimensions.

A disclaimer about notation. Eqs. (3.5), (3.8) and (3.9) will feature prominently in
this paper. Although to take the classical limit, one needs to express all the massless
momenta in terms of wave numbers (and hence the integration over momentum exchange
and loop momenta is over the wave numbers lµ, qµ) we will not explicitly introduce the wave
numbers in our formula. This is simply to avoid the notational clutter, but it will always
be understood that in the integrands that we evaluate for computing classical observables
the integration is over wave numbers.

Finally in the KMOC formalism a double bracket notation 〈〈OA〉〉 is used to denote
classical limit of a quantum observables. This notation symbolizes integration over the
initial momenta weighted by Gaussian wave packets. The result of this integration are the
final formulae of the kind in eq. (3.8). As these are the formulae we will directly use in the
paper, we refrain from explicitly displaying the double brackets to indicate classical limit.

4 Revisiting the classical sub-leading soft photon factor in D > 4

In this section we review the derivation of Electro-magnetic radiation in D > 4 dimensions
upto sub-leading order [6]. Our set up is the same as the one considered in [12, 31].
That is, we consider a scattering of 2 charges q1, q2 with masses m1,m2. We assume that
the particles do not have any spin. As in [31], we work in the large impact parameter

– 9 –
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(small deflection limit) defined via b � m−1
i . The trajectories of both the particles are

parametrized as

xµi (σ) = bµi + vµi σ + zµi (σ)
[0.4em]zµi (−∞) = 0

(4.1)

where, i = 1, 2. zµi (σ) is the correction to the free trajectory of the ith particle.
The boundary conditions ensure that the particles are free in the far past with initial

velocities given by vµi . The equations of motion of the two particles can be written as [31]

mi
d2zµi
dσ2

i

= iqi
∑
j 6=i

qj

∫
l
e−il·xi(σi)Gr(l)δ̂(pj · l)[l ∧ pj ]µνpiν (4.2)

where δ̂(x) = 2πδ(x),
∫
l =

∫ dDl
(2π)D and Gr(l) is the retarded propagator. We now compute

the radiative gauge field at sub-leading order in soft expansion and verify if it satisfies the
classical soft photon theorem [6]. We start with the equation for radiative gauge field as
given in [12].8 It is convenient to work in the center of mass frame with the origin of the
co-ordinate system chosen such that bµ2 = 0.

Rµ(k) = 4q2
1q2

∫
dDl1

(2π)D
dDl2

(2π)D δ̂(2p1 · l1)δ̂(2p2 · l2)eib·l1 δ̂D(l1 + l2 − k)Gr(l2)[
pµ2 −

(p1 · p2)lµ2
p1 · k

− pµ1
p2 · k
p1 · k

+ (l2 · k)(p1 · p2)pµ1
(p1 · k)2

]
+ 1↔ 2

(4.3)

We can re-write this expression as,

Rµ(k) = 4
{
q2

1q2

∫
dDl

(2π)D δ̂(2p1 · (k − l))δ̂(2p2 · l)eib·(k−l)Gr(l)[
pµ2 −

(p1 · p2)lµ
p1 · k

− pµ1
p2 · k
p1 · k

+ (l · k)(p1 · p2)pµ1
(p1 · k)2

]

+ q2
2q1

∫
dDl

(2π)D δ̂(2p1 · l)δ̂(2p2 · (k − l))eib·lGr(l)[
pµ1 −

(p1 · p2)lµ
p2 · k

− pµ2
p1 · k
p2 · k

+ (l · k)(p1 · p2)pµ2
(p2 · k)2

]}
(4.4)

We can write the delta function to sub-leading order in momentum kµ as,

δ̂(p1 · (k − l)) = δ̂(p1 · k)− p1 · kδ̂′(p1 · l) (4.5)

8This formulae are written in 4 dimensions but the integral expressions hold in all dimensions as can be
readily checked.
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Hence the soft radiation is given by,

Rµ(k) = 4
∫

dDl

(2π)DGr (l)
({

e−ib·l
(
q2

1q2δ̂ (2p1 · l) δ̂ (2p2 · l)
[
pµ2 −p

µ
1
p2 ·k
p1 ·k

])
+eib·l (1↔ 2)

}

−
{
e−ib·l

(
q2

1q2δ̂
′ (2p1 · l) δ̂ (2p2 · l)

[
− (p1 ·p2) lµ+ (l ·k) (p1 ·p2)pµ1

(p1 ·k)

])
+eib·l (1↔ 2)

}

+e−ib·lq2
1q2 (ib ·k) δ̂ (2p1 · l) δ̂ (2p2 · l)

[
−(p1 ·p2) lµ

p1 ·k
+ (l ·k) (p1 ·p2)pµ1

(p1 ·k)2

])
(4.6)

• In D = 4 dimensions, the boundary conditions in the far past make the analysis more
subtle. This is because unlike in higher dimensions, the Coulombic interactions cause
particles to accelerate even in the far past and far future. Thus to ensure the boundary
conditions in eq. (4.1), we need to use iε prescription [32]. In appendix A, we compute
the sub-leading soft radiation kernel in four dimensions, essentially reviewing the
computation of soft electromagnetic radiation in [11], but adjusted to the set up in
which outgoing momenta are not independent of initial momenta and are determined
from the initial momenta using equations of motion.

Let us compare the integral expression given in eq. (4.6) with the one we obtain by a direct
computation of classical soft factor defined in [6]. We will denote this soft factor as S(1)µ

where the super-script indicates that it is the sub-leading expansion in photon frequency.

S(1)µ =
∑
i

qi

[ 1
p+i · k

Jµν+i kν −
1

p−i · k
Jµν−i kν

]
(4.7)

where p±i are the initial and final momenta of the ith particle, Jµν±i are the initial and
final (classical) angular momenta defined with respect to a choice of the origin.9 We will
focus on the contribution of the first particle to S(1)µ. Due to the parametrization of the
trajectory, the initial orbital angular momentum of the first particle is given by,

Jµν−1 = bµpν1 − bνp
µ
1 (4.8)

On the other hand, with respect to the choice of origin used in defining J−1, the final
angular momentum is given by,

Jµν+1 = (bµ + zµ1 (0))pν+1 − µ↔ ν (4.9)

Hence at leading order in the coupling, the “angular momentum impulse” is given by,

Jµν+1 − J
µν
−1 = bµ4pν1 − bν4p

µ
1 + (zµ1 (0)pν1 − zν1 (0)pµ1 ) (4.10)

9It was shown in [6] that the choice of origin is gauge choice due to total momentum conversation.

– 11 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
6

Here 4pµ1 is the linear impulse suffered by the first particle [12]. Thus the classical sub-
leading soft factor is given by,

S(1)µ = q1

[ 1
p+1 ·k

Jµν+1kν−
1

p−1 ·k
Jµν−1kν

]
= q1

[ 1
p+1 ·k

(
Jµν+1−J

µν
−1
)
kν +

( 1
p+1 ·k

− 1
p−1 ·k

)
Jµν−1kν

]
= q1

[ 1
(p1 +4p1) ·k

(
Jµν+1−J

µν
−1
)
kν +

( 1
(p1 +4p1) ·k −

1
p1 ·k

)
Jµν−1kν

]
= q1

[
1

p1 ·k
(
Jµν+1−J

µν
−1
)
kν−

4p1 ·k
(p1 ·k)2J

µν
−1kν

]

= q1

[
1

p1 ·k
{(b∧p1)µν kv+(z1 (0)∧p1)µν kν}−

4p1 ·k
(p1 ·k)2

(
bµpν−1−bνp

µ
−1
)
kν

]
(4.11)

where in the second last line, we have expanded the second term to leading order in the
coupling. The linear impulse was computed in [12] and is given by,

4pµ1 = iq1q2

∫
dDl

(2π)D δ̂(2p1 · l)δ̂(2p2 · l)e−ib·lGr(l)4(p1 · p2)lµ (4.12)

In the same way, the deflected trajectory at σ = 0 is given by,

zµ1 (0) = q1q2

∫
dDl

(2π)D
1

(p1 · l)2
+
δ̂ (2p2 · l) e−ib·lGr (l) (l ∧ p2)µν p1ν (4.13)

= 2q1q2p1ν

(
p2 ∧

∂

∂p1

)µν ∫ dDl

(2π)D
1

(p1 · l)+
δ̂ (2p2 · l) e−ib·lGr (l) (4.14)

= 2q1q2p1ν

(
p2 ∧

∂

∂p1

)µν ∫ dDl

(2π)D
δ̂ (2p1 · l) δ̂ (2p2 · l) e−ib·lGr (l) (4.15)

= 4q1q2p1ν

(
p2 ∧

∂

∂p1

)µν ∫ dDl

(2π)D
P

( 1
p1 · l

)
δ̂ (2p2 · l) e−ib·lGr(l) (4.16)

In going from second to the third line, we have used
1

(p1 · l)+
= P

( 1
p1 · l

)
− iπδ(p1 · l) (4.17)

and, πδ(p1 · l) = δ̂(2p1 · l) respectively.
The second term in r.h.s. of eq. (4.13) vanishes. This can be most easily seen by

working in the rest frame of p1 so that P ( 1
p1·l ) = 1

m1
P ( 1

l0
). The integral is then an odd

function of l0 (as b is spatial vector) and hence vanishes. Thus,

zµ1 (0) = 4q1q2p1ν

(
p2 ∧

∂

∂p1

)µν ∫ dDl

(2π)D δ̂(2p1 · l)δ̂(2p2 · l)e−ib·lGr(l) (4.18)

Contribution of zµ1 (0) to the final angular momentum Jµν+1 can be evaluated as,

(p1 ∧ z1)µν = 4q1q2

[
(p1 ∧ p2)µν p1 ·

∂

∂p1
− (p1 · p2)

(
p1 ∧

∂

∂p1

)µν]
∫

dDl

(2π)D
δ̂(2p1 · l)δ̂(2p2 · l)e−ib·lGr(l) (4.19)
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We can now use the identity

p1 ·
∂

∂p1

∫
dDl

(2π)D δ̂(2p1 · l)δ̂(2p2 · l)e−ib·lGr(l) = −
∫

dDl

(2π)D δ̂(2p1 · l)δ̂(2p2 · l)e−ib·lGr(l)

(4.20)

and substitute eq. (4.19) in the r.h.s. of eq. (4.11) to readily verify that it agrees with
eq. (4.6). We thus see that S(1)µ equals the integral expression for Rµ(k) obtained in
eq. (4.6). In the next section we will confirm these classical results for the radiation kernel
Rµ(k) by using sub-leading soft photon theorem in KMOC framework.

5 From quantum to classical sub-leading soft photon theorem

In this section we compute the classical radiation kernel from soft expansion of tree-level
amplitudes using KMOC formalism. That is, we consider scattering of two incoming states
with masses m1,m2 which scatter into two outgoing states and one photon. In the usual
statement of classical soft theorem, given the initial and the final states of the particles,
one can compute soft radiation without using equations of motion. However in the KMOC
formalism, we only know the scattering states in the far past. Hence the computation
of soft radiation in KMOC formalism depends on the details of the scattering amplitude
without the photon. We consider tree-level amplitudes in scalar QED and hence our
scattering particles have zero spin. But the analysis can be generalised to higher spin cases
as well [18, 22, 23, 29, 33, 34].

