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Abstract: We introduce and study a so-called Wilson-loop d log representation of certain
Feynman integrals for scattering amplitudes in N = 4 SYM and beyond, which makes their
evaluation completely straightforward. Such a representation was motivated by the dual
Wilson loop picture, and it can also be derived by partial Feynman parametrization of loop
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four dimensions and the three-mass-easy hexagon in six dimensions, which are represented
by two- and three-fold d log integrals that are nicely related to each other. For multi-loop
examples, we write the L-loop generalized penta-ladders as 2(L− 1)-fold d log integrals of
some one-loop integral, so that once the latter is known, the integration can be performed
in a systematic way. In particular, we write the eight-point penta-ladder as a 2L-fold d log
integral whose symbol can be computed without performing any integration; we also obtain
the last entries and the symbol alphabet of these integrals. Similarly we study the symbol
of the seven-point double-penta-ladder, which is represented by a 2(L− 1)-fold integral of
a hexagon; the latter can be written as a two-fold d log integral plus a boundary term. We
comment on the relation of our representation to differential equations and resumming the
ladders by solving certain integral equations.
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1 Introduction

Scattering amplitudes not only play a crucial role in connecting high-energy theory to ex-
periments such as the Large Hadron Collider, but they are equally important in discovering
new structures of Quantum Field Theory (QFT) and gravity. Tremendous progress has
been made in the case of N = 4 supersymmetric Yang-Mills theory (SYM), especially in the
planar limit, but much remains to be understood. On the one hand, beautiful mathemati-
cal structures of the all-loop integrand [1–3]) have been discovered, and on the other hand
the (integrated) amplitudes have been computed to high loops, mostly for n = 6, 7 [4–10]
but also for higher multiplicities [11–14].

There is a remarkable duality between maximally helicity-violating (MHV) scattering
amplitudes and null polygonal Wilson loops (WL), discovered at both strong [15, 16] and
weak couplings [17, 18], and much of the above progress has relied on this dual picture.
Based on integrability [19] and operator product expansion (OPE) of WL [20–22], one
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can compute amplitudes at any value of the coupling around collinear limits [23]. The
duality has been generalized to super-amplitudes and supersymmetric WL [24, 25], and
they enjoy both superconformal and dual superconformal symmetries [26–28], which close
into the infinite-dimensional Yangian symmetry underpinning integrability [29]. Based on
the super-WL picture, one can derive the powerful Q̄ anomaly equations [12], which allows
us to compute multi-loop amplitudes directly from symmetries.

The extremely rich structure of all-loop scattering amplitudes/WL, at both the inte-
grand and integrated-function level, has made N = 4 SYM a rather fruitful laboratory for
studying Feynman loop integrals (cf. [30–32] and references therein), which is a subject
of enormous interests and goes way beyond N = 4 SYM. In this paper, we propose to
consider Feynman integrals, which naturally appear for amplitudes in N = 4 SYM and
beyond, from the point of view of dual Wilson loops. We will see that for a large class of
multi-loop Feynman integrals, rewriting them by exploiting WL picture largely simplifies
and even trivializes their computation. Such ideas have been discussed in e.g. [18, 33], and
in particular our method is largely motivated by [25]. Alternatively, such WL representa-
tion of Feynman integrals can be obtained by partially Feynman parametrizing the loop
integrals with respect to their massless corners (see [30, 34] for related ideas).

In a companion paper [35], we show that both the one-loop chiral pentagon and generic
two-loop double-pentagon integrals appear as Feynman diagrams of (super-) WL with in-
sertion of fermions, integrated along 2 and 4 edges respectively. The dual picture motivates
us to swap the order of integration: after first performing the loop integrals, we are left
with simple line-integrals along the edges. We will generally refer to this representation of
Feynman integrals as the Wilson-loop representation. The characteristic property of such
a representation is that a pure integral of uniform transcendental weight w,1 is written as
a w-fold integral of d log forms, or a w′-fold d log integral of pure, transcendental functions
of weight (w−w′) (which by definition can also be written as (w−w′)-fold d log integrals).
Once cast in such a form, we will call them Wilson-loop d log integrals, even for cases where
we do not explicitly relate them to actual WL diagrams.

As the simplest example, we write the one-loop chiral pentagon as a two-fold d log
integral over two edges of the WL corresponding to its two massless corners; a similar
example is the three-mass-easy hexagon in six dimensions, written as three-fold d log inte-
grals. There are certainly more one-loop integrals which can be written as WL d log forms,
such as four-mass boxes, but we will focus on cases with massless corners in this paper.
Quite nicely, these representations naturally generalize to classes of multi-loop integrals,
and in particular we will discuss the so-called generalized penta-ladder integrals with one-
end being chiral pentagon and the other end generic. We find that an L-loop ladder can
be written as a two-fold d log integral of an (L − 1)-loop one, and eventually we have a
2(L − 1)-fold integral of a one-loop integral, which combines the pentagon on the right
end with an arbitrary one-loop object on the left end. The simplest case is the generic
(eight-point) penta-ladder where the left end is a box, and the final one-loop integral is

1In this paper, we mainly consider L-loop pure integrals in N = 4 SYM of weight w = 2L, and a few
other examples e.g. three-mass-easy hexagons in six dimensions of weight w = 3.
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again a chiral pentagon. A slightly more nontrivial case is the double-penta-ladder, where
the final one-loop integral is a hexagon. There are other multi-loop integrals with such
“terminal chiral-pentagon” sub-diagrams that we can write as d log integrals of fewer-loop
integrals.

The main advantage for considering WL d log representations is that it essentially triv-
ializes the evaluation of certain Feynman integrals. First of all, this representation makes
properties such as dual conformal invariance (DCI) and transcendental weight completely
manifest. More importantly, for Feynman integrals that evaluate to generalized polyloga-
rithms of uniform weight, such a d log integral representation captures its invariant contents
and allows one to obtain the symbol [36, 37], as long as entries to the d log forms remain
linear in the integration variables at all steps when the integrals are performed in order.
Our representation guarantees this for a large class of integrals where the d log forms are
linear fractions of the integration variables. For more complicated cases, e.g. when the final
one-loop integral for generalized penta-ladder contains square roots, the d log form is no
longer rational and we need to “rationalize” the square roots to proceed. An important
example is the double-pentagon integral (and higher-loop generalizations) with n ≥ 8 legs,
and we will discuss how to rationalize the square roots there in [35].

For simplicity and to illustrate our point without distractions from “rationalization”,
in the following we focus on cases where the d log forms are rational, e.g. seven-point
double-penta-ladders. For these integrals, we are essentially done once we arrive at the WL
representation since it is linear in each variable with the obvious order of integration. There
is still the non-trivial problem (depending on one’s taste) of writing them as combinations
of generalized polylogarithms.2 We will content ourselves in finding the symbol of these
integrals, which is directly obtained from these d log forms even without performing any
integration. As discussed in [12], there is a nice algorithm which we will review here for
computing the symbol of d log integrals in a purely algebraic way. Using this method, we
present the symbol in a nice form for the eight-point penta-box and seven-point double-
pentagon. We emphasize that the symbol of their higher-loop generalizations can also be
obtained straightforwardly. Moreover, using the algorithm we can read off the last entries
and recursively prove other properties of the symbol for arbitrarily high loops, without
even computing the full symbol.

For the Feynman integrals and amplitudes/WL we study, it is convenient to use mo-
mentum twistors [40], which correspond to null rays of the dual spacetime and manifest
the SL(2, 2) dual conformal symmetries [26–28]. For the polygonal Wilson loop, its vertices
are given by xi with light-like edges (xi+1− xi)αα̇ = λαi λ̃

α̇
i for i = 1, 2, · · · , n, and similarly

for the Grassmann part (θi+1 − θi)αI = λαi η
I
i . The (supersymmetric) momentum twistors

(one for each edge) are defined as

Zi = (Zai |χAi ) := (λαi , xαα̇i λiα|θαAi λiα).

Any point in the dual spacetime corresponds to a line in twistor space, e.g. the vertex
xi ∼ (i−1i) corresponds to a line determined by two twistors Zi−1, Zi (or the edges i−1 and

2In principle, this can always be accomplished using automated codes such as HyperInt [38] or polylog-
tools [39], though simplifying the results still requires some work.
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i). Each loop momentum is represented by a dual (insertion) point, x` ∼ ` := (AB), which
is also represented by any two twistors A,B on the line. The basic SL(4) invariant is the
four-bracket of four momentum twistors 〈ijkl〉 := εa,b,c,dZ

a
i Z

b
jZ

c
kZ

d
l . The usual squared-

distance of two dual points is proportional to the four-bracket using the corresponding
two bi-twistors, e.g. (xi − xj)2 = 〈i−1ij−1j〉

〈i−1i〉〈j−1j〉 , and similarly 〈` i − 1i〉 := 〈ABi − 1i〉 =
(x` − xi)2〈AB〉〈i− 1i〉.3

In addition, we will be using generalized (Goncharov) polylogarithms and the symbol
extensively, which we review here. Throughout the paper, our integrals evaluate to linear
combinations of Goncharov polylogarithms of uniform weight w, defined by the w-fold
iterated integrals [41]

G(a1, . . . , aw; z) :=
∫ z

0

dt
t− a1

G(a2, . . . , aw; t), (1.1)

with the starting point G(; z) := 1. It is straightforward to see that the differential of such
a combination satisfies

dG(w)(a) =
w∑
i=1

G(w−1)(ai) d log ai − ai−1
ai − ai+1

(1.2)

where G(w−1)(ai) are Goncharov polylogarithms of weight w− 1 where we delete ai in the
sequence and denote it as ai, accompanied by the differential d log ai−ai−1

ai−ai+1
with boundary

cases a0 := z and aw+1 := 0. Then, one can introduce a symbol map for polylogarithms
by recursively defining

S(G(w)(a)) :=
∑
i

S(G(w−1)(ai))⊗
ai − ai−1
ai − ai+1

(1.3)

with S(log a) := a. We call these difference of adjacent ai’s (including endpoints) generated
in this way symbol letters, each tensor product of letters in the symbol a word, and the
collection of all letters the symbol alphabet [36, 42].

