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Abstract: Motivated by the desire to understand chaos in the S-matrix of string the-
ory, we study tree level scattering amplitudes involving highly excited strings. While the
amplitudes for scattering of light strings have been a hallmark of string theory since its
early days, scattering of excited strings has been far less studied. Recent results on black
hole chaos, combined with the correspondence principle between black holes and strings,
suggest that the amplitudes have a rich structure. We review the procedure by which an
excited string is formed by repeatedly scattering photons off of an initial tachyon (the DDF
formalism). We compute the scattering amplitude of one arbitrary excited string and any
number of tachyons in bosonic string theory. At high energies and high mass excited state
these amplitudes are determined by a saddle-point in the integration over the positions of
the string vertex operators on the sphere (or the upper half plane), thus yielding a gener-
alization of the “scattering equations”. We find a compact expression for the amplitude of
an excited string decaying into two tachyons, and study its properties for a generic excited
string. We find the amplitude is highly erratic as a function of both the precise excited
string state and of the tachyon scattering angle relative to its polarization, a sign of chaos.
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1 Introduction

This will be the first in a series of papers in which we study string theory scattering
amplitudes involving highly excited strings. This differs from most previous studies of
string scattering, which either involve only light strings, or compute the decay rate of an
excited string. We will be studying exclusive amplitudes involving precisely specified, yet
generic, heavy string states.
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Three questions. The motivation for this study stems from three related questions.
The first question has to do with black hole chaos: fairly recently it was recognized

that black holes are chaotic [1–3]. The chaos — exponential divergence of trajectories in
phase space — is a result of the redshift near the horizon. The geometry of the black hole
sets the Lyaponuv exponent. Chaotic systems are known to have a rich array of properties:
are there qualitative or quantitative statements that can be made about black hole chaos
that go beyond this elementary diagnostic of Lyaponuv behavior?

The second question has to do with chaos in quantum field theory. Chaos has been
extensively discussed in classical and quantum mechanics. What is the structure of chaos
in the more general context of quantum field theory? It was recently proposed [4] that
chaos can be seen in the erratic behavior of scattering amplitudes — physically measurable
quantities. What is an analytically tractable example of such a system?

Our proposal is that both of these questions may have answers in the context of
scattering of highly excited strings. Briefly, a generic heavy string will have a large number
of excited modes; a cartoon is shown in figure 1 (c). We expect the scattering amplitude of
a light string off of the excited string to be highly erratic as a function of the outgoing angle,
or the ingoing angle, or a small change in the state of the excited string. Moreover, the
Horowitz-Polchinski correspondence principle between black holes and strings states [5],
in effect, that some of the black hole microstates have a one-to-one mapping to excited
string states, and the number of such states is enough to comprise an order-one fraction of
the black hole entropy. The string coupling at the correspondence point - where the string
turns into a black hole — is small, suggesting that we may be able to study black hole chaos
by studying string chaos within string perturbation theory. This is an extremely fortuitous
situation wherein we have a weakly interacting system with a enormous number of almost
stable resonances that can mimic the microstates of a black hole and exhibit chaos.

Finally, we believe that the study of scattering of high energy, highly excited strings
may provide new insight into a third question, which is an old question: what is the high
energy behavior of string theory?

In the rest of the introduction we discuss these motivations and background in more
detail, overview how we will compute amplitudes with excited strings, mention what we
think can be computed in future work, and give an outline of the paper.

1.1 Black holes, strings, and chaos

Pinball chaos. An iconic example of classical chaos is a ball bouncing around in a
stadium. The stadium can be a rectangle with semicircular caps (Bunimovich stadium), or
the inside of a square with a circle cut out (Sinai billiards), or something else. Two balls
with similar starting positions and velocities will, after multiple collisions with the stadium
boundaries, be at very different locations. Another example of chaos is a pinball game,
sketched in figure 1(a). A small ball is sent in, it bounces around between three disks, and
then escapes. While trapped between the disks, it is as if it is in a stadium. The outgoing
angle of the ball is a highly erratic function of the ingoing angle: an arbitrarily small range
of impact parameters can lead to all possible outgoing angles [6–12].
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pinball                            black hole                        string

Figure 1. (a) Pinball scattering is a prototypical example of classical chaos: the particle’s outgoing
angle is highly sensitive to its impact parameter [6–12]. This is a consequence of the enormous
number of qualitatively different scattering trajectories. Giving the labels 1, 2, 3 to the three disks,
a trajectory that involves n bounces between the disks before escaping is of the form e.g. 12132 · · · .
The number of such trajectories grows as 2n. (b) Scattering off of a black hole is also chaotic: a
small perturbation of the black hole state, by for instance adding an extra soft particle, causes a
large change in the state of the outgoing Hawking radiation [3]. (c) Our goal is to study scattering
off of a highly excited string, which we hope will also exhibit chaos. In all three of these physically
very different setups, there are an exponentially large number of internal states.

The pinball game will be useful to keep in mind — it is an example of chaos manifesting
itself as erratic behavior of the (one-to-one classical) S-matrix, thereby providing an entry
point for discussing chaos in quantum field theory and string theory, where the S-matrix
is the natural observable.

Black hole chaos. While it has been known since the discovery of Hawking radiation
that quantum black holes have thermodynamic properties, it is only fairly recently that it
was recognized how to see black hole chaos [1, 2]. The diagnostic for semiclassical quantum
chaos that was applied is the exponential growth of the out-of-time-order correlator [2, 13,
14], which defines a quantum Lyaponuv-like exponent. Soon after, a simple argument for
the Lyaponuv exponent of a black hole was given in [3]: slightly perturbing a radiating black
hole by throwing a particle into it causes the horizon to expand slightly, which due to the
redshift factor, causes an exponentially large time delay in the escape of Hawking quanta
being emitted soon thereafter. The redshift is controlled by the black hole temperature T ,
which sets the Lyaponuv exponent λ = 2πT/~. Black hole chaos, once mysterious, is in
fact a simple geometric effect.

One should keep in mind that these arguments are, by necessity, semiclassical. The
picture of Hawking radiation as photons “starting off” outside and close to the horizon,
with the photons closer to the horizon escaping later, is only valid for a limited amount
time (the scrambling time).1 This is sufficient to establish the Lyaponuv exponent, but
it is insufficient to say much else. In particular, in the setup in [3], one does not know

1The scrambling time for a black hole is of order T log T . This is the same as the Ehrenfest time, the
time after which the semiclassical approximation breaks down.
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what effect the extra particle that was sent in has on Hawking quanta emitted more than
a scrambling time later.

Note that, for a classically chaotic system, it is simple to linearize the equations of
motion around some point in phase space, ẋ ≈ Ax. If the matrix A has eigenvalues with
positive real parts then, at least in that region of phase space, the system is chaotic.2 Of
course, this says little about how trajectories will evolve over longer times.

Beyond Lyaponuv exponents. Diagnosing that a system is chaotic is only the start.
The Lyaponuv exponent is by itself of little interest; what one would like is to compute the
physical observables. For the pinball game, this is the mean escape time: if one averages
over ingoing angles of the particle sent in, what is the average amount of time that the
particle spends trapped between the three disks before escaping? The solution is found
in [6–11]. The three disk game is a warmup for a ball bouncing between many disks, which
is a warmup for many billiard balls of the same size colliding against each other. The
microscopic chaos is apparent; what one seeks are the macroscopically measured quantities
— the transport coefficients. A complete understanding of chaos in the system should
provide a prescription for computing the transport coefficients.

Chaos in the S-matrix. Diagnosing chaos for the black hole relied on semiclassical
geometry. What are we to do in a more general context in quantum field theory and string
theory when there is none? A black hole can be viewed as a long lived resonance in the
scattering matrix of quantum gravity. It is natural to propose that for a general quantum
field theory, chaos is reflected in erratic behavior of the S-matrix under a small change in
the in or the out state [4]. To be in a chaotic regime one needs to be far from the vacuum,
requiring either a very high energy collision, or an S-matrix involving a large number of
particles. The S-matrix encodes far more information than the Lyaponuv exponent, but
of course the S-matrix involving a black hole is unknown.

In the context of quantum mechanics, in order for the S-matrix to exhibit chaos, one
would expect a necessary condition is a large number of closely and erratically spaced
resonances. To see this, note that in the case of pinball scattering, chaos is a result
of the particle sometimes spending a very long time bouncing between the disks before
escaping. For some amount of time the trajectory of the particle is well approximated
by one of the (unstable) bound periodic orbits that are trapped within the disks. When
considered quantum mechanically, these periodic orbits manifest themselves as resonances.
If we consider scattering in quantum mechanics off of a potential, then if the potential
has long-lived bound states, the S-matrix will have poles in the complex energy plane. In
particular, for a wave reflecting off of a potential, the transmission factor will have a jump
at the resonance energy, and each such jump in the phase angle gives a time delay, see
e.g. [15, 16].

Achieving a large number of closely spaced resonances in quantum field theory would
generally require strong coupling, in order to produce a large number of bound states. This

2In addition, it is assumed that phase space is bounded. Note also, the quantum Lyaponuv exponent
defined through the out-of-time-order correlator is more like the largest positive eigenvalue of A rather than
the standard classical Lyaponuv exponent, which is defined by a time average over an entire trajectory.
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means we would lose analytic control and be unable to compute the S-matrix. Indeed, this
is the kind of situation which leads to black holes as intermediate states.

An evident exception is a highly excited string. A string — even a free string — has an
enormous number of internal states. This suggests that weakly coupled string theory may
be the rare case in which the S-matrix is both computable and exhibits erratic behavior.
In fact, we have come full circle, due to the Horowitz-Polchinski correspondence principle
between black holes and strings [5], which we now review.

The correspondence principle. Consider a string with zero angular momentum, in
four dimensions. The string coupling gs is related to Newton’s constant G through G ∼
g2
sα
′, where α′ is proportional to the inverse of the string tension or the string length

squared. As one increases Newton’s constant, the string (like any other object) will even-
tually collapse into a black hole. The transition is difficult to specify precisely, but it
roughly occurs when the string is contained within its Schwarzschild radius, 2GM . If we
take the size of the string to be of order

√
α′, then the transition to a black hole occurs

when the mass of the string is of order
√
α′/G. The mass of a string, in terms of its

excitation level N , is
√
N/α′. Thus, the transition occurs at gs ∼ N−

1
4 .

This is the first nontrivial result: for a highly excited string, the string coupling at
the transition is small. As [5] states, this did not have to be the case. Consequently, one
can hope to use weak coupling perturbation theory to study the stringy black holes. For
example, for large excitation level N , and for non-interacting strings, there are exponen-
tially (in

√
N) string states of mass

√
N/α′. These states are degenerate and stable, but

interactions will shift the masses and widths by an amount ∼ g2
sM ∼ g2

s

√
N/α′ ∼

√
1/α′,

small compared to the mass for large N .
The second result is that at the transition, the entropy of the string and of the black

hole are of the same order. The entropy of the string scales as
√
N (this follows from

the standard counting of the degeneracy of string states at level N , and will be reviewed
in appendix. D). The Bekenstein-Hawking entropy of the black hole scales as the horizon
area divided by Newton’s constant, S ∼ A

G , which at the transition also scales as
√
N ,

S ∼ GM2 ∼ g2
sN ∼

√
N .

It is remarkable, and perhaps unique to string theory, that the transition occurs at
weak coupling and that the entropies are of the same order. If one were to consider any
other nearly static object on the verge of collapsing into a black hole — for instance, a
neutron star — then its entropy would be vastly less than the black hole entropy, scaling
as A3/4 in Planck units, rather than A [17].

In this argument, the size of the string is taken to be
√
α′. This is only approximately

correct: a typical excited string would seem to be larger, due to its random walk like be-
havior, but the effect is partially offset by gravitational self-interactions. Defining what is
meant precisely by the size of the string [18], as well as computing the size, is challeng-
ing [19–21]. Regardless, the argument in [5] is sufficient to establish that the entropy of a
string is of the same order as the entropy of a black hole.3

3We see no reason to believe that they are exactly equal [22], except in some special cases [23].
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1.2 Scattering of highly excited strings

The Veneziano amplitude — the tree level scattering amplitude of four tachyons — is one
of the iconic results in string theory [24–26]. A simple beta function of the Mandelstam
variables, it encodes many of the remarkable properties of string theory. The generalization
to the scattering amplitude of N tachyons — the Koba-Nielsen formula [27] — is also well-
known. While the formula is compact, hidden within the integrals is a rich underlying
complexity: the intermediate states of a high energy N -point tachyon amplitude contain
highly excited strings. Indeed, the number of different strings states at a given mass grows
exponentially with the mass. Our goal will be to extract this structure, in a controlled way.

We will study tree-level scattering amplitudes, not of a large number of tachyons, but
of a small number of highly excited strings. As we will see, the scattering of excited strings
can be regarded as extracting a subset of diagrams appearing in the scattering of tachyons
in particular kinematic configurations.

In order to study chaos in string scattering, we need to know the exclusive scattering
amplitude for precisely specified excited strings; taking inclusive or averaged amplitudes
would likely wash out the effects we are seeking. As a result, many of the quantities that
have been previously studied involving excited strings, such as the total decay rate of
the string [28–32], the amplitude for two light strings to form a heavy string [33, 34], the
amplitude with an average over the excited string states [35], or the amplitude involving the
leading Regge trajectory [36], are inapplicable. What we need is the amplitude involving
generic string states, chosen from the ensemble of the exponentially many states at a
given mass.

The main challenge in computing scattering amplitudes with excited strings, at least
at tree level, is actually specifying the excited string states. If, instead of a fundamental
string, we had a violin string, then every state would be specified by the energy in each
of the modes. However, for a fundamental string, the modes are not independent. Recall
that in the Polyakov action, the worldsheet metric is a variable, which we may fix to
be the flat metric. Each mode then appears independent and free, yet the equations of
motion coming from the variation of the worldsheet metric — that the worldsheet energy-
momentum tensor vanishes — must be obeyed, thereby leading to the Virasoro constrains
for the modes. For the low level states, the constraints are simple to solve, but they become
increasingly cumbersome at higher levels, see e.g. [37–40]. Fortunately, there is a more
systematic and physical approach: the DDF construction [41]. In short, the construction
amounts to starting with a tachyon and then repeatedly scattering photons off of it.4 The
explicit form of the resulting vertex operator for an arbitrary string state, which we will
need, was worked out only relatively recently [42].

In this paper we concentrate on amplitudes involving tachyons and one excited string.
Our focus will really be on the simplest case: the amplitude of a highly excited string
decaying into two tachyons. We find the amplitude is highly sensitive to both the precise
state of the excited string and the tachyon scattering angle relative to the polarization of

4Viewing an S-matrix involving a highly excited string as part of an S-matrix with a large number of
photons is in line with the proposal in [4] that one look for chaos in a many-particle S-matrix.
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the stringy state. However, a discussion of chaos in string scattering that goes beyond
this elementary observation is left for [43]. The study of amplitudes involving more than
one excited string is challenging and is largely left to future work; in [44] we compute the
simplest amplitude, the three-point amplitude, in which all three strings are excited.5,6

1.3 Future work

There are a number of other calculations that we believe should be possible to do.

The excited string as a random walk. We find the scattering amplitudes through a
direct computation using vertex operators. One would like a simpler and more intuitive
calculation. A generic highly excited string is often modeled as a random walk [19, 54–60],
with interactions between strings a result of strings splitting and joining [61, 62]. One
would like to calculate the scattering amplitude using this model. Certainly the picture of
the excited string as a random walk makes it intuitive that the amplitude should behave
erratically; one would like to make this precise.

The decaying string and black body radiation. Amati and Russo [35], see also [63–
73] studied the decay of a massive string into a photon and another massive string, averaging
over the initial string states of the same mass, and summing over all outgoing heavy string
states. It was found that the decay rate, as a function of the photon energy, obeys a black
body spectrum with a temperature that is the Hagedorn temperature. This is consistent
with the Horowitz-Polchinski correspondence as the Hagedorn temperature is 1/

√
α′, which

coincides with the Bekenstein-Hawking temperature, 1
GM , sinceG ∼ g2

sα
′ andM ∼

√
N/α′,

which agree when gs ∼ N−
1
4 . Using the methods presented here allows one to compute the

exclusive amplitudes of a particular heavy string decaying into a particular heavy string
and a photon [44]. Averaging should of course reproduce the blackbody spectrum, but the
exclusive amplitude will give much more: it will allow one to see precisely how the radiation
differs for each string microstate, the string analog of the long sought goal of extracting
information from Hawking radiation.7

Loop corrections. Free excited strings have an enormous degeneracy of energy levels:
the number of degenerate states scales exponentially with the mass. At finite string coupling
one expects this degeneracy to be completely broken, with resulting energy level spacings
that are exponentially small.

A more tractable starting point is finding the energy levels perturbatively in the string
coupling. At leading order, one should compute the one loop string diagram correction
to the two-point amplitude of a heavy string. Loop amplitudes in string theory are in
principle straightforward; it is the same computation as the tree level diagram, but on a

5There have been a number of previous studies of the three-point amplitude of excited strings, such
as [45–50], but as far as we know, none of these give a usable form for the amplitude involving typical
highly excited strings.

6It may be interesting to understand how these compare with the cubic couplings [51–53] in the putative
AdS dual of the SYK model.

7It was recently proposed [74–77] that for black holes information can be recovered by including new
replica wormhole saddles in the gravitational path integral.
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torus or cylinder, though such computations in practice are involved. One loop diagrams
were studied in [78–89]. These studies average over the string states. One would like to
compute the one loop amplitude for precisely defined excited string states, using the same
DDF vertex operators discussed here. The imaginary part of the one loop diagram gives
back the tree level amplitude of a heavy string decaying to two heavy strings, while the
real part gives the mass shift.

Saddles for high energy, fixed angle scattering. At low energies, strings behave
as particles and the dynamics can be represented by a local effective field theory. At
high energies (equivalently, in the tensionless limit T = 1/πα′, with α′ → ∞), strings are
very stringy. One might hope that in this ultra high energy limit string theory simplifies.
Concretely, do the string scattering amplitudes in this limit admit a simple spacetime
interpretation illustrating how the strings are interacting?

Gross and Mende studied high energy, fixed angle scattering amplitudes of
tachyons [90–93]. They found, at each order in string perturbation theory, a particular
saddle for the path integral over surfaces, and furthermore argued that this may be the
dominant saddle (the saddle equations have many solutions and most are unknown, so this
has never been definitively shown). Equipped with the saddle, one has a spacetime picture
of how the strings interact [91].

Since most string states are highly excited, it seems in fact more natural to ask about
the high energy, fixed angle amplitudes of generic highly excited strings.8 What are the
equations describing the saddles in this case, and is there a dominant saddle? Concretely,
in section 5.2, we will present the tree level amplitude involving one excited string and
three tachyons. What are the saddles?9

There is an intriguing connection with field theory amplitudes. The saddle equations
for n-point tree level tachyons amplitudes [90] are the same equations as the scattering equa-
tions appearing in the CHY formula for field theory amplitudes of massless particles [95–97],
see appendix C. The saddle equations we will find for highly excited string amplitudes are
a generalization of the scattering equations; do they have a field theory application?

1.4 Outline

The paper is organized as follows.
In section 2 we establish notation and review tachyon scattering amplitudes.
In section 3 we review the explicit construction of the vertex operators which create

any excited string state.
8If one is scattering excited strings, rather than tachyons, then as long as the masses of the strings are

held fixed as the scattering energies are taken to infinity, the analysis of Gross and Mende doesn’t change
and the same saddle solutions hold. However, if the string mass is also taken to infinity, then the saddles
change. This is the limit we are interested in now: large Mandelstam s and t, and large excitation level N ,
while keeping the ratio fixed.

9As we have remarked earlier, scattering of excited strings can be viewed as picking out a subset of
diagrams appearing in the many-point amplitude of light strings, suggesting that the solutions of the
saddle equations for heavy string 4-point amplitudes comprise a subset of the solutions for n-point tachyon
amplitude saddle equations. This may give a handle on the enormous number ((n − 3)! at tree level) of
saddles for the n-point tachyon amplitude. See [94] for a recent discussion of the saddles at large n.
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In section 4 we use these operators to compute the amplitude involving one excited
string and any number of tachyons. In section 4.1 we discuss the special case in which
the polarizations of all the photons creating the excited state are orthogonal to each other,
leading to a significant simplification of the amplitude. The amplitude with an arbitrary
excited string is discussed in section 4.2. A nontrivial check on the results that we perform
is showing that the integrand for the amplitude exhibits SL2 invariance.

In section 5 we return to the amplitude involving one excited string, studying it in
detail in section 5.1 for a (typical) highly excited string decaying to two tachyons and
briefly in section 5.2 for an excited string decaying to three tachyons. The reader who is
uninterested in the details may go directly to section 5.

