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1 Introduction

The background independence of classical General Relativity, which we expect to be carried
over to the quantum domain, implies that only dynamical entities should determine the
content of our physical description of the world. Any remaining background structure
should be diffeomorphism invariant and thus devoid of any physical and local spacetime
characterization itself. [1]. This means that, if present, background structures should play
at most an auxiliary role. For instance, this applies to the differentiable manifold on which
dynamical fields are defined, which should only enter the physics in its global (topological)
characterization. In particular, any notion of local region or point (which may be referred
to in terms of coordinate systems) is not physical because it is not diffeomorphism invariant.

This has many conceptual, mathematical and physical consequences, the most notable
being that no external, fixed or preferred notion of time (nor space) can be assumed. It is
therefore a difficult task, in general, to extract from the theory a diffeomorphism-invariant,
yet dynamical picture of the world in terms of observable quantities evolving in time.
In the classical setting, we often manage to avoid dealing with this troublesome feature
by directly working with specific solutions characterized by special isometries, to which
preferred temporal and spatial directions can be associated.

In a quantum context, this way out is precluded. Thus, approaches to the quantiza-
tion of gravity have to deal directly with the absence of preferred temporal (and spatial)
directions. In the canonical description [2, 3], for example, this background independence
manifests itself in the absence of a true Hamiltonian (in absence of boundaries) [2–4]. At
the quantum level, the resulting picture is that of a “frozen-time”, where states can not
evolve in time. This fact, often referred to as the “problem of time” in quantum grav-
ity [5, 6], is actually just the statement that physical states should not evolve with respect
to an external time, and it is inherited straight from the classical theory.

Still, no evolution with respect to external parameters does not mean no evolution (or
“no change”) at all; it only means that physical systems, including the gravitational field,
evolve with respect to other dynamical degrees of freedom of the theory. This, at least,
is the relational point of view on the problem of time (and space, and observables more
generally) in classical and quantum gravity. This is also the point of view we adopt in this
work. From this perspective, the reference frames (i.e. chosen clock and rods) that we are
used to in the pre-relativistic context should now be recognised as internal objects of the
theory and, in a quantum theory of gravity, these “clocks” and “rods” should therefore be
themselves chosen among quantum degrees of freedom described by the theory.

There are three main approaches to describe a (quantum) relational evolution in a
generally covariant theory (see [7] and references therein). The first one is based on an
appropriate definition of gauge invariant relational (Dirac) observables in the full Hilbert
space of the theory (without a priori any rewriting of the same), expressing the evolution of
all but one of the quantum degrees of freedom of the full system as a function of the values
taken by a selected one used as a clock. The second one, known as Page-Wooters formalism,
is based on the explicit separation of the Hilbert space into “clock” and “system” spaces,
and on the introduction of system states which are “conditioned” on the value of the clock.
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In this way, it realizes a relational Schrödinger picture. Lastly, the third one, often named
“quantum symmetry reduction”, classically selects a time observable, which is then used
to construct the quantum theory. This is close to a reduced phase space quantization,
and gives a relational Heisenberg picture. These three frameworks, born from the same
physical requirement of describing evolution of some degrees of freedom with respect to
another one, can in fact be shown to be equivalent, when the “clock” and the “system”
satisfy a certain number of conditions [7].

However, none of these procedures can be straightforwardly applied to quantum grav-
ity formalisms where spacetime and geometry are emergent. In these approaches, the
fundamental degrees of freedom of the theory do not correspond directly to (quantized)
fields (which are what ends up defining our physical rods and clock) and, as a consequence,
the connection to standard continuum spacetime notions and to any classical gravitational
theory is in this case more indirect. Therefore, in such quantum gravity formalisms, one
further step is needed to link the fundamental objects of the theory to any spacetime notion
and to reproduce continuum structures, like fields, to be then used as relational clock and
rods. This is typically obtained via some form of coarse graining, based on collective states
or some averaged observables (or possibly both of them). This complicates the extraction
of an effective relational dynamics, whose definition is however of great importance for
emergent quantum gravity theories. Indeed, since they lack any geometric structure, it
provides a rather straightforward way to compare their resulting continuum physics with
classical generally relativistic theories. In the following, we are going to explain these ad-
ditional difficulties in some generality, as well as giving some more detail on the various
strategies for extracting a relational dynamics in quantum gravity, before tackling the issue
in a specific quantum gravity context.