The rest of the paper is organized as follows. In section 2 we introduce the WL d log
representation using pedagogical one-loop examples of the chiral pentagon and the 6D
three-mass-easy hexagon, and we review the algorithm for obtaining the symbol from d log
forms algebraically. We move to the WL d log representation of the simplest multi-loop
examples, penta-ladder integrals which depend on 3 cross ratios (generic for n = 8) in
section 3. Starting from the chiral pentagon, we recursively write L-loop penta-ladder as
a two-fold d log integral of a (L− 1)-loop penta-ladder with shifted kinematics, and recast
the recursion relation in DCI form, naturally defining the odd-weight integrals along the
way. We apply the algorithm to find 3 last entries for any L, and write down the symbol
for the L = 2 case explicitly. We then study generalized penta-ladder integrals in section
4, which differ from the previous case in that the starting point of the recursion can be any
one-loop integral. We study the n = 7 double-penta-ladder as the main example, which

3The two-brackets are the usual for spinors, which can be written as 〈ij〉 := 〈ijI∞〉 where I∞ denotes
the infinity bi-twistor.
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depends on 4 cross ratios, and find 4 last entries to all loops, as well as the explicit symbol
for L = 2; we also notice that the starting point, the n = 7 hexagon, can be naturally
written as a two-fold d log integral, up to a boundary term which is a d log integral of a log
function. Finally in section 5, we comment on the relation between our WL representation
and differential equations satisfied by ladder integrals [43], and more importantly we resum
these ladders by solving certain integral equations derived from our representation.

2 Wilson-loop d log integrals: one-loop examples

In this section we present two one-loop examples of the Wilson-loop d log representation,
which are the chiral pentagon in four dimensions [44] and the three-mass-easy hexagon
in six dimensions [45, 46]. As we will see, the former can be nicely written as a two-fold
d log integral over two edges of the dual Wilson loops, and similarly the latter as a three-
fold d log integral. With four-dimensional kinematics, quite nicely the 6D three-mass-easy
hexagon turns out to be a single d log integral of the 4D chiral pentagon. The symbol for
these weight-2 and 3 integrals can be trivially obtained using the algorithm in [12] which
we review presently.

2.1 Chiral pentagons

Our prototypical example is the chiral pentagon integral defined as:4

Ψ1(i, j; I) :=
i j

I

=
∫

d4`
〈`̄i ∩ j̄〉〈Iij〉
〈〈`i〉〉〈〈`j〉〉〈`I〉

, (2.1)

where for the two pairs of propagators adjacent to massless legs i and j, we introduce the
shorthand notation 〈〈`i〉〉 := 〈`i − 1i〉〈`ii + 1〉 (and similarly for j); the last propagator
depends on an arbitrary reference dual point xI ∼ (I); and 〈`̄i ∩ j̄〉 is determined by the
line ` ∼ (AB) and the intersection of two planes ī, j̄:

〈`̄i ∩ j̄〉 = 〈Ai− 1ii+ 1〉〈Bj − 1jj+1〉 − 〈Bi− 1ii+ 1〉〈Aj − 1jj+1〉 .

Introducing line integrals in momentum twistor space using 1
〈〈`i〉〉 =

∫∞
0

dτX
〈`iX〉2 with

X := Zi−1 − τXZi+1 and a similar identity for Y := Zj−1 − τY Zj+1, we see that

Ψ1(i, j; I) =
∫

d4`

∫ ∞
0

d2τ
〈`̄i ∩ j̄〉〈Iij〉

〈`iX〉2〈`jY 〉2〈`I〉
. (2.2)

Note that we have a natural interpretation of the τX -integral: the insertion point x ∼ (iX)
is integrated over the i-th edge of the Wilson loop, with endpoints xi ∼ (i − 1i) and
xi+1 ∼ (ii + 1) corresponding to τX = 0 and τX = ∞, respectively. Similarly, the τY -
integral is over the insertion of y ∼ (jY ). Such integrals are familiar from the calculation
of Q̄ anomaly with fermion insertions [12, 25].

4Throughout the paper, we absorb the standard prefactor 1/4π2 into the measure d4`.
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The crucial point is that the loop integral can now be performed directly, e.g. using
Feynman parametrization, yielding a rational function. In terms of dual coordinates, the
loop integral is (defining w ∼ (I))∫

d4`
(`− z̄)2(w − z)2

(`− x)4(`− y)4(`− w)2 .

Notice that the Schubert problem solutions z ∼ (ij) and z̄ ∼ (̄i∩ j̄) are light-like separated
from both x and y. Introduce Feynman parameters u1,2 and change to projective variables
α1,2 := u1,2/(1− u1 − u2):∫ ∞

0
dα1dα2

∫
d4`

3α1α2(` · z̄)(w · z)
[` · (α1x + α2y + w)]5 ,

where the boldface symbols are the embedded vectors in 6D [47]. Define W := α1x +
α2y + w so that z̄ ·W = z̄ ·w by (x− z̄)2 = (y − z̄)2 = 0.∫ ∞

0
dα1dα2

∫
d4`

3α1α2(` · z̄)(w · z)
[` ·W ]5

= −3
4

∫ ∞
0

dα1dα2α1α2(w · z)(z̄ · ∂W )
∫ d4`

[` ·W ]4

= 1
2

∫ ∞
0

dα1dα2
α1α2(w · z)(z̄ · ∂W )

(W ·W )2 = (w − z)2(w − z̄)2

(x− y)2(x− w)2(y − w)2 .

Converting the above expression back to momentum twistors, we finally obtain:∫
d4`

〈`̄i ∩ j̄〉〈Iij〉
〈`iX〉2〈`jY 〉2〈`I〉

= 〈Iī ∩ j̄〉〈Iij〉
〈iXjY 〉〈iXI〉〈jY I〉

, (2.3)

which is known as the star-triangle identity. Thus we see that the chiral pentagon integral
can be written as a two-fold integral over WL edges i and j, of a rational integrand:

Ψ1(i, j; I) =
∫ ∞

0
d2τ

〈Iī ∩ j̄〉〈Iij〉
〈iXjY 〉〈iXI〉〈jY I〉

. (2.4)

The integrand can be put into d log forms to manifest its transcendental weight.
By partial-fractioning with respect to first τX then τY , and using the identity dτ

aτ+b =
1
ad log(aτ + b), the result is

Ψ1(i, j; I) =
∫
R2
≥0

d log 〈jY I〉
〈jY iI ∩ ī〉

d log 〈iXjY 〉
〈iXI〉

, (2.5)

where the two d log forms are differentials with respect to τY and τX , respectively, and (if
the bi-twistor (I) ≡ (ZZ ′))

〈jY iI ∩ ī〉 = 〈jY iZ〉〈Z ′i− 1ii+ 1〉 − 〈jY iZ ′〉〈Zi− 1ii+ 1〉.

It is clear that we should perform the τX integral before τY , and at each step the d log is
linear in the τ ’s, which will be a general feature of our WL d log integrals. The τX integral
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trivially gives the log of a cross ratio that depends on Y , and then it is straightforward to
perform the τY -integral to obtain

Ψ1(i, j; I) = log u log v+Li2(1−u)+Li2(1−v)+Li2(1−w)−Li2(1−uw)−Li2(1−vw), (2.6)

where the three cross ratios are defined as

u = 〈i− 1iI〉〈jj + 1ii+ 1〉
〈i− 1ijj + 1〉〈Iii+ 1〉 , v = 〈jj + 1I〉〈i− 1ij − 1j〉

〈jj + 1i− 1i〉〈Ij − 1j〉 , w = 〈i− 1ijj + 1〉〈j − 1jii+ 1〉
〈i− 1ij − 1j〉〈jj + 1ii+ 1〉 .

(2.7)
We remark that it would be interesting to understand the possible geometric meaning

of this d log integral. In fact, all d log integrals considered in this paper are generalizations
of the Aomoto polylogarithms, where we integrate the canonical d log form of a simplex (or
polytope) over another simplex (or polytope) [42, 48]; as shown in [47], the symbol of such
a integral can be extracted purely geometrically. In our cases we have positive geometries
that go beyond polytopes: for the chiral pentagon, the 2-form can be interpreted as the
canonical form of a “curvy” triangle, integrated over a normal triangle (in projective space);
alternatively we could have used variables such that we integrate the canonical form of a
normal triangle but over a “curvy” region.

2.2 Integration of d log forms at the symbol level

Now we proceed to review an automated algorithm [12] (see also [31]) for computing the
symbol algebraically from d log forms. From the definition of symbol, the computation for
1-d integral amounts to nothing but taking differential. Suppose we have an integral∫ b

a
d log(t+ c) (F (t)⊗ w(t)),

where F (t)⊗ w(t) is a integrable, linear reducible symbol in t, i.e. its entries are products
of powers of linear polynomials in t, and w(t) is the last entry. Since the differential only
acts on the last entry of a symbol, the total differential of this integral is the sum of the
following two parts:

(1) the contribution from endpoints:

d log(t+ c)(F (t)⊗ w(t))|t=bt=a = (F (t)⊗ w(t)⊗ (t+ c))|t=bt=a,

(2) contributions from the last entry: for a term where w(t) is a constant,(∫ b

a
d log(t+ c)F (t)

)
d logw =

(∫ b

a
d log(t+ c)F (t)

)
⊗ w,

and for a term where w(t) = t+ d,(∫ b

a
d log t+ c

t+ d
F (t)

)
d log(c− d) =

(∫ b

a
d log t+ c

t+ d
F (t)

)
⊗ (c− d).