In section 6 we end with a brief discussion.
In appendix A we review the construction of covariant vertex operators via the Vi-

rasoro constraints. In appendix B we check the normalization of the DDF operators. In
appendix C we exhibit a generalization of the scattering equations which determine the
high energy scattering of light and massive string states. In appendix D we discuss the
properties of a typical excited string.

2 Review of tachyon scattering

In this section we review the Polyakov action for a string, the expansion of the string
field into oscillator modes, and the operator product expansion (OPE) of tachyon vertex
operators. We also review the tachyon scattering amplitude and show that the integrand
satisfies SL2 invariance. In this paper we will be discussing D dimensional open bosonic
string theory for simplicity. The generalization to the superstring is straightforward, and
we don’t expect any qualitatively different behavior.

The string action. The location of the string, as a function of the worldsheet space and
time coordinates σ, t, is given by the string fieldXµ(σ, t) which satisfies the Polyakov action,

− 1
4πα′

∫
dτdσ

√
−γγab∂aXµ∂bXµ (2.1)

where the indices a, b range over the two worldsheet coordinates: σ and τ (the Euclidean
worldsheet time), and the indices µ range over the D ambient spacetime coordinates. The
action is diffeomorphism invariant, and we may chose γab to be the flat metric, however
we will still have to impose the equations of motions for γab: that the worldsheet energy-
momentum tensor vanishes. We will work in conventions with α′ = 1/2, and focus on open
strings (the analysis with closed strings is similar).

The expansion of an open string in terms of oscillators is,

Xµ(σ, t) = xµ + ipµt+ i
∑
n 6=0

1
n
αµne

−int cosnσ , (2.2)

where
[αµm, ανn] = mδm+nη

µν , [xµ, pν ] = iηµν , ηµν = (−+ + · · ·+) , (2.3)
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where xµ and pµ are the center of mass position and momentum of the string. The αµn are
the creation and annihilation operators: for negative n, αµn excites level −n of the string
in the direction µ. For an open string, the vertex operators are inserted on an endpoint of
the string, which we take to be the left endpoint, σ = 0. The right endpoint is at σ = π.
At the left endpoint,

Xµ(σ = 0, t) ≡ Xµ(z) = xµ − ipµ log z + i
∑
n 6=0

1
n
αµnz

−n , z = eit . (2.4)

It is standard to Wick rotate the Lorentzian worldsheet time t to Euclidean worldsheet
time τ ,

τ = −it , ds2 = −dt2 + dσ2 = dτ2 + dσ2 , (2.5)

and to map the string worldsheet onto the upper half plane. The mapping is,

z = eiσ−τ , z = e−iσ−τ , ds2 = dzdz

|z|2
. (2.6)

Notice that the string endpoints, σ = 0 and σ = π, are mapped onto the real axis: for
σ = 0, z = e−τ . Finally, we note that the propagator is,

〈Xµ(z1)Xν(z2)〉 = −ηµν log z12 − ηµν log z12 ,

〈∂m1X(z1)∂m2X(z2)〉 = (−1)m2 (m1+m2−1)!
zm1+m2

21
(2.7)

In studying the OPE, we will only write the holomorphic piece.

Tachyon amplitudes and the OPE. Let us review the amplitude for the scattering of
n tachyons. The vertex operator for a tachyon is given by,

: eip·X(z) : , (2.8)

and the amplitude is,

A = 1
vol(SL2)

∫ ∏
dzi 〈

n∏
i=1

: eipi·X(zi) :〉 . (2.9)

All that remains is to evaluate the right-hand side. Before proceeding, we review some ele-
mentary properties of the OPE, which we will need later in discussing the vertex operators
for excited states.

Recall that the purpose of normal ordering is to remove divergent pieces which arise
when two operators are brought together. For instance,

: ∂φ(z)∂φ(z) := lim
w→z

(∂φ(z)∂φ(w)− 〈∂φ(z)∂φ(w)〉) . (2.10)

Normal ordering is important when we need to define composite operators. The product
of two operators, A and B, can be written as,

A(z)B(w) =
N∑

n=−∞

{AB}n(w)
(z − w)n , A(z)B(w) ∼

N∑
n=1

{AB}n(w)
(z − w)n , (2.11)

– 10 –
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where the second term, with the ∼, is the OPE which only includes the divergent pieces in
the expression. Thus, in the limit z → w, we have a finite composite operator, along with
a finite number of divergent terms which have been explicitly separated,

A(z)B(w)→: AB(w) : +
N∑
n=1

{AB}n(w)
(z − w)n . (2.12)

When computing the OPE, we first take all possible Wick contractions, and then
Taylor expand what is left around w. For instance, let us look at the composite operator
formed from the free field φ, with correlation function 〈∂φ(z)∂φ(w)〉 = − 1

(z−w)2 . We have,

: (∂φ(z))2 :: ∂φ(w) : = :(∂φ(w))3 : +2∂φ(z)〈∂φ(z)∂φ(w)〉

∼ −2 ∂φ(z)
(z − w)2 ∼ −2 ∂φ(w)

(z − w)2 − 2∂
2φ(w)
z − w

, (2.13)

where in the second line we looked at just the OPE piece. Let us now look at the OPE of
two tachyon vertex operators,

: eip1·X(z1) : :eip2·X(z2) :

=
∑
n,m

1
n!m! : (ip1 ·X(z1))n : : (ip2 ·X(z2))m :

=
(

1 + 〈ip1 ·X(z1) ip2 ·X(z2)〉+ 1
2!(〈ip1 ·X(z1) ip2 ·X(z2)〉)2 + . . .

)
: eip1·X(z1)eip2·X(z2) :

= e−〈p1·X(z1)p2·X(z2)〉 : eip1·X(z1)eip2·X(z2) :

= |z12|p1·p2 : eip1·X(z1)eip2·X(z2) : . (2.14)

In the first equality we Taylor expanded the exponentials. In the second equality we
performed Wick contractions, in the third equality we resummed the Wick contractions,
and in the last equality we made use of the propagator (2.7). Similarly, the OPE of multiple
tachyon vertex operators is given by,∏

i

: eipi·X(zi) : =
∏
i<j

z
pi·pj
ij : ei

∑
i
pi·X(zi) : . (2.15)

To compute the expectation value, we may Taylor expand X(zi) = X(z1) + . . ., and thus
pick up a delta function for momentum conservation,

〈: ei
∑

i
pi·X(zi) :〉 = (2π)DδD

(∑
i

pi

)
. (2.16)

Equipped with this result, we can now evaluate the tachyon amplitude (2.9) to get the
Koba-Nielsen formula,

A = (2π)DδD(
∑
i pi)

vol(SL2)

∫ ∏
i

dzi
∏
i<j

z
pi·pj
ij . (2.17)
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It will sometimes be convenient to write the integrand as,∏
i<j

z
pi·pj
ij = eL , L =

∑
1≤i<j≤n

pi · pj log zij . (2.18)

SL2 invariance. An important property of tree-level string theory amplitudes is that the
integrand exhibits SL2 invariance. While the SL2 invariance of the tachyon amplitude is
fairly evident, the SL2 invariance of amplitudes with excited strings will be nontrivial. As
warmup, here we check that the tachyon amplitude integrand is SL2 invariant, by writing
it in a manifestly SL2 invariant form. Under an SL2 transformation,

zi →
azi + b

czi + d
, where ad− bc = 1 , (2.19)

and correspondingly the measure and difference between two points transform as,

dzi →
1

(czi + d)2dzi , zij →
zij

(czi + d)(czj + d) . (2.20)

Let us consider the four-point amplitude first, n = 4. We may use momentum conservation
to eliminate p1 = −

∑
i>1 pi in L (2.18) ,

L = p2 · p3 log z23
z12z13

+ p2 · p4 log z24
z12z14

+ p3 · p4 log z34
z13z14

− 2 log z12z13z14 , (2.21)

where we used the mass-shell condition for tachyons, p2
i = −m2

i = 2. Using momentum
conservation, p2

1 = (p2 + p3 + p4)2, allows us to eliminate p2 · p3, since p2 · p3 = −2 − p2 ·
p4 − p3 · p4, and hence,

L = p2 · p4 log z24z13
z14z23

+ p3 · p4 log z12z34
z14z23

− 2 log z23z14 . (2.22)

We now see that the amplitude is,

A = 1
vol(SL2)

∫
dz1dz2dz3dz4

z2
14z

2
23

R p2·p4(R− 1)p3·p4 , R = z13z24
z14z23

, (2.23)

which is manifestly SL2 invariant. Using SL2 symmetry, three of the points can be fixed:
z1 =∞, z2 = 1, z3 = z and z4 = 0, turning the amplitude into,

A =
∫ 1

0
dz zp3·p4(1− z)p2·p3 = β(p3·p4 + 1, p2·p3 + 1) (2.24)

where on the right we have the Euler beta function. Consider now the amplitude with n

tachyons. We again eliminate p1 in L (2.18) through momentum conservation,

L =
∑

1<i<j≤n
pi · pj log zij

z1iz1j
− 2

∑
1<i≤n

log z1i . (2.25)

Using momentum conservation, p2
1 = (

∑
i>1 pi)2, we eliminate p2 · p3,

p2 · p3 = 2− n−
∑

1<i<j≤n
(i,j) 6=(2,3)

pi · pj , (2.26)
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so that the amplitude becomes,

L =
∑

1<i<j≤n
(i,j) 6=(2,3)

pi · pj log zijz12z13
z1iz1jz23

+
(

log z23
z12z13

+
∑
1<i

log z12z13
z2

1iz23

)
. (2.27)

The first term is manifestly SL2 invariant. The second term, combined with the measure,
is SL2 invariant.10

3 Building excited string states

In the previous section we discussed the scattering of tachyons — the lightest string states.
The majority of string states are, however, excited states, and it is their scattering am-
plitude that we are interested in. In this section we review the construction of vertex
operators for excited string states.

The unique lightest string state is the tachyon, denoted by |0; p〉, where p is the center
of mass momentum of the string. To build excited states, we act with the creation operator,
αµ−m, which excites the m’th mode of the string, in the µ direction. An excited state is of
the form

αµ1
−m1α

µ2
−m2 · · ·α

µk
−mk |0; p〉 , (3.1)

and has a mass,

M2 = 2(N − 1) , N =
∞∑
m=1

Nm , Nm = α−m · αm , (3.2)

where Nm is the number operator for the number of excited modes at level m, and N is
the total level.

Not all states (3.1) are allowed; we must build superpositions which are annihilated
by the Virasoro generators. This is discussed in more detail in appendix A. For instance,
at level N = 1, the states are of the form λ · α−1|0; p〉. There are two constraints: the
polarization vector λ must be orthogonal to the momentum, λ ·p = 0, and one can add any
multiple of p to λ and leave the amplitude unchanged. This leave D−2 independent states
at level-one. These states are massless, and this result is just what we expect for photons:
in D = 4 there are only two transverse polarizations, and changing the polarization by a
vector proportional to the momentum leaves the amplitude unchanged. We will refer to
the level-one states as photons (massless spin 1 particles). One can proceed to higher levels
in a similar manner (N = 2 and N = 3 are done in appendix A), however with increasing
N the process becomes increasingly more involved, making it difficult to write down the
form of a state at general level N .

10To see this, notice that for the argument of the log to be invariant under inversions of za, there needs
to be the same powers of za in both the numerator and denominator. For instance, log z23

z12z13
is invariant

under z2 → 1/z2. From the first log in parenthesis in (2.27) there is an extra z2
1 in the denominator, and

from the second log an extra factor z2
i in the denominator, for i 6= 1; so in total, an extra z2

i for all i. This is
just what we need to cancel off the transformation of the measure, i.e. dzi/z2

i is invariant under inversions.
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Figure 2: Figure of many tachyons scattering. We take the OPE to get the excited states we are
interested in.

{TachyonS}
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in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The resulting string state has momentum p = ep � Nq where

N =
Pk

i=1 ni. The mass of the state is p2 = 2(1 � Nep · q), where we used that the tachyon has

mass m2 = �ep2 = 2, and the photon is massless. In order for the excited string to have the correct

mass, M2 = �p2 = 2(N � 1), we need to choose q such that ep · q = 1.

3.1. Level-one and level-two states

Level-one

Let us see how this procedure works, starting with the simplest case of the N = 1 states,

� · A�1|0; pi. Applying (3.5) to the tachyon vertex operator, we must compute,

: Ai
�1e

iep·X(0) :=

I
dz

2⇡
: @X i(z) e�iq·X(z) : : eiep·X(0) : . (3.7) {37}

To evaluate the contour integral, we must first evaluate the OPE. We Taylor expand the exponen-

tials,

: @X i(z) e�iq·X(z) : : eip·X(0) :=
X

n,m

1

n!m!
: @X i(z)(�iq ·X(z))n :: (ip ·X(0))m :

and then Wick contract, in a manner similar to the OPE of two tachyon vertex operators, discussed

in Sec. ??. We get,

: @X i(z) e�iq·X(z) : : eiep·X(0) : = |z|�ep·q
✓
: @X i(z)e�iq·X(z)eiep·X(0) : � iep i

z
: e�iq·X(z)eiep·X(0) :

◆
. (3.8) {38}

The factor of |z|�ep·q comes from contracting the exponentials. Since ep · q = 1, this factor is

|z|�1. Additionally, the first term in the parenthesis comes form @X i(z) uncontracted, while the

second term comes from contracting h@X i(z) ep ·X(0)i = �ep i/z. The only terms that will give a

contribution to the contour integral (3.8) are the single poles. We should therefore Taylor expand

X(z) about X(0) to pick out this contribution. For the first term in (3.9) we can just replace X(z)

with X(0), whereas for the second term, the extra factor of 1/z leads us to keep the order z term

in the expansion X(z) = X(0) + z@X(0) + . . .. Thus, the single pole part of the OPE of the A�1

9

Figure 2. Starting with a tachyon of momentum p̃, photons with momentum proportional to q are
scattered off of it, resulting in an excited string of momentum p.

A more physical and systematic approach comes from recognizing that all possible ex-
cited string states are already contained within n-point amplitudes of, for instance, tachyons
or photons, in the form of intermediate states. To obtain the scattering amplitudes of the
excited states, we simply need to pick them out.

We can do this iteratively. Suppose we have a string moving with momentum p̃ and
created with the vertex operator V (z)eip̃·X(z). We will scatter a photon off of this state.
The vertex operator for a photon of momentum mqµ (m is an integer and qµ is a null
vector) is,

iλ · ∂X eimq·X(z) , (3.3)

where the polarization λµ is orthogonal to the momentum, λ · q = 0. Formally, the process
of picking out the state after scattering the string with the photon consists of taking the
OPE of the photon vertex operator and the vertex operator of the initial string state. A
contour integral then picks out the pole in the OPE. Explicitly, one computes,∮

dz

2πi : iλ · ∂X(z) eimqX(z) : : V (0)eip̃·X(0) : . (3.4)

To make the procedure systematic, we define,

λ ·Am =
∮
dz

2π λ · ∂X(z) eimq·X(z) , q2 = 0 , λ · q = 0 , |λ|2 6= 0 (3.5)

The Aµm are the DDF operators [26, 41, 42]. It is standard [26] to choose a coordinate
system in which qµ points in the + direction. One can check that the transverse Aim obey
the commutation relations of creation and annihilation operators: they are isomorphic to
the transverse components of the operators αµm, and describe the transverse modes of the
string. However, it is unnecessary to pick a coordinate system, so we will continue working
with the covariant form (3.5). Notice that from the form (3.5) it is clear that, regardless of
the coordinate system, there are D − 2 independent Aµm. The counting is identical to the
counting of the number of independent photon polarizations, as discussed above. Explicitly,
λ · q = 0 gives one constraint. A second constraint is that we can add any multiple of q to
λ and leave the amplitude unchanged, since we just pick up a total derivative,∮

dz

2π q · ∂X(z) eimq·X(z) = 1
im

∮
dz

2π∂ e
imq·X(z) = 0 , (3.6)

To construct the vertex operator for an excited string state, we start with a tachyon
of momentum p̃, and iteratively scatter photons off of it, as shown in figure 2,

(λk ·A−mk) · · · (λ2 ·A−m2)(λ1 ·A−m1)eip̃·X . (3.7)
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Figure 2: Figure of many tachyons scattering. We take the OPE to get the excited states we are
interested in.
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: Ai
�1e

iep·X(0) :=

I
dz

2⇡
: @X i(z) e�iq·X(z) : : eiep·X(0) : . (3.7) {37}

To evaluate the contour integral, we must first evaluate the OPE. We Taylor expand the exponen-

tials,

: @X i(z) e�iq·X(z) : : eip·X(0) :=
X

n,m

1

n!m!
: @X i(z)(�iq ·X(z))n :: (ip ·X(0))m :

and then Wick contract, in a manner similar to the OPE of two tachyon vertex operators, discussed

in Sec. ??. We get,

: @X i(z) e�iq·X(z) : : eiep·X(0) : = |z|�ep·q
✓
: @X i(z)e�iq·X(z)eiep·X(0) : � iep i

z
: e�iq·X(z)eiep·X(0) :

◆
. (3.8) {38}

The factor of |z|�ep·q comes from contracting the exponentials. Since ep · q = 1, this factor is

|z|�1. Additionally, the first term in the parenthesis comes form @X i(z) uncontracted, while the

second term comes from contracting h@X i(z) ep ·X(0)i = �ep i/z. The only terms that will give a

contribution to the contour integral (3.8) are the single poles. We should therefore Taylor expand

X(z) about X(0) to pick out this contribution. For the first term in (3.9) we can just replace X(z)

with X(0), whereas for the second term, the extra factor of 1/z leads us to keep the order z term

in the expansion X(z) = X(0) + z@X(0) + . . .. Thus, the single pole part of the OPE of the A�1
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Figure 2: Figure of many tachyons scattering. We take the OPE to get the excited states we are
interested in.
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Figure 3: Forming the sate � ·A�1|0i by scattering a photon o↵ of a tachyon. Change label to �q {DDFlevel1}

We have picked a very particular scattering configuration, in which each photon has momentum

in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The momentum of the i’th photon is �miq and its polarization is

�i. The resulting string state has momentum p = ep�Nq where N =
Pk

i=1 mi.
14The mass of the

state is p2 = 2(1�Nep ·q), where we used that the tachyon has mass m2 = �ep2 = 2 and the photon

is massless. In order for the excited string to have the correct mass, M2 = �p2 = 2(N � 1), we

need to choose q such that ep · q = 1.

� q (3.7)

In what follows, we explicitly work out the form of these vertex operators, essentially reviewing

the construction in [99,43]. 15 We start in Sec. 3.1 with the N = 1 state, � · A�1|0i, and then the

two N = 2 states: � · A�2|0i and (�2 · A�1)(�1 · A�1)|0i. In Sec. 3.2 we first consider the state

� ·A�m1
|0i, then we look at the state (�2 ·A�m2

)(�1 ·A�m1
)|0i, and finally we compute the vertex

operator for the general state (3.6).

3.1. Level-one and level-two states
{sec31}

In this section we construct the vertex operators for the states at level N = 1 and at level

N = 2.

14It would make more sense for p = ep+Nq. We are adding photon of momentum �mq. Maybe write definition
for A�m

15Useful discussions of the DDF operators also include [100,101]. See also [102–108] for further applications. For
a di↵erent approach to excited string scattering, see [109].
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Figure 3. Forming the sate λ ·A−1|0〉 by scattering a photon off of a tachyon.

We have picked a very particular scattering configuration, in which each photon has mo-
mentum in the same direction, parallel to q (this is in fact sufficient to generate any excited
string state; we will elaborate on this later). The momentum of the i’th photon is −miq

and its polarization is λi. The resulting string state has momentum p = p̃ − Nq where
N =

∑k
i=1mi. The mass of the state is p2 = 2(1−Np̃ · q), where we used that the tachyon

has mass m2 = −p̃2 = 2 and the photon is massless. In order for the excited string to have
the correct mass, M2 = −p2 = 2(N − 1), we need to choose q such that p̃ · q = 1.

In what follows, we explicitly work out the form of these vertex operators, essentially
reviewing the construction in [42, 98].11 We start in section 3.1 with the N = 1 state,
λ·A−1|0〉, and then the two N = 2 states: λ·A−2|0〉 and (λ2·A−1)(λ1·A−1)|0〉. In section 3.2
we first consider the state λ ·A−m1 |0〉, then we look at the state (λ2 ·A−m2)(λ1 ·A−m1)|0〉,
and finally we compute the vertex operator for the general state (3.7).

3.1 Level-one and level-two states

In this section we construct the vertex operators for the states at level N = 1 and at
level N = 2.