Our idea is to take soft limit before the classical limit (as in [6]) and hence we first write
the tree level five point amplitude via quantum soft theorem and then take the classical
limit. As we show, this reproduces the classical soft theorem upto sub-leading order. We
note that, as the KMOC set up is such that the impact parameter b is larger then the
Schwarzchild radius of the particles, we expect the results upto sub-leading order to match
with the so-called universal soft factors.10

As we reviewed in section 3, the primary quantity of interest is the radiation kernel
Rµ(k) whose classical limit is the radiative gauge field. In order to obtain the leading order
(in the coupling) classical radiation, we start with the quantum radiation kernel generated
by tree-level amplitude

Rµ(k) = ~
3
2−D+4

∫ ∏
i

dDli
(2π)D δ̂(2pi · li + l2i )θ(p0

i + l0i )e
ib·l1
~

Aµ5 (p1 + l1, p2 + l2 → p1, p2, k)
(5.1)

We start by quickly reviewing the tree-level soft photon theorems in scalar QED. It is
convenient to write the five point amplitude in terms of the stripped amplitude Mµ

5 as,

Aµ5 (p1 + l1, p2 + l2 →p1, p2, k) = δD(l1 + l2 − k)Mµ
5 (p1 + l1, p2 + l2 → p1, p2, k) (5.2)

10Sub-leading soft photon theorem is not universal [35]. However the non-universal terms arise via higher
derivative interaction terms, all of which are sub dominant in large impact parameter regime.
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The sub-leading soft photon theorem for tree-level amplitudes is stated as follows.

δ̂D(l1 + l2 − k)Mµ
5 (p1 + l1, p2 + l2 → p1, p2, k)

= δ̂D(l1 + l2)S(1)µM4(p1 + l1, p2 + l2 → p1, p2)
− S(0)µk · ∂(δ̂D(l1 + l2))M4(p1 + l1, p2 + l2 → p1, p2)

(5.3)

where S(0)µ and S(1)µ are the leading and sub-leading soft photon factors.

S(0)µ =
∑
i

qi

[
pµi
pi · k

− (pi + li)µ

(pi + li) · k

]
, S(1)µ = i

∑
i

qi

[
Ĵµν+i kν

pi · k
+

Ĵµν−i kν

(pi + li) · k

]
(5.4)

To leading order in the momentum mis-match lµ,

S(0)µ =
∑
i

qi

(
− lµi
pi · k

+ li · k
(pi · k)2 p

µ
i

)
(5.5)

The sub-leading soft photon factor is linear in the angular momentum operator.11

Ĵµν+i = −i
(
pµi

∂

∂pνi
− pνi

∂

∂pµi

)

Ĵµν−i = −i
(

(pi + li)µ
∂

∂ (pi + li)ν
− (pi + li)ν

∂

∂(pi + li)µ
) (5.6)

And finally the soft factor acts on the four point amplitude,

A4 = q1q2δ̂
D(l1 + l2)GF (l2)(2p1 + l1) · (2p2 + l2) (5.7)

where GF (l2) = 1
l22+iε is the Feynman propagator. We can now use the sub-leading soft

photon theorem to evaluate the quantum radiation kernel. As the soft theorem is sum of
two terms (proportional to S(1) and S(0)), we decompose the radiation kernel as,

Rµ(k) = Rµ1 (k) +Rµ2 (k) (5.8)

where Rµ1 (k),Rµ2 (k) are defined as,

Rµ1 (k) := ~
3
2−D+4

∫ ∏
i

dDli
(2π)D δ̂(2pi · li + l2i )θ(p0

i + l0i )e
ib·l1
~ δ̂D(l1 + l2)

S(1)µM4(p1 + l1, p2 + l2 → p1, p2)

Rµ2 (k) := −~
3
2−D+4

∫ ∏
i

dDli
(2π)D δ̂(2pi · li + l2i )θ(p0

i + l0i )e
ib·l1
~

S(0)µk · ∂(δ̂D(l1 + l2))M4(p1 + l1, p2 + l2 → p1, p2)

(5.9)

11We note that the sub-leading soft factor consists of terms with relative positive sign between the in
and the out states. This is simply because the action of these operators on in-coming and out-going states
differ by a sign.
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We can now compute Rµ1 (k) to leading order in lµ using the following approximate identity.

S(1)µM4(p1 + l1, p2 + l2 → p1, p2) ≈ i
2∑
i=1

qi
1
l2i+1

Ĵµνi kν
pi · k

{4q1q2(p1 · p2)} (5.10)

where the propagator is indexed modulo 2 and the approximation sign indicates that the
identity holds only to leading order in lµ.

This identity is based on the following observation. Action of S(1)µ on the stripped
amplitude is sum of the two terms acting on particles 1 and 2. When the soft factor
associated to particle 1 acts on the amplitude, we can express propagator in terms of lµ2 vice
versa.12 Thus the action of S(1)µ is simply on the numerator of the four point amplitude.
It is now simple to verify the approximate identity and use it to compute Rµ1 (k).

Rµ1 (k) = i~(−D+4)∑
m

qmq1q2
kν Ĵ

µν
m

pm · k
(p1 · p2)

∫
dDl

(2π)D
∏
i

δ̂(pi · l)e
ib·l
~

1
l2 + iε

(5.11)

The integral in eq. (5.11) can be evaluated directly. The pole of the Feynman propagator
has trivial residue due to the on-shell delta function constraints and we can write 1

l2+iε = 1
l2 .

Let lµ = ~lµ. Then∫
dDl

(2π)D δ̂(p1 · l)δ̂(p2 · l)eib·l
1
l
2 = αD

1√
(p1 · p2)2 −m2

1m
2
2

1
(~b ·~b)D−4

2
(5.12)

where αD := − 1
4π

D−2
2

Γ[D−2
2 − 1]. We have put an arrow sign on the impact parameter to

emphasise that it is a spatial vector in a plane transversal to the one spanned by p1, p2.
Using eq. (5.12) in eq. (5.11) we can evaluate Rµ1 (k). For simplicity, we choose to focus on
the radiation kernel emitted by the first particle.

Rµ1,1(k) = αDq
2
1q2

pµ1 (p2 · k)− pµ2 (p1 · k)
p1 · k

1√
(p1 · p2)2 −m2

1m
2
2

1
(~b ·~b)D−4

2
(5.13)

where the additional subscript indicates that we are only considering radiation emitted by
particle with final momentum pµ1 .

We now evaluate Rµ2 (k) in the classical limit. In the interest of pedagogy, we skip a
few intermediate steps by dropping higher order terms in lµ.13,14

Rµ2 (k) := 4q1q2

∫ ∏
i

dDli

(2π)D
δ̂ (2pi ·li)

[
e
ib·l1
~ S(0)µ{δD(l1+l2−k)−δD(l1+l2)}p1 ·p2

l22
+O(lµ2 )

]
(5.14)

12We note that the total action of S(1)µ on unstripped amplitude which also involves action on the
momentum conserving delta function is unaffected by such re-labellings of the propagator.

13Although while taking the classical limit, the exchange momenta scales as lµ → ~lµ, we will drop the
bar and always indicate the exchange moementum at lµ. We believe that from the context it becomes clear
if we are working with the quantum radiation kernel or it’s classical limit.

14As the step function θ(p0
i + l0i ) become identity in classical limit and hence we just drop them to avoid

the clutter.
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The minus sign in front of the equation is because we have expressed k · ∂δD(l1 + l2) as
−{δD(l1 + l2 − k)− δD(l1 + l2)}.

As S(0)µ is sum over the two particles, we can analyse contribution of both the particles
separately. With out loss of generality, we focus on the first particle and denote the
corresponding contribution to radiation kernel as Rµ2,1(k). Denoting lµ2 as lµ and solving
for l1 in terms of k, l2 we get,

Rµ2,1(k) = 4q1q2

∫
dDl

(2π)D δ̂(2p2 ·l)[
S

(0)µ
1

{
δ̂ (2p1 ·(k−l))e

ib·(k−l)
~ −δ̂ (2p1 ·l)e−i

b·l
~

}
p1 ·p2
l2

+O (lµ)
]

= q1q2

∫
dDl

(2π)D
δ̂ (p2 ·l)

[
S

(0)µ
1

{
−(p1 ·k)δ′(p1 ·l)+ i

~
b·kδ̂(p1 ·l)

}
e
−ib·l

~
p1 ·p2
l2

+O(lµ)
]

(5.15)

We can now use the following identities to simplify the above result.

lµδ′(pi · l) = ∂

∂pµi
δ̂(p1 · l)

lµe−
ib·l
~ = i~

∂

∂bµ
e−

ib·l
~

(5.16)

And since lµ1 = −lµ

S
(0)µ
1 = q1

(
lµ1

p1 · k
− l1 · k

(p1 · k)2 p
µ
1

)
(5.17)

= q1

(
− lµ

p1 · k
+ l · k

(p1 · k)2 p
µ
1

)
(5.18)

we can write Rµ2,1 (k) as,

Rµ2,1 (k) = q2
1q2 (p1 · p2)

{
−Ôµ1 + (b · k)

p1 · k
Ôµ2

}∫
dDl

(2π)D
δ̂ (p1 · l) δ̂ (p2 · l) e−i

b·l
~

1
l2

(5.19)

where Ôµ1 , Ô
µ
2 are differential operators defined as,

Ôµ1 =
[
pµ1
p1 · k

k · ∂

∂p1
− ∂

∂pµ1

]

Ôµ2 =
[
pµ1
p1 · k

k · ∂
∂b
− ∂

∂bµ

] (5.20)

Hence the classical soft radiation (at O(ω0)) emitted by particle-1 is given by adding
eqs. (5.11) and (5.20).

Rµ1,1 (k)+Rµ2,1 (k) = q2
1q2

1
p1 ·k

(p1∧p2)µν kν
∫

dDl

(2π)D
∏
i

δ̂ (pi ·l)eb·l
1
l2

(5.21)

+q2
1q2 (p1 ·p2)

{
−Ôµ1 + (b·k)

p1 ·k
Ôµ2

}∫
dDl

(2π)D
δ̂ (p1 ·l) δ̂ (p2 ·l)e−i

b·l
~

1
l2
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The result matches with the classical radiation kernel in eq. (4.6). This proves the
sub-leading classical soft theorem in D > 4 dimensions. The radiation kernel can in fact
be explicitly computed.

We can use eq. (5.12) in conjunction with eq. (5.20) to get

Rµ2,1(k) = −q2
1q2αD(p1 · p2)

[[
(p1 · p2)(

(p1 · p2)2 −m2
1m

2
2
) 3

2

(
pµ2 −

p2 · k
p1 · k

pµ1

)]

− (D − 4) b · k
p1 · k

1(
(p1 · p2)2 −m2

1m
2
2
) 1

2

[
pµ1
p1 · k

k · b− bµ
]

1
(~b ·~b)

]
1

(~b ·~b)
D−4

2

(5.22)

We can now add right hand side of eqs. (5.13) and (5.22) to get the classical radiation
kernel at sub-leading order in ω.

Rµparticle 1(k) = −αDq2
1q2

[ [
m2

1m
2
2(

(p1 · p2)2 −m2
1m

2
2
) 3

2

(
p2 · k
p1 · k

pµ1 − p
µ
2

)]

− (D − 4) b̂ · k
p1 · k

[
p1 · p2(

(p1 · p2)2 − 1
2m

2
1m

2
2
) 1

2

(
pµ1
p1 · k

k · b̂− b̂µ
)]]

1
(~b ·~b)

D−4
2

(5.23)

where b̂ = ~b
|b| .

After some algebra, we can write the final expression in a more compact form as,

Rµparticle 1(k) = −αDq2
1q2

1
p1 · k

1
D

[
m2

1m
2
2(p1 ∧ p2)µνkν

1
D2

− (D − 4) b̂ · k
p1 · k

(p1 · p2)(p1 ∧ b̂)µνkν
] 1

(~b ·~b)D−4
2

(5.24)

where D = {(p1 · p2)2 −m2
1m

2
2}

1
2 . Rµ2 (k) can be computed similarly by using bµ2 = 0.

We conclude this section with a few remarks.

• Our results are consistent with the interpretation of classical soft theorem given in [6].
That is, in the large impact parameter regime the soft expansion is really an expansion
in ωb.