– 7 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
2

Then we can recursively compute the symbol of the lower-weight integrals and obtain the
symbol of the iterated integral of d log forms.

As a trivial example, we apply this algorithm to obtain the symbol of Ψ1. Before doing
so, we note that although the integrand in (2.4) itself is dual conformally invariant (DCI),
entries of the d log forms in (2.5) are not. It is desirable to make the DCI property manifest
for the d log forms, which can be achieved by a simple change of variables. Note that the
integral is invariant if we rescale τX → CXτX and similarly for τY , and one such choice
is CX = 〈i−1ijY 〉

〈ii+1jY 〉 and CY = 〈j−1jI〉
〈jj+1I〉 , which makes the new τ -variables DCI (In contrast,

the original τX has twistor weight Zi−1
Zi+1

). This simple change of variables makes the d log
entries manifestly DCI:

Ψ1 =
∫

d log τY + 1
v(1− uw)τY + (1− u)d log τX + 1

u(τY + vw)τX + (τY + v) . (2.8)

We leave it to the reader as a simple exercise to apply the algorithm to (2.8): it remains
manifestly DCI in intermediate steps, and the result for the symbol is

S(Ψ1(u, v, w)) = u⊗ v + v ⊗ u− u⊗ (1− u)− v ⊗ (1− v)
− w ⊗ (1− w) + (uw)⊗ (1− uw) + (vw)⊗ (1− vw).

(2.9)

This algorithm will be used for all our computations of the symbol in the remaining of the
paper.

2.3 6D three-mass-easy hexagons

Our next example is the 6D three-mass-easy hexagon (a degenerate version of it will later
appear in the calculation of 4D double-pentagon) [45]. The 6D three-mass-easy hexagon
is defined as the following pure integral in terms of dual coordinates:

Ω(6D)
1 (i, j, k) :=

i j

k

6D =
∫ d6x0

π3
x2
i,j+1x

2
j,k+1x

2
k,i+1
√

∆9

x2
0,ix

2
0,i+1x

2
0,jx

2
0,j+1x

2
0,kx

2
0,k+1

, (2.10)

where the normalization in terms of square root of Gram determinant ∆9 [45] is introduced
to make the integral pure:

∆9 = (1− u1 − u2 − u3 + u4u1u2 + u5u2u3 + u6u1u3 − u1u2u3u4u5u6)2

− 4u1u2u3(1− u4)(1− u5)(1− u6)

with 6 independent cross ratios

u1 :=
x2
i+1,j+1x

2
i,k

x2
i,j+1x

2
i+1,k

, u2 :=
x2
j+1,k+1x

2
i,j

x2
i,j+1x

2
j,k+1

, u3 :=
x2
k+1,i+1x

2
j,k

x2
i+1,kx

2
j,k+1

,

u4 :=
x2
i+1,jx

2
i,j+1

x2
i,jx

2
i+1,j+1

, u5 :=
x2
j+1,kx

2
j,k+1

x2
j,kx

2
j+1,k+1

, u6 :=
x2
i,k+1x

2
k,i+1

x2
i,kx

2
i+1,k+1

.
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Exactly proceeding as before, we introduce partial Feynman parametrization yi :=
ξixi+(1−ξi)xi+1 on light-like edge i so that 1/(x2

0ix
2
0i+1) =

∫ 1
0 dξi/(x0−yi)4 (and similarly

for j and k), it becomes

Ω(6D)
1 (i, j, k) =

∫ ∞
0

d3ξ

∫ d6x0
π3

x2
i,j+1x

2
j,k+1x

2
k,i+1
√

∆9

(x0 − yi)4(x0 − yj)4(x0 − yk)4 . (2.11)

Similar identity as (2.3) in 6D can be deduced by Feynman parametrization:∫ d6x0
π3

1
(x0 − yi)4(x0 − yj)4(x0 − yk)4 = 1

(yi − yj)2(yj − yk)2(yk − yi)2 , (2.12)

which helps us directly perform the loop integral to get a rational result! Here we switch
to special kinematics where all external momenta (and hence all dual spacetime points xa)
lie in 4D subspace of the 6D momentum space, i.e. only the loop momentum really lives in
6D. This allows us to change to momentum twistor variables in terms of which the square
root evaluates nicely to

√
∆9 = 〈(ijk)̄i∩ j̄ ∩ k̄〉 = 〈ij̄〉〈jk̄〉〈kī〉+ 〈ik̄〉〈kj̄〉〈jī〉, and we obtain

a beautiful formula:

Ω(6D)
1 (i, j, k) =

∫ ∞
0

d3τ
〈(ijk)̄i ∩ j̄ ∩ k̄〉

〈iXjY 〉〈jY kZ〉〈kZiX〉
, (2.13)

with {X := Zi−1 − τxZi+1, Y := Zj−1 − τyZj+1, Z := Zk−1 − τzZk+1} so that yi = (iX)
and similarly for yj , yk. In this form, we see that the numerator (

√
∆9) makes it possible

to rewrite it as d log form:

Ω(6D)
1 (i, j, k) =

∫ ∞
0

dτz
〈(ijk)̄i ∩ j̄ ∩ k̄〉
〈kZī ∩ j̄〉〈kZij〉

i j

kZ

=
∫
R3
≥0

d log 〈kZij〉
〈kZī ∩ j̄〉

(
d log 〈jY kZ〉

〈jY i(kZ) ∩ ī〉
d log 〈iXjY 〉

〈iXkZ〉

)
.

(2.14)

where the order of integrations is τX , τY , τZ and after first two we recognized the result is
nothing but Ψ1 with I = (Zk)! This is a nice identity that expresses the 6D three-mass-easy
hexagon as a one-fold d log integral of chiral pentagon.

We remark that (2.13) (rewritten in cross ratios) has been found in [45] using Feynman
parametrization. The minor novelty of (2.14) is in writing it as d log integrals and relating
it to the chiral pentagon. We can apply the algorithm to (2.14), and indeed we nicely
reproduce the symbol of Ω(6D)

1 (i, j, k) [45, 46]. In particular we see the formula of [46]
directly follow from our algorithm.

Since we will use the n = 7 special case (one-mass) of Ω(6D)
1 when studying double-

penta ladder, we record its symbol here. The special case we need is Ω(6D)
1,1−mass := Ω(6D)

1,n=7(i =
1, j = 4, k = 6) where two massive corners degenerate; note u5 = u6 = 0 and the integral
depends on ui for i = 1, · · · , 4. Its symbol reads

S(Ω(6D)
1,1−mass) = S(f1)⊗ y1 + S(f2)⊗ y2 − S(f3)⊗ y3 − S(f4)⊗ y4, (2.15)
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where we have 4 dilogarithm functions:

f1 = Li2(1− u3) + Li2(1− u4) + log u1 log u2 + log u3 log u4,

f2 = Li2(1− u1u4) + Li2(1− u2u4)−
4∑
i=1

Li2(1− ui)− log u1 log u2,

f3 = Li2(1− u1u4) + Li2(1− u3) + log u1 log u3 + log u3 log u4,

f4 = Li2(1− u2u4) + Li2(1− u3) + log u2 log u3 + log u3 log u4,

and the last entries{
y1 = 1− x+

1− x−
, y2 = u4 − x+

u4 − x−
, y3 = 1− u1x+

1− u1x−
, y4 = 1− u2x+

1− u2x−

}
, (2.16)

where we have introduced the combinations involving the square root:

x± = −1 + u1 + u2 + u3 + u1u2u4 ±
√

∆7
2u1u2

(2.17)

with ∆7 = (−1 + u1 + u2 + u3 + u1u2u4)2 − 4u1u2u3(1− u4) from the degeneration of ∆9
as u5, u6 → 0.

3 Penta-ladder integrals

In this section, we move to the simplest generalization of chiral pentagon by attaching a
ladder to it. We will see that the Wilson-loop d log form has a recursive structure: the
L-loop integral is a 2-fold integral of (L−1)-loop one with shifted kinematics, and growing
the ladder is in some sense keep doing certain “integral transformation”. The d log form can
again be written in a manifestly DCI form, which makes the computation of the symbol
particularly simple.

3.1 Recursive structure and d log form

The generic L-loop pentaladder integral is defined as

ΨL(i, j; I) :=

i

j

I

=
∫

d4L`
〈`1ī ∩ j̄〉〈Iij〉〈i− 1ijj + 1〉L−1

〈〈`1i〉〉〈〈`1j〉〉
[
L∏
a=2
〈`a−1`a〉〈`ai− 1i〉〈`ajj + 1〉

]
〈`LI〉

,

(3.1)

where we use {`1, . . . , `L} to denote loop variables from the right-most side to the left-most
side, and I is again an arbitrary reference bi-twistor.
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This most general pentaladder integral depends on 8 external legs just as the chiral
pentagon, and the kinematics only depends on the 3 independent cross ratios, {u, v, w},
defined in (2.7). We will also denote the L-loop pentaladder integral as ΨL(u, v, w) and the
one-loop chiral pentagon function as Ψ1(u, v, w), to emphasize their functional dependence
on the cross ratios.