Level-one. We start with the simplest case of the N = 1 states, λ · A−1|0; p〉. Here we
are scattering a photon of momentum q off of a tachyon, see figure 3. Applying (3.5) to
the tachyon vertex operator, we need to compute,

: λ ·A−1e
ip̃·X(0) :=

∮
dz

2π : λ · ∂X(z) e−iq·X(z) : : eip̃·X(0) : . (3.8)

To evaluate the contour integral, we must first evaluate the OPE. Taylor expanding the
exponentials,

: λ · ∂X(z) e−iq·X(z) : :eip̃·X(0) :=
∑
n,m

1
n!m! : λ · ∂X(z)(−iq ·X(z))n : : (ip̃ ·X(0))m :

and then Wick contracting, in a manner similar to the OPE of two tachyon vertex operators
as discussed in section 2, gives,

:λ · ∂X(z) e−iq·X(z) : : eip̃·X(0) :

= z−p̃·q
(

:λ · ∂X(z)e−iq·X(z)eip̃·X(0) : − iλ · p̃
z

:e−iq·X(z)eip̃·X(0) :
)
. (3.9)

11Useful discussions of the DDF operators also include [99, 100]. See also [101–107] for further applica-
tions.
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3.1. Level-one and level-two states
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Let us see how this procedure works, starting with the simplest case of the N = 1 states,

� · A�1|0; pi. Applying (3.5) to the tachyon vertex operator, we must compute,

: Ai
�1e

iep·X(0) :=

I
dz

2⇡
: @X i(z) e�iq·X(z) : : eiep·X(0) : . (3.7) {37}

To evaluate the contour integral, we must first evaluate the OPE. We Taylor expand the exponen-

tials,

: @X i(z) e�iq·X(z) : : eip·X(0) :=
X

n,m

1

n!m!
: @X i(z)(�iq ·X(z))n :: (ip ·X(0))m :

and then Wick contract, in a manner similar to the OPE of two tachyon vertex operators, discussed

in Sec. ??. We get,

: @X i(z) e�iq·X(z) : : eiep·X(0) : = |z|�ep·q
✓
: @X i(z)e�iq·X(z)eiep·X(0) : � iep i

z
: e�iq·X(z)eiep·X(0) :

◆
. (3.8) {38}

The factor of |z|�ep·q comes from contracting the exponentials. Since ep · q = 1, this factor is

|z|�1. Additionally, the first term in the parenthesis comes form @X i(z) uncontracted, while the

second term comes from contracting h@X i(z) ep ·X(0)i = �ep i/z. The only terms that will give a

contribution to the contour integral (3.8) are the single poles. We should therefore Taylor expand

X(z) about X(0) to pick out this contribution. For the first term in (3.9) we can just replace X(z)

with X(0), whereas for the second term, the extra factor of 1/z leads us to keep the order z term

in the expansion X(z) = X(0) + z@X(0) + . . .. Thus, the single pole part of the OPE of the A�1
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Figure 2: Starting with a tachyon of momentum ep, photons with momentum proportional to q are
scattered o↵ of it, resulting in an excited string of momentum p. {DDFfig}
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Figure 3: Forming the sate � ·A�1|0i by scattering a photon o↵ of a tachyon. Change label to �q {DDFlevel1}

We have picked a very particular scattering configuration, in which each photon has momentum

in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The momentum of the i’th photon is �miq and its polarization is

�i. The resulting string state has momentum p = ep�Nq where N =
Pk

i=1mi.
14The mass of the

state is p2 = 2(1�Nep ·q), where we used that the tachyon has mass m2 = �ep2 = 2 and the photon

is massless. In order for the excited string to have the correct mass, M2 = �p2 = 2(N � 1), we

need to choose q such that ep · q = 1.

� q (3.7)

In what follows, we explicitly work out the form of these vertex operators, essentially reviewing

the construction in [99,43]. 15 We start in Sec. 3.1 with the N = 1 state, � · A�1|0i, and then the

two N = 2 states: � · A�2|0i and (�2 · A�1)(�1 · A�1)|0i. In Sec. 3.2 we first consider the state

� ·A�m1
|0i, then we look at the state (�2 ·A�m2

)(�1 ·A�m1
)|0i, and finally we compute the vertex

operator for the general state (3.6).

3.1. Level-one and level-two states
{sec31}

In this section we construct the vertex operators for the states at level N = 1 and at level

N = 2.

14It would make more sense for p = ep+Nq. We are adding photon of momentum �mq. Maybe write definition
for A�m

15Useful discussions of the DDF operators also include [100,101]. See also [102–108] for further applications. For
a di↵erent approach to excited string scattering, see [109].
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: Ai
�1e

iep·X(0) :=

I
dz

2⇡
: @X i(z) e�iq·X(z) : : eiep·X(0) : . (3.7) {37}
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: @X i(z) e�iq·X(z) : : eip·X(0) :=
X

n,m

1

n!m!
: @X i(z)(�iq ·X(z))n :: (ip ·X(0))m :

and then Wick contract, in a manner similar to the OPE of two tachyon vertex operators, discussed
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✓
: @X i(z)e�iq·X(z)eiep·X(0) : � iep i

z
: e�iq·X(z)eiep·X(0) :

◆
. (3.8) {38}
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We have picked a very particular scattering configuration, in which each photon has momentum

in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The momentum of the i’th photon is �miq and its polarization is

�i. The resulting string state has momentum p = ep�Nq where N =
Pk

i=1mi.
14The mass of the

state is p2 = 2(1�Nep ·q), where we used that the tachyon has mass m2 = �ep2 = 2 and the photon

is massless. In order for the excited string to have the correct mass, M2 = �p2 = 2(N � 1), we

need to choose q such that ep · q = 1.

� q (3.7)

In what follows, we explicitly work out the form of these vertex operators, essentially reviewing

the construction in [99,43]. 15 We start in Sec. 3.1 with the N = 1 state, � · A�1|0i, and then the

two N = 2 states: � · A�2|0i and (�2 · A�1)(�1 · A�1)|0i. In Sec. 3.2 we first consider the state

� ·A�m1
|0i, then we look at the state (�2 ·A�m2

)(�1 ·A�m1
)|0i, and finally we compute the vertex

operator for the general state (3.6).

3.1. Level-one and level-two states
{sec31}

In this section we construct the vertex operators for the states at level N = 1 and at level

N = 2.

14It would make more sense for p = ep+Nq. We are adding photon of momentum �mq. Maybe write definition
for A�m

15Useful discussions of the DDF operators also include [100,101]. See also [102–108] for further applications. For
a di↵erent approach to excited string scattering, see [109].
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are interested in. In this section we review the construction of vertex operators for the excited

string states.

The unique lightest string state is the tachyon, denoted by |0; pi, where p is the center of mass

momentum of the string. To build excited states, we act with the creation operator, ↵µ
�n, which

excites the n’th mode of the string, in the µ direction. An excited state will be of the form
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|0; pi (3.2) {41}

and will have a mass
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where Nn is the number operator for the number of excited modes at level n, and N is the total
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Not all states (4.1) are allowed; we must build superpositions which are annihilated by the

Virasoro generators. This is discussed in more detail in Appendix A. For instance, at level N = 1,
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in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The resulting string state has momentum p = ep � Nq where

N =
Pk

i=1 ni. The mass of the state is p2 = 2(1 � Nep · q), where we used that the tachyon has

mass m2 = �ep2 = 2, and the photon is massless. In order for the excited string to have the correct

mass, M2 = �p2 = 2(N � 1), we need to choose q such that ep · q = 1.

3.1. Level-one and level-two states

Level-one

Let us see how this procedure works, starting with the simplest case of the N = 1 states,

� · A�1|0; pi. Applying (3.5) to the tachyon vertex operator, we must compute,

: Ai
�1e

iep·X(0) :=

I
dz

2⇡
: @X i(z) e�iq·X(z) : : eiep·X(0) : . (3.7) {37}

To evaluate the contour integral, we must first evaluate the OPE. We Taylor expand the exponen-

tials,

: @X i(z) e�iq·X(z) : : eip·X(0) :=
X

n,m

1

n!m!
: @X i(z)(�iq ·X(z))n :: (ip ·X(0))m :

and then Wick contract, in a manner similar to the OPE of two tachyon vertex operators, discussed

in Sec. ??. We get,

: @X i(z) e�iq·X(z) : : eiep·X(0) : = |z|�ep·q
✓
: @X i(z)e�iq·X(z)eiep·X(0) : � iep i

z
: e�iq·X(z)eiep·X(0) :

◆
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The factor of |z|�ep·q comes from contracting the exponentials. Since ep · q = 1, this factor is

|z|�1. Additionally, the first term in the parenthesis comes form @X i(z) uncontracted, while the

second term comes from contracting h@X i(z) ep ·X(0)i = �ep i/z. The only terms that will give a

contribution to the contour integral (3.8) are the single poles. We should therefore Taylor expand

X(z) about X(0) to pick out this contribution. For the first term in (3.9) we can just replace X(z)

with X(0), whereas for the second term, the extra factor of 1/z leads us to keep the order z term

in the expansion X(z) = X(0) + z@X(0) + . . .. Thus, the single pole part of the OPE of the A�1
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Figure 3: Forming the sate � ·A�1|0i by scattering a photon o↵ of a tachyon. Change label to �q {DDFlevel1}

We have picked a very particular scattering configuration, in which each photon has momentum

in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The momentum of the i’th photon is �miq and its polarization is

�i. The resulting string state has momentum p = ep�Nq where N =
Pk

i=1mi.
14The mass of the

state is p2 = 2(1�Nep ·q), where we used that the tachyon has mass m2 = �ep2 = 2 and the photon

is massless. In order for the excited string to have the correct mass, M2 = �p2 = 2(N � 1), we

need to choose q such that ep · q = 1.

� q (3.7)

In what follows, we explicitly work out the form of these vertex operators, essentially reviewing

the construction in [99,43]. 15 We start in Sec. 3.1 with the N = 1 state, � · A�1|0i, and then the

two N = 2 states: � · A�2|0i and (�2 · A�1)(�1 · A�1)|0i. In Sec. 3.2 we first consider the state

� ·A�m1
|0i, then we look at the state (�2 ·A�m2

)(�1 ·A�m1
)|0i, and finally we compute the vertex

operator for the general state (3.6).

3.1. Level-one and level-two states
{sec31}

In this section we construct the vertex operators for the states at level N = 1 and at level

N = 2.

14It would make more sense for p = ep+Nq. We are adding photon of momentum �mq. Maybe write definition
for A�m

15Useful discussions of the DDF operators also include [100,101]. See also [102–108] for further applications. For
a di↵erent approach to excited string scattering, see [109].
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in the same direction, parallel to q (this is in fact su�cient to generate any excited string state;

we will elaborate on this later). The momentum of the i’th photon is �miq and its polarization is

�i. The resulting string state has momentum p = ep�Nq where N =
Pk

i=1 mi.
14The mass of the

state is p2 = 2(1�Nep ·q), where we used that the tachyon has mass m2 = �ep2 = 2 and the photon

is massless. In order for the excited string to have the correct mass, M2 = �p2 = 2(N � 1), we

need to choose q such that ep · q = 1.

In what follows, we explicitly work out the form of these vertex operators, essentially reviewing

the construction in [99,43]. 15 We start in Sec. 3.1 with the N = 1 state, � · A�1|0i, and then the

two N = 2 states: � · A�2|0i and (�2 · A�1)(�1 · A�1)|0i. In Sec. 3.2 we first consider the state

� ·A�m1
|0i, then we look at the state (�2 ·A�m2

)(�1 ·A�m1
)|0i, and finally we compute the vertex

operator for the general state (3.6).

� 2q (3.7)

3.1. Level-one and level-two states
{sec31}

In this section we construct the vertex operators for the states at level N = 1 and at level

N = 2.

Level-one

We start with the simplest case of the N = 1 states, � · A�1|0; pi. Here we are scattering a

photon of momentum q o↵ of a tachyon, see Fig. 3. Applying (3.5) to the tachyon vertex operator,

14It would make more sense for p = ep+Nq. We are adding photon of momentum �mq. Maybe write definition
for A�m

15Useful discussions of the DDF operators also include [100,101]. See also [102–108] for further applications. For
a di↵erent approach to excited string scattering, see [109].
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(b)

Figure 4. (a) Forming the state (λ2 ·A−1)(λ1 ·A−1)|0〉. (b) Forming the state λ ·A−2|0〉.

The factor of z−p̃·q comes from contracting the exponentials. Since p̃ · q = 1, this factor
is z−1. Additionally, the first term in the parenthesis comes form ∂Xµ(z) uncontracted,
while the second term comes from contracting 〈∂Xµ(z) p̃ ·X(0)〉 = −p̃µ/z. The only terms
that will give a contribution to the contour integral (3.8) are the single poles. We should
therefore Taylor expand X(z) about X(0) to pick out this contribution. For the first term
in (3.9) we can just replace X(z) withX(0), whereas for the second term, the extra factor of
1/z leads us to keep the order z term in the expansion X(z) = X(0) + z∂X(0) + . . .. Thus,
the single pole part of the OPE of the A−1 operator and the tachyon vertex operator is,

:λ · ∂X(z) e−iq·X(z) : :eip̃·X(0) :

= . . .+ 1
z

(
:λ · ∂X(0)eip·X(0) : −λ · p̃ : q · ∂X(0)eip·X(0) :

)
+ . . . (3.10)

where p = p̃− q. The integral (3.8) is now immediate, giving,

:λ ·A−1 e
ip̃·X : = i ζ · ∂X eip·X , ζµ ≡ λµ − (λ · p̃)qµ . (3.11)

Notice that, because λ · q = 0, we may equivalently express ζµ in terms of p,

ζµ = λµ − (λ · p)qµ , ζ · p = 0 , (3.12)

where it is manifest that ζµ is orthogonal to pµ. This result (3.11) for the vertex operator
for level-one states is exactly as expected. It is expressed entirely in terms of the physical
polarization ζµ and the physical momentum p. Moreover, as is necessary for photons,
we have found that ζ · p = 0. Notice that the vector qµ, which was arbitrary, is not
explicitly present in the vertex operator. It is only implicitly present, in that both λµ and
qµ determine ζµ.

Level-two. Let us now compute the vertex operators for the states at level two. There
are two kinds of states: those with the first mode excited twice, Ai−1A

j
−1|0; p̃〉, which

corresponds to successively scattering two photons, each of momentum q, off of a tachyon,
see figure 4(a), and those with the second mode excited once, Ai−2|0; p̃〉, which corresponds
to scattering a photon of momentum 2q off of a tachyon, see figure 4(b). We start with
the latter,

:λ ·A−2 e
ip̃·X(0) : =

∮
dz

2π :λ · ∂X(z) e−2iq·X(z) : :eip̃·X(0) : . (3.13)

– 16 –
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As before, performing the OPE gives,

:∂Xµ(z) e−2iq·X(z) : : eip̃·X(0) :

= z−2p̃·q
(

:∂Xµ(z)e−2iq·X(z)eip̃·X(0) : − ip̃µ

z
:e−i2q·X(z)eip̃·X(0) :

)
. (3.14)

Using that p̃ · q = 1, and Taylor expanding X(z) to second order in z, we get for the
vertex operator,

:λ ·A−2 e
ip̃·X : = i :λ · ∂2X eip·X : + 2 :λ · ∂Xq · ∂X eip·X :

− iλ · p̃ :q · ∂2X eip·X : − 2λ · p̃ : (q · ∂X)2eip·X : (3.15)

where now pµ = p̃µ − 2qµ. Expressed in terms of ζ defined earlier by (3.12), we have

:λ ·A−2 e
ip̃·X : =

(
iζ · ∂2X + 2(ζ · ∂X)(q · ∂X)

)
eip·X . (3.16)

If we wish, we can define, ζµν = ζµqν + ζνqµ, and write this vertex operator as,

:λ ·A−2 e
ip̃·X : =

(
iζµ∂

2Xµ + ζµν∂X
µ∂Xν

)
eip·X , ζµνp

ν = ζµ , ηµνζµν = p · ζ = 0 .
(3.17)

In this form, the vertex operator has no explicit q dependence, except through its appear-
ance in the polarizations. This form of the vertex operator is consistent with what one
would find in the covariant construction of vertex operators, by imposing the Virasoro
constraints, see appendix A.

The other states at level-two are of the form (λ2 ·A−1)(λ1 ·A−1)|0; p̃〉, see figure 4(a),
with the vertex operator,

: λ2 ·A−1 λ1 ·A−1 e
ip̃·X(0) :

=
∮
dz

2π : λ2 · ∂X(z)e−iq·X(z) :
∮
dw

2π : λ1 · ∂X(w) e−iq·X(w) : : eip̃·X(0) : (3.18)

Physically, we are starting with a tachyon of momentum p̃, scattering a photon of momen-
tum q off of it, placing the resulting state on-shell so as to be massless, and then scattering
another photon of momentum q off of it, and placing the resulting string on-shell, at mass
M2 = 2(N − 1) = 2. The contour integral over w, corresponding to the action of the first
A−1, is just what we got previously, and gives the vertex operator for a photon. Thus,

: λ2 ·A−1 λ1 ·A−1 e
ip̃·X(0) : =

∮
dz

2π : λ2 ·∂X(z)e−iq·X(z) : i : ζ1 ·∂X(0) ei(p̃−q)·X(0) : , (3.19)

where now ζ1 = λ1 − (λ · p̃)q. We now just need to do the z integral. Performing the
OPE gives,

: λ2 · ∂X(z)e−iq·X(z) : : ζ1 · ∂X(0) ei(p̃−q)·X(0) :

= z−(p̃−q)·q
[

: λ2 · ∂X(z) ζ1 · ∂X(0)e−iq·X(z)ei(p̃−q)·X(0) :

−
(
ζ1 · λ2
z2 + iλ2 · (p̃− q)

z

)
: e−iq·X(z)ei(p̃−q)·X(0) :

]
(3.20)

– 17 –
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Equivalently, inverting the expression through a contour integral,

Sm

✓
� im1

r!
q · @rX

◆
=

I

0

dw

2⇡i

1

wm+1 exp

 
�im1q ·

mX

s=1

ws

s!
@sX(0)

!
. (3.30) {Smnq}

The sum over s on the right only needs to go up to s = m, however one can extend it to s = 1 if

one wishes. The Schur polynomial Sm

�
� im1

r!
q · @rX

�
depends on m variables,

Sm

✓
� im1

r!
q · @rX

◆
⌘ Sm

✓
�im1q · @X,

�im1

2!
q · @2X, . . . ,

�im1

m!
q · @mX

◆
, (3.31)

and our notation on the left, with the r index, is shorthand for this. By simply performing the

Taylor expansion in (3.29), we see that the first few Schur polynomials are,

S0(�
im1

r!
q·@rX) = 1 , S1(�

im1

r!
q·@rX) = �im1q·@X , S2(�

im1

r!
q·@rX) = �1

2

�
im1 q · @2X +m2

1(q · @X)2
�

Returning to our construction of the vertex operator, the expression that we need to Taylor

expand in the first term in (3.26) is a product @X(z) and an exponential. Correspondingly, we do

a double Taylor expansion,

@X i(z)e�im1q·X(z) =
1X

a,b=0

za+b

a!
@a+1X i(0)Sb

✓
� im1

r!
q · @rX(0)

◆
e�im1q·X(0) . (3.32) {333}

The contour integral in (3.26) then pick out the terms with a+ b = m1 � 1. The vertex operator

of the state � · A�m1
|0; epi is thus,

: �·A�m1
eiep·X : =

m1X

m=1

i

(m� 1)!
: �·@mXSm1�m

✓
� im1

r!
q · @rX

◆
eip·X : + : �·p Sm1

✓
� im1

r!
q · @rX

◆
eip·X :

(3.33)

where p = ep�m1q. Using a property of Schur polynomials,

Sm1
(a1, . . . , am1

) =

m1X

m=1

m

m1

amSm1�m(a1, . . . , am1
) , (3.34)

we can write the vertex operator in the more compact form,

: � · A�m1
eiep·X : =

m1X

m=1

i

(m� 1)!
⇣ · @mX Sm1�m

✓
� im1

r!
q · @rX

◆
eip·X ⌘ ⇣ · Pm1

eip·X (3.35) {336}

where, as before, ⇣µ is given by (3.11), ⇣µ = �µ� (� ·p)qµ and Sm was defined in (3.30). For m1 = 1

and m1 = 2, this gives back what we computed previously, (3.10) and (3.15), respectively.

22

Figure 2: Figure of many tachyons scattering. We take the OPE to get the excited states we are
interested in.