The concrete context of our choice is the tensorial group field theory formalism (see [8–
11] for general introductions).1 This formalism is based in fact on this “emergent spacetime”
perspective and it is not, in itself, the result of a straighforward quantization of a classical
gravitational theory. TGFTs aim to describe the structure and dynamics of “quanta of
space”, identified with elementary discrete objects (usually, quantized tetrahedra), to each
of which one can associate a classical phase space, but whose relation with continuum
spacetime, the Hilbert space of canonical quantum gravity, and the classical phase space of
General Relativity, is only indirect. This makes relational constructions based on a classical
continuum spacetime phase space unavailable. The Page-Wooters approach, on the other
hand, starts with the separation of the Hilbert space into one for the clock and another for
the remaining degrees of freedom, and the (Fock) Hilbert space of TGFT does not admit
such a decomposition.

A first attempt to define a relational dynamics in the full TGFT framework has been
made in [12], in the context of so-called GFT condensate cosmology, by minimally coupling
the degrees of freedom corresponding, in a continuum approximation, to a free massless
scalar to the quantum pre-geometric ones. Then, “relational” operators (close to complete

1In the following, TGFT or GFT, the latter usually labelling the specific class of models directly con-
structed by quantizing simplicial geometric structures, is used as a general label.
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observables [13–16]) were constructed within the full quantum setting. The fundamental
quantum dynamics has then been shown to imply, for such relational observables, an effec-
tive relational dynamics with a very interesting cosmological interpretation. However, as
we will discuss in subsection 4.1, the definition of such relational observables is plagued by
some ambiguities, following from some conceptual shortcomings of the construction, and
the ensuing “relational dynamics” presents some problematic aspects.

For instance, variances of “relational” quantum operators defined as in [12] are plagued
by divergences. A proper evaluation of variances of relational observables, in turn, is crucial
to assess the liability of the mean field approximation used in [12] to extract the same
effective (relational) cosmological evolution. Moreover, one of the most intriguing features
of the TGFT condensate cosmology approach, i.e. the resolution of the initial singularity
into a bounce, is obtained within such mean field approximation, which should then be
tested for robustness. The same is true for the semi-classical limit itself, which can be
trusted as long as quantum fluctuations are negligible.

This kind of technical issues has been already discussed in the literature (see for ex-
ample [17–19]) and tackled with different approaches. In [17, 18], new “equal-time” com-
mutation relations (with respect to a scalar field clock) have been postulated. Similar
commutation relations have been instead derived from a canonical quantization of a (class
of) TGFT model(s) in which the theory is “deparametrised” with respect to the scalar field
clock at the coarse-grained continuum level. In this way the aforementioned divergences
disappear because of the distributional nature of the more fundamental commutators of
the TGFT formalism is suppressed. However, this is a rather non-trivial modification of
the kinematic structure of the theory, which one should expect to be valid only at some
effective level, with respect to the fundamental TGFT theory (see section 4).

Another approach is the one used in [19], where, once acknowledged the distributional
nature of the TGFT field, a smearing of the operators with appropriate test functions has
been performed. Again, this solves the issues with divergences, but it leads to a functional
dynamics which is difficult to interpret at a physical level.

We will discuss further these difficulties in the following, clarifying also how they can
be seen as ultimately due to the ambiguities in defining a relational dynamics at a full
quantum level in a theory characterized by “clock-neutral” or “timeless” commutation
relations, such as those between the fundamental TGFT fields (see subsection 3.1). We
will show that if relational dynamics is defined in a different, more physical way, improving
on the procedure adopted in [12], these issues do not arise and also the conceptual setup
becomes clearer. The resulting relational dynamics has again a good semi-classical limit,
while maintaining an interesting signature of the underlying quantum geometry.

2 Relational dynamics in quantum gravity

As we have mentioned, in a background independent theory, where by definition a preferred
notion of time is lacking, any meaningful notion of evolution must be relational. Extracting
such a relational dynamics from (any given candidate to) the fundamental quantum theory
is a hard challenge. We sketch in subsection 2.1 some of the main elements of this issue,
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while, in subsection 2.2, we will describe which conditions are needed in order to implement
an effective relational dynamics framework for theories in which gravity is expected to
appear as an emergent phenomenon.