To proceed, we can associate these integrals with Feynman diagrams of Wilson loops,
but alternatively we can just recycle our result to the pentagon sub-diagram on the right-
most side. Parallel to the derivation in section 2, we introduce X1 = Zi−1 − τX1Zi+1 and
Y1 = Zj−1 − τY1Zj+1, use identity (2.3) to integrate the loop `1, and rewrite the L-loop
integral as a two-fold integral of the (L− 1)-loop one:

ΨL(i, j,I) =
∫

d2τ
〈i−1ijj+1〉
〈iX1jY1〉

∫ d4(L−1)`〈`2ī∩j̄〉〈Iij〉〈i−1ijj+1〉L−2

〈〈`2i〉〉X1
i−1〈〈`2j〉〉

Y1
j−1

[
L∏
a=3
〈`a−1`a〉〈`ai−1i〉〈`ajj+1〉

]
〈`LI〉

=
∫

dlog〈i−1ijY1〉dlog 〈iX1jY1〉
τX1

i

j

X1

Y1

I

=
∫

dlog〈i−1ijY1〉dlog 〈iX1jY1〉
τX1

Ψ̃L−1(i, j,I). (3.2)

where we introduce the notation 〈〈`i〉〉ab := 〈`ia〉〈`ib〉, and the second equality is guaranteed
by the identity 〈`2ī ∩ j̄〉 = 〈`2(i− 1 iX1) ∩ (Y1j j + 1)〉/τX1 ; we recognize the (L− 1)-loop
integral as a shorter pentaladder but with shifted kinematics: instead of leg i+1 and j−1,
we have the “shifted” legs X1, Y1 respectively, Ψ̃L−1 = ΨL−1(i+ 1→ X1, j− 1→ Y1). The
upshot is eq. (3.2) provides a recursion relation for ΨL as d log integrals of Ψ̃L−1. After
introducing Xa = Zi−1−τXaXa−1 and Ya = Ya−1−τYaZj+1 for a = {2, . . . , L−1}, we have

ΨL(i, j, I) =
∫ [L−1∏

a=1
d log 〈i− 1ijYa〉d log 〈iXajYa〉

τXa

]
Ψ̃1. (3.3)

Writing the chiral pentagon itself in its d log representation, we finally arrive at a 2L-fold
d log integral for the L-loop pentaladder:

ΨL(i, j, I) =
∫ [L−1∏

a=1
d log 〈i− 1ijYa〉d log 〈iXajYa〉

τXa

]
d log 〈jYLI〉

〈jYLiI ∩ ī〉
d log 〈iXLjYL〉

〈iXLI〉
.

(3.4)
Note that the (L − 1) d log 2-forms take a rather different form than the last 2-form for
the chiral pentagon.

Before proceeding, we note that it is trivial to perform half of the integrations, namely
all τXa-integrals, which fits into the very definition of Goncharov polylogarithms. Here,
it is more convenient to use a different parameterization Xa = saZi−1 + (1 − sa)Xa−1 for
0 ≤ sa ≤ 1 with X0 := CZi+1, where C is a constant to make sure that all Xa share the
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same twistor weight. Define {ta := 〈iXaI〉 − 〈i i− 1 I〉}a=1,...,L such that each ta goes form
0 to ta−1, then the ta-integral fits into the definition of Chen’s iterated integral [49]

∫ t1=C〈i i+1 I〉−〈i i−1 I〉

t1=0
· · ·
∫ ta=ta−1

ta=0
· · ·
∫ tL=tL−1

tL=0

[
L−1∏
a=1

d log 〈iXajYa〉
〈i− 1 I Xa〉

]
d log 〈iXLjYL〉

〈iXLI〉
,

where we see that for any bitwistor J that is independent of {Xa},

d log(〈iXaJ〉) = d log
(
ta + 〈i i− 1 J〉 C〈i i+ 1 I〉 − 〈i i− 1 I〉

C〈i i+ 1 J〉 − 〈i i− 1 J〉

)
,

thus it is completely trivial to integrate to a linear combination of Goncharov polyloga-
rithms. The result will not depend on the choice of C because it is DCI.

3.2 Recursion relations in a DCI form

We see that the order of integrations in (3.2) is for Xa first and then Ya for a = 1, · · · , L,
and since at each step everything is linear, the computation of the symbol totally straight-
forward. Apply the algorithm of section 2.2 to the recursion

ΨL(u, v, w) =
∫

d log〈i− 1ijY 〉 d log 〈iXjY 〉
τX

ΨL−1(ũ, ṽ, w̃) (3.5)

with deformed ũ = u(Zi+1 → X,Zj−1 → Y ), ṽ, w̃, we obtain the symbol for ΨL. The
result may not be manifestly DCI, but that can be easily fixed like what we did for Ψ1
in (2.8). After rescaling τX and τY , we can make the entries of d log forms manifestly DCI:
choosing CX = 〈i−1 i jY 〉

〈i i+1 jY 〉 and CY = 〈i−1 i j−1 j〉
〈i−1 i j j+1〉 , we rewrite the recursion as

ΨL+1(u, v, w) =
∫

d log(τY + 1) d log τX + 1
τX

ΨL(ũ, ṽ, w̃), (3.6)

with deformed cross ratios defined as (for L ≥ 1):

ũ =
τX

τY + 1
τY + w

+ 1

τX
u

τY + 1
τY + w

+ 1
, ṽ = v(τY + 1)

vτY + 1 , w̃ = τX + 1

τX
τY + 1
τY + w

+ 1
. (3.7)

The recursion can be decomposed into two steps, each increasing weight by 1:

ΨL+ 1
2
(u, v, w) =

∫
d log τX + 1

τX
ΨL

(
u(τX + w)
τX + uw

, v,
w(τX + 1)
τX + w

)
(3.8)

and
ΨL+1(u, v, w) =

∫
d log(τY + 1) ΨL+ 1

2

(
u,
v(τY + 1)
vτY + 1 ,

τY + w

τY + 1

)
(3.9)

where we have defined an “(L + 1
2)-loop” integral ΨL+ 1

2
(u, v, w), whose weight is 2L + 1.

We see that from ΨL to ΨL+ 1
2
and then to ΨL+1, we literally apply the algorithm at each

step, and obtain the symbol trivially. The functions can also be computed directly, but we
emphasize that we do not need to do any integration for the symbol.
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It would be interesting to find a Feynman-diagram interpretation of the odd-weight
function ΨL+ 1

2
(u, v, w). The first example in this family of integrals is Ψ 3

2
(u, v, w), whose

d log form reads:

Ψ 3
2

=
∫

d log 〈iX1j − 1j〉
τX1

d log 〈jY2I〉
〈jY2iI ∩ (i− 1iX1)〉d log 〈iX2jY2〉

〈iX2I〉

=
∫

d log 〈iX1j − 1j〉
τX1

× i j

X1 j − 1

I

(3.10)

with {X1 = Zi−1− τX1Zi+1, X2 = Zi−1− τX2X1, Y2 = Zj−1− τY2Zj+1}. Note that this is
also a one-fold integral of chiral pentagon, similar to the 6D three-mass hexagon (2.14), but
this weight-3 integral is quite different. In contrast to that case where we replace bitwistor
I to kZ, or dual point xI → z = (kZ), here we replace dual point xi+1 to x = (iX1)
instead, with a different d log in front. It would be interesting to identity a (partially) 6D
Feynman integral whose d log representation is ΨL+ 1

2
(u, v, w).

We remark that (3.8) and (3.9) are only one possible choice which makes the d log form
explicitly DCI. Other choices of constants CX and CY give totally different representations.
For instance, for the chiral pentagon case, a choice CX = 〈i−1 i j−1 j〉

〈i i+1 j−1 j〉 and CY = 〈i−1 i j−1 j〉
〈i−1 i j j+1〉

leads to a representation:

Ψ1 =
∫

d log vτY + 1
(1− u)τY + (1− uw)d log (1 + τY /w)τX + (1 + τY /(uw))

τX/(uw) + 1 (3.11)

which is distinct from eq. (2.8) obtained in section 2.2. For the remaining (L− 1)− loops
of penta-ladder, another choice CX = 〈i−1 i j−1 j〉

〈i i+1 j−1 j〉 and CY = 〈i−1 i j−1 j〉
〈i−1 i j j+1〉 gives a different

recursion for the pentaladder:

ΨL+1(u, v, w) =
∫

d log(τY + 1) d log τX(1 + τY /w) + (1 + τY )
τX

ΨL(ũ, ṽ, w̃) (3.12)

where the deformed cross ratios now read

ũ = 1 + τX/w

1 + τX/(uw) , ṽ = v(1 + τY )
1 + τY v

, w̃ = (1 + τY ) + τX(1 + τY /w)
(1 + τY )(1 + τX/w) . (3.13)

Recursion (3.12) has simpler deformation of the cross ratios (3.13) but the d log forms
are a bit more complicated. It turns out to be useful when we look for relations between
WL representation and differential equations for penta-ladders in section 5. Our original
recursion, (3.6), with simpler d log but slightly more complicated deformations, makes the
study of symbol structure easier, as we see next.

3.3 The symbol of pentaladder integrals

In this subsection, we record explicit results for the symbol of penta-ladder at L = 2 as
well as certain structure to any L. The recursion relation for L = 2 reads:

Ψ2(u, v, w) =
∫

d log(τY + 1) d log τX + 1
τX

Ψ1(ũ, ṽ, w̃). (3.14)
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A direct computation from the symbol of chiral pentagon (2.9), gives a compact result

S(Ψ2(u, v, w)) = 1
2S(quv)⊗

uv

(1− u)(1− v) + 1
2S(qu/v)⊗

u(1− v)
v(1− u) +S(qw)⊗(1−w), (3.15)

where quv, qu/v and qw are three weight-3 generalized polylogarithm functions, whose ex-
plicit symbol can be found in appendix A. Due to the axial symmetry of pentaladder, the
functions quv and qw are invariant when exchanging u and v, while qu/v becomes −qu/v
under the exchange. We observe that 9 letters appear in the alphabet:

{u, v, 1− u, 1− v, 1− w, w, 1− uw, 1− vw, 1− u− v + uvw}. (3.16)

Only the first five, as shown in the result (3.15), are last entries of the symbol. Moreover, we
find that the first two entries of S(Ψ2) (or equivalently those of the q functions), after some
recombination, are always the symbol of “one-loop” functions log a log b and Li2(1−a), i.e.
they are a⊗b+b⊗a or a⊗(1−a), where a, b ∈ {u, v, w, uw, vw} are first-entries determined
by the physical discontinuities. This should be a general feature, which was first observed
in [11].