• It may seem rather surprising that a quantum amplitude with Feynman propagator
produces the same result as the one we obtain in classical theory via retarded prop-
agator. But this is simply because all the external states are on-shell and hence the
pole corresponding to Feynman propagator does not contribute in the classical limit.
The easiest way to see this is to work in center of mass frame with p1 and p2 along
z axis. ∫

l
δ̂(p1 · l)δ̂(p2 · l)F(l) = 1√

(p1 · p2)2 −m2
1m

2
2

∫
l
δ̂(l0)δ̂(l3)F(l)

= 1√
(p1 · p2)2 −m2

1m
2
2

∫
l
δ̂(l0)δ̂(l3)F(l⊥)

(5.25)
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where l⊥ = (0, lx, ly, 0). Thus the pole of the photon propagator does not contribute
in the classical limit and hence r.h.s. of eq. (5.11) equals r.h.s. of eq. (5.13). The
vanishing residue from pole of the GF (l) is understood even at higher loop orders
in [15].

• Although the master integral in eq. (5.12) can be analytically evaluated, focussing
on different integration regions sheds light on the origin of the classical soft theo-
rem [10, 11]. We first note that in the soft expansion the lµ integration region is
naturally restricted to |l| ≥ ω. One way to understand this is to notice that the soft
expansion of the un-stripped amplitude is obtained by taylor expansion of the momen-
tum conserving delta function δD(l1 + l2 − k) which implicitly assumes that ω � |l|.
Now if we evaluate the contribution from the lower limit of the integration then∫

l

dDl

(2π5)DGF (l)δ̂(p1 · l)δ̂(p2 · l) = 1√
(p1 · p2)2 −m2

1m
2
2

∫
dD−2l⊥
(2π)D−2

1
l2⊥

≈ ωD−4

(5.26)

In D > 4 dimensions this contribution is sub-subleading and hence does not con-
tribute at the sub-leading order in ω. The sub-leading contribution comes from
the integration region |l| ∼ b−1. This is consistent with the known understanding
of classical soft theorem in higher dimensions in [7], where it was shown that dur-
ing scattering, the sub-leading contribution to the radiation comes from the “outer”
space-time region with size ≥ b.

• In D = 4 space-time dimensions the contribution from the region of integration
ω � |l| � b−1 is of the order lnω. As we will see in section 5.1, it is precisely this
term that generates the classical log soft factor in four dimensions. We thus see that
there is a “reversal of order” as far as soft emission is concerned in D = 4, or D > 4
spacetime dimensions. It is the same integral that in D > 4 produces ω0 term from
“UV region” characterised by |l| ∼ b−1 and higher order (ωD−4) terms from the “IR”
region |l| ≥ ω whereas in D = 4 this integral produces lnω term from the IR region
and ω0 terms from the UV region.15

• Although our analysis is for electro-magnetic radiation, it can be easily generalised
to the case soft gravitational radiation in D > 4 dimensions.

5.1 Soft radiation from soft photon theorem in D = 4

The analysis in the previous section was based on tree-level sub-leading soft photon theorem
which resulted in eq. (5.8) defining the Radiation Kernel. Let us now analyse this formula
in four dimensions. The integration region in the soft limit is k � |l| < b−1, where the
upper limit is automatically imposed by the phase term in the integrand [11]. As we show
below, this region produces the classical log soft factor defined and analysed previously
in [9–11]. This in turn implies that sub-leading soft photon theorem generates leading

15We use UV and IR in the sense of their usage in effective field theory literature for binary systems [36].
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order soft radiation in all dimensions. The integrand in eq. (5.8) consists of two terms
which we will referred to as Rµ1 (k),Rµ2 (k) respectively. In four dimensions, instead of
using the results of the full integral, we focus on specific integration region which has been
shown to contribute to soft radiation at lnω order. The integrand in eq. (5.8) can then be
simplified by noting that

• e
i(k−l)·b

~ = 1
• δ̂(p1 · (k − l)) = δ̂(p1 · l)− (p1 · k)δ̂′(p1 · l)

In appendix B, we show that,

Rµ(k) = q2
1q2

kν
p1 ·k

[(
pµ1

∂

∂p1ν
−pν1

∂

∂p1µ

)](
(p1 ·p2)

∫
ω�|l|�b−1

GF (l)δ̂(p1 ·l)δ̂(p2 ·l)
)

+(1↔ 2)

(5.27)
So, finally we are left with the following integral

I =
∫
ω�|l|�b−1

GF (l)δ̂(p1 · l)δ̂(p2 · l). (5.28)

This integral can be readily evaluated based on the analysis of [11]. We work in a centre
of mass frame with

p1 = (E, 0, 0, |p|)
p2 = (E, 0, 0,−|p|)

(5.29)

We can do the integral by changing the variables from (l0, l1, l2, l3) to (p1 · l, l1, l2, p2 · l).
And, the Jacobian related to the change of variable can be given as,

2E|p| =
√

(p1 · p2)2 −m2
1m

2
2. (5.30)

With this change of variable we can rewrite the integral as,

I =
∫
ω�|l|�b−1

d(p1 · l)dl1dl2d(p2 · l)
2E|p| GF (l)δ̂(p1 · l)δ̂(p2 · l). (5.31)

After doing the (p1 · l) and (p2 · l) integral we are left with a 2-dimensional integral

I = 1√
(p1 · p2)2 −m2

1m
2
2

∫
ω�|l⊥|�b−1

d2l⊥
(2π)2

1
(−l2⊥ + iε) (5.32)

This integral can be easily done by going to polar coordinates and doing the radial integral
in the b−1 � |l⊥| � ω region. We get

I = ln(ωb)
2π

1√
(p1 · p2)2 −m2

1m
2
2

(5.33)

Plugging this into the (5.27) and evaluating the derivatives, we have

Rµ1 (k) +Rµ2 (k) = − 1
2π ln(ωb) q2

1q2p
2
1p

2
2

{(p1 · p2)2 −m2
1m

2
2}3/2

[
kν
p1 · k

(pµ1pν2 − pν1p
µ
2 )
]

+ (1↔ 2)

(5.34)
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Hence the classical radiation kernel at the sub-leading order in frequency is given by,

Rµ(k) = −q
2
1q2
2π lnω p2

1p
2
2

{(p1 · p2)2 −m2
1m

2
2}3/2

[
kν
p1 · k

(pµ1pν2 − pν1p
µ
2 )
]

+ (1↔ 2) (5.35)

We now argue that in the large impact parameter regime, the result obtained here matches
with the classical log soft factor obtained in [11].

• For a scattering processes involving n incoming particles with momenta p1 . . . , pn and
m out-going particles with momenta p′1, . . . p′m the classical log soft factor is defined
in [11] as,

J µ(k) = − 1
4π ln(ω + iε)

n∑
a,b=1

q2
aqb

p2
ap

2
b

{(pa.pb)2 −m2
am

2
b}

3
2 }

[
kν
pa · k

(pµapνb − pνap
µ
b )
]

− 1
4π ln(ω − iε)

m∑
a,b=1

q2
aqb

p′2a p
′2
b

{(p′a.p′b)2 −m′2am′2b }
3
2

[
kν
p′a · k

(p′µa p′νb − p′νa p
′µ
b )
]

(5.36)

The overall minus sign is due to the fact that in [11], all the incoming particles were
thought of as out-going particles with sign of charges and momenta reversed.

• We now see that in the case of 2 → 2 scattering and in the limit of large impact
parameter (i.e. when p′i = pi), the result in eq. (5.36) matches with the one obtained
via KMOC formulation as

ln(ω + iε) + ln(ω − iε) = 2 lnω (5.37)

5.2 A caveat regarding counting the orders in coupling

In the classical soft photon theorem proved in [11], the leading order soft radiation is linear
in the electro-magnetic coupling e. In D > 4 dimensions, even the sub-leading order soft
radiation is at O(e) [6]. However in four dimensions, the sub-leading (that is, at order lnω)
soft radiation is at order O(e3). Our results obtained from tree-level scattering amplitudes
produces radiative gauge fields which are at the third order in the coupling, for any order
in the soft expansion. The reason that these results are consistent with soft theorems is
simply because statement of soft theorem requires initial and final states are considered
to be independent. In the KMOC approach, the final states are determined from the
initial states by equations of motion. This immediately implies that the most dominant
contrbution to the soft field (proportional to 1

ω ) vanishes at linear order in the coupling.
This is because the final momenta differ from the initial momenta by momentum impulse
which is itself quadratic in the coupling. Hence the soft radiation that we obtain via KMOC
approach is cubic in the charges of the external particles. This argument remains valid
even at higher order in soft expansion in D > 4 dimensions.

In D = 4 dimensions, both the classical log soft factor in [11] and the sub-leading
radiation kernel obtained from tree-level amplitudes are at the same (cubic) order in the
coupling. This is because for the classical log soft factor, there is a non-trivial contribution
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even as deflection tends to zero, and hence is independent of the impulse. This implies
that when we expand the classical log soft factor in the coupling, the next-to-leading order
(NLO) term which is linear in momentum impulse, occurs at fifth order in the coupling.
We expect this term to be obtained by computing the NLO radiative field in the KMOC
approach. In the next section we show that this is indeed the case.

5.3 From quantum to classical sub-leading soft photon theorem at NLO

We now turn to the computation of soft radiation kernel at next to leading order (NLO)
in the coupling. As we recall from section 3, the classical radiation kernel at NLO is
obtained from the quantum kernel by taking the classical limit, lim~→0RµNLO(k). The
NLO (quantum) radiation kernel is defined as

RµNLO(k) = ~
3
2

∫ on-shell

l1,l2
ei
b·l1
~ δ4(l1 + l2 − k)M1-loop

5 (p̃1, p̃2, p1, p2, k) (5.38)

There are two possible approaches to compute the NLO radiation kernel at sub-leading
order in the soft expansion. Following the main premise of this paper, we can take the soft
limit before taking the classical limit. This implies that we need to use the soft expansion
of 1-loop amplitude upto sub-leading order in the soft expansion. The other possibility is
to take the classical limit of the integrand in the first term in eq. (5.38) and then take the
soft limit. While the second possibility is expected to reproduce the classical soft theorem
derived in [11], our interest is in analysing the first possibiity. As we show below, the soft
expansion of amplitude followed by the classical limit produces the radiative gauge field
which satisfies the classical log soft theorem in four dimensions.

Thus our starting point is the loop corrected soft photon theorem for scattering ampli-
tudes. In D = 4 dimensions this theorem was derived by Sahoo and Sen in [10]. To state
the theorem we first need to define the “infra-red” finite part of the unstripped scattering
amplitude given in [1, 37].

An(p1, . . . , pn) = eK(Atree
n (p1, . . . , pn) +AIR-fin

n (p1, . . . , pn)) (5.39)

where K is the infra-red divergent contribution due to virtual soft photons.16 The detailed
form of K is not relevant for us. An important property of K which is relevant (and was
proved in [10]) is that eK is the same for an n-point amplitude without a photon and an
n+1 point amplitude An+1(p1, . . . , pn, k) containing one additional photon. This property
of the QED amplitude leads to the loop-corrected soft photon theorem for the IR-finite
part of the scattering amplitudes as,

Atree
n+1(p1, . . . , pn, k) +AIR-fin

n+1 (p1, . . . , pn, k)

=
{ 1
ω
S(0)({pi}) + lnωS(ln)

}
(Atree

n (p1, . . . , pn) +AIR-fin
n (p1, . . . , pn))

(5.40)

16In [10] the infra-red finite part of the amplitude AIR-finite
n was called AGn as it was obtained from

the usual amplitude by replacing the Feynman propagator for the loop momentum with the so-called G-
photon propagator.
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It was shown in [10] that AIR-fin
n (p1, . . . , pn) in fact vanishes. And the soft theorem can be

written as,17

Atree
n+1(p1, . . . , pn, k) +AIR-fin

n+1 (p1, . . . , pn, k)

=
{ 1
ω
S(0)({pi}) + lnωS(ln)

}
Atree
n (p1, . . . , pn)

(5.41)

For our process of interest, the sub-leading soft photon theorem in four dimensions can be
written as,

A5(p̃1, p̃2 → p1, p2, k)IR-fin = lnωS(ln)A4(p̃1, p̃2 → p1, p2)tree (5.42)

Our idea to compute radiation kernel at NLO is to use the infra-red finite five point
amplitude in the integrand of the radiation kernel. Conceptually this differs from the set
up of KMOC formalism where the scattering amplitude used to compute any classical
quantity is always the standard (infra-red divergent) scattering amplitude. Naively one
may think that if the scattering amplitude is infra-red divergent, the classical quantities
computed from it may be ill-defined. However as was shown rather beautifully in [12], this
is not true. For example, in the computation of NLO impulse in [12], the loop-amplitude
used in the impulse formula was the “bare” infra-red divergent amplitude. However the
procedure of taking classical limit prior to integration ensured that infra-red divergences
present in individual Feynman diagrams cancelled upon summing over all the relevant
diagrams. It is certainly expected that if we compute NLO radiation where classical limit
was taken prior to the soft limit, then infra-red divergences cancel in the end. However as
we take the soft limit prior to taking classical limit, we need to work with infra-red finite
amplitude for which soft limit is well defined.