2.1 The general picture

There is a vast literature discussing the issue of relational dynamics in quantum gravity.
The problem is however mostly studied in a canonical setting (in particular see [7] for
a more careful treatment of the general scheme, and, for example, [20–22] for canonical
systems, with related applications to cosmological systems in [23]). While we also refer to
the canonical case in the following discussion, the aim of this subsection is more general
(and thus necessarily less formal), including also the case of theories which are not a direct
quantization of a classical theory of geometry and gravity.

2.1.1 “Quantum General Relativity” theories

In the context of theories obtained from a direct quantization of a classical theory of
geometry and gravity (for instance, Quantum General Relativity), there are basically two
different routes that can be followed.

One could select a clock variable X0 ≡ T at the classical level, among the dynamical
fields of the theory, singling it out as an “external structure” (this may require solving
some of the dynamical, or, perhaps constraint equations). Schematically:

{X0, P0;X1, P1; . . . ;XN , PN} −→ {X1, P1; . . . ;XN , PN}X0≡T ;P0=P0(Xi,Pi) , (2.1)

where Xi, Pi are the dynamical variables of the theory in a phase space formulation, i.e. all
fields (including the metric) and their conjugate momenta. Then one can quantize the re-
sulting theory in terms of the chosen classical relational time (“tempus ante quantum” [6]).

Alternatively, one can look for a notion of relational time after a clock-neutral quan-
tization of the full background independent theory (“tempus post quantum” [6]). This
implies identifying a relevant quantum observable X̂0, constructed out of the classical vari-
able X0 ≡ T as the one “measuring time”, thus defining a “quantum clock”, with its
eigenstates corresponding to its readings. The fact that one can not simply work with the
quantum operator corresponding to the classical phase space variable chosen as a clock is a
consequence of the need to have a well-defined (Hamiltonian) evolution and a well-defined
evolution operator generating it [7]. It is however possible, as one may expect, to relate
the more rigorously defined “quantum clock” observable to the classical clock variable, at
an effective level. This can be done in terms of observables or of quantum states on which
such observables are evaluated. To do so requires additional conditions on the relevant
class of quantum states to focus on, for example enforcing appropriate semi-classicality
properties, basically restricting oneself to the regime in which the chosen clock subsystem
behaves nicely enough to be traded for a good time label. Schematically, one would look
for ΨT (X0, X1, . . . , XN ) ∈ H such that

〈X̂0〉ΨT ' T , δΨT X̂0 � 1 and 〈ΨT | Ô | ΨT 〉 ' O(T ) , (2.2)

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
5

where with δΨT X̂0 we mean generic quantum fluctuations of the clock operator X̂0 on
the state ΨT . Notice that there could be in general several possible choices of dynamical
variables that could be promoted to a (relational) clock. Different choices may produce a
different dynamics, all equally valid in principle. This “clock covariance” is an important
feature that completely relational frameworks are expected to possess (see [20, 21, 24] for
pioneering works about the issue of changing clocks in generally covariant quantum systems
in a quantum phase space langauge and at an effective level, and [25] for a more general
and systematic approach to the problem). We will come back to this point later on. This
feature remains true in the quantum theory and in all approaches to relational dynamics,
and the relative merits of one clock over another have to be judged case by case.

Notice also that the simple form of the phase space, which nicely separates into the
variables corresponding to the would-be clock and the rest, is not always available. In fact,
this is not the case in the presence of gauge symmetries like diffeomorphism invariance
after imposition of constraints. In the quantum theory this is reflected in the fact that
the physical Hilbert space of quantum states, i.e., those solving the dynamics, does not
generally factorize into a direct product of quantum states for the clock and those for the
rest of the physical system. Such factorization may be at best an approximate one. This
is a crucial technical (as well as conceptual) complication that has to be dealt with when
constructing clock/time observables and the corresponding relational evolution in quantum
gravity. In our present context we will not need to deal directly with this issue, due to
the peculiarities of the TGFT formalism we work with, but we refer to [7] for a in-depth
discussion of these and other issues.