Extending our discussion beyond 2 loops, we can trivially obtain the symbol for L = 3,
but the explicit result is too lengthy to be recorded here. We observe that the alphabet of
S(Ψ3) is again given by (3.16), and the last entries are again {u, 1−u, v, 1− v, 1−w}. We
expect that the alphabet for S(ΨL) should consist of these 9 letters to all loops. See [50]
for a proof and the identification with D3 = A3 cluster algebra.

Furthermore, we claim that the symbol S(ΨL) can always be organized into the form

S(ΨL(u, v, w)) = 1
2S(q(L)

uv )⊗ uv

(1− u)(1− v) + 1
2S(q(L)

u/v)⊗
u(1− v)
v(1− u) + S(q(L)

w )⊗ (1− w),

(3.17)
i.e. the last entries always combine to uv

(1−u)(1−v) ,
u(1−v)
v(1−u) and (1−w), and the weight 2L−1

symbols in front are always integrable. The proof of this claim is just a simple induction;
first, the deformations in (3.8) turn the 3 last entries of ΨL be

{
uv(τX + w)

τX(1− u)(1− v) ,
u(1− v)(τX + w)

τX(1− u)v ,
τX(1− w)
τX + w

}
(3.18)

and without a full computation, we can determine the last entries from (3.18). For in-
stance, the first one, which can be decomposed into uv

(1−u)(1−v) , (τX + w) and τX , gives
{ uv

(1−u)(1−v) , w, 0} due to d log τX , and { uv
(1−u)(1−v) , 1−w, 1} due to d log(τX + 1), according

to the second part of the algorithm. Moreover, d log( τX+1
τX

) only contributes last entries 1
or 0, according to the first part of the algorithm. Terms with last entry 1 vanishes, while
terms with last entry 0 diverge, but they add up to zero as ΨL+ 1

2
itself is finite. As a

result, the algorithm shows that function ΨL+ 1
2
(u, v, w) have 4 last entries in its symbol,

after recombination: {
uv

(1− u)(1− v) ,
u(1− v)
v(1− u) , w, 1− w

}
. (3.19)
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Now it is exactly the same computation to determine the last entries of S(ΨL+1) from (3.9)
and (3.19), i.e. we firstly deformed the 4 last entries as{

uv(τY + 1)
(1− u)(1− v) ,

u(1− v)
v(1− u)(τY + 1) ,

τY + w

τY + 1 ,
1− w
τY + 1

}
(3.20)

then following the algorithm to get the results. The upshot is that last entries of S(ΨL+1)
are exactly given by uv

(1−u)(1−v) ,
u(1−v)
v(1−u) and (1−w). This gives a inductive proof that to all

loops, last entries of S(ΨL(u, v, w)) remain invariant for L > 1.5

Moreover, we have also shown that weight 2(L+ 1) symbols in front of the three last
entries are integrable. According to our algorithm, after last entries are computed, the
next step is to integrate {S(q(L)

uv ),S(q(L)
u/v),S(q(L)

w )} in front recursively. Recombinations of
the integrated results then turn out to be {S(q(L+1)

uv ),S(q(L+1)
u/v ),S(q(L+1)

w )} at L+ 1 loops,
which are of course integrable. So we finally arrive at the result (3.17).

One more byproduct from the induction is that we also determined last entries of the
odd-weight ones S(ΨL+ 1

2
) for L ≥ 2, which are always given by (3.19). Note that, since

recursion (3.8) breaks the axial symmetry, odd-weight functions do not remain invariant
when exchanging u and v. Once the second step (3.9) is performed, the symmetry recovers.

4 Generalized penta-ladder integrals

Given the success for penta-ladder integrals, it is natural to wonder if one can obtain WL
d log representation for more general integrals. One could either search for more examples
which correspond to Feynman diagrams of (super-)WL, or keep applying partial Feynman
parametrization to other types of integrals. We do not know how to proceed in the most
systematic way in either direction, but it is clear that integrals admitting WL representation
are ubiquitous. We can consider any L-loop integral with L′ “terminal” chiral-pentagon
sub-diagrams, i.e. their three corners only have external legs; then by rewriting each of
them as a two-fold d log integral, one arrives at 2L′-fold d log integral acting on some
L−L′ diagram. If there are new “terminal” chiral pentagons, we can proceed to reduce the
diagram to lower loops, and so on. This is a general strategy of relating higher-loop integrals
as d log integrals of lower-loop ones, and clearly it works for any one-loop sub-diagrams that
can be written as d log forms, e.g. four-mass box integral (or 6D three-mass-easy hexagon).

For example, for any two-loop pure integral with a chiral pentagon with loop momen-
tum `′, we can immediately write it as two-fold d log integral of a one-loop integral, where
in the remaining loop, the middle propagator 1/〈`′`〉 is replaced with 1/〈`iX〉〈`jY 〉 corre-
sponding to choosing I = ` for the pentagon integration. In this way, the double-pentagon
becomes two-fold d log integral of a hexagon, and the penta-box becomes two-fold d log
integral of a pentagon. Similarly, we can write the three-loop integral for MHV amplitudes
with chiral pentagons on both sides [44], as four-fold d log integral of an octagon; even
more generally, any L-loop integrals with (L − 1) chiral pentagon “handles” attached to

5Note that the last entries can be determined from the corresponding differential equations [43] as well.
The second-order differential operator reduces the weight by two, which gives restriction on allowed letters
in the final entry (cf. [51]).
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the middle loop, can be written as 2(L − 1)-fold integrals of some one-loop integral. The
remaining one-loop integral can always be evaluated (e.g. by box expansion) to weight-2
functions, thus in all these cases we arrive at 2(L− 1)-fold integrals of some dilogarithms.

To be more concrete, in this section we focus on a simple class of integrals to demon-
strate the recursive nature of our strategy. These are what we call generalized penta-ladder
integrals, where on one end is the chiral pentagon and on the other end a generic loop. We
can recursively use the identity (2.3) to shorten it down to one-loop:

i

j

i− 1

j + 1

=
∫
R2
≥0

d log〈i− 1ijY1〉d log 〈iX1jY1〉
τX0

×

i

j

i− 1

j + 1

X1
Y1

=
∫
R2(L−1)
≥0

[
L−1∏
a=1

d log〈i− 1ijYa〉d log 〈iXajYa〉
τXa

]
×

i

j

i− 1

j + 1

XL−1
YL−1

(4.1)

where proper numerator for the left-most loop is needed to make the integral pure. Eventu-
ally, the remaining one-loop integral is a combination of the left-most loop with the chiral
pentagon “handle” that is shifted: Zi+1 → XL−1 and Zj−1 → YL−1.

We leave more systematic study WL representation and evaluation of generalized
penta-ladder integrals, as well as other cases to future works. Note that unlike the penta-
ladder case, generally the one-loop integral does not admit any two-form representation,
and moreover in most cases it contains square roots from e.g. four-mass boxes, which
makes it necessary to use rationalization. Such integrals are generically algebraic functions
of momentum twistors. For example, the most general double-penta ladder depends on 8
external legs

8 1

2
3

45

6
7

whose result contains the square root
√

(1− u− v)2 − 4uv, where {u, v} are the two cross
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ratios of four mass box I4(2, 4, 6, 8).6 Since we will focus on evaluation of WL d log forms
that are rational, in the rest of the section we restrict ourselves to the simplest double-penta
ladder of n = 7, which does not contain any square root.

4.1 Double-penta-ladders as d log integrals

The seven-point double-penta-ladder is defined as

ΩL(1, 4, 5, 7) =

7 1

2
3

45

6

=
∫

d4L`
〈`11̄ ∩ 4̄〉〈`25̄ ∩ 7̄〉〈1457〉L−1

〈〈`11〉〉〈〈`14〉〉
[
L∏
a=2
〈`a−1`a〉〈`a71〉〈`a45〉

]
〈〈`L5〉〉〈〈`L7〉〉

(4.2)

whose symbol entries are all rational DCI variables. Such integrals depend on 4 independent
cross ratios, which throughout this section we choose to be:

u1 = 〈1245〉〈5671〉
〈1256〉〈4571〉 , u2 = 〈3471〉〈4567〉

〈3467〉〈4571〉 , u3 = 〈1267〉〈3456〉
〈1256〉〈3467〉 , u4 = 〈1234〉〈4571〉

〈1245〉〈3471〉 . (4.3)

Following the general discussion above, after we introduce integration variables re-
cursively, X1 = Z7 − τX1Z2, Y1 = Z3 − τY1Z5, and {Xa = Z7 − τXaXa−1, Ya = Ya−1 −
τYaZ5}a=2,...,L−1, ΩL(1, 4, 5, 7) can be rewritten as a 2(L− 1)-fold integral:

ΩL(1, 4, 5, 7) =
∫ L−1∏

a=1
d log 〈147Ya〉d log 〈1Xa4Ya〉

τXa

×

7 1

XL−1
YL−1

45

6 . (4.4)

Because of this, from now on we denote the 7-point hexagon as Ω1, which serves as the start-
ing point of our recursion relation for double-penta-ladders. Rewritten in DCI form, (4.4)
become almost identical to that for penta-ladder, and it can be naturally decomposed into
two steps like (3.8) and (3.9):

ΩL+ 1
2
(u1, u2, u3, u4) =

∫
d log τX + 1

τX
ΩL

(
u1(τX + u4)
τX + u1u4

, u2,
τXu3

τX + u1u4
,
u4(τX + 1)
τX + u4

)
,

ΩL+1(u1, u2, u3, u4) =
∫

d log(τY + 1)ΩL+ 1
2

(
u1,

u2(τY + 1)
u2τY + 1 ,

u3
1 + τY u2

,
τY + u4
τY + 1

)
,

(4.5)
6The most generic double-pentagon integral depends on 12 legs, which contains 16 such square roots.