Thus it may appear that we are deviating from the KMOC formalism. But as the final
result in the classical theory is infra-red finite, one would expect that using bare amplitude
or carefully defined infra-red finite amplitude should lead to the same final answer, and we
choose to work with latter.

Although a detailed derivation of such a replacement (where we replace “bare five point
amplitude” with the infra-red finite amplitude) is outside the scope of this paper, it can be
motivated in the following ways.

• The radiation kernel (i.e. the radiative gauge field) is not an observable and is an
intermediate quantity used to compute the emitted radiation. The formula for radia-
tion in the KMOC formalism is in fact closely associated to the derivation of inclusive
cross sections. We expect that if we compute the radiation as opposed to the radiation
kernel, the “virtual infra-red” divergence contained in K will cancel with the real soft
photon emission contribution. This will perhaps be the most rigorous way to derive
the classical log soft theorem in the KMOC approach. Although this approach may
obscure the relationship of the classical soft theorems with quantum soft theorems.

17Strictly speaking the proof in [10] was for a “triangle loop”. That is when one replaces one of the photon
propagators in the square loop in minimal scalar QED with a scalar quartic vertex. However the result is
valid even in the minimal scalar QED, as can be verified.
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• In the derivation of the formula for radiation kernel, the incoming coherent state
is composed of free particle states. It is plausible to use the dressed states [38] to
define the incoming state which would lead to infra-red finite amplitude inside the
integrand.

• The dressed states alluded to above have so far remained rather “formal objects”
used to prove infra-red finiteness of S matrix but very rarely used in any concrete
computations. A more robust way to compute infra-red finite S matrix is the remark-
able recent construction by Hannesdottir and Schwartz in [39]. We believe that this
formulation may be best suited to do higher loop computations in KMOC formalism.

We now proceed with the computation of the radiation kernel using sub-leading soft photon
theorem in eq. (5.42). We will denote the radiation kernel as Rµln(k) (instead of RµNLO(k))
to indicate that it is determined from quantum log soft theorem. The log soft factor derived
in [10] is a sum of two terms.

Sln = Sqln + Sclln (5.43)

These two factors are respectively given by,

Sqln =
4∑

a,b=1
q2
aqbs

q(p̃a, p̃b) (5.44)

where p̃3 = −p1, p̃4 = −p2 and q3 = −q1, q4 = −q2. sq(p̃a, p̃b) is defined as,

sq(p̃a, p̃b) = i

4π2
1
p̃·k

1
(p̃a ·p̃b)2−m2

am2
b

{
−p̃µb p̃a ·k+p̃µa p̃b ·k

}
[
m2
am

2
b

2 ln
[
p̃a ·p̃b+

√
(p̃a ·p̃b)2−m2

am2
b

p̃a ·p̃b−
√

(p̃a ·p̃b)2−m2
am2

b

]
1(

(p̃a ·p̃b)2−m2
am2

b

) 1
2
−p̃a ·p̃b

]

= i

4π2
1

(p̃a ·p̃b)2−m2
am2

b

(5.45)[
m2
am

2
b

2 ln
[
p̃a ·p̃b+

√
(p̃a ·p̃b)2−m2

am2
b

p̃a ·p̃b−
√

(p̃a ·p̃b)2−m2
am2

b

]
1(

(p̃a ·p̃b)2−m2
am2

b

) 1
2
−p̃a ·p̃b

]
s̃q (a,b)

where s̃q (a,b) :=
{
−p̃µb +p̃µa

p̃b ·k
p̃a ·k

}

Sclln =
4∑

a,b,=1|σ(a,b)=0
q2
aqbs

cl (p̃a, p̃b)

scl (p̃a, p̃b) = 1
4π

p̃2
ap̃

2
b(

(p̃a · p̃b)2 − p̃2
ap̃

2
b

) 3
2

1
p̃a · k

(
p̃µa (p̃b · k)− p̃µb (p̃a · k)

)

=: 1
4π

p̃2
ap̃

2
b(

(p̃a · p̃b)2 − p̃2
ap̃

2
b

) 3
2
s̃cl(a, b) (5.46)
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where

s̃cl(a, b) = 1
p̃a · k

(p̃µa(p̃b · k)− p̃µb (p̃a · k)) (5.47)

and, σ(a, b) = 0 indicates both particles are either incoming or outgoing.

• Sqln and Sclln differ from the corresponding expressions in [10] by an overall factor of −i.
This is due to (1), our definition of four pt. amplitudeM4 is −i times the four point
amplitude in [10], (2) we use the opposite signature for space-time metric, and (3)
we define soft factor in terms of lnω as opposed to lnω−1 and (3) The polarisation
vectors M5 is not contracted with the polarisation vectors which will absord the
factor of i such that the ratio ofM5 toM4 remains the same.

A minor re-writing of Sclln turns out be useful for computation.

Sclln =
2∑

a,b=1
q2
aqb
(
2scl(pa, pb) + rest(a, b)) (5.48)

where rest indicates all the terms which depend on the momentum mis-match lµi .

rest(a, b) = scl(p̃a, p̃b)− scl(pa, pb) (5.49)

Let us now compute the contribution of this soft factor to the classical radiation kernel at
fifth order in the coupling. Let us recall the formula for Rµln(k) once again.

Rµln(k) = Rµln cl(k) +Rµln q(k)

Rµln cl(k) = ~
3
2 lnω

∫ on-shell

l1,l2
ei
b·l1
~ δ4(l1 + l2)

2∑
a,b=1

q2
aqb
(
2scl(pa, pb) + rest(a, b)

)
Mtree

4 (p̃1, p̃2, p1, p2)

Rµln q(k) = ~
3
2 lnω

∫ on-shell

l1,l2
ei
b·l1
~ δ4(l1 + l2)

2∑
a,b=1

q2
aqbs̃q(p̃a, p̃b)Mtree

4 (p̃1, p̃2, p1, p2)

(5.50)

We now compute Rµln q(k) and Rµln cl(k). But we first identify which terms can contribute
in the classical limit via simple dimensional analysis. As qi ∼ 1√

~
and lµi = ~lµi ,

q5
∫ on-shell

l1,l2
δ4(l1 + l2) ∼ 1

~
(5.51)

and hence the integrand in the KMOC formula should scale as O(~). If integrand is more
dominant as ~→ 0 than we will not have a well defined classical limit, and if the integrand
is sub-dominant then it will generate no classical contribution.
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5.4 Contribution of Rµ
ln q(k)

As all the external states are on-shell in the KMOC formula, we have the following identity.

δ4(l1 + l2)
∏
i

δ̂(2pi · li + l2i )(p̃a · p̃b) = (−1)ηa·ηbpa · pb +O(l2) (5.52)

where ηa = 1 for a ∈ (1, 2) and −1 otherwise. Using eq. (5.52), Sqln can be written in a
more compact form to leading order in lµ as,

Sqln =
2∑

a,b=1|a 6=b
q2
aqb

i

4π2

[
m2
am

2
b

2 ln
[
pa ·pb+

√
(pa ·pb)2−m2

am2
b

pa ·pb−
√

(pa ·pb)2−m2
am2

b

]
1

((pa ·pb)2−m2
am2

b)
1
2
−pa ·pb

]
1
D2 {s̃q(a,b)−s̃q(a,b+2)+s̃q(a+2, b)−s̃q(a+2, b+2)}

− i

(4π)2

2∑
a=1

q3
a

pa ·p̃a√
(pa ·p̃a)2−p2

ap̃2
a

{s̃q(a,a+2)+s̃q(a+2,a)}

(5.53)

In the above equation, D =
√

(pa · pb)2 −m2
am

2
b . In the first line the sum in fact also

includes terms involving pairs pa, p̃a (for a = 1, 2), but those vanish at leading order in lµ.
It can now be verified that to leading order in lµ

3∑
a=1

4∑
b=2

q2
aqb{s̃q(p̃a, p̃b)− s̃q(p̃a, pb)} = q2

1q2(s̃a(p̃1, l2)− s̃q(p1, l2)) = O(l2) (5.54)

In the above equation we have displayed explicit dependence of s̃q on the momenta rather
then labels.

Similar identity holds when a and b range over other values. Hence the first line of
eq. (5.53) vanishes. The second line vanishes because to sub-leading order in lµ,

s̃q(a, a+ 2) = −s̃q(a+ 2, a) (5.55)

We have thus have shown that Sqln does not contribute to the classical radiation at next to
leading order in the coupling and at sub-leading order in the soft expansion. We end this
section with a couple of remarks.

• At leading order, absence of Sqln in the classical radiation kernel was a consequence of
the fact that the pole of the Feynman propagator in the momentum mismatch lµ does
not contribute in the classical limit. However, at leading order in the coupling (i.e.
at zeroth order in lµ) even Sqln manifestly vanishes, and hence the LO result obtained
via KMOC formalism is rather expected.

• It may seem surprising that even at NLO Sqln does not contribute in the classical
limit. However a closer look at the soft factor itself (eq. (5.45)) shows that this is not
surprising. If we expand Sqln at next to leading order by expanding final momenta in
terms of initial momenta and impulse then as at leading order 4p1 +4p2 = 0 and
as pi · 4pi = pi · b = 0, Sqln vanishes at NLO. The classical limit obtained via KMOC
formalism is consistent with this result.
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5.4.1 Contribution of Rµ
ln cl(k)

We split this contribution into two pieces rµ1 (k), rµ2 (k) arising from scl(pa, pb) and rest(a, b)
respectively. We first consider the contribution of scl(pa, pb) to the radiation kernel. The
final result is obtained by taking classical ~→ 0 limit of rµ1 (k) + rµ2 (k).

rµ1 (k) = ~
3
2 lnω

∫ on-shell

l1,l2
e−i

b·l1
~ δ4(l1+l2)

2∑
a,b=1

2q2
aqbs

cl(pa,pb)Mtree
4 (p̃1, p̃2,p1,p2)

=
2∑

a,b=1
2q2
aqbs

cl(pa,pb)4q1q2(p1 ·p2)

{
~

3
2

∫
d4l1

(2π)4
d4l2

(2π)4

2∏
i=1

θ(p0
i +l0i )δ̂(2p1 ·l1+l21)δ̂(2p2 ·l2+l22)e−i

b·l1
~ δ4(l1+l2) 1

l22

}

(5.56)

A simple power counting argument reveals that this term is super classical if we replace
lµ with ~lµ and take the classical limit. Such a term would render the classical limit ill
defined.