{TachyonS}

Using momentum conservation, p21 = (
P

i>1 pi)
2, we can eliminate p2 · p3, since

p2 · p3 = 2�Nv �
X

1<i<jNv
(i,j) 6=(2,3)

pi · pj , (2.26)

giving,

L =
X

1<i<jNv
(i,j) 6=(2,3)

pi · pj log
zijz12z13
z1iz1jz23

+

 
log

z23
z12z13

+
X

1<i

log
z12z13

z21iz23

!
. (2.27)

The first term is manifestly SL2 invariant. The second term, combined with the measure, is SL2

invariant.

3. Building excited states
{sec3}

ep (3.1)

In the previous section we discussed the scattering of tachyons - the lightest string states. The

majority of string states are, however, excited states, and it is their scattering amplitude that we

are interested in. In this section we review the construction of vertex operators for the excited

string states.

The unique lightest string state is the tachyon, denoted by |0; pi, where p is the center of mass

momentum of the string. To build excited states, we act with the creation operator, ↵µ
�n, which

excites the n’th mode of the string, in the µ direction. An excited state will be of the form

↵µ1
�n1

↵µ2
�n2

· · ·↵µk
�nk

|0; pi (3.2) {41}

and will have a mass

M2 = 2(N � 1) , N =
1X

n=1

Nn , Nn = ↵�n · ↵n (3.3)

where Nn is the number operator for the number of excited modes at level n, and N is the total

level.

Not all states (4.1) are allowed; we must build superpositions which are annihilated by the

Virasoro generators. This is discussed in more detail in Appendix A. For instance, at level N = 1,

the states are of the form ⇣ · ↵�1|0; pi, where the polarization vector ⇣ must be orthogonal to the

7

Equivalently, inverting the expression through a contour integral,

Sm

✓
� im1

r!
q · @rX

◆
=

I

0

dw

2⇡i

1

wm+1 exp

 
�im1q ·

mX

s=1

ws

s!
@sX(0)

!
. (3.30) {Smnq}

The sum over s on the right only needs to go up to s = m, however one can extend it to s = 1 if

one wishes. The Schur polynomial Sm

�
� im1

r!
q · @rX

�
depends on m variables,

Sm

✓
� im1

r!
q · @rX

◆
⌘ Sm

✓
�im1q · @X,

�im1

2!
q · @2X, . . . ,

�im1

m!
q · @mX

◆
, (3.31)

and our notation on the left, with the r index, is shorthand for this. By simply performing the

Taylor expansion in (3.29), we see that the first few Schur polynomials are,

S0(�
im1

r!
q·@rX) = 1 , S1(�

im1

r!
q·@rX) = �im1q·@X , S2(�

im1

r!
q·@rX) = �1

2

�
im1 q · @2X +m2

1(q · @X)2
�

Returning to our construction of the vertex operator, the expression that we need to Taylor

expand in the first term in (3.26) is a product @X(z) and an exponential. Correspondingly, we do

a double Taylor expansion,

@X i(z)e�im1q·X(z) =
1X

a,b=0

za+b

a!
@a+1X i(0)Sb

✓
� im1

r!
q · @rX(0)

◆
e�im1q·X(0) . (3.32) {333}

The contour integral in (3.26) then pick out the terms with a+ b = m1 � 1. The vertex operator

of the state � · A�m1
|0; epi is thus,

: �·A�m1
eiep·X : =

m1X

m=1

i

(m� 1)!
: �·@mXSm1�m

✓
� im1

r!
q · @rX

◆
eip·X : + : �·p Sm1

✓
� im1

r!
q · @rX

◆
eip·X :

(3.33)

where p = ep�m1q. Using a property of Schur polynomials,

Sm1
(a1, . . . , am1

) =

m1X

m=1

m

m1

amSm1�m(a1, . . . , am1
) , (3.34)

we can write the vertex operator in the more compact form,

: � · A�m1
eiep·X : =

m1X

m=1

i

(m� 1)!
⇣ · @mX Sm1�m

✓
� im1

r!
q · @rX

◆
eip·X ⌘ ⇣ · Pm1

eip·X (3.35) {336}

where, as before, ⇣µ is given by (3.11), ⇣µ = �µ� (� ·p)qµ and Sm was defined in (3.30). For m1 = 1

and m1 = 2, this gives back what we computed previously, (3.10) and (3.15), respectively.
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Figure 5. Forming the state λ ·A−m1 |0〉.

The factor out front, z−(p̃−q)·q, is from contracting the exponentials. Within the parenthe-
sis, the first line comes from having no further contractions. On the second line, the first
term is from contracting λ2 · ∂X(z) with ζ1 · ∂X(0), while the second term comes from
contracting λ2 · ∂X(z) with (p̃− q) ·X(0) in the exponential. We will see that the second
term on the second line can be combined with the term on the first line, by defining ζ2.
Proceeding, since only the simple pole contributes to the contour integral, we may pick it
out by Taylor expanding,

e−iq·X(z) = e−iq·X(0)
(

1− z iq · ∂X(0)− iz
2

2 q · ∂
2X(0)− z2

2 (q · ∂X(0))2 + . . .

)
, (3.21)

and using p̃ · q = 1 and q2 = 0, along with λ1 · q = λ2 · q = 0, which implies ζ1 ·λ2 = ζ1 · ζ2 .
Thus we get for the vertex operator,

: λ2 ·A−1 λ1 ·A−1 e
ip̃·X : = −

[
ζ2 · ∂Xζ1 · ∂X + 1

2ζ1 · ζ2
(
iq · ∂2X + (q · ∂X)2

)]
eip·X ,

(3.22)
where

ζ1 = λ1 − (λ1 · p)q , ζ2 = λ2 − (λ2 · p)q , p = p̃− 2q . (3.23)
In the form (3.22), the arbitrary vector q explicitly appears. However if we wish we can
make its appearance only implicit, by writing the vertex operator in the form,

− 1
2
(
iξµ∂

2Xµ + ξµν∂X
µ∂Xν

)
eip·X (3.24)

where
ξµ = ζ1 · ζ2 qµ , ξµν = ζ1 · ζ2 qµqν + ζ1,µζ2,ν + ζ1,νζ2,µ . (3.25)

Furthermore, these polarization vectors satisfy ξµνpν = ξµ and ηµνξµν = 2pµξµ = −ζ1 · ζ2.
As a result, the Virasoro constraints that a covariant vertex operator at level-two must
obey, see eq. (A.8) in appendix A, are obeyed.

3.2 Level-N states

In this section we construct all the vertex operators at level N .

A single creation operator. We start by constructing the vertex operator for the state
λ · A−m1 |0; p〉, see figure 5. We did this previously for m1 = 1 and m1 = 2. Here we do
general m1. Applying the DDF A−m1 given in (3.5) to the tachyon vertex operator, we
must compute,

:λ ·A−m1 e
ip̃·X(0) : =

∮
dz

2π : λ · ∂X(z)e−im1q·X(z) : :eip̃·X(0) : . (3.26)
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To evaluate the contour integral, we need to first evaluate the OPE, which is given by,

:λ ·A−m1 e
ip̃·X(0) : (3.27)

=
∮
dz

2πz
−m1

(
: λ · ∂X(z)e−im1q·X(z)eip̃·X(0) : − iλ · p

z
: e−im1q·X(z)eip̃·X(0) :

)
,

where we made use of p · q̃ = 1.

Schur polynomials. To proceed, we will need to Taylor expand X(z) about X(0). More
precisely, we need to Taylor expand the exponential of X(z), which will give rise to Schur
polynomials. Indeed, the Schur polynomials can be defined through a Taylor expansion of
the exponential of a series,

exp
( ∞∑
m=1

amz
m

)
=
∞∑
m=0

Sm(a1, . . . , am)zm . (3.28)

The left-hand side serves as the definition of the Schur polynomials Sm(a1, . . . , am) ap-
pearing on the right-hand side. Equivalently, one may invert the expression through a
contour integral,

Sm(a1, . . . , am) =
∮

0

dw

2πi
1

wm+1 exp
(

m∑
s=1

asw
s

)
. (3.29)

In our case, the series that what we have is the Taylor expansion of X(z) =
∑
r
zr

r! ∂
rX(0).

We therefore have,

e−im1q·X(z) =
∞∑
a=0

za Sa

(
− im1

r! q · ∂
rX

)
e−im1q·X(0) . (3.30)

Equivalently, inverting the expression through a contour integral,

Sm

(
− im1

r! q · ∂
rX

)
=
∮

0

dw

2πi
1

wm+1 exp
(
−im1q ·

m∑
s=1

ws

s! ∂
sX(0)

)
. (3.31)

The sum over s on the right only needs to go up to s = m, however one can extend it to
s =∞ if one wishes. The Schur polynomial Sm

(
− im1

r! q · ∂
rX
)
depends on m variables,

Sm

(
− im1

r! q · ∂
rX

)
≡ Sm

(
−im1q · ∂X,

−im1
2! q · ∂2X, . . . ,

−im1
m! q · ∂mX

)
, (3.32)

and our notation on the left, with the r index, is shorthand for this. By simply performing
the Taylor expansion in (3.30), we see that the first few Schur polynomials are,

S0

(
− im1

r! q · ∂
rX

)
= 1

S1

(
− im1

r! q · ∂
rX

)
= −im1q · ∂X

S2

(
− im1

r! q · ∂
rX

)
= −1

2
(
im1 q · ∂2X +m2

1(q · ∂X)2
)
. (3.33)
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Returning to our construction of the vertex operator, the expression that we need to Taylor
expand in the first term in (3.27) is a product ∂X(z) and an exponential. Correspondingly,
we do a double Taylor expansion,

∂Xµ(z)e−im1q·X(z) =
∞∑

a,b=0

za+b

a! ∂a+1Xµ(0)Sb
(
− im1

r! q · ∂
rX(0)

)
e−im1q·X(0) . (3.34)

The contour integral in (3.27) then pick out the terms with a + b = m1 − 1. The vertex
operator of the state λ ·A−m1 |0; p̃〉 is thus,

: λ ·A−m1 e
ip̃·X: =

m1∑
m=1

i

(m− 1)! : λ · ∂mXSm1−m

(
− im1

r! q·∂
rX

)
eip·X :

+ : λ · pSm1

(
− im1

r! q·∂
rX

)
eip·X : (3.35)

where p = p̃−m1q. Using a property of Schur polynomials,

Sm1(a1, . . . , am1) =
m1∑
m=1

m

m1
amSm1−m(a1, . . . , am1) , (3.36)

we can write the vertex operator in the more compact form,

: λ ·A−m1 e
ip̃·X : =

m1∑
m=1

i

(m− 1)!ζ · ∂
mX Sm1−m

(
− im1

r! q · ∂
rX

)
eip·X ≡ ζ · Pm1 e

ip·X

(3.37)
where, as before, ζµ is given by (3.12), ζµ = λµ − (λ · p)qµ and Sm was defined in (3.31).
For m1 = 1 and m1 = 2, this gives back what we computed previously, (3.11) and (3.16),
respectively.

Two creation operators. We now turn to states that are formed by two creation op-
erators, λ2 ·A−m2λ1 ·A−m1 |0; p̃〉. We have already done this for the case of m2 = m1 = 1,
see eq. (3.22). The procedure in this more general case is similar.

Starting with the tachyon vertex operator and acting twice with A−m gives the vertex
operator for these states,

: λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) : (3.38)

=
∮
dz

2π : λ2 · ∂X(z)e−im2q·X(z) :
∮
dw

2π : λ1 · ∂X(w) e−im1q·X(w) : : eip̃·X(0) :

For the first application of A−m1 (the w integral) we may use the result (3.37),

: λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) :

=
∮
dz

2π : λ2 · ∂X(z)e−im2q·X(z) : (3.39)

×
m1∑
m=1

: i

(m− 1)!ζ1 · ∂mX(0)Sm1−m

(
− im1

r! q · ∂
rX(0)

)
ei(p̃−m1q)·X(0) :
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where ζ1 = λ1 − (λ1 · p̃)q. In computing the remaining OPE, the contractions we need to
account for are λ2 · ζ1 = ζ2 · ζ1 and λ2 · (p̃−m1q) = λ2 · p. The other possible contraction,
with the arguments of the Schur polynomial, is zero because λ2 · q = 0. Hence we have,

: λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) :

=
m1∑
m=1

i

(m− 1)!

∮
dz

2πz
−m2 (3.40)

×
[

: λ2 · ∂X(z)e−im2q·X(z)ζ1 · ∂mX(0)Sm1−m

(
− im1

r! q · ∂
rX(0)

)
ei(p̃−m1q)·X(0) :

−
(
ζ1 · ζ2

m!
zm+1 + iλ2 · p̃

z

)
: e−im2q·X(z)Sm1−m

(
− im1

r! q · ∂
rX(0)

)
ei(p̃−m1q)·X(0) :

]
As before, Taylor expanding in z in order to pick out the simple pole, we may write

the result in the compact form,

: λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) : = (ζ2 ·Pm2 ζ1 ·Pm1 + ζ1 ·ζ2 Sm1,m2) eip·X (3.41)

where ζ · Pn was defined in (3.37), and ζi = λi − (λi · p)q and p = p̃− (m1 +m2)q, and

Sm1,m2 = − i
m1∑
m=1

m

∮
dz

2π
1

zm2+m+1

×
∞∑
a=0

za Sa

(
− im2

r! q · ∂
rX(0)

)
Sm1−m

(
− im1

r! q · ∂
rX(0)

)
. (3.42)

Performing the contour integral sets a = m2 +m, and we get,

Sm1,m2 =
m1∑
m=1

mSm1−m

(
− im1

r! q · ∂
rX(0)

)
Sm2+m

(
− im2

r! q · ∂
rX(0)

)
(3.43)

One can see that in the case of m1 = m2 = 1, the general result (3.41) reduces to what we
found previously in (3.22).

Multiple creation operators. One finds that the vertex operators involving three cre-
ation operators is a natural generalization of the one with two creation operators (3.41)
that was just found,

: λ3 ·A−m3 λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) :

= (ζ3 ·Pm3 ζ2 ·Pm2 ζ1 ·Pm1 + ζ1 ·ζ2 Sm1,m2 ζ3 ·Pm3

+ζ1 ·ζ3 Sm1,m3 ζ2 ·Pm2 + ζ2 ·ζ3 Sm2,m3 ζ1 ·Pm1) eip·X . (3.44)

Analogously, the result for a general vertex operator is fairly clear,

: λk ·A−mk · · ·λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) :

= (sum over any number of all possible Wick contractions)eip·X

where
if contract: 〈λi ·A−mi λj ·A−mj 〉 → ζi · ζj Smi,mj
if don’t contract: λi ·A−mi → ζi · Pmi ,

where ζ · Pm was given in (3.37) and Sm1,m2 was given in (3.43).

– 21 –



J
H
E
P
0
5
(
2
0
2
1
)
0
4
8

In more precise notation [42],

: λk ·A−mk · · ·λ2 ·A−m2 λ1 ·A−m1 e
ip̃·X(0) :

= eip·X
bk/2c∑
a=1

∑
π

a∏
l=1

(ζπ(2l−1) · ζπ(2l)) Smπ(2l−1),mπ(2l)

k∏
q=2a+1

ζq · Pmπ(q) (3.45)

where we are summing over a (the number of contractions), bk/2c denotes all integers less
than or equal to k/2, and the sum over π is over all permutations π that give non-equivalent
terms. By non-equivalent terms we mean, e.g. if a = 2, then the sum over l is from l = 1
to l = 2, and includes the three terms,

ζ1 ·ζ2 ζ3 ·ζ4 Sm1,m2Sm3,m4 +ζ1 ·ζ3 ζ2 ·ζ4 Sm1,m3Sm2,m4 +ζ1 ·ζ4 ζ2 ·ζ3 Sm1,m4Sm2,m3 . (3.46)

The number of permutations of 4 is 4! = 24, however since Sm1,m2 = Sm2,m1 we must
divide by a factor of 2 for each of the two S that we have, and another factor of two from
exchanging the two S. Thus, in total there are 4!/23 = 4 distinct terms, as we clearly see
above.

Derivation of eq. (3.45). Let us now demonstrate that (3.45) is correct. This requires
only a slight generalization of the argument used in deriving the vertex operators with two
creation operators. Let us compute the vertex operator corresponding to the action of a
creation operator acting on some operator f ,

:λ ·A−m f(ζi · ∂rX, q · ∂rX) eip̃·X(0) :

=
∮
dz

2π : λ · ∂X(z) e−imq·X(z) : : f(ζi · ∂rX(0), q · ∂rX(0)) eip̃·X(0) : (3.47)

where we have used the definition of A−m. There are two possible Wick contractions: a
contraction of λ · ∂X with f , and a contraction of λ · ∂X with p̃ ·X. Thus,

:λ ·A−m f(ζi · ∂rX, q · ∂rX) eip̃·X :

=
∮
dz

2π
1
zm

[
:λ · ∂X(z) e−imq·X(z) f eip̃·X(0) : (3.48)

+ 〈λ · ∂X(z) ip̃·X(0)〉 :e−imq·X(z)feip̃·X(0) : +〈λ · ∂X(z)f〉 e−imq·X(z)eip̃·X(0)
]

We trivially evaluate the first correlation function on the second line, rewriting the result as,

:λ ·A−m f(ζi · ∂rX, q · ∂rX) eip̃·X :

=
∮
dz

2π
1
zm

(
:λ·∂X(z) e−imq·X(z) f eip̃·X(0) : − iλ·p

z
: e−imq·X(z)feip̃·X(0) :

)
+
∮
dz

2π
1
zm
〈λ · ∂X(z)f〉 e−imq·X(z)eip̃·X(0) . (3.49)

Comparing the first line with what we had when evaluating :λ · A−m eip̃·X : in (3.27), we
see that it is identical, except for the extra factor of f . To evaluate the second line, we
note that,

f =
∏
i

ζi · Pmi g(q · ∂rX) , (3.50)
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where g is some function. Since λ · q = 0, the g term has vanishing contraction with
λ · ∂X. Thus,

〈λ · ∂X(z)f〉 =
∑
j

〈λ · ∂X(z) ζj · Pnj (0)〉
∏
i 6=j

ζi · Pmi(0) g(q · ∂rX) . (3.51)

Using (3.42), we have that, after evaluating the integral over z, the contraction will turn
into Sm,mj . Thus,

:λ ·A−m f(ζi · ∂rX, q · ∂rX) eip̃·X : (3.52)

= ζ · Pm
∏
i

ζi · Pmi g(q · ∂rX) eip·X +
∑
j

Sm,mj
∏
i 6=j

ζi · Pmi g(q · ∂rX) eip·X .

So, as claimed, we have a sum over all Wick contractions. The result (3.45) then follows.
This completes the evaluation of the general DDF vertex operator.

The generic state. We have discussed the construction of any excited string state.
However, for a string of given mass, the number of different states grows exponentially
with the mass. It is useful to have a sense of what the typical state looks like. In D

space-time dimensions, there are D − 2 independent polarization vectors and a state can
be written as,

n1∏
k=1

(λ1
k ·A−1)

n2∏
k=1

(λ2
k ·A−2) · · ·

nr∏
k=1

(λrk ·A−r)|0〉 , N =
r∑

m=1
mnm . (3.53)

In appendix D we show that, in the large N limit, the typical (or equivalently, average)
occupation number nm of mode m takes the form of a Bose-Einstein distribution 〈nm〉 =

1
em/T−1 , with a temperature T = 1

π

√
6N
D−2 .

3.3 Completeness of operators

The final thing that we need to show is that the construction described above does in fact
generate all the excited states. This is what we do in this section.

Recall that, while classifying excited states in covariant gauge is cumbersome, it is
straightforward in light-cone gauge. In light-cone gauge one chooses X+ to be the time
variable. In the classical description, this amounts to setting the oscillators coefficients α+

n

(see eq. (2.2)) to be zero for all n 6= 0. The state is then completely determined by the
specification of the αin with transverse i, as the Virasoro constraints fix α−n in terms of
the αin. The states we have been working with are formed with products of λ · A−m, the
left-hand side of (3.45). Since λ · q = 0 and we can add any multiple of q to λ, see (3.6),
the polarization λ has D− 2 independent components, which is the same as the number of
transverse directions in light-cone gauge. Thus, we have the correct number of states.

We formed the general vertex operator by starting with a tachyon of momentum p̃

and repeatedly scattering photons off of it. All the photons had momentum proportional
to some arbitrarily chosen vector q, which was required to satisfy p̃ · q. We need to show
that this is sufficient to generate any momentum p. This is easy to see. Let us work
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. . .