More details of studying double-pentagon integrals can be found in [35].
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where we have introduced the odd-weight integrals ΩL+ 1
2
as well. Since the original hexagon

integral is well known

7 1

2
3

45

6 = log u1 log u2 − Li2(1) + Li2(1− u1) + Li2(1− u2)

+ Li2(1− u4)− Li2(1− u1u4)− Li2(1− u2u4) + Li2(1− u3),

(4.6)

now it is a routine to use the algorithm of section 2.2 and obtain the symbol for ΩL recur-
sively. Before proceeding, we observe that the deformation rules for variables {u1, u2, u4}
in (4.5) are identical to those for {u, v, w} in penta-ladder case. Notice Ω1(u1, u2, u3, u4) =
Ψ1(u1, u2, u4)−Li2(1)+Li2(1−u3), which reduces the computation to that for penta-ladder,
plus a new term which reads:

ΩL = ΨL(u1, u2, u4) +
∫ L−1∏

a=1
d log(τYa + 1) d log τXa + 1

τXa

(Li2(1− ũ3)− Li2(1)), (4.7)

where ũ3 is defined by the composition of the two deformations in (4.5).
We should emphasize that there is nothing stopping us to perform the partial Feynman

parametrization on the left side of (4.2), which gives rise to a slightly different relation:

ΩL(1, 4, 5, 7) =
∫ L−1∏

a=1
d log 〈457Ya〉 d log 〈5Xa7Ya〉

τXa

×

7 1

2
3

45

YL−1
XL−1

. (4.8)

Here Xa = Z4 − τXaXa−1, Ya = Ya−1 − τYaZ1, X1 = Z4 − τX1Z6, Y1 = Z6 − τY1Z1 and the
8-point hexagon reads:

8 1

2
3

45

7
6 = log(u1,4,5,8) log(u2,5,6,1)

+ Li2(1− u2,5,6,1)− Li2(1− u6,1,2,4) + Li2(1− u2,4,5,1)
− Li2(1− u2,5,6,8) + Ĩ4(2, 4, 6, 8)− Li2(1− u2,4,5,8)
+ Li2(1− u1,5,6,8)− Li2(1− u6,8,1,4) + Li2(1− u1,4,5,8),

(4.9)

where
ua,b,c,d = 〈a− 1 a b− 1 b〉〈c− 1 c d− 1 d〉

〈a− 1 a c− 1 c〉〈b− 1 b d− 1 d〉
and the modified four mass box

Ĩ4(2, 4, 6, 8) = 1− u2,4,6,8 − u8,2,4,6√
(1− u2,4,6,8 − u8,2,4,6)2 − 4u2,4,6,8u8,2,4,6

I4(2, 4, 6, 8)

− 1
2 log(u2,4,6,8) log(u8,2,4,6).
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The integrand of (4.8) therefore contains a non-trivial square root ∆4 =
√

(1−u−v)2−4uv
with u= 〈5X7Y 〉〈1234〉

〈5X12〉〈7Y 34〉 and v= 〈5X34〉〈7Y 12〉
〈5X12〉〈7Y 34〉 . However, after rationalizing the square root

and performing the 2(L−1)-fold integration, function ΩL contains only four independent
“square roots”

{∆4(X→4, Y→6), ∆4(X→4, Y→1), ∆4(X→6, Y→6), ∆4(X→6, Y→1)}.

i.e. evaluating ∆4 at the endpoints x = x5, x6 and y = x7, x1. In all these four cases
∆4 degenerates and gives rational results. The complete symbol is rational in terms of
momentum twistors, as expected.

4.2 The symbol of seven-point double-penta ladders

Let us first present some explicit results for L = 2 double-penta ladder i.e. double-pentagon,
which can be rewritten in a two-fold integration over hexagon function Ω1 (we record the
definition of the integral again)

Ω2(1, 4, 5, 7) =

7 1

2
3

45

6 =
∫
d4`

〈`11̄ ∩ 4̄〉〈`25̄ ∩ 7̄〉〈1457〉
〈〈`11〉〉〈〈`14〉〉〈〈`25〉〉〈〈`27〉〉〈`1`2〉

=
∫

d log 〈147Y 〉d log 〈1X4Y 〉
τX

×

7 1

X
Y

45

6 .

(4.10)

The symbol of this integral reads (various q functions are defined in appendix A):

S(Ω2(u1, u2, u3, u4)) = S(Ψ2(u1, u2, u4)) + 1
2S(qu1u2)⊗ u1u2

(1− u1)(1− u2)

+ 1
2S(qu1/u2)⊗ u1(1− u2)

u2(1− u1) + 1
2S(qu4)⊗ (1− u4) + 1

2S(Ω(6D)
1,1−mass)⊗

1− x+
1− x−

,

(4.11)

where Ω(6D)
1,1−mass is the one-mass hexagon in 6d whose symbol, together with definition of

x± involving the square root of ∆7, are given in the end of section 2.3.
We make some comments on this result. First, the square root in terms of cross ratios,√

∆7, first appears in the second step of (4.5) for L = 1. Following the algorithm, after
deforming u2 → ũ2 = u2(τY +1)

u2τY +1 etc., we need to reduce all the symbol entries in products
of fractional linear functions for τY . However, we encountered symbol entries quadratic in
τY , τ2

Y +aτY + b, where ∆7 is proportional to the discriminant, resulting in this non-trivial
square root of cross ratios. Of course, as familiar in dealing with 6D hexagon, this square
root becomes rational when using e.g. momentum twistors variables:

∆7 =
(〈1267〉〈4567〉〈1345〉 − 〈1247〉〈1567〉〈3456〉

〈1256〉〈3467〉〈4571〉

)2
, (4.12)
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thus the result remains rational in terms of momentum twistors. Note qu1u2 , qu1/u2 and qu4

are weight-3 functions whose entries are rational functions of {u1, u2, u3, u4}; qu1u2 and qu4

are symmetric under the exchange of u1 and u2 while qu1/u2 is antisymmetric. As shown
in (2.15), S(Ω(6D)

1,1−mass) is the symbol of one mass 6D hexagon function [52], whose last
entries depends on x± as well.

Moreover, we find that S(Ω2) has 16 letters in its alphabet, which are the first 8 letters
of Ψ2, and 8 new ones as follows

{u3, 1− u3, 1− u3 − u1u4, 1− u3 − u2u4; y1, y2, y3, y4}

where yis are defined in (2.16). There is a subtlety: note that the ninth letter of Ψ2,
1− u1 − u2 + u1u2u4 appears in S(Ψ2) as well as in the symbol of various q functions, but
interestingly they cancel in the final answer!

Finally, following the same logic in 3.3, we can obtain general structures of S(ΩL)
to all loops. We claim that only the following 4 combinations appear as final entries for
double-penta ladders:{

u1u2
(1− u1)(1− u2) ,

u1(1− u2)
u2(1− u1) , 1− u4,

1− x+
1− x−

}
, (4.13)

and we can always put S(ΩL) in the following form:

S(ΩL (u1, u2, u3, u4)) = S (ΨL (u1, u2, u4)) + 1
2S

(
q(L)
u1u2

)
⊗ u1u2

(1− u1) (1− u2)

+ 1
2S

(
q

(L)
u1/u2

)
⊗ u1 (1− u2)
u2 (1− u1) + 1

2S
(
q(L)
u4

)
⊗ (1− u4) + 1

2S
(
q

(L)√
∆7

)
⊗ 1− x+

1− x−
.

(4.14)

where we have weight-2L − 1 functions, {q(L)
u1/u2

, q
(L)
u1u2 , q

(L)
u4 } as well as q(L)√

∆7
(all of which

may have entries that are algebraic functions of cross ratios as well). The proof of this claim
is again an induction following our algorithm. As deformations for {u1, u2, u4} in (4.5) are
exactly the same as what for {u, v, w} in (3.8) and (3.9), proof of the first four terms in
structure (4.14) is trivial. Moreover, the entry 1−x+

1−x− actually stays invariant under each
step of the deformation in (4.5)! Therefore, according to the second part of our algorithm,
symbol integration over the last term in (4.14) is just

1
2

(∫
d log (τY + 1) d log τX + 1

τX
S
(
q̃

(L)√
∆7

))
⊗ 1− x+

1− x−
(4.15)

where tilde on q(L)√
∆7

means deforming the cross ratios. So we finish the proof.

In fact, this induction also determines the function q
(L)√

∆7
. According to our nota-

tion in (4.14), integrated symbol in the bracket of (4.15) is nothing but S(q(L+1)√
∆7

). (4.15)

therefore leads to a recursive definition for functions q(L)√
∆7

q
(L+1)√

∆7
(u1, u2, u3, u4) =

∫
d log (τY + 1) d log τX + 1

τX
q

(L)√
∆7

(ũ1, ũ2, ũ3, ũ4). (4.16)
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4.3 d log form for the hexagon

Before ending the section, we remark that our WL representation does not always give 2L
d log’s for L-loop integrals. Even for generalized penta-ladders, it is clear that the starting
point, which is a one-loop integral, does not always admit a natural two-fold d log integral
representation.7 We can already see this in the simplest case beyond the pentagon, namely
if we apply partial Feynman parametrization to hexagon integral, we find two-fold integral
up to a boundary term, which is a d log integral of a logarithmic function.