In order to eliminate the super-classical term, we use the on-shell delta function δ̂(2p2 ·
l2 + l22) to write 1

l22
= 1
−2p2·l before substituting lµ in terms of the wave number lµ (that is,

before taking classical limit where δ(pi · l + l
2) ≈ δ(pi · l)).18 It can now be checked that

the resulting expression scales as ~0 and the resulting classical limit is,

rµ1 (k) = ~
3
2 lnω

2∑
a,b=1

2q2
aqbs

cl(pa, pb)4q1q2(p1 · p2)
∫

d4l

(2π)4 δ̂(2p1 · l)δ̂(2p2 · l)e−i
b·l
~

1
−2p2 · l

(5.57)

This integral does not contribute in the classical limit. In order to prove this, we work in
the center of mass frame with p2 = (|

√
|p|2 +m2

2, 00− |p|) the integral can be written as,

Integral = − 1√
(p1 · p2)2 −m2

1m
2
2

∫
d(p2 · l)

1
p2 · l − iε

δ̂(p2 · l)d2~l⊥e
−i

~b·~l⊥
~

= −δ2(~b⊥) 1√
(p1 · p2)2 −m2

1m
2
2

∫
d(p2 · l)

1
p2 · l − iε

δ̂(p2 · l)
(5.58)

The above integral is a contact term which only contributes if the impact parameter van-
ishes. Hence rµ1 (k) = 0.

18In a more rigorous analysis where one essentially computes inclusive cross section by summing over
the additional X states, we believe that such super-classical terms will cancel after summing over all
the diagrams. In the absence of such a computation, we use on-shell delta functions to manipulate the
denominator terms and check if modulo such “on-shell substitutions” we can ensure that the most dominant
term in any computation is O(~0).

– 26 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
6

We now compute rµ2 (k).

rµ2 (k) = ~
3
2 lnω

∫ on-shell

l1,l2
ei
b·l1
~ δ4(l1 + l2)

2∑
a,b=1

q2
aqb(scl(p̃a, p̃b)− scl(pa, pb))Mtree

4 (p̃1, p̃2, p1, p2)
(5.59)

Explicit expression for scl(a, b) is given in eq. (5.46). We can use it along with the following
equations which holds when all the external states are on-shell to compute rµ2 (k).

1
((p̃a · p̃b)2 −m2

am
2
b)

3
2

= 1
((pa · pb)2 −m2

am
2
b)

3
2

(5.60)

p̃2
a = m2

a (5.61)

rµ2 (k) = ~
3
2 lnω{4q1q2(p1 · p2)} 1

((pa · pb)2 −m2
am

2
b)

3
2

(5.62)

∫ on-shell

l1,l2
δ4(l1 + l2)e−i

b·l1
~
∑
a 6=b

q2
aqb(scl(p̃a, p̃b)− scl(pa, pb))

1
l22 + iε

We can now use the fact that to leading order in the coupling,

4pµa = {4iq1q2(p1 · p2)}
∫ onshell

li

e−i
bi·li
~ lµi

1
l2i + iε

(5.63)

Using eq. (5.63), we see that the corresponding contribution in the (classical) radiation
kernel is

lim
~→0
Rµln cl (k) = − i

4π lnω
∑

a,b|a 6=b

1(
(pa · pb)2 −m2

am
2
b

) 3
2
4
{ 1
pa · k

(
pµa (pb · k)− pµb (pa · k)

)}
(5.64)

where 4f(pa, pb) := 4pµa( ∂
∂pµa

f − ∂
∂pµ
b
f). Let us summarise the key results of this section.

• Combining eqs. (5.35), (5.64), we see that the ~0 term in the radiation kernel matches
with the result of the radiative gauge field defined by classical log soft theorem, upto
next to leading order in the coupling.

• The contribution to the soft factor resulting from S(1)µν action on Kq in quantum soft
theorem has trivial contribution to the classical radiative field. On the other hand Sclln
also has a non-trivial sub-leading (ω lnω) contribution at NLO. Such contributions
are expected to be non-universal ([11]) and we do not investigate them further in this
paper.

We can now compare Rµln(k) with the radiative gauge field (denoted as jµ(k)) in [11], when
the final momenta are expanded in terms of initial momenta and impulse. A simple algebra
reveals that

jµ(k) = Rµln(k) + terms proportional topa · 4pb (5.65)
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However as the result is already at next to leading order, we can substitute 4pb = −4pa.
And as the impulse is orthogonal to the final momenta, the extra-term vanishes. Hence
the radiation kernel computed using KMOC approach at NLO matches with the result
in [11]. We thus see that the classical limit of soft photon theorem in four dimensions
match with the classical log soft theorem derived by Saha, Sahoo and Sen. The leading
contribution to the classical log soft factor arises from tree-level subleading soft photon
theorem and the NLO contribution arises due to loop-corrected quantum soft theorem.
For the class of scattering processes amenable to the KMOC formalism, we believe that
this derivation provides first step towards a perturbative proof of the classical log soft
theorem from scattering amplitudes.

6 Soft gravitational radiation from sub-leading soft graviton theorems

In this section, we consider scattering of two scalar particles of masses m1,m2 which emit
a soft graviton with momentum kµ. As before, our approach is to take soft limit of the
scattering amplitude before taking the classical limit. We focus on the more intricate
case of 4 dimensions but the generalisation of the analysis of sections 4, 5 to gravitational
radiation in D > 4 dimensions is rather straightforward.

In the soft expansion, the dominant term proportional to 1
ω was derived in [29] and

it was shown that it matches with the classical soft factor. At sub-leading order in soft
expansion (i.e. at O(lnω) in four dimensions) and at leading order in the coupling, deriva-
tion of classical radiation kernel using KMOC formalism is fairly similar to the derivation
in QED. However as we show below in section 6.1, there is an interesting aside. It was
proved in [11], the classical log soft graviton factor has an additional “phase” contribution
which is absent in electro-magnetic radiation. This term arises due to the Coulombic drag
on outgoing gravitational radiation. When we expand the soft factor in the coupling, the
phase term vanishes at leading order.

We show that in the KMOC approach, such a term is indeed present in the soft
expansion of the amplitude, but at sub-subleading order! And it vanishes just as the
classical phase term vanishes. In section 6.1, we will evaluate these terms separately by
using the double copy relations.

We also note that in general there is a contribution to the soft gravitational radiation
at order lnω from the gravitational stress tensor. However in the KMOC approach to the
radiation kernel, the tree-level scattering amplitude does not involve hard graviton scat-
tering and hence our results do not take into account the contribution of the gravitational
stress tensor (or the three graviton coupling) to the radiation kernel. We believe that it
is possible to extend our analysis such that the outgoing states contain not only massive
scalars but also finite energy gravitons, but in this paper we have restricted ourselves to
the simplest set up.

We denote the radiation kernel that contributes to soft radiation at the desired order as

Rµν(k) = Rµν(0)(k) +Rµν(1)(k) (6.1)
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whereR(0) is the radiation kernel at sub-leading order and R(1) is the potential contribution
to the radiation kernel from sub-leading terms in the amplitude, which eventually vanishes.

But first we consider the contribution of sub-leading soft graviton theorem to the
radiation kernel. Let A5(p̃1, p̃2, p1, p2, k) be the (un-stripped) tree-level 5 pt. amplitude.
Soft expansion ofM5 is given by,

A5(p̃1, p̃2, p1, p2, k) = S(0)A4(p̃1, p̃2, p1, p2) + S(1)A4(p̃1, p̃2, p1, p2) +O(ω) (6.2)

The soft factors are given by,

S(1)µν (p̃1, p̃2, p1, p2) = i
κ

2

2∑
i=1

(
S̃

(1)µν
(i) + S

(1)µν
(i)

)

= i
κ

2

2∑
i=1

 p̃(µ
i

ˆ̃Jν)λ
i kλ

p̃i · k
+ p

(µ
i Ĵ

ν)λ
i kλ

pi · k


S(0)µν (p̃1, p̃2, p1, p2) =

2∑
i=1

p̃
(µ
i p̃

ν)
i

p̃i · k
+ p

(µ
i p

ν)
i

p̃i · k

(6.3)

where as before, the angular momentum operators are defined with a relative minus sign
between incoming and out-going states.

We now note the following.(
p̃µi

∂

∂p̃νi
− p̃νi

∂

∂p̃µi

)
δ(p̃2

i −m2
i ) = 0 (6.4)

The contribution of the sub-leading soft theorem to the radiation kernel can be then eval-
uated as,

Rµν(0)(k) =
∫

d4l1
(2π)4

d4l2
(2π)4

∏
i

θ(l0i )δ̂(p̃2
i −m2

i )e
i
~ b·l1S(1)A4(p̃1, p̃2, p1, p2) (6.5)

The computation of classical radiation kernel is made easier by observing following (ap-
proximate) identity.∫

d4l1
(2π)4

d4l2
(2π)4

∏
i

θ(l0i )δ̂(p̃2
i −m2

i )e
i
~ b·l1S(1)µνA4(p̃1, p̃2, p1, p2)

≈ iκ

2

2∑
i=1

p
(µ
i Ĵ

ν)λ
i kλ

pi · k

∫
d4l

(2π)4

∏
i

δ̂(2pi · l)e
i
~ b·lMcl

4 (p1, p2, l2)
(6.6)

In eq. (6.6), the approximation sign indicates that the integrands match upto leading order
in lµ and given order in frequency ω. The right hand side of the identity has differential
operators which only act on final external states and the lµ is simply an integration variable.
Mcl

4 (p1, p2, l2) is the classical limit of the four point amplitude. Intuitively this identity
simply states that soft and classical limit commute at this order in frequency. We verify
eq. (6.6) in appendix C.
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The reduced four point amplitude and it’s classical limit are respectively given by,

M4(p̃1, p̃2, p1, p2) =Mcl
4 (p1, p2, l2) +O(|l|)

whereMcl
4 (p1, p̃2, l2) := −κ2 ((p1 · p2)2 − 1

2m
2
1m

2
2)

l22

(6.7)

where κ =
√

32πG.
Using the approximate identity, it can be readily checked that to leading order in

momentum mis-match lµ (and given order in frequency), the radiation kernel obtained
from sub-leading soft graviton theorem can be written as,

Rµν(0)(k) = iκ

2
∑
i

1
pi · k

p
(µ
i Ĵ

ν)ρ
i kρ

∫
d4l2

(2π)4 {δ(2p1 · l2)δ(2p2 · l2)e−
i
~ b·l1Mcl

4 (p̃1, p̃2, p1, p2)}

(6.8)

The soft radiation contribution contained in eq. (6.8) can now be analysed using exactly the
same analysis as in QED case. That is, we consider the region of integration ω � |l2| � b−1

and evaluate the above integral. In this region, the phase factor trivialises e i~ b·(k−l) = 1
and (to leading order in lµ) the integral is given by,

Rµν(0) (k) = − iκ
3

8
∑
i

1
pi · k

p
(µ
i Ĵ

ν)ρ
i kρ

∫ b−1

ω

d4l2

(2π)4

{
δ(p1 · l2)δ(p2 · l2)

((p1 · p2)2 − 1
2m

2
1m

2
2)

l22 + iε

}
(6.9)

This integral was essentially analysed in [10]. As in the case of QED, the pole corresponding
to Feynman graviton propagator does not contribute as the initial states are on-shell. As
shown in appendix B, adding contribution from all the matter poles, we get

Rµν(0) (k) = − lnω iκ
3

8
∑
i

1
pi · k

p
(µ
i Ĵ

ν)ρ
i kρ

 1
2π
{(p1 · p2)2 − 1

2m
2
1m

2
2}√

(p1 · p2)2 −m2
1m

2
2

 (6.10)

We can now compare the LO radiation kernel with the classical log soft factor in [11] at
leading order.19 We see that the two results match upto an overall sign. The sign difference
is due to the fact that we use mostly minus metric signature as opposed to mostly plus
signature used in [11].