. . .

generate any momentum p. This is easy to see. Let us work in light-cone coordinates, and go to

the frame in which q points in the minus direction, q = (q+, q�, qi) = (0, q�,~0). Since q is null,

q2 = 0, this is possible. The tachyon has momentum ep = (ep+, ep�, epi), which is arbitrary, subject

to the mass-shell condition ep2 = 2. Imposing that q · ep = 1 allows us to fix the magnitude of q,

q = � 1

ep+ (0, 1,
~0) , ep = (ep+, ep�, epi) , ep2 = 2 (3.52)

We can view ep+, epi as fully specifying ep, with the remaining component, ep�, fixed through the mass

shell condition; the components ep+, epi can be anything. By adding an arbitrary multiple of q to ep,
we get a vector in which the minus component is now also arbitrary, so we have formed an arbitrary

D-dimensional vector. If we take the particular vector p = ep � Nq, then p2 = ep2 � 2Nep · q =

�2(N � 1). So, we have shown that we can form any excited string state by scattering photons

o↵ of a tacyhon, where all the photons have momenta in the same direction. Moreover, if we are

forming multiple heavy string states, with di↵erent momenta, photons in the same direction are

added to all of them. In other words, if we had two heavy strings with momenta p1 and p2, then

we would form them by starting with tachyons of momenta ep1 and ep2 and scattering photons o↵

of them with momenta that are multiples of q1 = � 1

ep+1
(0, 1,~0) and q2 = � 1

ep+2
(0, 1,~0), respectively.

Note that one q, even for all heavy particles is su�cient. To see this, go to light-cone gauge

(but remember that the operators are covariant, so this isn’t necessary). Contrast our description

of DDF with usual, like in GSW, and the relation to light-cone gauge. Because � has D � 2

components, we clearly get the same number of states as in light-cone gauge.

[4] [5, 3] [?]

ep1 (3.53)

ep2 (3.54)

p1 (3.55)

p2 (3.56)

3.4. Summary

A vertex operator is of the form

V = eip·X
X

{nr}
c{nr}

Y

r

@nrXµr (3.57) {Vgen}

V (@aXµ, @bX⌫@cX⇢, . . .) eip·X . The function must satisfy the Virasoro constraints. We intro-

duced q etc., to get the function.
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Figure 6. When forming several excited string states with momenta pi, we start with tachyons
with momenta p̃i and add photons, all of which have momenta in the same direction.

in light-cone coordinates, and go to the frame in which q points in the minus direction,
q = (q+, q−, qi) = (0, q−,~0). Since q is null, q2 = 0, this is possible. The tachyon has
momentum p̃ = (p̃+, p̃−, p̃ i), which is arbitrary, subject to the mass-shell condition p̃ 2 = 2.
Imposing that q · p̃ = 1 allows us to fix the magnitude of q,

q = − 1
p̃+ (0, 1,~0) , p̃ = (p̃+, p̃−, p̃ i) , p̃ 2 = 2 . (3.54)

We can view p̃+, p̃ i as fully specifying p̃, with the remaining component, p̃−, fixed through
the mass shell condition; the components p̃+, p̃ i can be anything. By adding an arbitrary
multiple of q to p̃, we get a vector in which the minus component is now also arbitrary,
so we have formed an arbitrary D-dimensional vector. If we take the particular vector
p = p̃−Nq, then p2 = p̃ 2 − 2Np̃ · q = −2(N − 1). So, we have shown that we can achieve
any excited string state momentum p by scattering photons off of a tachyon, where all the
photons have momenta in the same direction. Moreover, if we are forming multiple heavy
string states, with different momenta, photons in the same direction are added to all of
them. In other words, if we have two heavy strings with momenta p1 and p2, then we
would form them by starting with tachyons of momenta p̃1 and p̃2 and scattering photons
off of them with momenta that are multiples of q1 = − 1

p̃+
1

(0, 1,~0) and q2 = − 1
p̃+

2
(0, 1,~0),

respectively. See figure 6.

3.4 Summary

We end with a summary of the results for the vertex operator of an excited string state.
The vertex operator for a tachyon of momentum p is eip·X . The vertex operator for an

excited string of momentum p is some polynomial of derivatives of X, ∂kXµ, multiplying
eip·X . Schematically,

V = eip·X
∑
{mr}

c{mr}
∏
r

∂mrXµr , (3.55)

with some coefficients c{mr}, which can be thought of as the polarizations. At level
N , corresponding to a string of mass M2 = 2(N − 1), we include all terms with a
total of N derivatives. For instance, at level two, the vertex operator is of the form,(
iξµ∂

2Xµ + ξµν∂X
µ∂Xν

)
eip·X . Imposing the Virasoro constraints gives sets of constraints

that the polarizations must satisfy. For the first few levels these constraints are worked out
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in appendix A. For general level N , the vertex operator is a superposition of a large number
of terms, with a large number of nontrivial constraints among the coefficients. Writing the
operator in this form is neither trivial nor intuitive.

The DDF construction of vertex operators provides a more physical and systematic
procedure. The coefficients c{mr} mentioned above are all expressed in terms of a null
vector q which satisfies p · q = 1,12 and polarizations λi which have nonzero norm and are
orthogonal to q, λi · q = 0. The vertex operator is expressed as a polynomial involving
q · ∂mX and ζi · ∂mX where ζµi = λµi − (p · q)qµ. The precise form of the vertex operator is
given in (3.45), with ζ · Pn (a function of q · ∂mX and ζi · ∂mX) given in (3.37) and Sn1,n2

(a function of q · ∂mX) given in (3.43).
Physically, the vertex operators are formed by starting with a tachyon of momentum

p̃ and scattering photons off of it (i.e. repeatedly taking the OPE with photon vertex
operators) where the action of λ · A−m corresponds to a photon with polarization λ and
momentum −mq where q · p̃ = 1. The ζµ can be viewed as the polarization vectors of the
excited string. Doing the scattering/OPE procedure once gives a vertex operator of the
form (3.37). Doing the procedure twice gives the vertex operator (3.41), doing it three
times gives (3.44), and doing it k times gives (3.45).

4 Amplitude with one excited string: formalism

In this section we compute the scattering amplitude involving one arbitrary excited string
state and any number of tachyons.

The excited state is created with the DDF vertex operator, as described in the previ-
ous section: the state

∏
k(λk · A−mk)|0; p̃〉 can be thought of as having been built up by

successively scattering photons of polarization λk and momenta −mkq off of a tachyon,
where q is some chosen null vector satisfying q · p̃ = 1 (and the photon’s polarization is
orthogonal to its momentum, λ · q = 0).

We start in section 4.1 with the special case in which all the DDF photons have
the same polarization which squares to zero, λ2 = 0 (this can be achieved by, for instance,
having transverse circular polarization). In this special case the equations for the amplitude
simplify. In section 4.2 we compute the amplitude in the general case, with arbitrary
polarizations for the DDF photons.

Let V (z1) be the vertex operator for the excited string with momentum p1. All the
other strings are tachyons with momentum pi, worldsheet coordinate zi, and vertex operator
eipi·X(zi). There are n tachyons, with index i running from 2 to n+1. The amplitude is then,

A = 1
vol(SL2)

∫
dz 〈V (z1)

∏
i 6=1

eipi·X(zi)〉 , dz ≡
∏
i

dzi . (4.1)

We wrote down the general vertex operator, in schematic form, in (3.55). The vertex
operator is given by a sum of products of derivatives of X. Evaluating the correlation

12The appearance of an arbitrarily chosen vector q in the expression for the vertex operator may initially
seem odd, but it is no different than the appearance of an arbitrary polarization vector in the vertex
operator. Expressed in covariant form, the q are part of defining the polarization tensors. See e.g. (3.25).
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function appearing in the amplitude is straightforward, once one recognizes that the Wick
contractions can be perform successively, for each X. Namely, one has that,

〈∂nXµ(z1)
∏
i 6=1

eipi·X(zi) · · ·〉 = 〈
∏
i 6=1

eipi·X(zi) · · ·〉
∑
i 6=1
〈∂nXµ(z1)(ipi ·X(zi)〉 , (4.2)

as one can see by using the Taylor expansion of the exponential. Using the form of the
vertex operator (3.55) we have that the correlation function is,

〈V (z1)
∏
i 6=1

eipi·X(zi)〉 =
∏
i<j

z
pi·pj
ij

∑
{nr}

c{nr}
∏
r

(∑
i 6=1
〈∂nrXµr(ipi ·X(zi)〉

)
. (4.3)

Using that the Wick contraction is given by,

〈∂kXµ(z1)Xν(z2)〉 = ηµν
(k − 1)!
zk21

, (4.4)

we have for the amplitude (4.1),

A = 1
vol(SL2)

∫
dz
∏
i<j

z
pi·pj
ij

∑
{nr}

c{nr}
∏
r

(∑
i 6=1

ipµri
(nr − 1)!
znri1

)
. (4.5)

This warmup was useful as a way to see how to perform the Wick contractions. We
saw that going from the vertex operator to the amplitude essentially amounts to replacing,

∂mXµ(z1)→ i(m− 1)!
∑
i 6=1

pµi
zmi1

. (4.6)

We now move on to using the actual vertex operator, rather than just its schematic form.

4.1 A special choice of polarizations

In this section we give the explicit form of the amplitude, for the simple case in which all
the DDF photons forming the excited state have the same polarization λ,

(λ ·A−1)n1(λ ·A−2)n2 · · · (λ ·A−k)nk |0〉 , N =
k∑
i=1

ini . (4.7)

Furthermore, we take the polarization to square to zero, λ2 = 0.13 An example of such a
polarization is, for instance, circular polarization with two nonzero components, 1√

2(1,±i).
(It is actually not important if all the photons have the same polarization: to get a sim-
plification, what we really need is for the polarizations of all the photons to square to zero
and be orthogonal, and the simplest way to achieve that is with one λ for which λ2 = 0.)
With λ2 = 0, the form of the vertex operator corresponding to the state (4.7) is relatively
simple, and was found earlier in (3.37),

: λ ·A−n eip̃·X : =
n∑

m=1

i

(m− 1)!ζ · ∂
mX Sn−m

(
− in
r! q · ∂

rX

)
eip·X , (4.8)

13The polarization is always required to satisfy |λ|2 = 1; we are taking λ2 = 0.
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where the Schur polynomial that appears was defined in (3.31). Using the above results,
the amplitude for the scattering of the state (4.7) with tachyons is,

A = 1
vol(SL2)

∫
dz exp (L) , (4.9)

where

L =
∑
i<j

pi · pj log zij +
k∑

m=1
nm log(−Σm) , (4.10)

and

Σn =
n∑

m=1

(∑
j 6=1

pj · ζ
zmj1

)
Sn−m

(
n
∑
i 6=1

pi · q
s zsi1

)
, (4.11)

where p1 is the momentum of the excited string and pi, with i ≥ 2, are the momenta of
the tachyons. The amplitude also has a momentum conservation delta function which we
suppressed, (2π)Dδ(

∑
i pi). The result is expressed in term of Schur polynomials, however

in this form it appears unnecessarily complicated. In particular, we may use the contour
integral representation of the Schur polynomial given in (3.29) to write this as,

Sm

(
n
∑
i 6=1

pi · q
s zsi1

)
=
∮
dw

2πi
1

wm+1

∏
i 6=1

(
1− w

zi1

)−npi·q
, (4.12)

where inside the integral representation of the Schur polynomial we extended the sum to
infinity and performed the sum,

∞∑
s=1

∑
i 6=1

npi · q
s zsi1

ws = −
∑
i 6=1

n pi ·q log
(

1− w

zi1

)
. (4.13)

If we wish, we may now perform the sum over m appearing in Σn,14

Σn = −
∮
dw

2πi
1
wn

(∑
j 6=1

pj · ζ
w − zj1

)∏
i 6=1

(
1− w

zi1

)−npi·q
. (4.14)

The form of the amplitude as written is acceptable, but it is not optimal. In particular,
the integrand in the amplitude must have SL2 invariance of the zi, as we discussed earlier
in section 2. In the current form, the SL2 invariance is not manifest. In order to make it
manifest, we should rewrite the amplitude in terms of SL2-invariant cross-ratios. As we
will momentarily show, upon doing this we find the amplitude to be (4.9) with15

L =
∑

1<i<j
pi · pj log zijz1az1b

z1iz1jzab
+

k∑
m=1

nm log(−Σ′m) +
(∑
i 6=1

log z1az1b
z2

1izab
+ log zab

z1az1b

)
, (4.15)

14In performing the sum, we obtain a factor of 1−(zi1/w)n

w−zi1
. We discard the 1 in the numerator, since its

contribution will vanish after the contour integral is done.
15The last term in parenthesis in (4.15) is subdominant at large N .
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where a and b are any distinct indices (chosen out of the indices labeling the tachyons)
and,

Σ′n =
n∑

m=1

( ∑
j 6=1,a

pj · ζ Rmj

)
Sn−m

(
n

s

∑
i 6=1,a

pi · q Rsi

)
, Ri = zaiz1b

z1izab
. (4.16)

Equivalently, using the integral representation of the Schur polynomial,

Σ′n =
∑
j 6=1,a

pj · ζ Rj
∮
dw

2πi
w−n

1− wRj

∏
i 6=1,a

(1− wRi)−n pi·q . (4.17)

Notice that Ra = 0 and Rb = 1.

Derivation. Let us derive the form of the amplitude given in (4.15). Starting with the
“tachyon” piece of L in (4.10), we use momentum conservation to eliminate p1,∑

i<j

pi · pj log zij =
∑

1<i<j
pi · pj log zij

z1iz1j
− 2

∑
i 6=1

log z1i . (4.18)

Using momentum conservation again, p2
1 = (

∑
i 6=1 pi)2, as well as the mass-shell condition,

we have that
− 2(N − 1) = p2

1 = (
∑
i 6=1

pi)2 = 2
∑

1<i<j
pi · pj + 2n , (4.19)

where n is the number of tachyons. We may solve for pa · pb, with a and b of our choosing,

pa · pb = −
∑

1<i<j
(i,j) 6=(a,b)

pi · pj − (N − 1 + n) . (4.20)

Using this to eliminate pa · pb, we get,∑
i<j

pi · pj log zij =
∑

1<i<j
(i,j) 6=(a,b)

pi · pj log zijz1az1b
z1iz1jzab

+
(∑
i 6=1

log z1az1b
z2

1izab
+ log zab

z1az1b

)
−N log zab

z1az1b
. (4.21)

The first term is manifestly SL2 invariant, the second term combines with the measure to
give something SL2 invariant (see footnote 10), and the final term will be absorbed into
the Σn. In particular, we define,

Σ′n =
(

zab
z1az1b

)−n
Σn . (4.22)

Our goal now is to write Σ′n in a form in which it is manifestly SL2 invariant. To do
this, we note that as a result of momentum conservation and p1 · ζ = 0, we may eliminate
pa · ζ = −

∑
i 6=1,a pi · ζ. Applying this to Σn given in (4.14) we get,

Σn =
∑
j 6=1,a

pj · ζ
zaj
zj1za1

∮
dw

2πi
1
wn

1
1− w

zj1

1
1− w

za1

∏
i 6=1

(
1− w

zi1

)−npi·q
. (4.23)
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Next, we change integration variables to w → za1/w, and use
∑
i 6=1 pi · q = −1 (a conse-

quence of momentum conservation and that p1 · q = 1) to get,

Σn = −
∑
j 6=1,a

pj · ζ
zaj
zj1za1

1
zn−1
a1

∮
dw

2πi
1

w − za1
zj1

1
w − 1

∏
i 6=1

(
w − za1

zi1

)−npi·q
. (4.24)

We see that the term involving w to a power disappeared - a result of SL2 invariance.
Finally, we change variables w → 1 + zab

zb1w
, and obtain the claimed result, (4.17).

4.2 General polarization

We take the most general state, with the DDF photons taking any allowed polarizations
λi · q = 0,

λk ·A−mk · · ·λ2 ·A−m2 λ1 ·A−m1 |0〉 , N =
∑

mi . (4.25)

The vertex operator for this state was given in (3.45). The amplitude involving this state
and any number of tachyons is given by,

A = 1
vol(SL2)

∫
dz exp (L) , (4.26)

where

L =
∑
i<j

pi ·pj log zij+log

bk/2c∑
ρ=1

∑
π

ρ∏
l=1

(ζπ(2l−1) · ζπ(2l)) Smπ(2l−1),mπ(2l)

k∏
q=2ρ+1

(−Σmπq(ζq))

 .

(4.27)
where Σm(ζ) was defined in (4.11) and Sn,m now refers not to the operator in (3.43), but
rather its contraction with ei

∑
pi·X(zi),

Sm,n =
n∑
r=1

r Sm+r

(
m
∑
i 6=1

pi · q
s zsi1

)
Sn−r

(
n
∑
i 6=1

pi · q
s zsi1

)
. (4.28)

As in section 4.1, we would like to rewrite the amplitude in an SL2 invariant form. Doing
this gives,

L =
∑

1<i<j
pi · pj log zijz1az1b

z1iz1jzab
+
( ∑
i 6=1,a,b

log z1az1b
z2

1izab
+ log zab

z1az1b

)

+ log

bk/2c∑
ρ=1

∑
π

ρ∏
l=1

(ζπ(2l−1) · ζπ(2l)) S′mπ(2l−1),mπ(2l)

k∏
q=2ρ+1

(−Σ′mπq(ζq))

 , (4.29)

where a and b are any distinct indices (chosen out of the n indices labeling the tachyons)
and Σ′n was defined in terms of Σn in (4.22) and explicitly given in (4.17), while S′m,n is
defined by

S′m,n =
(

zab
z1az1b

)−n−m
Sm,n . (4.30)

We still need to write S′m,n in a form which makes the SL2 invariance manifest. By
using the integral representation of the Schur polynomial (4.12), performing the sum over
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r, and doing a change of integration variables, analogous to what we did in the derivation
of Σ′n, we get,

S′m,n =
∮
dw

2πi

∮
dv

2πi
1

(v − w)2
1

wmvn

∏
i 6=1,a

(1− wRi)−mpi·q
∏
j 6=1,a

(1− vRj)−npj ·q , (4.31)

where the cross-ratio of the points, Ri, was given in (4.16). We may equivalently write this
in terms of the Schur polynomials,

S′m,n =
n∑
r=1

r Sm+r

(
m
∑
i 6=1,a

pi · q
s

Rsi

)
Sn−r

(
n
∑
i 6=1,a

pi · q
s

Rsi

)
. (4.32)

Summary. Let us summarize where we currently stand. We have computed the am-
plitude involving the most general excited state and any number of tachyons. The result
is (4.29), and the various terms appearing in this expression are defined in this section and
in the previous one. The expression is clearly involved. The amplitude simplifies in the
special case when the dot product of all the polarizations vanishes, in which case (4.29)
turns into the expression (4.15) found in section 4.1.

Another special case is an excited state involving only one excited mode (λ ·A−k)n. In
this case the combinatorial sum in (4.29) simplifies and we find,

L =
∑

1<i<j
pi · pj log zijz1az1b

z1iz1jzab
+
( ∑
i 6=1,a,b

log z1az1b
z2

1izab
+ log zab

z1az1b

)

+ n!
bn/2c∑
r=0

(Σ′k)n−2r

(n− 2r)!
1
r!

(
λ · λ

2 S′k,k
)r

(4.33)

A special case of this would be exciting the mode k = 1, the leading Regge trajectory.
This is as far as we can go without specifying the number of tachyons. In section 5

we will specialize to amplitudes with one excited string and two tachyons, and one excited
string and three tachyons, and give more explicit expressions.

5 Amplitude with one excited string: properties

5.1 Two tachyons and one excited string

In this section we compute the amplitude for an excited string to decay into two tachyons,
as shown in figure 7.

As was discussed in section 3, the excited string is formed by repeatedly scattering
photons of momenta −mq off of an initial tachyon, where q is a null vector of our choosing,
provided p · q = 1, where p is the momentum of the string. Here m is an integer, and to
create a state in which mode m of the string is excited nm times, we send in nm photons
with momentum −mq. The polarizations λ of these DDF photons are transverse to their
momentum, λ · q = 0. For simplicity, we first discuss the case in which all the photons
have the same polarization λ. (The general case will be discussed later; the chaos features
are unchanged.) With one polarization, the excited state is uniquely specified by the
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momenta �mq o↵ of an initial tachyon, where q is a null vector of our choosing, provided p · q = 1,

where p is the momentum of the string. The polarization � of the DDF photons is transverse to

their momentum, � · q = 0.

We will find that the amplitude for the excited string (6.1) to decay to two tachyons is

proportional to,

A /
Y

m

(p3 · ⇣ Pm(p3 · q))nm , p3·⇣ = �
r

N

2
sin↵ , p3·q = � cos2

↵

2
, Pm(a) =

(1 +ma)m�1

(m� 1)!
,

(6.2) {62}
where ↵ is the relative angle between the direction of the tachyons and the photons creating the

string and (a)m is the Pochhammer symbol. This expression is valid in the approximation that

the tachyon is taken to be massless, or equivalently, with the tachyon having the correct mass

but the state being highly excited N � 1 and the angle ↵ not close to 0 or ⇡. This expression

captures the angular dependence ↵ of the amplitude; the amplitude also contains a state-dependent

normalization prefactor (depending on the occupation numbers and the specific polarizations), for

which we do not have a simple expression. We will spend the rest of this section deriving the result

(6.2).