While a “tempus ante quantum” approach turns out to be technically easier for de-
parametrizable systems (i.e. in presence of some dynamical variables whose dynamics and
coupling is simple enough to be attributed the role of external clock), it is an approach
where a specific clock is somehow preferred, in order to canonically quantize the reduced
theory. Since, however, different choices of the clock may in general produce different quan-
tum theories (this is the so-called “multiple choice problem” [5, 6]), a truly clock-covariant
approach, as a tempus post quantum approach, where the clock variables are all treated
on the same footing, should be preferred [25]. In both approaches, however, for the chosen
subsystem to behave nicely enough to be used as a clock, several restrictions should be in
place, at least approximately: weak interactions between clock subsystem and the remain-
ing degrees of freedom, weak self-interactions of the clock itself, semi-classical behaviour
in the clock values, etc.

2.1.2 “Emergent quantum gravity” theories

Further complications arise in quantum gravity theories based on different types of degrees
of freedom than straightforwardly quantized continuum fields. In these theories, the no-
tions of spacetime, geometry and gravity should emerge from the collective behavior of some
pre-geometric, not directly spatiotemporal “atoms of space”, to be only indirectly related
to the continuum fields we define space and time with respect to.2 Examples of struc-

2It should be noted, however, that the distinction between these two categories is not sharp: some
structures that arise from the quantization of fields can also be understood more radically, and of course the
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tures admitting such more radical interpretation include the spin networks of loop quan-
tum gravity [26, 27] (though they were introduced first within a straightforward canonical
quantization of the gravitational field), the simplicial (piecewise-flat) geometries of lattice
quantum gravity approaches [28, 29], the quanta of group field theories [8, 9, 30], which as
we will discuss in the following can be understood both as spin networks and as simplicial
building blocks of piecewise-flat geometries, causal sets [31], and possibly the underlying
fundamental degrees of freedom of String Theory [32].

In such approaches, one expects the existence of a “proto-geometric” phase in which
the pre-geometric degrees of freedom behave in a collective way, ultimately conspiring to
the re-appearence of continuum spacetime notions (among which, there is of course any
notion of relational dynamics) at least at some effective, approximate level. As we have
just discussed, this presupposes some internal degree of freedom well-behaved enough, so to
speak, to be trusted as a good clock. Now, in an emergent spacetime context, all (classical
or quantum) dynamical variables of usual spacetime-based field theories are understood
as the result of suitable averaging/coarse-graining procedures applied to the fundamental
pre-geometric entities, and may well correspond to only a sub-set of the relevant collective
quantities one may define from them. The same applies to the would-be (classical or
quantum) clock subsystem: we need an additional coarse-graining/averaging step to arrive
at something approximately continuous and regular enough to label the evolution of other
degrees of freedom in the theory. Again, this additional difficulty is present independently
of whether we are dealing with quantum or classical non-spatiotemporal pre-geometric
entities. Thus, we are dealing with a genuinely new dimension of the “problem of time” in
quantum gravity.

Schematically, in the classical case, we can intuitively understand the needed extra
step as:

{x1, p1; . . . ; xn, pn} −→ {X0, P0;X1, P1; . . . ;XN , PN} , (2.3)

where we have indicated the number of fundamental degrees of freedom (each corresponding
to a subset of phase space variables) by n, with N expected to be much smaller than n.
Notice that the coarse-graining step is best understood at the level of observables or of
their associated phase space. Still, it is usually accompanied by a switch to a formulation
of the theory in terms of coarse-grained distributions over the fundamental phase space,
which become the new relevant dynamical variables, and which we then use to compute
expectation values of the effective quantities (Xi, Pi).

At the quantum level, the analogous step is, intuitively:

Hfund 3 Φ (x1; . . . ; xn) −→ ΨT (X0, X1, . . . , XN ) , (2.4)

where now the resulting function to be used to compute expectation values of the effective
quantities (Xi, Pi) is an effective probability distribution. Depending on the specific for-
malism, this distribution can be understood as a quantum state (element of some Hilbert

notion of emergence can play an important role also in more traditional canonical or covariant quantizations
of classical field theories like GR.
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space) for an effective quantum system described only in terms of the coarse-grained observ-
ables, or as a classical, hydrodynamic type distribution accounting at the effective level for
the quantum properties of the fundamental degrees of freedom (which in turn remain the
only ones to which a Hilbert space of quantum states is associated). This second possibility
is, in fact, the one we will see realized in the case of TGFT condensate cosmology.