6.1 The vanishing phase at leading order

At next to leading order in the coupling, there is an additional term in the classical log
soft factor which is a pure phase and arises due to the Coulombic effect of gravitational
potential on the out-going radiation itself. For a generic 2→ 2 scattering this term is given
by [11]

Rµνphase(k) = ln(ω + iε)
2∑
b=1

pb · kS(0) (6.11)

19We remind the reader that κ =
√

32πG in this paper. In [11], κ =
√

8πG. Moreover the radiation
kernel J µν(k) in [11] is at order κ2 as Rµν(0)(k) = κJ µν(k).
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where S(0) is the leading soft factor. As the Weinberg soft graviton factor vanishes at
leading order in the coupling, the phase term vanishes. It is nonetheless an interesting
question to ask as to why such a term never appeared in our computation. We will now
show that structurally such a term is indeed present, but it arises when we considered
sub-subleading soft amplitude. We will first present a schematic argument and then give
the detailed computation. This section has no direct relevance for rest of the paper, and
the reader may skip it in the first reading. Our purpose here is to show the existence of
such a phase term in KMOC approach and why it vanishes at leading order in the coupling.

Consider a schematic integral of the following form.

I =
∫
d4lδ̂(p1 · (k − l))δ̂(p2 · l)

1
l2
F (p1, p2, k, l) (6.12)

Now let us suppose we consider region of integration |l| � ω, then this integral is trivial as,

I =
∫
|l|�ω

d4lδ̂(p1 · k)δ̂(p2 · l)
1
l2
F (p1, p2, k, l) (6.13)

However as pµ1 is time-like and kµ is null, δ̂(p1 · k) = 0, this term vanishes.
But if for a moment we ignore the triviality of delta function in this region, then it

can be seen that I will have a non-trivial contribution at order lnω only if,

F ≈ O(k, l−1) (6.14)

Clearly such a contribution can only arise by considering the soft expansion at sub-
subleading order. By examining all the contribution to the tree-level 5 pt. amplitude,
it can be seen that the“ inverse dependence” on lµ implies that F must scale as 1

l·k in the
integration region |l| � ω and this contribution arises when the graviton is emitted from
the propagator.20 The easiest way to compute such a contribution is to look at gravitational
amplitude obtained via double copy [28, 30, 40–42].

As was shown in [28], the tree-level scalar QCD amplitude with two distinct scalar
fields naturally satisfies color kinematics duality and the 5 point amplitude involving two
scalars of masses m1,m2 and a graviton in the external states is given by([28, 41]),

A5(p̃1, p̃2, p1, p2, k) = δ4(l1 + l2 − k)M5(p̃1, p̃2, p1, p2, k) (6.15)

where the reduced amplitude obtained via color kinematics duality has the form

Mµν
5 (p̃1, p̃2, p1, p2, k) = −κ

3

16

5∑
I=1

nµI ⊗ nνI
dI

(6.16)

The numerator kinematic factors nI as well as the corresponding propagators dI were
computed in [28, 41].21 The terms corresponding to I 6= 3 arise due to graviton emission

20This is why such a contribution is absent in the case of QED, but will be present if we considered
classical gluon radiation [31].

21We deviate slightly from the usual convention in the literature and show the coupling constant depen-
dence explicitly.
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from the four external legs and the third channel corresponds to graviton emission from
the propagator. Before proceeding we make a few cautionary remarks on the use of double
copy in obtaining gravitational amplitudes with minimally coupled scalars.

• The double copied 5 point amplitude, contains graviton as well as dilaton and a B-
field as an external state. The graviton is isolated simply by contracting the tensor
with the symmetric traceless polarisation.

• Even after ensuring that the external states do not contain a dilaton or the B-field, the
amplitude obtained via double copy is not pure gravitational amplitude as the dilaton
can propagate and mediate interaction between the two scalars [28, 30, 42, 43]. There
have been many techniques developed to decouple the dilaton and obtain pure gravity
amplitudes. Fortunately as we will see below, for our purpose these subtleties will
not be relevant. However we emphasise that to do the first principal computation
of soft radiation by using color kinematics duality will require that the dilaton is
consistently decoupled from the amplitude.

We begin from the well known BCJ representation of the tree-level amplitudes in scalar
QCD where the numerator factors are given as,

n1 = (4p1 · p2 − 2p1 · l2 + 2p2 · k − l2 · k + 2l1 · l2)(2p1 − l1)µ

+ (2p1 · l2 + l2 · k2l1 · l2)(2p2 − l2)µ

n2 = (2p1 + l2) · (2p2 − l2)2pµ1 + 2p1 · k(2p2 − l2)µ

n3 = (2p1 − l1)α(2p2 − l2)β [(k − l2)αηµβ + (l1 − l2)µηαβ − (k + l1)βηαµ)
n4 = n1|1↔2

n5 = n2|1↔2

(6.17)

And the denominator factors are given by,22

d1 = l22((p1 − l1 + k)2 −m2
1)

d2 = −2p1 · kl22
d3 = l21l

2
2

d4 = d1|1↔2

d5 = d2|1↔2

(6.18)

The diagrammatic representation satisfying BCJ duality is shown in the figure 1. In this
case, the contribution to sub-subleading terms only arises from the third channel. To
leading order in lµ this term can be computed as follows.

(n3 ⊗ n3)µν =
3∑

m=1
αmαnP

µ
m ⊗ P νn (6.19)

22All the propagators are Feynman propagators, but we will suppress the iε untill we compute the
momentum space integrals.
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Figure 1. Diagrammatic representation satisfying colour-kinematics duality.

where P1 = p1, P2 = p2 and P3 = l2. The Co-efficients can be easily computed from
eq. (6.17) and the fact that all the external states are on-shell (i.e. pi · li = −l2i )

α1 = −4p2 · (k + l1) +O(l22)
α2 = 4p1 · (k + l2) +O(l22)
α3 = −8p1 · p2 +O(l2)

(6.20)

Using eq. (6.20) in eq. (6.19), we get

1
d3

(n3 ⊗ n3)µν = 1
l22

1
(l22 − 2l2 · k)

(
[16(p2 · (k + l1))2pµ1p

ν
1 + 32(p1 · p2)2lµ1 l

ν
1

− 8[p2 · (k + l1)][p1 · (k + l2)](pµ1pν2 + pµ2p
ν
1)

+ 32(p1 · p2)(p2 · (k + l1))[pµ1 lν2 + pν1l
µ
2 ]
)

+ (1↔ 2)

(6.21)

The propagating dilaton “infects” all the terms that involve lµi in the numerator. However
as we show below, the term relevant for us is precisely the term proportional to α2

1. This
term is not affected by the propogation of the dilaton and hence we do not have to worry
about the more refined details of the double copy when obtaining gravity amplitudes. We
consider two separate contributions from the regions |l1| � |k| � b−1 and |l2| � |k| � b−1

respectively. It can now be readily verified that with lµ1 + lµ2 = kµ, this leads to
1
d3

(n3 ⊗ n3)µν = −8 1
l22 + iε

1
l2 · k − iε

(p2 · k)2pµ1p
ν
1 if |k| � |l1|

= −8 1
l21 + iε

1
l1 · k − iε

(p1 · k)2pµ2p
ν
2 if |k| � |l2|

(6.22)

Hence the corresponding contribution to the (un-stripped) 5 point amplitude is given by,

I5≈
(
κ3

2

)
δ4 (l2−k) 1

l22 +iε
1

l2 ·k−iε
(p2 ·k)2 pµ1p

ν
1 if |k|� |l1|

=
(
κ3

2

)
δ4 (l1−k) 1

l21 +iε
1

l1 ·k−iε
(p1 ·k)2 pµ2p

ν
2 if |k|� |l2|

(6.23)

Rµν(1) (k) = κ3

8

∫
l
δ̂ (p1 ·k)

[
δ̂ (p2 ·l)(p2 ·k)2 pµ1p

ν
1

] 1
l·k−iε

1
l2+iε+(1↔ 2)

=−iκ
3

8 (p2 ·k)2 pµ1p
ν
1 δ̂ (p1 ·k)

∫
l

( 1
p2 ·l−iε

− 1
p2 ·l+iε

) 1
l·k−iε

1
l2+iε+(1↔ 2)

(6.24)
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The contribution of poles from Feynman propagator 1
l2+iε is zero as δ̂(E2|l| − ~p2 · ~l) = 0.

Whence we focus on the other poles. We close the contour in the lower half plane. The
resulting integral is,

Rµν(1)(k) = κ3

8 (p2 · k)2pµ1p
ν
1 δ̂(p1 · k)

∫
l

1
p2 · l + iε

1
l · k − iε

1
l2

+ (1↔ 2) (6.25)

The integral in the above equation was evaluated in appendix A of [11]∫
l

1
p2 · l + iε

1
l · k − iε

1
l2 − iε

= 1
4π ln(ω + iε) 1

p2 · k
(6.26)

substituting eq. (6.26) in eq. (6.25) we get,

Rµν(1)(k) = κ3

32π ln(ω + iε){(p2 · k)[δ̂(p1 · k)pµ1pν1 ] + (p1 · k)[δ̂(p2 · k)pµ2pν2 ]} (6.27)

As we emphasised before, this term is trivial but it’s structure precisely matches with the
phase term obtained in [11]. We can now substitute eqs. (6.27), (6.10) in eq. (6.1) and get

Rµν(k) = lnωκ
3

2

−i
8π

1
p1 · k

p
(µ
1 Ĵ

ν)ρ
1 kρ


{

(p1 · p2)2 − 1
2m

2
1m

2
2

}
√

(p1 · p2)2 −m2
1m

2
2

+ (1↔ 2) (6.28)

6.2 Soft gravitational radiation at NLO

In this section, we repeat the analysis of section 5.3 and use loop corrected soft graviton
theorem to obtain the radiative gravitational field at sub-leading order in soft expansion and
next to leading order κ5 in the coupling. Due to similarity with computations of section 5.3,
we outline the main results and do explicit computation only for those terms which are
qualitatively different than the ones in analysing loop corrected soft photon theorem.

The loop corrected sub-leading soft graviton theorem for infra-red finite five point
amplitude can be written as,

Aµν5 = κ3

8

( 1
ω
Sµν(0) + lnωSµνln

)
Atree

4 +O(ω0) (6.29)

where we once again remind the reader that κ =
√

32πG.
The infrared sensitive loop effects generate a new universal factorisation at order lnω

where Sµνln only depends on the initial and final momenta of the scattering amplitude. Just
as in the case of QED, the loop corrected soft factor can be decomposed into two terms
which we denote as Sµνln cl,S

µν
ln q. The classical log soft theorem derived in [11] shows how

only Sµνln cl contributes to classical radiation at lnω order, even though in the quantum soft
theorem both the terms occur at the same order in ~.

Sµνln = Sµνln cl + Sµνln q (6.30)
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The expressions for Sµνln cl, S
µν
ln q are not easy on the eye but their beauty lies in their uni-

versality.