Kinematics

Let us look at the kinematics for the process of a heavy string decaying into two tachyons. We

choose the frame in which the heavy string is at rest. The heavy string is taken to have momentum

p1, while the two tachyons have momenta p2 and p3. Conservation of momentum is p1+p2+p3 = 0.

The kinematics is,

p1 =
p
2(N�1)(1, 0, 0) (6.3) {htt}

p2 = �(E2, k sin ✓, k cos ✓) , E2 =

r
N�1

2

p3 = �(E2,�k sin ✓,�k cos ✓) , k =

r
N+3

2
.

As discussed in Sec. 3, the heavy (excited) string is formed by repeatedly scattering photons

with momentum proportional to q (which we refer to as DDF photons) o↵ of a tachyon. The vector

q must satisfy p1 · q = 1, in order to produce a heavy string of the correct mass. Combined with

the requirement that the photon momentum be null, q2 = 0, this fixes q to take the form,

q = � 1p
2(N � 1)

(1, sin �, cos �) , (6.4) {64q}

where � is an arbitrary angle which we are free to choose. A dot product we will need later on,

40
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(a)

Figure 9: (a) A heavy (highly excited) string decaying into two tachyons. The kinematics is given
by (6.3). The tachyons leave at angle ✓. (b) The heavy string state (6.1) is in turn formed by
repeatedly scattering DDF photons of momentum �mq a total nm times o↵ of an initial tachyon
(m is an integer). The photons have polarization �, and are sent in at angle �. The di↵erence
between angles is ↵ = ✓ � �. {Heavdecay}

m = 1, 2, 3 . . .. In terms of the DDF creation operators (Aµ
�m for mode m), the state is,

Y

m

(� · A�m)
nm |0i , N =

X

m=1

mnm . (6.1) {61}

If we are in more than three dimensions, then the photon can have multiple polarizations. However,

as we will show, the angular dependence of the amplitude of an excited string decaying to two

tachyons is independent of the polarization choices (which only a↵ect the overall magnitude). As

a result, we can work in three dimensions. As was discussed in Sec. 3, the excited string is formed

by repeatedly scattering photons of momentum �mq o↵ of an initial tachyon, where q is a null

vector of our choosing, provided p ·q = 1, where p is the momentum of the string. The polarization

� of the DDF photons is transverse to their momentum, � · q = 0.

We will find that the amplitude for the excited string (6.1) to decay to two tachyons is,

A /
Y

m

(p3 · ⇣ Pm(p3 · q))nm , p3·⇣ = �
r

N

2
sin↵ , p3·q = � cos2

↵

2
, Pm(a) =

(1 +ma)m�1

(m� 1)!
,

(6.2)

where ↵ is the relative angle between the direction of the tachyons and the photons creating the

string, (a)m is the Pochhammer symbol, and we have slightly simplified by taking the tachyons to

be massless. We will spend the rest of the section deriving this result.

Kinematics

Let us look at the kinematics for the process of a heavy string decaying into two tachyons. We

choose the frame in which the heavy string is at rest. The heavy string is taken to have momentum

p1, while the two tachyons have momenta p2 and p3. Conservation of momentum is p1+p2+p3 = 0.
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where ↵ is the relative angle between the direction of the tachyons and the photons creating the
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q must satisfy p1 · q = 1, in order to produce a heavy string of the correct mass. Combined with

the requirement that the photon momentum be null, q2 = 0, this fixes q to take the form,

q = � 1p
2(N � 1)

(1, sin �, cos �) , (6.4) {64q}

where � is an arbitrary angle which we are free to choose. A dot product we will need later on,
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momenta �mq o↵ of an initial tachyon, where q is a null vector of our choosing, provided p · q = 1,
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where ↵ is the relative angle between the direction of the tachyons and the photons creating the

string and (a)m is the Pochhammer symbol. This expression is valid in the approximation that
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but the state being highly excited N � 1 and the angle ↵ not close to 0 or ⇡. This expression

captures the angular dependence ↵ of the amplitude; the amplitude also contains a state-dependent

normalization prefactor (depending on the occupation numbers and the specific polarizations), for

which we do not have a simple expression. We will spend the rest of this section deriving the result

(6.2).
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6.3. Summary
{sec7}

We studied the scattering amplitude of an excited string decaying into tachyons. A general

excited string state was formed by the DDF construction, of repeatedly scattering photons o↵ of

an initial tachyon. The amplitude we found for an excited string to decay into two tachyons is

remarkably compact. The amplitude for an excited string to decay into three tachyons is more

involved; ideally one would like to do a saddle point analysis, of the kind done in [91].

We saw the dependence of the amplitude on the precise state (the microstate). We saw that

the amplitude is highly sensitive to the state, an example was shown in Fig. 11. There are an

exponentially large number of string states at a given mass. Our analysis allows us to study the

decay of a generic state.

Although we have focused on the decay of a heavy string into two tachyons, what we would

really like to do is look at the decay of a heavy string into many tachyons. One might imagine that

the process proceeds sequentially, with the heavy string decaying to a slightly less heavy string

and a soft tachyon, and the process repeating until there are only tachyons left. This would be an

imitation of black hole radiation.
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A. Covariant vertex operators
{Virasoro}

In the main body of the text we found the vertex operators for excited string states through

the DDF construction. In this appendix we review the more familiar construction of covariant

vertex operators, as found by imposing the Virasoro constraints. This works well for light string

states, but becomes increasingly unwieldy for heavy string states.

Recall that the open string field Xµ can be expanded in terms of modes,

@Xµ(z) = �i
X

n

↵µ
n

zn+1 , ↵µ
�n =

i

(n� 1)!
@nXµ(0) . (A.1)

An excited string state is obtained by acting with the creation operators ↵µ
�n on the vacuum. The

relation above allows us to translate between states and their corresponding vertex operators,

↵µ1
�n1

↵µ2
�n2

· · ·↵µk
�nk

|0; pi $ @n1Xµ1 @n2X⌫2 · · · @nkXµk eip·X . (A.2)
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As was discussed in Sec. 3, the excited string is formed by repeatedly scattering photons of

momenta �mq o↵ of an initial tachyon, where q is a null vector of our choosing, provided p · q = 1,

where p is the momentum of the string. The polarization � of the DDF photons is transverse to

their momentum, � · q = 0.

We will find that the amplitude for the excited string (6.1) to decay to two tachyons is

proportional to,
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where ↵ is the relative angle between the direction of the tachyons and the photons creating the

string and (a)m is the Pochhammer symbol. This expression is valid in the approximation that

the tachyon is taken to be massless, or equivalently, with the tachyon having the correct mass

but the state being highly excited N � 1 and the angle ↵ not close to 0 or ⇡. This expression

captures the angular dependence ↵ of the amplitude; the amplitude also contains a state-dependent

normalization prefactor (depending on the occupation numbers and the specific polarizations), for

which we do not have a simple expression. We will spend the rest of this section deriving the result

(6.2).

Kinematics

Let us look at the kinematics for the process of a heavy string decaying into two tachyons. We

choose the frame in which the heavy string is at rest. The heavy string is taken to have momentum

p1, while the two tachyons have momenta p2 and p3. Conservation of momentum is p1+p2+p3 = 0.

The kinematics is,
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As discussed in Sec. 3, the heavy (excited) string is formed by repeatedly scattering photons

with momentum proportional to q (which we refer to as DDF photons) o↵ of a tachyon. The vector

q must satisfy p1 · q = 1, in order to produce a heavy string of the correct mass. Combined with

the requirement that the photon momentum be null, q2 = 0, this fixes q to take the form,
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(1, sin �, cos �) , (6.4) {64q}

where � is an arbitrary angle which we are free to choose. A dot product we will need later on,
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an initial tachyon. The amplitude we found for an excited string to decay into two tachyons is

remarkably compact. The amplitude for an excited string to decay into three tachyons is more

involved; ideally one would like to do a saddle point analysis, of the kind done in [91].

We saw the dependence of the amplitude on the precise state (the microstate). We saw that

the amplitude is highly sensitive to the state, an example was shown in Fig. 11. There are an

exponentially large number of string states at a given mass. Our analysis allows us to study the

decay of a generic state.

Although we have focused on the decay of a heavy string into two tachyons, what we would

really like to do is look at the decay of a heavy string into many tachyons. One might imagine that
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and a soft tachyon, and the process repeating until there are only tachyons left. This would be an

imitation of black hole radiation.
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A. Covariant vertex operators
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In the main body of the text we found the vertex operators for excited string states through

the DDF construction. In this appendix we review the more familiar construction of covariant
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6.3. Summary
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an initial tachyon. The amplitude we found for an excited string to decay into two tachyons is

remarkably compact. The amplitude for an excited string to decay into three tachyons is more

involved; ideally one would like to do a saddle point analysis, of the kind done in [91].

We saw the dependence of the amplitude on the precise state (the microstate). We saw that

the amplitude is highly sensitive to the state, an example was shown in Fig. 11. There are an
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decay of a generic state.
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the DDF construction. In this appendix we review the more familiar construction of covariant
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As was discussed in Sec. 3, the excited string is formed by repeatedly scattering photons of

momenta �mq o↵ of an initial tachyon, where q is a null vector of our choosing, provided p · q = 1,

where p is the momentum of the string. The polarization � of the DDF photons is transverse to

their momentum, � · q = 0.

We will find that the amplitude for the excited string (6.1) to decay to two tachyons is

proportional to,
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where ↵ is the relative angle between the direction of the tachyons and the photons creating the

string and (a)m is the Pochhammer symbol. This expression is valid in the approximation that

the tachyon is taken to be massless, or equivalently, with the tachyon having the correct mass

but the state being highly excited N � 1 and the angle ↵ not close to 0 or ⇡. This expression

captures the angular dependence ↵ of the amplitude; the amplitude also contains a state-dependent

normalization prefactor (depending on the occupation numbers and the specific polarizations), for

which we do not have a simple expression. We will spend the rest of this section deriving the result

(6.2).

Kinematics

Let us look at the kinematics for the process of a heavy string decaying into two tachyons. We

choose the frame in which the heavy string is at rest. The heavy string is taken to have momentum

p1, while the two tachyons have momenta p2 and p3. Conservation of momentum is p1+p2+p3 = 0.

The kinematics is,

p1 =
p
2(N�1)(1, 0, 0) (6.3) {htt}

p2 = �(E2, k sin ✓, k cos ✓) , E2 =

r
N�1

2

p3 = �(E2,�k sin ✓,�k cos ✓) , k =

r
N+3

2
.

As discussed in Sec. 3, the heavy (excited) string is formed by repeatedly scattering photons

with momentum proportional to q (which we refer to as DDF photons) o↵ of a tachyon. The vector

q must satisfy p1 · q = 1, in order to produce a heavy string of the correct mass. Combined with

the requirement that the photon momentum be null, q2 = 0, this fixes q to take the form,

q = � 1p
2(N � 1)

(1, sin �, cos �) , (6.4) {64q}

where � is an arbitrary angle which we are free to choose. A dot product we will need later on,
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As discussed in Sec. 3, the heavy (excited) string is formed by repeatedly scattering photons

with momentum proportional to q (which we refer to as DDF photons) o↵ of a tachyon. The vector

q must satisfy p1 · q = 1, in order to produce a heavy string of the correct mass. Combined with

the requirement that the photon momentum be null, q2 = 0, this fixes q to take the form,

q = � 1p
2(N � 1)

(1, sin �, cos �) , (6.4) {64q}

where � is an arbitrary angle which we are free to choose. A dot product we will need later on,

between q and the momenta of the tachyons, is,

p2 ·q = �1�p3 ·q = � 1p
2(N � 1)

(E2�k cos↵) =
1

2

 
�1 +

r
N + 3

N � 1
cos↵

!
, ↵ = ✓�� . (6.5) {63}

The polarization � of the DDF photon must be orthogonal to its momentum, � · q = 0. In

three dimensions, the polarization is therefore,

� = (0,� cos �, sin �) . (6.6) {661}

If we are in dimension D that is four or higher, we can let the polarization have arbitrary compo-

nents �i in the higher dimensions, i = 3, . . . , D. A special case is circular polarization

� = (0,� cos �, sin �,±i) (6.7) {RL}

which has �2 = 0. As usual, we can add a multiple of q to �, and leave the amplitude unchanged.

Recalling that ⇣µ = �µ � (� · p1)qµ, since � · p1 = 0, we have ⇣µ = �µ. The dot product of the

momenta with the polarization is thus,

p2 · ⇣ = �p3 · ⇣ = k sin↵ =

r
N+3

2
sin↵ . (6.8) {66}

In the limit of the heavy string being very heavy (the large N limit) the kinematics simplifies

slightly; in e↵ect the tachyon can be taken to be massless. The momenta simplify to,

p1 !
p
2N (1, 0, 0) , p2 ! �

p
2N

2
(1, sin ✓, cos ✓) , p3 ! �

p
2N

2
(1,� sin ✓,� cos ✓) (6.9)

and the dot product simplifies to,

E2 ! k !
r

N

2
, p2 · q ! � sin2 ↵

2
, p2 · ⇣ !

r
N

2
sin↵ as N ! 1 . (6.10) {610}

The amplitude can only be a function of: pi · pj (all of which are constants), pi · q and pi · ⇣.
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(d)

Figure 7. (a) A spacetime diagram of heavy (highly excited) string of momentum p1 decaying
into two tachyons of momenta p2 and p3. (b) The spatial plane of the decay process. The tachyons
leave at angle θ, see (5.3). (c) The heavy string state (5.1), with momentum p1, is in turn formed
by repeatedly scattering DDF photons of momenta −mq a total nm times (for m = 1, 2, 3, . . .) off
of an initial tachyon of momentum p̃1. The photons have polarization λ which is orthogonal to q,
and are sent in at angle β, see (5.4) and (5.6). A spacetime diagram is shown in (c), and the spatial
plane is shown in (d) . The amplitude depends on the difference α between the angles, α = θ − β.

occupation numbers {nm} of each of the transverse string modes m = 1, 2, 3 . . .. In terms
of the DDF creation operators (Aµ−m for mode m), the state is,

∞∏
m=1

(λ ·A−m)nm |0〉 , N =
∞∑
m=1

mnm . (5.1)

We will find that the amplitude for the excited string (5.1) to decay to two tachyons
is proportional to,

A ∝
∞∏
m=1

(p3 · ζ Pm(p3 · q))nm ,

p3 · ζ = −

√
N

2 sinα , p3 · q = − cos2 α

2 , Pm(a) = (1 +ma)m−1
(m− 1)! , (5.2)

where α is the relative angle between the direction of the tachyons and the photons cre-
ating the string, and (a)m is the Pochhammer symbol. This expression is valid in the
approximation that the state is highly excited, N � 1, and the angle α is not close to 0
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or π. This expression captures the angular dependence α of the amplitude; the amplitude
also contains a state-dependent normalization prefactor, for which we do not have a simple
expression. We will spend the rest of this section deriving and studying the result (5.2).

Kinematics. Let us look at the kinematics for the process of a heavy string decaying
into two tachyons. The kinematics will occur in a three spacetime dimensional plane,
and we choose the frame in which the heavy string is at rest. The heavy string is taken
to have momentum p1, while the two tachyons have momenta p2 and p3. Conservation of
momentum is p1+p2+p3 = 0. To slightly simplify the presentation, we take the heavy string
to be very massive N � 1, so that we may approximate the mass M2 = 2(N − 1) ≈ 2N .
The kinematics is,

p1 =
√

2N (1, 0, 0) (5.3)

p2 = −
√

2N
2 (1, sin θ, cos θ)

p3 = −
√

2N
2 (1,− sin θ,− cos θ) .

As discussed in section 3, the heavy (excited) string is formed by repeatedly scattering
photons with momentum proportional to q (which we refer to as DDF photons) off of a
tachyon. The vector q must satisfy p1 · q = 1, in order to produce a heavy string of the
correct mass. Combined with the requirement that the photon momentum be null, q2 = 0,
this fixes q to take the form,

q = − 1√
2N

(1, sin β, cosβ) , (5.4)

where β is an arbitrary angle which we are free to choose. A dot product we will need later
on, between q and the momenta of the tachyons, is,

p2 · q = − sin2 α

2 , p3 · q = − cos2 α

2 , α = θ − β . (5.5)

The polarization λ of the DDF photon must be orthogonal to its momentum, λ · q = 0.
In three dimensions, the polarization is therefore,

λ = (0,− cosβ, sin β) . (5.6)

If we are in dimension D that is four or higher, we can let the polarization have arbitrary
components λi in the higher dimensions, i = 3, . . . , D. A special case is circular polarization

λ = 1√
2

(0,− cosβ, sin β,±i) , (5.7)

which has λ2 = 0. As usual, we can add a multiple of q to λ, and leave the amplitude
unchanged. Recalling that ζµ = λµ − (λ · p1)qµ, since λ · p1 = 0, we have ζµ = λµ. The dot
product of the momenta with the polarization is thus,

p2 · ζ = −p3 · ζ =

√
N

2 sinα . (5.8)
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The amplitude can only be a function of: pi · pj (all of which are constants), pi · q
and pi · ζ. We see that neither of these depend on θ or β individually, but only on their
difference α = θ − β, and so the amplitude will only depend on α. This had to be the
case: since the choice of q, and hence β, is arbitrary and any particular q is enough to get
a complete basis of excited states, it could not have been the case that different β lead to
physically different amplitudes. We see that a change of β is just a coordinate rotation.

The amplitude. We now turn to the amplitude for a heavy string to decay into two
tachyons. In section 4 we discussed the amplitude involving one heavy string and any
number of tachyons. We can easily specialize this to two tachyons.

The formulas for the amplitude were considerably simpler in the case in which the
polarization λ of the DDF photons is null, λ2 = 0, as discussed in section 4.1. This can
be achieved in dimensions four or higher by taking the polarizations to either all be right-
handed circularly polarized, or all left-handed circularly polarized, see (5.7). We will start
with this case.

The amplitude found in section 4.1 is,

A = N
∞∏
m=1

(
Σ′m

)nm , (5.9)

where Σ′m was given in (4.17) and N is an irrelevant normalization factor. Applying that
formula to two tachyons, we take a = 2, b = 3 and find R3 = 1, and

Σ′n = p3 · ζ
∮
dw

2πi
w−n

(1− w)1+np3·q = p3 · ζ
(1 + np3 · q)n−1

(n− 1)! . (5.10)

The amplitude is thus,

A = N (p3 · ζ)J
∞∏
m=1

Pm(p3 · q)nm , (5.11)

where J is the spin J =
∑
m nm, and p3 · ζ was given in (5.8), p3 · q was given in (5.5) and

we defined Pm(a) in terms of the Pochhammer symbol,

Pm(a) = (1 +ma)m−1
(m− 1)! , (a)m = a(a+1) · · · (a+m−1) . (5.12)

For some low values of m, the explicit form of Pm(a) is,

P1(a) = 1 , P2(a) = 1 + 2a ,

P3(a) = (1 + 3a)(2 + 3a)
2 , P4(a) = (1 + 4a)(2 + 4a)(3 + 4a)

6 . (5.13)

Let us now consider the case of general polarization λ. We will find the amplitude is
essentially proportional to (5.11), in a way in which we will elaborate on. In section 4.2 we
discussed the case of general polarization, and found that the amplitude is given by (5.9)
multiplied by a function of,

ζ2 S′ij
Σ′i Σ′j

(5.14)
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for various i and j. The precise function is found by considering all possible Wick contrac-
tions involving the creation operators forming the state. The function will be discussed
in [44], but we actually don’t need to know it. The reason is that in the large N limit the
ratio (5.14) is just a number, independent of the angle α. Let us compute this ratio. First,
we note that if we specialize the formula (4.32) for S′ij to the case of two tachyons, we can
take the indices to be a = 2 and i = 3 and it reduces to,

S′m,n =
n∑
r=1

rSm+r

(
m
p3 · q
r

)
Sn−r

(
n
p3 · q
r

)
. (5.15)

Upon performing the sum,

S′m,n =
n∑
r=1

r
(mp3 · q)m+r

(m+ r)!
(np3 · q)n−r

(n− r)!

= mn

m+ n
p3·q (1 + p3·q)

(1 + n p3 · q)n−1
(n− 1)!