It suffices to look at just the 6-point hexagon since the 7-point one works in exactly
the same way. Consider the hexagon

5 6

1

23

4 =
∫
d4`
〈`3̄ ∩ 5̄〉〈`6̄ ∩ 2̄〉
〈〈`3〉〉〈〈`5〉〉〈〈`1〉〉 , (4.17)

and after introducing the parameterization X = Z2 − τXZ4, Y = Z4 − τY Z6, we have∫
d2τ

∫
d4`

〈`3̄ ∩ 5̄〉〈`6̄ ∩ 2̄〉
〈`3X〉2〈`5Y 〉2〈〈`1〉〉 . (4.18)

Performing the loop integration d4` by Feynman parametrization, we are then left with a
two-fold integral in τX and τY as:∫

d log〈5Y 3(61) ∩ (234)〉 d log 〈3X61〉
〈3X5Y 〉 + d log〈5Y 12〉 d log 〈3X5Y 〉

〈3X1(5Y ) ∩ (612)〉

−
∫

d2τ
〈1234〉〈1256〉〈2361〉〈4561〉
〈3X1(5Y ) ∩ (612)〉2 log 〈3X61〉〈5Y 12〉

〈3X12〉〈5Y 61〉 .
(4.19)

We see that this is very different from the pentagon case: the integrand is no longer weight-
0. After integration by part, the weight-1 term in this result leads to a boundary term in
the d log representation for this integral, so that the final result is still uniformly of weight
2:

5 6

1

23

4 =
∫

d log 〈5Y 12〉
〈5Y 3(16) ∩ (234)〉d log 〈3X5Y 〉

〈3X61〉

+
∫

d log 〈3X1(5Y ) ∩ (612)〉
〈3X61〉 × log 〈3X61〉〈5Y 12〉

〈3X12〉〈5Y 61〉

∣∣∣∣
Y→4

= Li2(1− u1) + Li2(1− u2) + Li2(1− u3)− 2 Li2(1) + log(u1) log(u3)
(4.20)

7Being weight-2 functions, it is always possible to write them as two-fold d log integrals, but in general
that would not be natural at all.
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which is the well-known result, with cross ratios

u1 = 〈3456〉〈6123〉
〈3461〉〈5623〉 , u2 = 〈1234〉〈4561〉

〈1245〉〈3461〉 , u3 = 〈2345〉〈5612〉
〈2356〉〈1245〉 .

Thus we have the 6-point double-penta ladder as 2L d log integral with a boundary
term that is 2L− 1 d log integral of a log:

5 6

1

23

4

=
∫ L−1∏

a=1
d log〈235Ya〉 d log 〈3Xa5Ya〉

τXa

× d log 〈5YL12〉
〈5YL3(16) ∩ (234)〉d log 〈3XL5YL〉

〈3XL61〉

+
∫ L−1∏

a=1
d log〈235Ya〉 d log 〈3Xa5Ya〉

τXa

d log 〈3XL1(5YL) ∩ (612)〉
〈3XL61〉

× log
(〈3XL61〉〈5YL12〉
〈3XL12〉〈5YL61〉

) ∣∣∣∣
YL→YL−1

(4.21)

This result extends not only to 7-point case, but also to higher-point double-penta ladders
where one needs to deal with the square root.

5 Comments on differential equations and resummation

As we have discussed, our WL d log representation trivializes the evaluation of certain
Feynman integrals, and some of these integrals have been studied using other methods,
most notably differential equations [53, 54] and even resumming ladders to obtain results
at finite coupling [55]. Here we briefly comment on the way our WL d log representation
satisfies differential equations for the ladders, and more importantly their resummation by
solving certain integral equations.

5.1 WL d log representations and differential equations

It is clear that our method is closely related to solving similar integrals using differential
equations [53], including both second-order equations reducing loop order by one [43], and
first-order ones similar to Q̄ equations [56, 57]. Whenever we convert a loop to two-fold
integral, it must be possible to find a second-order differential operator which annihilates
the loop (the difference being the result of this does not involve deformed kinematics). From
this point of view, our representation provides the solution to such differential equations
without the need of first writing them down and then solving them.

It would be interesting to study the precise connection of WL d log representation
to differential equations in general, but here we content ourselves with checking that our
integral formula indeed satisfy the differential equations in [43] for penta-ladder integrals.
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Given the recursion relation (3.12) and (3.13) for penta-ladder, it is easy to derive that
they satisfy differential equation found in [43]:

(1− u− v + uvw)uv∂u∂vΨL+1(u, v, w) = ΨL(u, v, w). (5.1)

The key observation is that the differential operator D := (1−u−v+uvw)uv∂u∂v commutes
with the deformation (3.13) of cross ratios, i.e. for any function f(u, v, w),

D[f(ũ, ṽ, w̃)] = [Df ]ũ,ṽ,w̃. (5.2)

We derive (5.1) by induction. It’s clear that DΨ1(u, v, w) = (1 − u − v + uvw) =:
Ψ0(u, v, w) as defined in [43]. Now, suppose DΨL(u, v, w) = ΨL−1(u, v, w). Acting the
differential operator on (3.12),

DΨL+1(u, v, w) =
∫

d log(τY + 1)d log τX + 1
τX

DΨL(ũ, ṽ, w̃)

=
∫

d log(τY + 1)d log τX + 1
τX

[DΨL]ũ,ṽ,w̃

=
∫

d log(τY + 1)d log τX + 1
τX

ΨL−1(ũ, ṽ, w̃)

= ΨL(u, v, w).

(5.3)

We remark that it is straightforward to check that WL d log representation for various
ladder integrals satisfy similar differential equations. It would be interesting to under-
stand how to obtain such representation for more general integrals by solving differential
equations they satisfy.

5.2 Resumming the ladders

Now we move to the second question, namely if we can resum certain ladder integrals
starting from the fact that the L-loop integral is an integral of (L − 1)-loop one with
shifted kinematics, e.g. eq. (3.8), eq. (3.9), eq. (4.5). We will take the sum over all L
for the ladders dressed with coupling constant, which will yield an integral equation for
the resummed ladder. It turns out to be possible to solve this integral equation by series
expansion, and get a solution for resummed ladder at any value of the coupling. In this
subsection, we will discuss in details the resummed penta-ladder Ψg =

∑∞
L=1 g

2LΨL, but
the same method also works for other ladders, e.g. the double-penta ladder ΩL(1, 4, 5, 7)
defined in section 4.1.

Recall that a generic L-loop penta-ladder integral ΨL only depends on three cross
ratios u, v, w, and satisfies the following recursion:

ΨL+ 1
2
(u, v, w) =

∫ ∞
0

d log t+ 1
t

ΨL

(
u(t+ w)
t+ uw

, v,
w(t+ 1)
t+ w

)
,

ΨL+1(u, v, w) =
∫ ∞

0
d log(t+ 1) ΨL+ 1

2

(
u,
v(t+ 1)
tv + 1 ,

t+ w

t+ 1

)
.

We want to solve these equation by series expansion near the fixed point of the transfor-
mation of kinematics, (u = 1, v = 1, w = 1), thus it is convenient to use {x = 1− 1/u, y =
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1 − 1/v, z = 1 − w} as our variables, and define Φ∗(x, y, z) := Ψ∗(u, v, w). Then, the
recursion now reads

ΦL+ 1
2
(x, y, z) =

∫ ∞
0

d log t+ 1
t

ΦL

(
tx

t+ 1− z , y,
tz

t+ 1− z

)
(5.4)

ΦL+1(x, y, z) =
∫ ∞

0
d log(t+ 1) ΦL+ 1

2

(
x,

y

1 + t
,

z

1 + t

)
(5.5)

with the starting point which is the one-loop chiral pentagon

Φ1(x, y, z) = log(1− x) log(1− y) + Li2(z)− Li2
(
x− z
x− 1

)
,

+ Li2
(

x

x− 1

)
− Li2

(
y − z
y − 1

)
+ Li2

(
y

y − 1

)
.

(5.6)

Define the resummed version of ΦL+ 1
2
and ΦL which depend on the coupling constant g:

Φodd
g :=

∞∑
L=1

g2L+1ΦL+ 1
2

and Φeven
g :=

∞∑
L=1

g2LΦL

and then we arrive at integral equations of Φodd
g and Φeven

g ,

Φodd
g (x, y, z) = g

∫ ∞
0

d log t+ 1
t

Φeven
g

(
tx

t+ 1− z , y,
tz

t+ 1− z

)
, (5.7)

Φeven
g (x, y, z)− g2Φ1(x, y, z) = g

∫ ∞
0

d log(t+ 1)Φodd
g

(
x,

y

1 + t
,

z

1 + t

)
. (5.8)

Suppose the series expansions of Φodd/even
g and Φ1 are

Φodd/even
g (x, y, z) =

∞∑
k,l,m=0

A
odd/even
k,l,m xkylzm, Φ1(x, y, z) =

∞∑
k,l,m=0

Bk,l,mx
kylzm,

then we can perform the integrals on the r.h.s. of the integral equations, and obtain recur-
rence relations for Aodd/even

k,l,m :

∞∑
m=0

Aodd
k,l,mz

m = −g
∞∑
m=0

Aeven
k,l,m

zm

k +m
2F1(1, k +m; k +m+ 1; z), (5.9)

Aeven
k,l,m − g2Bk,l,m = g

m+ l
Aodd
k,l,m. (5.10)

We first see that Aodd
k,0,0 and Aeven

0,l,0 must vanish to avoid possible divergences. The first
equation can be further simplified by using the identity of the hypergeometric function 2F1

d

dz
(za 2F1(b, a; a+ 1; z)) = aza−1

2F1(b, a; a; z) = aza−1(1− z)−b,

thus it can be simplified significantly (with Aodd
k,l,−1 := 0):

(k +m)Aodd
k,l,m − (k +m− 1)Aodd

k,l,m−1 = −gAeven
k,l,m (5.11)

and then we have recurrence relations for Aodd/even
k,l,m , eq. (5.10) and eq. (5.11).