Beyond technicalities and particular realizations, the general point is the following:
what was the classical description of the system in a formulation in terms of continuum
fields, that we want to manipulate to recast it in the form of a relational dynamics, is now
itself the result of some previous treatment of more fundamental entities, which, in general,
would not allow any identification of a relational clock.

The situation, therefore, can be represented as in figure 1. For a discussion of some
conceptual issues raised in these emergent quantum gravity scenarios, see [33].

One way to appreciate these additional difficulties is to realize that a proper extraction
of an effective relational dynamics in quantum gravity formalisms based on fundamental
non-spatiotemporal entities requires two distinct limits/approximations: continuum and
semi-classical. These two limits/approximations have to be considered conceptually dif-
ferent in emergent theories of quantum gravity, and they are not expected, in general,
to commute with each other [30], implying that the final approximate description of the
system may well depend on the order in which the two approximations have been imple-
mented. In particular, it might be the case that the quantum properties of the fundamental
degrees of freedom are actually necessary in order to obtain the correct continuum general
relativistic description of the quantum gravity system.

This suggest that the most appropriate and general path toward the extraction of a
well-defined relational dynamics from a fundamental theory of quantum gravity would start
from the bottom-right sector of the diagram in figure 1 and move to the top-right quadrant
by means of some coarse-graining or other continuum approximation scheme, while staying
in the quantum half of the diagram. Once a potentially good clock has been found at this
level, and thus a good definition of (quantum) relational dynamics, one can move towards
the top-left quadrant via some semi-classicality restriction, where the quantum properties
of the clock can be neglected and the usual time evolution is re-obtained.

2.2 Defining an emergent effective relational dynamics

Having outlined the general problem and different approaches one can take for solving it,
we now clarify further what we mean by emergent effective relational dynamics in what we
called a proto-geometric phase of the theory, in the context of an underlying pre-geometric
formalism. The conditions that we are going to give below should be understood, of course,
in addition to the fundamental requirements that an internal time variable, corresponding
to one of the dynamical degrees of freedom of the theory, can be identified and that a
well-defined (e.g. Hamiltonian) evolution can be specified for quantum states and other
observables with respect to it.

The relational framework that we are interested in defining should be characterized by
the following features:

– 8 –
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Figure 1. The four possible contexts for relational dynamics in emergent theories of quantum
gravity. Besides the classical choice of quantizing before or after having chosen a quantum clock,
the emergent perspective adds another layer: defining relational dynamics in a pre-geometric or in
a proto-geometric phase of the theory. The preferable choice (both for practical and conceptual
reasons) is to define an effective and emergent notion of relational dynamics in the upper right side
of the diagram, but as an effective description of states and observables defined in the lower right
corner.

Emergence The effective dynamics should emerge as a collective phenomenon: therefore,
it should be formulated in terms of operators corresponding to collective observables
and states encoding collective behavior of the underlying degrees of freedom.

Effectiveness The relational evolution should be intended to hold on average. Operators
used to define the internal clock should have small quantum (and thermal, when
relevant) fluctuations (semi-classicality condition on the internal clock). Whenever
these are large, the effective relational dynamics could not be trusted.

The requirement of effectiveness implies that the emergent relational dynamics we are
trying to define is approximate only. Considering just an averaged relational evolution is
one of such approximations, due, as we have already argued, to the fact that a notion
of relational dynamics is only supposed to make sense in a proto-geometric regime and
when the chosen clock is “ideal enough”. However, in this proto-geometric regime it is
also likely for other approximations to be justified. For instance, this would be the case
for the imposition of only the averaged quantum dynamics of the microscopic degrees of
freedom (mean field approximation), in light of the fact that we are interested only in
an averaged relational evolution of geometric observables. Other types of approximations
(like the aforementioned “good-behavior” of the internal clock) are instead not expected to
hold in an arbitrary proto-geometric regime. As a consequence, requiring their validity will
likely specify an even more peculiar regime of theory (in practice, it will impose further
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constraints on the quantities concretely realizing the effective relational dynamics). The
importance of approximations in this framework will become manifest when we will show
its concrete implementation in the GFT condensate cosmology scenario.