(1 +mp3 · q)m−1
(m− 1)! . (5.16)

As a result the ratio that we need is,

S′ij
Σ′i Σ′j

= ij

i+ j

p3 · q(1 + p3 · q)
(p3 · ζ)2 . (5.17)

The kinematic terms appearing here were given earlier, see (5.5) and (5.8), which gives,

p3 · q(1 + p3 · q)
(p3 · ζ)2 = − 1

2N . (5.18)

Actually, we should be slightly careful — the kinematics we have been using involved taking
the large N limit. If we do this more carefully, at finite N . we get,

p3 · q(1 + p3 · q)
(p3 · ζ)2 = −1

2
3 +N − 4

sin2 α

N2 + 2N − 3 ≈
−1
2N + 1

2N2

( 4
sin2 α

− 1
)

+O
( 1
N3

)
. (5.19)

Thus, as long as we are away from α = 0, π, the leading term is a good approximation.
Therefore, in the large N limit and away from α = 0, π we have,

S′ij
Σ′iΣ′j

≈ − 1
2N

ij

i+ j
. (5.20)

The amplitude will contain a function of these variables, which we don’t know. However,
since the variables are independent of α, the function will be independent of α.

Thus, away from α = 0 and α = π, the amplitude is proportional to (5.11),

A ∝ (p3 · ζ)J
∞∏
m=1

Pm(p3 · q)nm , (5.21)

where Pm(a) was defined in (5.12), p3 · q was given in (5.5), and p3 · ζ was given in (5.8).
We may equally well write the amplitude with p3 · ζ under the product, or the amplitude
expressed in terms of p2 · q and p2 · ζ,

A ∝
∏
m

(p3 · ζ Pm(p3 · q))nm = (−1)N (p2 · ζ)J
∏
m

Pm(p2 · q)nm , (5.22)
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where in the second equality we used that Pm(−1 − a) = (−1)m−1Pm(a) combined with
p3 · q = −1− p2 · q, as well as p2 · ζ = −p3 · ζ.

The amplitude (5.21) is the result (5.2) that was advertised at the beginning of the sec-
tion as the amplitude for the heavy state (5.1) to decay to two tachyons. Perhaps the most
familiar heavy state is the leading Regge trajectory (λ ·A−1)N |0〉. Since P1(a) = 1 (5.13),
the amplitude is simply,

A ∼ (p3 · ζ)J ∼ (sinα)J , J = N , for the state (λ ·A−1)N |0〉 . (5.23)

As would be expected, the amplitude is simple. A slightly more general simple state is one
in which only one mode is excited,

(λ ·A−k)n|0〉 , N = nk , A ∝ (p3 · ζ Pk(p3 · q))n (5.24)

The amplitude is again a smooth function of the angle α. Of course, this state is still
special, so this is to be expected. We will soon show that, in contrast, for generic states
the amplitude is erratic.

General polarization. The excited string state that we have so far discussed, (5.1),
with one polarization is the general state in three dimension. In D space-time dimensions,
there are D − 2 independent polarization vectors and the most general state is given by,

n1∏
k=1

(λ1
k ·A−1)

n2∏
k=1

(λ2
k ·A−2) · · ·

nr∏
k=1

(λrk ·A−r)|0〉 , N =
r∑

m=1
mnm . (5.25)

If all the polarization vectors are orthogonal to each and null then the amplitude is,

A ∝
n1∏
k=1

(p3 · ζ1
k)

n2∏
k=1

(p3 · ζ2
k) · · ·

nr∏
k=1

(p3 · ζrk)
∞∏
m=1

Pm(p3 · q)nm , (5.26)

up to a normalization constant, where ζiµ,k = λiµ,k − (λik · p1)qµ. If there is only one
polarization vector, this reduces to (5.21). In the case the polarization vectors are not
orthogonal to each other, (5.26) will be multiplied by a function of

ζik · ζ
j
l S
′
ij

Σ′i Σ′j
. (5.27)

As we saw earlier in (5.18), the ratio S′ij/(Σ′i Σ′j) is independent of α. So this function
of (5.27) will only be a function of the dot products of the polarization vectors. Thus,
the α dependence of the amplitude is captured by (5.26), whereas the dependence on the
relative polarization angles is not something we explicitly know. The essential point is that
the factor that will give rise to chaos is the α dependent term

∏∞
m=1 Pm(p3 · q)nm that

appears in the amplitude. This term is independent of the choices of polarization. We will
therefore continue our discussion of the amplitude by focusing on the amplitude (5.21) for
the case of one polarization vector.
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Figure 8. A plot of Pm(a) (5.12) with m = 11. At large m Pm(a) is approximated by (5.28).

Oscillations in Pm(a). The essential ingredient in the amplitude is the function which
we called Pm(a) in (5.12). We notice that Pm(a) is oscillatory for −1 < a < 0, and
monotonic for a outside this range. For us a = p3 · q and is in the oscillatory range
−1 < a < 0, at large N . A plot of Pm(a) for m = 11 is shown in figure 8. The larger m,
the more oscillatory Pm(a) is. Indeed, we can simplify Pm(a) at large m through use of
Stirling’s approximation. For −1 < a < 0, we get,

Pm(a) = − sin(πma)
√

2
mπ

(1 + a)m(1+a)− 1
2

(−a)ma+ 1
2

, m|a| � 1 . (5.28)

An erratic amplitude. Each Pm(a) comprising the amplitude (5.21) is a smooth func-
tion of a that has m − 1 zeros as a ranges from −1 to 0. In the limit of large m, as we
said, Pm(a) can be approximated by (5.28), and the zeros lie at a = 1

m ,
2
m , . . . ,

m−1
m . Each

Pm(a) by itself is a fairly regular function.
However, with a product of Pm(a) over many m we have a much more interesting

function. Taking the amplitude (5.21) and using the approximation (5.28), the amplitude
takes the form,

A ∼ (sinα)J exp
(
−
∑
m

nm logm
)

(1 + p3 · q)N(1+p3·q)−J2

(−p3 · q)Np3·q+J
2

∏
m

(sin(πmp3 · q))nm , m� 1 .

(5.29)
The kinematic factor p3 · q was given in (5.5), p3 · q = − cos2 α

2 . The erratic nature of the
amplitude comes from the last term, the product of the sine factors. Consider taking the
limit of N goes to infinity, and taking our excited string state to have a nonzero occupation
number for each mode. The amplitude then has a zero for every angle α at which cos2 α

2
is a rational number.

For any particular (generic, highly excited) state, the amplitude appears to be erratic,
in both the change in the outgoing tachyons or the ingoing excited string. In particular,
a small change in the angle θ of the detector for the tachyons potentially leads to a large
change in the amplitude (recall that α = θ − β). Likewise, the amplitude has the same
sensitivity to the ingoing state, under a small change in the angle β of the DDF photons that
form the excited string. In addition, the amplitude is sensitive to the precise occupation
levels of the initial string: suppose we take an initial string in which a large number of
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(a)
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Figure 9. A plot of the amplitude for an excited string (at level N = 50, in a particular state
we specify) to decay to two tachyons, as a function of the angle α, as given by (5.21). (a) The
amplitude for the state with occupation numbers n11 = n7 = n5 = 1, n4 = 4, n3 = 3, n1 = 2.
(b) We slightly change the state to have n12 = n6 = 1 and n11 = n7 = 0, and other occupation
numbers unaffected. It is very different from plot (a).

different modes have nonzero occupation number. Let one of these modes be m, so that
nm is nonzero. Let r be a nearby mode for which nr is zero. It is a fairly minor change
in the state to change nm to zero and nr to something nonzero. The ratio of these two
amplitudes contains Pr(p3 · q)/Pm(p3 · q), a function which has both zeros and poles.

An example. Let us look at the amplitude (5.21) for some particular excited string
state. As an example, we take the excited string to be at level N = 50, and take some
randomly chosen state at this level. For instance,

(λ ·A−11)(λ ·A−7)(λ ·A−5)(λ ·A−4)4(λ ·A−3)3(λ ·A−1)2|0〉 . (5.30)

We plot the amplitude (5.21) as a function of angle α in figure 9(a). Even at this relatively
small value of N , the amplitude exhibits nontrivial behavior. If we change to a different
state, also at level 50, the amplitude looks very different, as shown in figure 9(b).

A detector measuring erratic behavior. Let us now combine everything to discuss
our setup. We start with a highly excited string in a generic state. At finite string coupling
gs, the excited string will decay into other strings. For small gs, we can look at just the
leading order process, of the string decaying into two strings.

For simplicity, we focus on the case in which the string decays into two tachyons. This
is not the generic decay channel, and not the dominant decay channel, however it is the
simplest to calculate. Operationally, we can arrange to have a detector which only detects
tachyons. There is a finite amplitude for the initial string to decay into two tachyons, and
so the detector will occasionally click.

We are interested in the behavior of the amplitude as a function of the outgoing angle
of the tachyons. If the initial excited string state is one of the basis states we discussed,
then the amplitude is highly erratic as a function of the angle, and is extremely sensitive
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to the precise state of the heavy string. As we move our detector around (varying θ), its
detection of tachyons will vary erratically.

A natural way of forming the initial highly excited string is through a scattering process
of light strings. This is encoded in the DDF construction of an excited string that we have
been using, in which photons are repeatedly scattered off of an initial tachyon. A small
change in the excited string state then corresponds to a small change in one of the momenta
of the many photons that formed the excited string. Note also that the erratic behavior
in the amplitude arrises in the limit in which the string is in a generic highly excited state
(large N); a large number of photons are sent in to form it. This is in line with the proposal
of [4], that chaos can be seen in the erratic behavior of the scattering amplitude of many
particles, under a change in the momentum of one of the particles.

This erratic behavior is not seen in the imaginary part of the high energy, large s,
scattering amplitude of two tachyons, even though this is given by a sum, over all states of
mass

√
s, of the square of these amplitudes. Most of the terms in the sum will be erratic,

but the chaotic, erratic behavior is washed out in the sum.

5.2 Three tachyons and one excited string

In this section we discuss the amplitude involving an excited string and three tachyons.
The amplitude involving an excited string and any number of tachyons was discussed in
section 4. In this section we specialize the formulas found there to three tachyons.

Special polarization. We start with the case considered in section 4.1: an excited state,

(λ ·A−1)n1(λ ·A−2)n2 · · · (λ ·A−k)nk |0〉 , N =
k∑
i=1

ini , (5.31)

in which the polarizations λ of all the DDF photons forming the excited state are the same
and λ2=0. We found the amplitude is,

A = 1
vol(SL2)

∫
dz exp (L) , (5.32)

where L was given by (4.15) which, after taking n = 3 (three tachyons), and a = 2, b = 3,
becomes,

L = p2 · p4 logR+ p3 · p4 log(R−1)− log(z2
14z

2
23) +

k∑
m=1

nm log(−Σ′m) , R ≡ R4 = z13z24
z14z23

,

(5.33)
and Σ′n given in (4.17) becomes,

Σ′n = p3·ζ
∮
dw

2πi
w−n

(1− w)1+np3·q(1− wR)np4·q + p4·ζ
∮
dw

2πi
Rw−n

(1− w)np3·q(1− wR)1+np4·q ,

(5.34)
where we used that R3 = 1. Performing the integrals gives,

Σ′n = p3·ζ
n−1∑
m=0

(1 + n p3 · q)n−1−m
(n−1−m)!

(n p4 · q)m
m! Rm

+ p4·ζ
n−1∑
m=0

(1 + n p4 · q)n−1−m
(n−1−m)!

(n p3 · q)m
m! Rn−m . (5.35)
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We can use SL2 symmetry to fix three of the four zi in the integral for the amplitude (5.32)
(see the discussion above (2.24)) to the values z1 =∞, z2 = 1, z3 = z and z4 = 0, so that
R = (1− z)−1. The amplitude becomes,

A =
∫ 1

0
dz zp3·p4(1− z)p2·p3

∏
m

(−Σ′m)nm . (5.36)

This expression for the amplitude, with Σ′n given above in (5.35), is fully explicit and
relatively compact. We see that the scaling with the polarization is ζJ , where J =

∑
m nm

is the spin, which is correct. If we wished, we could do a multinomial expansion of (−Σ′m)nm
in powers of (1− z), and then perform the z integrals, thereby obtaining the amplitude as
a sum of beta functions. However, such an expression wouldn’t be any more enlightening
than the current form.

Notice that if we take the excited state to be a tachyon, setting nm = 0 for all m,
then we recover the Veneziano amplitude. As is well known, for high energy, fixed angle
scattering of tachyons (large Mandelstam s and t), one can get the amplitude by taking
the saddle with respect to z [90, 91]. If the excited state were only moderately excited, so
that N remains finite as s, t → ∞, then the same saddle would hold here. However, the
situation we are studying is one in which N is of the same order as s and t, and so one can
not neglect the (−Σ′m)nm in (5.36) when finding the saddle. We leave a discussion of the
saddle to future work.

Special polarization and special kinematics. There is one special case in which
the amplitude simplifies. Looking at Σ′n (5.35) we notice that it simplifies significantly if
q · p4 = ζ · p4 = 0,

Σ′n = p3·ζ
(1 + np3 · q)n−1

(n− 1)! = p3·ζ Pn(p3 · q) , for q · p4 = ζ · p4 = 0 . (5.37)

The dependence on R has disappeared, and the amplitude becomes,

A =
∏
m

(−Σ′m)nm
∫ 1

0
dz zp3·p4(1− z)p2·p3

=
∏
m

(−p3·ζ Pm(p3 · q))nm β(p3·p4 + 1, p2·p3 + 1) , (5.38)

where the beta function is just the tachyon amplitude, see (2.24). Comparing with the
three-point amplitude in (5.11), the four-point amplitude — for our special kinematic
configuration — is the three-point heavy-tachyon-tachyon amplitude multiplied by the
four-point tachyon amplitude.

The conditions that we needed, q · p4 = ζ · p4 = 0, can equivalently be written as
q · p4 = λ · p4 = 0, because ζµ = λµ − (λ · p1)qµ. So the momentum of the tachyon is
orthogonal to the momenta of the DDF photons that created the excited state (which are
proportional to q), and orthogonal to their polarization. Since q is null this means that in
the high energy limit, in which tachyons are approximately massless, p4 is approximately
some multiple of q. Also, the condition p4 · λ = 0 follows automatically, since q · λ = 0.
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General polarization. Finally, we look at the case considered in section 4.2 of an excited
string in a general state,

λk ·A−mk · · ·λ2 ·A−m2 λ1 ·A−m1 |0〉 , N =
∑
i

mi . (5.39)

The amplitude is given by,

A = 1
vol(SL2)

∫
dz exp (L) , (5.40)

where L was given by (4.29) which, after taking n = 3 (three tachyons), and a = 2, b = 3,
becomes,

L = p2 · p4 logR+ p3 · p4 log(R− 1)− log(z2
14z

2
23)

+ log

bk/2c∑
ρ=1

∑
π

ρ∏
l=1

(ζπ(2l−1) · ζπ(2l)) S′mπ(2l−1),mπ(2l)

k∏
q=2ρ+1

(−Σ′mπq(ζq))

 , (5.41)

where R ≡ R4 = z13z24
z14z23

, and Σ′m(ζ) was given by (5.35), and S′m,n in (4.32) becomes,

S′m,n =
n∑
r=1

r

∮
dw

2πi
w−m−r−1

(1− w)mp3·q(1− wR)mp4·q

∮
dv

2πi
v−n+r−1

(1− v)np3·q(1− vR)np4·q . (5.42)

If we wish, we can evaluate the integrals over w and v; each will give a sum, as in (5.35).
We may instead do the sum over r to get,

S′m,n =
∮
dw

2πi

∮
dv

2πi
1

(v − w)2wmvn
1

(1− w)mp3·q(1− wR)mp4·q
1

(1− v)np3·q(1− vR)np4·q .

(5.43)
Notice that if we take p4 · q = 0 in (5.42), then S′m,n becomes identical to the S′m,n found
in the three-point amplitude (5.16).

6 Discussion

In this paper we looked at scattering amplitudes involving highly excited strings. A general
excited string state was formed by the DDF construction, of repeatedly scattering photons
off of an initial tachyon. We studied in detail the amplitude for the decay of a highly
excited string into two tachyons. The result is compact and rich, and summarized in the
beginning of section 5. We found that the amplitude involving generic excited strings (in
contrast to the more commonly studied special excited states, such as the leading Regge
trajectory) is highly sensitive to the precise excited string state (the microstate) and erratic
as a function of the relative angle between the outgoing tachyons and the photons used to
create the state. We interpret this as chaos in the scattering amplitude.

Although our computation was for one excited string decaying into two tachyons, it
seems fairly clear that the effect is general: a scattering amplitude involving any number
of generic highly excited strings should be chaotic. The next simplest case to consider is a
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highly excited string decaying into another highly excited string by emitting a low energy
tachyon or photon. This is more challenging to calculate than the case studied here, and
we hope to report on it soon.

An important question is what is the dominant decay channel of a highly excited
string. If a highly excited string is to behave like a conventional thermodynamic system,
then the dominant decay channel should consist of the string gradually and sequentially
emitting low energy tachyons/photons. One might hope that this amplitude can be found
by gluing together the three-string amplitudes of an excited string decaying into another
excited string and a photon. This process would be an analog of a black hole decaying by
gradual emission of Hawking radiation.

String theory is known to have a number of unique and extraordinary properties. The
remarkable simplicity and complexity of scattering amplitudes of highly excited strings,
exhibiting chaos at weak coupling, is yet one more.
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A Covariant vertex operators

In the main body of the text we found the vertex operators for excited string states through
the DDF construction. In this appendix we review the more familiar construction of
covariant vertex operators, as found by imposing the Virasoro constraints. This works well
for light string states, but becomes increasingly unwieldy for heavy string states.

Recall that the open string field Xµ can be expanded in terms of modes,

∂Xµ(z) = −i
∑
n

αµn
zn+1 , αµ−n = i

(n− 1)!∂
nXµ(0) . (A.1)

An excited string state is obtained by acting with the creation operators αµ−n on the
vacuum. The relation above allows us to translate between states and their corresponding
vertex operators,

αµ1
−n1α

µ2
−n2 · · ·α

µk
−nk |0; p〉 ↔ ∂n1Xµ1 ∂n2Xν2 · · · ∂nkXµk eip·X . (A.2)

Only particular superpositions of these are allowed states. In order for a state to be
physical, it must both be annihilated by the Virasoro generators,

Lm|φ〉 = 0 , m > 0 , Lm = 1
2

∞∑
n=−∞

αm−n · αn , (A.3)

and it must be on-shell, L0|φ〉 = |φ〉, which corresponds to M2 = −2 + 2
∑∞
n=1 α−n · αn.

Note that αµ0 = pµ. We will show explicitly how this works for states at levels one, two,
and three.
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N = 1. At level N = 1 the states are massless and take the form,

ζ · α−1|0; p〉 ↔ ζ · ∂X eip·X . (A.4)

Acting with L1 gives,
0 = L1 ζ · α−1|0; p〉 = ζ · p |0; p〉 , (A.5)

where we used that the relevant part of L1 is L1 = α0 ·α1 + . . ., and that the modes satisfy
the commutation relations [αµm, ανn] = mηµνδmn. We get the constraint that ζ · p = 0. A
second constraint is that we may add any multiple of p to ζ, while leaving the amplitude
involving the vertex operator unaffected. To see this, note that if we take ζ = p, then the
vertex operator is a total derivative of the tachyon vertex operator

p · ∂X eip·X = −i∂ eip·X . (A.6)

Thus we have two constraints, and correspondingly a basis of D−2 states at level-one in
dimension D.

Explicitly, suppose we are in three dimensions and take the momentum to be p =
(1, 0, 1). Letting the polarization have components ζµ = (ζ0, ζ1, ζ2), the constraint p · ζ = 0
gives ζ2 = ζ0. Being able to add any multiple of p to ζ lets us further set ζ0 = 0. Thus,
the polarization is proportional to (0, 1, 0).

N = 2. At level N = 2 the states have mass M2 = 2 and take the form,(
ζ · α−2 − ζµναµ−1α

ν
−1
)
|0; p〉, ↔

(
iζµ∂

2Xµ + ζµν∂X
µ∂Xν

)
eip·X . (A.7)

Requiring that the state be annihilated under the action of L1 and L2 gives, respectively,

ζµ − pνζµν = 0 , ηµνζµν − 2p · ζ = 0 , (A.8)

where we used that the relevant part of L1 is L1 = α0·α1+α−1·α2+. . . and that the relevant
part of L2 is L2 = α2·α0+ 1

2α1·α1+. . .. Finally, the norm of the state is 2 (ζµζµ ∗ + ζµνζ
µ ν∗).

Since ζµν is a symmetric tensor, this gives D(D+ 1)/2 components. The vector ζµ is fixed
via (A.8) in terms of ζµν , and the second equation in (A.8) give one constraint. Thus we
have a total of (D−2)(D+1)

2 independent states, which is the dimension of the symmetric
traceless representation of SO(D − 1).