– 24 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
2

It turns out that we can solve these recurrence relations and obtain

Aeven
k,l,m = g2Bk,l,m − g2

m∑
n=0

Bk,l,n
g2

(k +m)(l +m)

m∏
s=n

(k + s)(l + s)
(k + s)(l + s) + g2 . (5.12)

From the explicit expression of Φ1 eq. (5.6), we find

B0,l,0 = Bk,0,0 = 0, Bk,l,0 = 1
kl

and Bk,l,m = δk,0δl,0
m2 − δl,0

m(m+ k) −
δk,0

m(m+ l) for m 6= 0,

thus eq. (5.12) becomes

Aeven
k,l,0 = g2

kl + g2 for kl 6= 0, Aeven
k,l,m = − g2

kl + g2
g2

(k +m)(l +m)

m∏
n=1

αk,l,n for m > 0,

where we have defined
αk,l,m := (k +m)(l +m)

(k +m)(l +m) + g2 .

The upshot is that we obtain the solution of the resummed penta-ladder

Φeven
g (x, y, z) = g2

∞∑
k,l=1

xkyl

kl + g2 − g
2
∞∑

k,l=0,m=1

xkylzm

kl + g2
g2

(k +m)(l +m)

m∏
n=1

αk,l,n. (5.13)

This series converges for |x|, |y|, |z| < 1 and g2 ∈ C − {−1,−2,−3, . . . }. As a function of
g2, it does not have other poles except for negative integers.

One can of course read off L-loop penta-ladder integrals from this resummed result,
although usually only in the form of series expansion. In some cases, we can have very
simple answer, e.g. when z = 0 (or w = 1)

Φeven
g (x, y, 0) = g2

∞∑
k,l=1

xkyl

kl + g2 = −
∞∑
L=1

(−g2)L
∞∑

k,l=1

xkyl

(kl)L = −
∞∑
L=1

(−g2)L LiL(x) LiL(y),

and the result of L-loop integral for w = 1 is simply (−1)L+1 LiL(1− 1/u) LiL(1− 1/v).

6 Conclusion and discussions

In this paper we introduced and studied the so-called Wilson-loop d log representation of
classes of multi-loop Feynman integrals, which evaluate to generalized polylogarithms of
uniform transcendental weight. Generally such a representation expresses a higher-loop
integral as d log integrals of lower-loop ones, by converting each loop that satisfies certain
conditions into a two-fold d log integral. We have considered one of the simplest families of
integrals containing terminal chiral pentagons, where we recursively convert each terminal
chiral pentagon into two d log’s by using partial Feynman parametrization around massless
corners. More concretely we obtain a formula expressing the L-loop generalized penta-
ladder as 2(L− 1)-fold d log integral of a one-loop integral, from which the symbol can be
computed easily.
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In the most general cases, it can be challenging to evaluate these d log integrals, since
one needs to “rationalize” possible square roots in the process. However, for simple cases
where the d log forms remain linear in the integration variables at all steps, it is straight-
forward to evaluate such integrals, especially at the symbol level, with our algorithm that
bypasses the need to perform any integral. We illustrated how to evaluate the symbol of
the simplest examples, i.e. eight-point penta-ladders and seven-point double-penta-ladders,
obtaining their last entries etc. for arbitrarily high loops without carrying out the integra-
tion. Our integral formula for penta-ladders satisfies the familiar differential equation, and
quite nicely we can resum the penta-ladders by solving integral equations at any value of
the coupling.

The immediate next step is to develop systematic methods for rationalization when
evaluating WL integrals involving square roots. We have successfully rationalized all square
roots for the most generic (n = 12) double pentagon integrals [35], and we expect our
results there to generalize. In addition, so far we have restricted to ladder-shaped integrals
at higher loops, but it would be interesting to find applications in evaluating integrals such
as those with the “ring” topology and any number of terminal pentagons, as well as those
where other one-loop sub-diagrams can be reduced. Even restricted to two loops, can we
evaluate all (finite) integrals needed for NMHV and even N2MHV amplitudes using this
method? We have restricted to finite integrals but it would certainly be interesting to
study regularization of IR divergences in our representation.

We have only touched the surface of two potentially very interesting topics calling
for further investigations. First, it would be highly desirable to better understand the
connections of the WL d log representation and the differential equations they satisfy. For
any integral where a loop can be converted into d log forms, one should be able to find
a differential operator that “annihilates” that loop. Along the other direction, could we
find WL d log representations of any integral that satisfies certain differential equations? It
would also be interesting to explore connections with differential equations following from
Yangian symmetry, such as those in [58–60] and first-order differential equations [56, 57] like
the Q̄ equations for the full amplitude, which use the same type of τ integrals. Furthermore,
it would be extremely interesting to study the resummation of other ladder-shaped integrals
and even more general cases using our method.

Finally, we would like to understand the geometric meaning of these d log represen-
tation (for usual loop integrands, see [2, 3, 61]). As we have mentioned, as far as the τ
integrations are concerned, all we are doing is integrating canonical d log forms of certain
positive geometries (that are not polytopes) over a simplex. It would be interesting to
understand these positive geometries underlying WL d log forms of certain Feynman inte-
grals. Moreover, just like the Aomoto case, we would like to extract the symbol directly
from such geometries, which would take us one step further than our current algorithm, and
may provide more insights into the possible geometric meaning of these Feynman integrals
and even the integrated amplitudes.
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A Explicit results for the symbol of two-loop integrals

Here we present explicit results of (3.15) and (4.11). Once notation (a ←→ b) shows up,
one should repeat all terms before it with a and b exchanged.

Pentaladder Ψ2

S(qw) =u⊗(1−u)⊗ v(1−w)(1−uw)
w(1−u−v+uvw) +u⊗v⊗w(1−u−v+uvw)

(1−uw)(1−vw) +u⊗u⊗1−uw
1−u

+(u⊗w+w⊗u)⊗v(1−w)(1−uw)
(1−u)(1−vw) +(uw)⊗(1−uw)⊗(1−u)w(1−u−v+uvw)

v(1−w)(1−uw)2

+(u←→ v)+w⊗(1−w)⊗ uv(1−w)2(1−uw)(1−vw)
(1−u)(1−v)w(1−u−v+uvw)

(A.1)

S(quv) =u⊗(1−u)⊗(1−u)uv2(1−w)(1−uw)
(1−u−v+uvw)2 +u⊗u⊗ 1−uw

(1−u)v+u⊗v⊗ (1−u−v+uvw)2

uv(1−uw)(1−vw)

+(u⊗w+w⊗u)⊗(1−w)(1−uw)
1−vw +(uw)⊗(1−uw)⊗ (1−u−v+uvw)2

uv(1−w)(1−uw)2

+(u←→ v)+w⊗(1−w)⊗uv(1−w)2(1−uw)(1−vw)
(1−u−v+uvw)2 (A.2)

S(qu/v) =u⊗u⊗v(1−uw)
1−u +u⊗v⊗u(1−vw)

v(1−uw) +(u⊗w+w⊗u)⊗(1−uw)(1−vw)
1−w

+w⊗(1−w)⊗v(1−uw)+(uw)⊗(1−uw)⊗ u(1−w)
v(1−uw)2 +u⊗(1−u)⊗(1−u)(1−uw)

u(1−w)
−(u←→ v)

(A.3)

Double-penta ladder Ω2

S(qu1u2) =u1⊗(1−u1)⊗(1−u1−u2+u1u2u4)2

u1u2u3(1−u4) −u4⊗(1−u4)⊗ (1−u1)
(1−u1−u2+u1u2u4)

+(u1⊗u3+u3⊗u1)⊗u2(1−u1u4)
1−u1

+u1⊗u2⊗
(1−u1)(1−u2)u3

(1−u1−u2+u1u2u4)2

+(u1u4)⊗(1−u1u4)⊗ (1−u1)u1u3(1−u4)
(1−u1u4)(1−u1−u2+u1u2u4)2 +(u3⊗u4+u4⊗u3)⊗(1−u1u4)

+(u1←→u2)−u3⊗(1−u3)⊗u3−u4⊗(1−u4)⊗u3−(u3⊗u4+u4⊗u3)⊗(1−u4) (A.4)

S(qu1/u2) =u3⊗(1−u3)⊗u2(1−u3−u1u4)+(u2u4)⊗(1−u2u4)⊗ 1−u2u4
1−u3−u2u4

+((u2u4)⊗u3+u3⊗(u2u4))⊗1−u3−u2u4
1−u2u4

−(u1←→u2)
(A.5)
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S(qu4) = (u1⊗u3+u3⊗u1)⊗ u2(1−u1u4)2

(1−u1)(1−u3−u1u4) +u1⊗(1−u1)⊗(u1u2u4−u1−u2+1)2

u1u2u3(1−u4)

+u1⊗u2⊗
(1−u1)(1−u2)u3

(1−u1−u2+u1u2u4)2 +(u1u4)⊗(1−u1u4)⊗u1(1−u1)u3(1−u4)(1−u3−u1u4)
(1−u1u4)2(1−u1−u2+u1u2u4)2

+(u3⊗u4+u4⊗u3)⊗ (1−u1u4)2

1−u3−u1u4
+u3⊗(1−u3)⊗1−u3−u1u4

u1u4

−u4⊗(1−u4)⊗ (1−u1)
(1−u1−u2+u1u2u4) +(u1←→u2)−u3⊗(1−u3)⊗u3

−(u4⊗u3+u3⊗u4)⊗(1−u4)−u4⊗(1−u4)⊗u3 (A.6)
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