Sµνln cl = 1
4π

[
1
2

4∑
a=1

p̃
(µ
a kρ
p̃a · k

∑
b|ηa·ηb=1

p̃a · p̃b
D(p̃a, p̃b)3 (p̃ρb p̃

ν)
a − p̃ρap̃

ν)
b ){2(p̃a · p̃b)2 − 3p̃2

ap̃
2
b}

+
4∑

a=3
(p̃a · k)S(0)µν

] (6.31)

In the first line sum is over both the incoming as well as outgoing states with p̃3 := −p1
and p̃4 = −p4. D is the (by now familiar) Jacobian and S(0) is the Weinberg soft factor,

D(p̃a, p̃b) =
√

(p̃a · p̃b)2 − p̃2
ap̃

2
b

S(0)µν :=
4∑

a=1

p̃
(µ
i p̃

ν)
i

p̃i · k

(6.32)

Similarly,

Sµνln q = i

8π2

[
1
2

4∑
a,b=1|a 6=b

S(1)µν
(
p̃a, k̂

) {2 (p̃a · p̃b)2 − p̃2
ap̃

2
b

}
D (p̃a, p̃b)

ln
[
p̃a · p̃b +D
p̃a · p̃b −D

]

+ S(0)µν
4∑

a=1
(p̃a · k) ln p̃2

a

(p̃a · k̂)2

] (6.33)

In order to simplify the analysis, we decompose the soft factors further as

Sµνln cl = sµν1,cl(p1, p2) + sµν2,cl(p1, p2, l1, l2) + sµν3,cl(p1, p2, l1, l2)
Sµνln q = sµν1,q + sµν2,q

(6.34)

where

sµν1cl(p1,p2) = 1
4π

2∑
a=1

p
(µ
a kρ
pa ·k

∑
b|ηa·ηb=1

pa ·pb
D(pa,pb)3 (pρbp

ν)
a −pρap

ν)
b ){2(pa ·pb)2−3p2

ap
2
b}

sµν3,cl(p1,p2, l1, l2) = 1
4π

4∑
a=3

(p̃a ·k)S(0)µν

sµν2cl(p1,p2, l1, l2) =Sµνlncl−s
µν
1,cl−s

µν
3,cl

(6.35)

sµν1,q = i

16π2

4∑
a,b=1|a 6=b

S(1)µν
(
p̃a, k̂

)
{

2(p̃a ·p̃b)2−p̃2
ap̃

2
b

}
D (p̃a, p̃b)

ln
[
p̃a ·p̃b+D
p̃a ·p̃b−D

]
sµν2,q = i

8π2S
(0)µν

4∑
a=1

(p̃a ·k) ln p̃2
a(

p̃a ·k̂
)2

(6.36)

We will analyse Sµνln cl/q separately. But we first do a dimensional analysis to analyze which
terms contribute in the classical limit. We once again remind the reader that the classical
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limit of quantum radiation kernel can be written as,

Rµν ∼ lim
~→0

~
3
2

∫ on-shell

l1,l2
δ4(l1 + l2)Iµν(p1, p2, l1, l2) (6.37)

As,

• κ ∼ 1√
~
, κ5 ∼ 1

~
5
2
and

•
∫ on-shell
l1,l2

δ4(l1 + l2) 1
l22+iε ∼ ~0

Iµν must scale as O(~). If it scales at order ~0, we will get a super-classical term and an
ill-defined classical limit and all the terms which scale as O(~2) are purely quantum and
will vanish in the classical limit.

6.2.1 Contribution of Sµν
ln q

We first analyse the contribution of Sµνln q to the classical radiation kernel at order lnω. Just
as in the case of QED, sµν1,q has a vanishing contribution at this order. As the computation
is analogous to the analysis in section 5.3, we do not repeat here. A direct computation
reveals that,

sµν1,q = O(l2) (6.38)

It can also verified by a direct computation that sµν2,q does not contribute at next to leading
order in the coupling. S(0)µν depends linearly on lµ and the sum ∑4

a=1(p̃a · k) ln p̃2
a

(p̃a·k̂)2 is
also linear in l · k, thus this term will not contribute to Rµνln (k) and contributes at ω lnω
order in the soft expansion.

6.2.2 Contribution of Sµν
ln cl

The computation of sµν1,cl(pa, pb) and sµν2,cl proceeds exactly analogous to the QED compu-
tation given in section 5.4.1. In the classical limit sµν1,cl(pa, pb) contributes at order ω lnω.

Contribution of sµν2,cl to the radiation kernel is,

Rµνln cl(k) = κ3

64π lnωMcl
4

∫
d4l

(2π)4 δ̂(2p1 · l1)δ̂(2p2 · l2)e−i
b·l1
~ δ4(l1 + l2)

2∑
a,b=1|a 6=b

pa · pb
D(pa, pb)3 {2(pa · pb)2 − 3p2

ap
2
b}I(p1, p2, l) + . . .

(6.39)

where . . . denote remaining contribution due to sµν3,cl. I(p1, p2, l) is defined as,

I(p1, p2, l) = 1
pa · k

[
l(µa kρ(p

ρ
bp
ν)
a − pρap

ν)
b )− la · k

pa · k
p(µ
a kρ(p

ρ
bp
ν)
a − pρap

ν)
b )

+ p(µ
a kρ{(l

ρ
bp
ν
a − pρalνb ) + (pρb l

ν
a − lρapνb )}

] (6.40)
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Each term in I is linear in lµa and as

iMcl
4

∫
d4l

(2π)4
1

l2 + iε
δ̂(2p1 · l1)δ̂(2p2 · l2)δ4(l1 + l2)e−i

b·l1
~ lµa = 4pµa (6.41)

Hence contribution of sµν2,cl is,

Rµνln cl(k) = − iκ
3

64π lnω
2∑

a,b=1|a 6=b

pa · pb
D(pa, pb)3 {2(pa · pb)2 − 3p2

ap
2
b}I(p1, p2,4pa) + . . . (6.42)

We now analyse the contribution of sµν3,cl to the radiation kernel. As shown in section 6.1,
at leading order (κ3) in the coupling, there is no contribution of such a phase term. We
note that this is consistent with the structural form of sµν3,cl which has trivial contribution
at l0 order. The leading non-trivial contribution is in fact given by,

sµν3,cl = 1
4π

2∑
a=1

(pa · k)
2∑
b=1

[
2l(µb p

ν)
b

pb · k
−

pµb p
ν
b

(pb · k)2 lb · k
]

(6.43)

We can now substitute eq. (6.43) in the integrand for Rµνln cl(k) and just as it was seen
in eqs. (6.39), (6.40), the result is simply a replacement of lµa in eq. (6.43) with 4pµa .
Substituting this result in eq. (6.42), we determine the classical radiation kernel at next to
leading order and at sub-leading order in frequency expansion.

Rµνln cl(k) = − iκ
3

32π lnω
[

1
2

2∑
a,b=1|a 6=b

pa · pb
D(pa, pb)3 {2(pa · pb)2 − 3p2

ap
2
b}I(p1, p2,4pa)

+
2∑

a=1
(pa · k)

2∑
b=1

[
24p(µ

b p
ν)
b

pb · k
+ pµb p

ν
b

(pb · k)24pb · k
]] (6.44)

It can now be readily verified that Rµνln cl(k) equals the classical log soft factor for gravity at
NLO upto an overall sign. The equality (modulo sign) is for the same reason as in QED.
Namely, 4pa is transversal to both the final momenta. The relative sign is due to change
in the metric signature. Combining eq. (6.44) with eq. (6.28) for the leading order result,
we see that the NLO gravitational radiation kernel at sub-leading order in frequency is
consistent with classical soft graviton theorem.

We end this section with a speculative remark. One of the most striking developments
in the relationship between classical General Relativity and scattering amplitudes is the
study of scattering of Kerr blackholes which are treated as point particles with universal
coupling to (linearised) gravity as dictated by no hair theorem. The coupling of Kerr
blackhole with linearised metric perturbation equals the minimal 3 point coupling of a finite
mass particle with infinite spin with graviton. It was shown in [21] that this dictionary
can be used in the KMOC formalism to compute classical observables such as momentum
impulse involving scattering of Kerr blackholes. This essentially amounted to an imaginary
shift in the impact parameter by the ring radius ~b→ ~b− i~a. This rather strikingly simple
map (from Schwarzchild black hole to Kerr blackhole) leads us to speculate that even from
the perspective of scattering amplitudes the classical log soft factor is insensitive to the
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spin of the black holes. This is because the contribution to the soft radiation comes from
ω � |l| � b−1 � a−1 or |l| � ω � b−1 � a− regions, the complex shift which results in
e
−ib·l

~ → e−l·aeib·l has no effect on the soft regions as the exponents become unity.
Note that this result (if established by concrete computation) is in fact rather obvious

from the analysis of ([7, 11]), as in that derivation the higher multipoles do not effect the
classical soft factors upto sub-leading order in the frequency. But it is pleasing that this
fact may be verified in KMOC formlism as well.

6.3 Generalisation to NNLO?

Our derivation of classical log soft radiative field from infra-red finite amplitude does not
admit a direct generalisation to higher orders. At one loop AIR-fin(p1, . . . , pn) = 0, but this
is not so at higher loops. If we consider the soft expansion of L-loop five point amplitude,
then the quantum log soft theorem can be written as,

A5(p̃1, p̃2 → p1, p2, k)IR-finL ∼ lnωSlnA4(p̃1, p̃2 → p1, p2)IR-finL−1 (6.45)

where the infra-red finite four point amplitude has a rather intricate structure which has
been investigated in [44]. As Sln is one loop exact, it’s form remains the same but the
higher loop four point amplitudes need to be treated with care in KMOC formalism. Sln q
scales with momentum mismatch at O(l2) and hence will also start contributing at this
order in the coupling23 and delicate cancellations will have to take place so that at any
order in the coupling Sln q does not contribute at sub-leading order in soft expansion.

We note that it is at NNLO order that a new subtlety in the proof of classical soft
theorem from loop corrected quantum soft theorem enters the picture. Till NLO, Sln q
vanishes for a 2 → 2 scattering in large impact parameter regime and the classical limit
obtained from KMOC formalism is consistent with this result. At NNLO, Sln q is non-
vanishing when final momenta are expanded in terms of initial momenta and impulse and
hence it’s cancellation in the classical limit would provide a highly non-trivial test on
classical limit of quantum soft theorem.

We expect that the final answer should agree with the classical log soft factor, when
final momenta are expanded in terms of initial momenta and impulse at next to leading
order [12].

7 Open issues

There is now a large body of work which utilises the remarkable simplicity and power of
on-shell techniques to compute classical observables such as scattering angle or Impulse.
However the main focuse so far has been on conservative dynamics and analysis of radiation
and inelastic scattering in general remains in it’s formative stages. Few notable exceptions
in this regard are ([28–30]) and the papers by Veneziano and his collaborators([45, 46]).
These works have opened doors to analyse radiative sector of classical scattering processes
using on-shell techniques. On the classical side, Saha, Sahoo and Sen proved in complete

23lµ scales linearly with ~ and increasing orders of ~ can be compensated by higher orders in the coupling
as coupling scales as 1√

~ .
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generality that the tail to the memory terms in any scattering process in four dimensions
have a universality and are completely determined by the asymptotic momenta of the
scattering objects. These classical soft theorems were in turn motivated by loop corrected
quantum soft theorems derived in [4, 5, 10]. Inspired by these results we attempted to
prove the classical log soft theorem in [11] using formulation developed in [12]. Although
our work merely verifies the established results upto next to leading order, we believe that
it constitutes the first step in providing a perturbative proof of the classical log soft theorem
from scattering amplitudes in four dimensions.

Thus a rather obvious open issue is to extend this analysis to higher orders (NNLO)
in the coupling. As we argued in section 6.3, this could either involve applying KMOC
formalism to 2-loop amplitudes or to use loop corrected soft theorems for bare amplitudes
where the intra-red divergent factor has not been removed. It will also be extremely inter-
esting to see if the sub-subleading soft factors in D = 4 dimensions which are conjectured
to be universal [11] and occur at O(ω(lnω)2) in the soft expansion can be related to soft
expansion of scattering amplitudes.

Throughout the paper, we analysed radiation emitted from spinless particles. From
the perspective of scattering of Kerr blackholes, inclusion of spin in the analysis will be
interesting. In D > 4 dimensions, the sub-leading soft graviton factor is universal and has
a term which is linear in spin of the particle. KMOC formalism can be used to derive
the soft radiation for spinning particles using the spin-part of sub-leading soft graviton
theorem. [34].

The relationship between log soft theorems and the double copy structure in scattering
amplitudes remains to be explored. Naive analysis indicates that soft gluon theorem is not
loop corrected in any controllable way as loop correction induces a soft factor which diverges
as lnω

ω . It will be extremely interesting to use the techniques developed in [30] and check
if the classical log soft factor for gravity can be derived using double copy relations. This
may be more then just an academic exercise as the “classical double copy” which relates
radiative solutions in classical yang-Mills theory and a gravitational theory have aquired a
central stage in recent developments.24

The formalism developed by Kosower, Maybee and O’Connell is for 2→ 2 scattering,
but if the separation between any pair of particles remains large then we believe that this
analysis can be generalised to n → m particle scattering. This is because the crucial re-
quirement for the KMOC formalism is the existence of so-called “Goldilock’s zone” defined
by lc � lw � bij . Such zones will exist as long as the inter-particle separation bij between
any pair of particles remains large.