N = 3. At level N = 3 the state takes the form,(
2ζ · α−3 − tµναµ−2α

ν
−1 − ζµνρα

µ
−1α

ν
−1α

ρ
−1

)
|0; p〉

↔
(
iζµ∂

3Xµ + tµν∂
2Xµ∂Xν + iζµνρ∂X

µ∂Xν∂Xρ
)
eip·X .

Requiring that the state be annihilated by L1, L2 and L3 gives the constraints, respectively,

6ζµ − tµνpν = 0 , tµν + tνµ + 3ζµνρpρ = 0
6ζµ − 2tνµpν − 3ηνρζµνρ = 0

3ζ · p− tµνηµν = 0 , (A.9)

where in the first line, corresponding to annihilation by L1, we have two constraints, coming
from the requirement that the coefficients of both αµ−2|0〉 and α

µ
−1α

ν
−1|0〉 vanish.

Proceeding to higher N in this fashion is tedious. For some discussion see e.g. [37–39].
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B Normalization of DDF operators

In order to gain experience working with the DDF vertex operators, it is useful to check
that they are correctly normalized.

Single creation operators. Since the DDF operators A−m obey the commutation re-
lations of creation operators, (2.3), we have that the overlap of two states λ1 ·A−m1 |0〉 and
λ2 ·A−m2 |0〉 is given by,

〈0|λ∗1 ·Am1λ2 ·A−m2 |0〉 = λ∗1 · λ2m1δm1,m2 . (B.1)

We would like to get the same thing by computing the two point function of the corre-
sponding DDF vertex operators given in (3.37),

〈V ∗1 V2〉 ≡ 〈(: λ1 ·A−m1 e
ip̃·X(z1) :)∗ : λ2 ·A−m2 e

ip̃·X(z2) :〉 . (B.2)

We use (3.37) for the vertex operator (note that taking the complex conjugate is equivalent
to (3.37) with q → −q and p→ −p). We get that (B.2) is equal to,

〈V ∗1 V2〉 = ζ∗1 · ζ2
∑
a1,a2

〈∂a1X(z1)∂a2X(z2)〉
(a1 − 1)!(a2 − 1)!

× Sm1−a1

(
− m1
rzr21

)
Sm2−a2

(
− m2
rzr12

)
〈e−ip·X(z1)eip·X(z2)〉 . (B.3)

We perform the Wick contractions using (2.7), as well as (2.14) which gives,
〈e−ip·X(z1)eip·X(z2)〉 = z−p

2

12 , and we use for the Schur polynomial,

Sk

(
− m1
rzr21

)
=
∮
dw

2πi
1

wk+1

(
1− w

z21

)m1

=
(
m1
k

)
(−1)k

zk21
, (B.4)

to get

〈V ∗1 V2〉 = ζ∗1 · ζ2
1

zm1+m2+p2

12

∑
a1,a2

(−1)m2−a1−a2(a1 + a2 − 1)!
(a1 − 1)!(a2 − 1)!

(
m1
a1

)(
m2
a2

)
. (B.5)

Evaluating the sum gives,16

〈V ∗1 V2〉 = ζ∗1 · ζ2m1
(−1)m1

z2
12

δm1,m2 , (B.6)

where we used that p2 = −2(m1 − 1). Since ζ∗1 · ζ2 = λ∗1 · λ2, this matches what we
expected (B.1).

16For a1 ≤ m1, one can evaluate the sum by using,∑
a2

(−1)m2−a2 (a1+a2−1)!
(a2 − 1)!

(
m2

a2

)
= (−∂z)a1

∑
a2

(
m2

a2

)
(−1)m2−a2

za2

∣∣∣
z=1

= (−1)m2+a1∂a1
z

(
z−1
z

)m2 ∣∣∣
z=1

= m2! δm2,a1
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Two creation operators. Let us check the normalization of a state created with two
creation operators, λ2 · A−m2λ1 · A−m1 |0〉. From the commutation relations of creation
operators (2.3), we have,

〈0|λ∗1 ·Am1λ
∗
2 ·Am2 λ2 ·A−m2λ1 ·A−m1 |0〉 = |λ1|2|λ2

2|m1m2 + |λ1 · λ∗2|2m1δm1,m2 . (B.7)

Now let us get the same result by computing the two-point function of the vertex opera-
tor (3.41) at z2 and its complex conjugate at z1,

〈
[
(ζ2 ·Pm2 ζ1 ·Pm1 + ζ1 ·ζ2 Sm1,m2) eip·X(z1)

]∗
(ζ2 ·Pm2 ζ1 ·Pm1 + ζ1 ·ζ2 Sm1,m2) eip·X(z2)〉 .

(B.8)
We note that since Sm1,m2 contains only terms of the form q · ∂rX(z), and since q2 = 0
and q · ζi = 0, we can only contract the Sm1,m2 with the exponential. Thus the Sm1,m2(z1)
that we have on the left becomes,

Sm1,m2(z1) =
m1∑
m=1

mSm1−m

(
− m1
rzr21

)
Sm2+m

(
− m2
rzr21

)
. (B.9)

Using the contour integral representation of the Schur polynomial (B.4) we see that
Sm2+m

(
− m2
rzr21

)
= 0 for m ≥ 1. Hence (B.8) becomes,

〈
[
(ζ2 ·Pm2 ζ1 ·Pm1) eip·X(z1)

]∗
(ζ2 ·Pm2 ζ1 ·Pm1) eip·X(z2)〉 . (B.10)

We may now contract (ζ2 ·Pm2)∗(z1) with either ζ2·Pm2(z2) or with ζ1·Pm1(z1). Using (B.6)
we thus find, (

|ζ1|2|ζ2
2 |m1m2 + |ζ1 · ζ∗2 |2m2

1δm1,m2

) (−1)m1+m2

z2
12

. (B.11)

This matches (B.7).
The generalization to a state created with multiple creation operators is clear.

C A generalization of the scattering equations

The bosonic closed (open) n string scattering amplitudes, to lowest order in gs , are given
by saddles in the integration over the positions (zi) of the vertex operators on the sphere
(upper half plane), when we take all kinematic invariants to be large or, equivalently,
α′ →∞

A = 1
vol(SL2)

∫ n∏
i=1

dzi expL(z) , L(z) = 2α′
n∑

0≤i<j≤n
pi · pj log zij . (C.1)

The z′is are determined, up to SL2 transformations, by the “scattering equations”:∑
j 6=i

pi · pj
zi − zj

= 0, for i = 1 . . . n (C.2)

which determine the saddles of (C.1). Note that in this limit we can take the tachyons to
be massless, as p2

i = 1/α′. These equations are invariant under SL2 transformations of the
zi and thus yield n− 3 equations. They have (n− 3)! solutions.
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Although these equations determine high energy string scattering they are also key
ingredients in the CHY formulas [95, 96] for massless particle scattering in field theory,
and have been the subject of much investigation recently. The scattering of excited strings
will be governed by the same saddle as long as one keeps the mass of the excited strings
small compared to the energies and momentum transfers, leading to the many relations
between scattering amplitudes discussed in [90–93]. However, if we consider strings with
masses of order the energies, the saddles will be shifted. This will lead to interesting
generalizations of the scattering equations. In this section we will exhibit some of the
simplest generalizations.

Consider the simple case discussed in section 4.1 of the scattering of one heavy string
in which all the DDF photons forming the excited state have the same polarization λ,
orthogonal to its momentum ph (in this section we let ph denote the momentum of the
heavy string) and with λ2 = 0. The analog of (C.1) was given in equations (4.9), (4.10)
and (4.11). Specializing further, consider the case where the excited string has n1 = N ,
ni>1 = 0, namely the exited string lies on the leading Regge trajectory, has momentum ph
(where p2

h = −2N) and polarization ξ, (ξ · ph = 0). In this case, for n tachyons (which we
can take to be massless) of momenta pi, the action is given by,

L(z) =
∑

1≤i<j≤n
pi ·pj log zij+

n∑
i=1

pi ·ph log(zi−zh)+N log(Σ1) , Σ1 =
n∑
j=1

pj · ζ
zj − zh

. (C.3)

The saddles are given by ∂L(zi,zh)
∂zi

= ∂L(zi,zh)
∂zh

= 0,

∑
j 6=i

pi · pj
zi − zj

+ pi · ph
zi − zh

− N

Σ1

pi · ζ
(zi − zh)2 = 0, for i = 1, . . . , n , (C.4)

n∑
j=1

pj · ph
zh − zj

+ N

Σ1

n∑
j=1

pj · ζ
(zh − zj)2 = 0 . (C.5)

These equations for zi and zh are invariant under Möbius transformations, {z → az+b
cz+d , ad−

cb = 1}. They are equivalent to requiring that the vector field Eµ(z)

Eµ(z) ≡
n∑
j=1

pµj
z − zj

+ pµh
z − zh

+ Nξµ

Σ1

1
(z − zh)2 (C.6)

is null, Eµ(z)Eµ(z) = 0. Eµ(z) is the electric field created by charges (pµi , p
µ
h) at positions

(zi, zh), as well a dipole Nξµ

Σ1
at zh.

Similar generalizations of the scattering equations can easily be derived by considering
the critical points of the Lagrangians given in (4.10), as well as (4.27).

D A typical string state

In the main body of the paper we discussed scattering amplitudes of excited string states.
However, for a string of given mass, the number of different states grows exponentially
with the mass. Clearly, we need to have a better sense of which states in particular we
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Figure 10. A Young diagram corresponding to the state in (D.2).

would like to study. We are interested in the generic state. In D space-time dimensions,
there are D − 2 independent polarization vectors. A state is created by acting with the
DDF creation operators, Aµ−m, which excite mode m in direction µ. We let nm denote the
number of times mode m is excited. The modes are excited in direction (polarization) λmk ,
where k = 1, 2, . . . , nk. A state at level N , having mass M2 = 2(N − 1), therefore takes
the form,

n1∏
k=1

(λ1
k ·A−1)

n2∏
k=1

(λ2
k ·A−2) · · ·

nr∏
k=1

(λrk ·A−r)|0〉 , N =
r∑

m=1
mnm . (D.1)

The state is specified by the polarizations {λkm} and the occupation numbers {nm}.
The question of what a typical state looks like is more precisely: for a given N , what is

the typical value of the occupation number nm of modem? In this section we will show that,
in the large N limit, the typical (or equivalently, average) occupation number takes the
form of a Bose-Einstein distribution 〈nm〉 = 1

em/T−1 , with a temperature T =
√

6N(D−2)
π .

A typical Young diagram. Let us reformulate the problem of finding the expected
occupation numbers nm as one of finding the generic partition. We associate every state
with a partition, and take D = 3 so that the polarization is unique. An example of a state
and the corresponding partition is,

(λ ·A−7)(λ ·A−4)(λ ·A−2)(λ ·A−1)(λ ·A−1)(λ ·A−1)|0〉 , {7, 4, 2, 1, 1, 1} , (D.2)

which is just one of the 231 partitions of N = 16. A general state/partition is,

(λ ·A−l1)(λ ·A−l2) · · · (λ ·A−lr)|0〉 , {l1, l2, . . . , lr}

l1 ≥ l2 ≥ · · · lr > 0 ,
∑
i

li = N . (D.3)

Notice that we have ordered the li in nonincreasing order, in order to not count the same
state twice. We may associate each partition of N with a unique Young diagram. For each
A−l we draw a row of l boxes, and the rows are arranged with nonincreasing l as one moves
down. The Young diagram corresponding to the state (D.2) is shown in figure 10.

Our question of what a generic large N state looks like has become a question of what
a generic Young diagram looks like (assuming that any individual Young diagram is equally
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Figure 11. A Young diagram corresponding to a random partition of N = 1000. The solid line is
−y(x) in (D.4).

likely). The answer to this is well known, see e.g. [108, 109]: the number of elements of the
partition that have a l ≥ x is given by y(x),

y(x) = − 1
β

log(1− e−βx) , β = π√
6N

. (D.4)

The shape of the Young diagram is given by the curve y(x), as is sketched in figure 11.
One can check that y(x) is properly normalized, N =

∫N
1 dx y(x).

What we are really interested in is the number of times mode m is excited — labelled
by nm in (5.25) — for a typical state. Clearly, y(x) is the number of creation operators
with an m ≥ x,

y(x) =
N∑

m=x
nm . (D.5)

To express nm in terms of y(x), let us use the notation nm ≡ n(m) and think of m as a
continuous variable. Then,

y(x) =
∫ N

x
dmn(m) , ⇒ n(x) = −y′(x) = 1

e
π√
6N

x − 1
. (D.6)

This is just the Bose-Einstein distribution, with a temperature,

T =
√

6N
π

. (D.7)

Actually, we could have derived this result from first principles, without relying on
knowledge of the mathematical result (D.4) for y(x). The argument is a straightforward
extension of the derivation in e.g. [26] for the density of states, Ω(N) (the number of string
states at level N). Recall that Ω(N) is, and we now work in arbitrary dimension D. The
polarizations are picked from a basis of D − 2 independent polarization vectors, and the
number of choices of λr1, λr2, . . . , λrnr is given by Cr ≡

(D−2+nr−1
nr

)
= (−1)nr

(2−D
nr

)
.

Ω(N) =
∑
{nk}

δ

(
N −

∑
k

knk

)∏
k

Ck =
∑
{nk}

∫
dβeβN

∏
k

e−βknk(−1)nk
(

2−D
nk

)

=
∫
dβ eβN

∏
k

(
1− e−βk

)2−D
, (D.8)
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where we represented the delta function as an integral and performed the sum over the
occupation number nk. Next, we rewrite the integrand as,

∏
k

(
1− e−βk

)2−D
= exp

(
−
∞∑
k=1

(D − 2) log(1− e−βk)
)

= exp
(

(D − 2)
∞∑

n,k=1

e−βnk

n

)
,

(D.9)
where in the last step we expanded the log. We are going to look for the saddle in the large
N limit. Thus, we should take β to be close to 0. Expanding the term being summed,

exp
( ∞∑
n=1

1
n

D − 2
eβn − 1

)
∼ exp

(
D − 2
β

∞∑
n=1

1
n2

)
= exp

(
π2(D − 2)

6β

)
, (D.10)

and so we find the number of states at level N � 1 is,

Ω(N) ∼
∫
dβ exp

(
βN + π2(D − 2)

6β

)
∼ exp

2π

√
N(D − 2)

6

 , (D.11)

where the saddle is at β = π
√

D−2
6N . The result is of course the Hardy-Ramanujan formula

for the asymptotic number of partitions of N .
Our interest is in nk for a typical state, or equivalently, the expectation value of nk

averaged over all states at level N ,

〈nk〉 =
∑
nm nk δ(

∑
mnm −N)

∏
mCm

Ω(N) . (D.12)

We write the numerator in the same way as we did for Ω(N),

〈nk〉 = 1
Ω(N)

∫
dβ

∑
{nm}

nk exp
(
β

(
N −

∑
m

mnm

))∏
m

Cm

= 1
Ω(N)

∫
dβ eβN

1
eβk − 1

∏
m

( 1
1− e−βm

)D−2
. (D.13)

The saddle will clearly be at the same β as it was for Ω(N), and so,

〈nk〉 = 1
eβk − 1 , β = π

√
D − 2

6N . (D.14)

Actually, this Bose-Einstein distribution for 〈nk〉 was guaranteed, once we knew the
density of states. We can think of our setup as a statistical mechanical system consisting
of harmonic oscillators, one for each integer frequency. Working in the microcanonical
ensemble, and thinking of N as the energy, from Ω(N) in (D.11) we identify the entropy,
and correspondingly the temperature, as,

S(N) = π

√
2N(D − 2)

3 ,
1
T
≡ ∂S

∂N
= π

√
D − 2

6N , (D.15)
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implying the Bose-Einstein distribution for nk found in (D.14). Note that this “temper-
ature” is not the same as that of a string in the canonical ensemble, as the mass of the
string is M =

√
N
α′ , which yields the Hagedorn temperature

1
TH
≡ ∂S

∂M
= π

√
2α′(D − 2)

3 . (D.16)

Let us now look at some properties of y(m). We see that the spin (the total number
of creation operators) is,

J ≈ y(1) ≈ T log T + 1
2 . (D.17)

More generally, for an m of order 1, y(m) = −T log(1 − e−m/T ) ≈ T log T
m for N � 1.

However, as one can see from the plot of y(m) in figure 11, most of the contribution to
the area (the total “energy” N) comes from large m. In particular, we will show that
most of the contribution to N comes from those creation operators with an m of order
m ∼ T ∼

√
N . Let us look at the number of creation operators that have an m greater

than Nγ , for some power 0 < γ < 1,

y(Nγ) = −T log
(

1− e−
Nγ

T

)
. (D.18)

We see that if γ > 1/2, this is zero in the large N limit. We may compute the expectation
value of m,

〈m〉 = 1
y(1)

∫ ∞
1

dmmn(m) = T 2

y(1)

∫ ∞
1/T

dx
x

ex − 1 = T

log T
π2

6 , N � 1 . (D.19)

This result is consistent with there being of order T creation operators with an m of
order T . More precisely, we may look at the creation operators with an m in the range
αT < m < βT (with α and β constant in the large N limit), and see the fraction of the
total energy N they make up,∫ βT

αT
dmy(m) = −T 2

∫ β

α
dx log(1− e−x) . (D.20)

The right hand side is of order N . For instance, if we take α = .01 and β = 10, then the
integral gives .965N . Thus, nearly all the energy is in this range. The number of creation
operators in this range is,

y(αT )− y(βT ) = −T log
(

1− e−α

1− e−β

)
. (D.21)

This is smaller than the total number of creation operators, J , by a factor of log T ∼ logN .
The reason is that there are many creation operators with small m, which don’t contribute
much to the energy. Indeed the number of A−1’s is,

n(1) = 1
e1/T − 1

≈ T . (D.22)
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So there are of order T creation operators with an m of order one (and hence an energy
contribution of order T ), and of order T creation operators with an m of order T (and
hence an energy contribution of order T 2 ∼ N).

Finally, we note that the Bose-Einstein distribution gives an 〈nk〉 that is of order-one
for k of order T . Clearly, for k much larger than T , the expectation value 〈nk〉 � 1 is no
longer a good indicator of the value of nk for a typical state. However, as we saw, most k
are parametrically less than T , by a factor of log T (see (D.19)), so for most k, nk is large.

So far we have discussed the generic state for fixed N . One could also ask about the
states occurring at fixed N and fixed J . The number of states as a function of both N

and J is,

Ω(N, J) = !
∑
{nk}

δ

(
N −

∑
k

knk

)
δ

(
J −

∑
k

nk

)∏
k

Ck (D.23)

=
∑
{nk}

∫
dβdµ eβN+µJ∏

k

e−(βk+µ)nk(−1)nk
(

2−D
nk

)

=
∫
dβdµ eβN+µJ∏

k

(
1− e−βk−µ

)2−D
.

The integrals over β and µ run over the imaginary axis. We will deform the contour to
pick up the saddle which lies on the real axis. Repeating the previous calculation,

∏
k

(
1− e−βk−µ

)2−D
= exp

( ∞∑
n=1

e−µn

n

D − 2
eβn − 1

)
∼ exp

((D − 2)
β

Li2(e−µ)
)
, (D.24)

where the Li2 is the polylogarithm: Li2(e−µ) =
∑∞
n=1

e−µn

n2 = π2/6 +µ log(µ) +O(µ2). The
density of states at the saddles is given by,

Ω(N, J) ∼ exp
(
βN + µJ + (D − 2)

β
Li2(e−µ)

)
, (D.25)

where for large N and J , the saddle is given by:

N = D − 2
β2 Li2(e−µ) , J = −D − 2

β
∂µLi2(e−µ) = −D − 2

β
log(1− e−µ) . (D.26)

To eliminate β and µ in Ω(N, J), one can take the second equation and divide by the square
root of the first equation,

J√
N

= −
√
D − 2 log(1− e−µ)√

Li2(e−µ)
, (D.27)

and solve for µ in terms of J√
N
, and then β is given by β2N = (D − 2)Li2(e−µ). We now

have the density of states for fixed N and J .
Finally, let us vary J and see for which J there are the most states. It is easiest to

express the exponent in (D.25) in terms of µ. This gives,

√
N
√
D − 2

(
2
√

Li2(e−µ)− µ√
Li2(e−µ)

log(1− e−µ)
)
. (D.28)
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One might have expected this to have a local maximum at some value of µ, but in fact this
function is monotonic, increasing as µ goes to zero. There is a limit to how small µ can
be however, since for it to be legitimate to use the saddle point the terms in the exponent,
such as µJ , must be large. This limits µ to be greater than of order 1/

√
N . Taking this

µ and using (D.27) gives a J of order T log T , where T = 1
π

√
6N
D−2 . This is just what we

found earlier in (D.17).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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