However as was shown in [6], the classical soft theorem remains valid even when the
system is not in large impact parameter regime. It continues to hold when, (1) there is
plunge (two states colliding and merging into a single object), or fragmentation where a
given body fragments under influence of internal forces, (2) In a generic classical scatter-
ing process, the outgoing states are not only described as point particles (with multipole
moments) but also flux of finite energy massless fields.

24We are grateful to Biswajit Sahoo for discussions on this issue.
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The KMOC formalism is not directly applicable to any of these scenarios as scattering
process in such cases (such as plunge) is not described by perturbative amplitudes of
asymptotic multi particle states. However the fact that emitted radiation satisfies classical
soft theorem perhaps hints at a possibility that there must be generalisation of the KMOC
framework to the scenario where the outgoing states are described not only by single
particle states but by coherent states of say finite energy gravitons and where bound states
can form during scattering. We leave these and myriad of other questions with a hope of
future investigations.
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A Classical soft log factor in D = 4

In this appendix we review the derivation of the classical soft radiation in four dimensions.
Our analysis essentially follows that in [11] with a minor technical difference being that (1)
we do not consider final and initial momenta to be independent, and (2) as our set up is
that of [12, 31, 32], we impose boundary condition that particles are free in the far past.25
The trajectories of the particles are hence parametrized as,

xµi (σi) = bµi + viσ
µ
i + zµi (σi)with lim

σi→−∞
zµi (σi) = 0 (A.1)

The key difference in D = 4 and D > 4 dimensions is that generically particles are not
asymptotically free and hence the specific boundary conditions imposed in the far past
play an important role in that the soft radiation is only emitted in the far future.26 We
consider the radiative gauge field Rµ1 (k) emitted by particle 1 with mass and charge being
m1, q1. The complete answer is obtained by interchanging particles 1 and 2 in the answer
for R1

µ(k) to obtain R2
µ(k) and adding the two contributions.

Rµ1 (k) = q1

∫
dσ1e

ik·x1(σ1)[vµ1 + żµ1 (σ1)] + Bnd-term (A.2)

25In [11], the initial and final state particles were considered independent precisely as the soft theorems
are phrased. Due to this, they had an additional boundary condition on incoming as well as outgoing
particles at some finite time. As our final states are determined by equations of motion of the initial states,
there are some small technical differences in the computation.

26As we will argue below, these conditions essentially mean that δ̂(p1 ·(k−l)) is replaced with 1
(p1·(k−l)−iε)

.
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Where the boundary term is required to make the integral well defined. As was shown
in [9], addition of such a boundary term is tantamount to defining Rµ1 (k) as,

Rµ1 (k) = iq1

∫
dσ1e

ik·x1(σ1) d

dσ1

[
pµ1 +m1ż

µ
1 (σ1)

(p1 +m1ż1) · k

]
(A.3)

At the leading order in the coupling, we can re-write this equation in terms of, aµ1 (σ) :=
d2zµi
dσ2 as

Rµ1 (k) = iq1

∫
dσ1e

ik·x1(σ1)
[

1
p1 · k

m1a
µ
1 (σ1)− 1

(p1 · k)2m1k · a (σ1) pµ1

]
(A.4)

Rµ1 (k) = iq1

∫
dσ1

(
eik·x1(σ1) − 1

) [ 1
p1 · k

m1a
µ (σ1)− pµ1

1
(p1 · k)2m1k · a (σ1)

]

+ i

∫
dσ1

[ 1
p1 · k

m1a
µ (σ1)− pµ1

1
(p1 · k)2m1k · a(σ1)

]
(A.5)

It is easy to check that the second term produces leading order soft radiation and has no
sub-leading terms. We thus focus on the first term and denote it as R̃µ1 (k).

R̃µ1 (k) = iq1

∫
dσ1

(
eik·x1(σ1) − 1

) [ 1
p1 · k

m1a
µ (σ1)− pµ1

1
(p1 · k)2m1k · a (σ1)

]
(A.6)

To impose the boundary condition that the particles are free in the fast past, we use the
iε prescription in the exponent as [32]

eil
′·x1(σ1) → eil

′·x1(σ1−iε) (A.7)

Using eq. (4.2) we can now write the classical radiation current as,

R̃µ1 (k) = −q2
1q2

∫
d4l

(2π)4Gr (l) e−il·bδ̂ (p2 · l)
{
eik·bδ̂ (p1 · (k − l)− iε)− δ̂ (p1 · l + iε)

}
[

1
p1 · k

f̃µν (p1, l) p1ν − pµ1
1

(p1 · k)2kα · f̃
αβ (p1, l) p1β

]
(A.8)

where, f̃αβ(p1, l) = [l ∧ p1]αβ . We consider the contribution to the region determined by
ω � |l| � b−1 due to which the exponentials can be set to one

R̃µ1 (k) = −q2
1q2

∫
d4l

(2π)4Gr (l) δ̂ (p2 · l)
{
δ̂ (p1 · (k − l)− iε)− δ̂ (p1 · l + iε)

}
[

1
p1 · k

f̃µν (p1, l) p1ν − pµ1
1

(p1 · k)2kα · f̃
αβ (p1, l) p1β

] (A.9)

In this integration region we also have,{
δ̂ (p1 · (k − l)− iε)− δ̂ (p1 · l + iε)

}
= −i

{ 1
p1 · (k − l)− iε

− 1
p1 · l + iε

}
+ i

{
P

( 1
p1 · (k − l)

)
− P

( 1
p1 · l

)} (A.10)

– 41 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
6

In the integration region of interest, the second term vanishes. We now use the identities,

1
(p1 · (k − l))−

− 1
(p1 · l)+

= 2
(p1 · (k − l))−

− p1 · k
(p1 · (k − l))−(p1 · l)+

(A.11)

It can also be checked that in ω � |l| � b−1, the first term will produce O(ω0) terms and
hence we drop it in this computation as such term will contribute to the radiation at higher
order in ω. Hence we focus on the second term.

R̃µ1 (k) = −iq2
1q2

∫
d4l

(2π)4Gr (l) δ̂ (p2 · l)
{

1
(p1 · (k − l))− (p1 · l)+

}
[
f̃µν (p1, l) p1ν − pµ1

1
(p1 · k)kα · f̃

αβ(p1, l)p1β

] (A.12)

Using the fact that Gr(l) = 1
(l0+iε)2−~l2

, it can be readily seen that if we write δ̂(p2 · l) =
−i[ 1

p2·l−iε −
1

p2·l+iε ] then the second term will not contribute to eq. (A.12) by closing the
contour in upper half plane. So we finally get,

R̃µ1 (k) = −q2
1q2

∫
d4l

(2π)4Gr (l) 1
p2 · l − iε

{
1

(p1 · (k − l))− (p1 · l)+

}
[
f̃µν (p1, l) p1ν − pµ1

1
(p1 · k)kα · f̃

αβ(p1, l)p1β

] (A.13)

This formula matches the integral formula derived in section 4 in [11], from where it was
shown that soft radiation equals the classical log soft factor.

B Proof of eq. (5.27)

In this section we prove identity used in eqs. (5.27). We first split the radiation current
(denoted as Rµ(k) in eq. (5.27)) in two parts.

Rµ(k) = Rµ1 (k) +Rµ2 (k) (B.1)

where from sub-leading soft photon theorem in eq. (5.3) we have,

Rµ1 (k) := q2
1q2

∫
l∈S

GF (l) δ̂ (2p1 · l) δ̂ (2p2 · l)
[{

4p2 · k
p1 · k

pµ1 − 4pµ2
}]

+ (1↔ 2) (B.2)

The above equation can also be written as

Rµ1 (k) = q2
1q2

∫
l∈S

GF (l) δ̂ (p1 · l) δ̂ (p2 · l)
kν
p1 · k

[{
pµ1

∂

∂p1ν
− pν1

∂

∂p1µ

}]
(p1 · p2) + (1↔ 2).

(B.3)
Similarly,

Rµ2 (k) := q2
1q2

∫
l∈S

GF (l) δ̂′ (2p1.l) δ̂ (2p2.l)
[{

l · k
p1 · k

pµ1 − l
µ
}

(4p1 · p2)
]

+ (1↔ 2). (B.4)

The prime on the delta function denotes derivative with respect to the argument.
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This integral can also be written in terms of the sub-leading operator for the two
particles by noting that

δ̂′(pi · l)lµ = ∂

∂piµ
δ̂(pi · l). (B.5)

Using the above trick the second integral can be written as

Rµ2 (k) = q2
1q2 (p1 · p2) kν

p1 · k

[(
pµ1

∂

∂p1ν
− pν1

∂

∂p1µ

)]∫
l∈S

GF (l) δ̂ (p1 · l) δ̂(p2 · l) + (1↔ 2).

(B.6)
We can add the two integrals and get

Rµ(k) = Rµ1 (k) +Rµ2 (k) (B.7)

= q2
1q2

kν
p1 · k

[(
pµ1

∂

∂p1ν
− pν1

∂

∂p1µ

)]{
(p1 · p2)

∫
l∈S

GF (l)δ̂(p1 · l)δ̂(p2 · l)
}

+ (1↔ 2)

(B.8)

C Proof of identity in eq. (6.6)

In this section we verify eq. (6.6) written below for convenience.∫
d4l1

(2π)4
d4l2

(2π)4

∏
i

θ(l0i )δ̂(p̃2
i −m2

i )e
i
~ b·l1S(1)µνA4(p̃1, p̃2, p1, p2)

≈ iκ

2

2∑
i=1

p
(µ
i Ĵ

ν)λ
i kλ

pi · k

∫
d4l

(2π)4

∏
i

δ̂(2pi · l)e
i
~ b·lMcl

4 (p1, p2, l2)
(C.1)

The computation of L.H.S involves evaluation of the sub-leading soft operator onM4 and
δ4(l1 + l2). To evaluate the action onM4 we note that, A direct verification shows that,

S(1)µνM4(p̃1, p̃2, p1, p2) = iκ

2

2∑
i=1

p
(µ
i Ĵ

ν)λ
i kλ

pi · k
Mcl

4 (p1, p2, l2) +O(lµ) (C.2)

L.H.S of eq. (C.1) also involves action of the sub-leading soft operator on δ4(l1 + l2) and
this can be easily computed.

S(1)µνδ4(l1 + l2) (C.3)

= iκ

2
∑
i

[
2p(µ
i l

ν)
i

pi · k
k · ∂

∂l1
δ4(l1 + l2)− pµi p

ν
i

(pi · k)2 (li · k)k · ∂
∂l1

δ4(l1 + l2)− l(µi
∂

∂l
ν)
i

δ4(l1 + l2)
]

On substituting eq. (C.3) in L.H.S of the eq. (C.1), integrating by parts and keeping terms
which are leading order in lµ, we get,∫

d4l1
(2π)4

d4l2
(2π)4

∏
i

θ(l0i )δ̂(p̃2
i −m2

i )e
i
~ b·l1M4Ŝ

(1)µνδ4(l1 + l2)

≈ iκ

2 M
cl
4

2∑
i=1

p
(µ
i J

ν)λ
i kλ

pi · k

∫
d4l

(2π)4

∏
i

δ̂(2pi · l)e
i
~ b·l + terms linear in bµ

~

(C.4)
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where the remainder term (that is, terms which are linear in bµ

~ ) appear to be super-classical
and we need to be careful while taking classical limit. As a result, we obtain two types of
contribution to the remainder term.

(1) Either replacing 1
l22

with 1
−2p2·l2 before taking the classical limit or by keeping

terms inM4 which are linear in l. Both of these terms are sub-leading in ω. Hence using
eqs. (C.2), (C.4) and the argument presented above, proof of the approximate identity fol-
lows.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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