Now, let us spell out other general ingredients of an effective relational dynamics,
before going to realize it concretely in the TGFT context. In order to fix the ideas,
suppose that we are interested in defining the dynamics of geometric degrees of freedom
with respect to some matter degree of freedom, for example the simplest possible type
of matter, i.e., a minimally coupled massless free scalar field (classically, gravity plus a
minimally coupled massless scalar field is a deparametrizable system [13], with the massless
scalar field representing a “good clock”).

Let us assume that we are able to identify a class of states, in the fundamental theory,
which encode collective behavior and can be given a continuum proto-geometric interpre-
tation. Call these states |Ψ〉. Let us further assume that we have at our disposal a set of
collective observables, say {Ôa}a∈S and χ̂, whose expectation values on the proto-geometric
states |Ψ〉 have a continuum interpretation as geometric observables (e.g. volumes, curva-
ture invariants, etc.) and massless scalar field, respectively. Given the emergent nature of
the theory, another relevant quantity for the description of the system is the “number oper-
ator” N̂ counting the number of fundamental “atoms of space”, and useful to characterize
a continuum approximation, that we could expect to require some form of thermodynamic
limit. Notice that both the states |Ψ〉 and the observables Ôa are constructed at the “kine-
matic” level, in the sense of not having imposed on them the quantum dynamics of the
theory, yet.3 For instance, this means that the states |Ψ〉 are not required to solve the
full quantum dynamics of the theory, but they are certainly required to solve it in an av-
eraged sense, as it will become clearer when we will discuss the concrete example of GFT
condensate cosmology.

The states |Ψ〉 can be said to implement a notion of effective and emergent relational
dynamics if they also satisfy the following conditions at least on-shell, i.e. after imposing,
approximately, the quantum equations of motion of the fundamental theory:

3Here, we are using the word “kinematical” in a slightly different sense from what is usually done in a
classical or canonical setting. Indeed, in that case, the meaning of “kinematical” and “physical” is strictly
related to diffeomorphism invariance. In our emergent quantum gravity setting, however, the theory is
formulated without referring to any differentiable manifold, nor fields living on it. Also, in this sense, it
is defined in absence of any notion of spacetime. As such, diffeomorphisms are simply not defined at this
level. Kinematical states and observables, therefore, are quantities defined with respect to the abstract
Hilbert space of the quantum theory, while physical quantities are intended as quantities restricted to
solutions of the quantum dynamics. Whether and how these quantities are related to diffeomorphism
invariance can only be understood once the appropriate emergent limit is taken. In order to verify this, one
should check that relational observables built in the pre-geometric theory and their dynamics correspond (at
least approximately) with relational (thus diffeo-invariant) observables constructed in continuum GR; this
correspondence would imply that they can also be understood as diffeo-invariant observables in a theory
formulated in terms of continuum fields where diffeomorphisms are defined, and satisfying a diffeo-invariant
dynamics. We should not necessarily expect, however, to find a diffeomorphism invariance symmetry in
the fundamental theory, e.g. in its quantum dynamics, although it would be indeed interesting if such
symmetry can be identified and put in correspondence with any symmetry property of specific (classes of)
GFT models.
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Averaged relational evolution It exists an Hermitean operator Ĥ such that, for each
geometric collective observable Ôa,

i
d

d 〈χ̂〉Ψ
〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ . (2.5a)

Moreover, at effective semi-classical level, the operator Ĥ should be equal to the mo-
mentum operator Π̂ canonically conjugated to χ̂, which means that all the moments
of Ĥ and Π̂ on |Ψ〉 should be equal. In particular, this implies that the averages of
these two operators on |Ψ〉 should be equal,

〈Ĥ〉Ψ = 〈Π̂〉Ψ . (2.5b)

This “effective equality” approximately implements the idea of Π̂ generating the
relational evolution.

Semi-classicality condition Assuming that the expectation value of χ̂ is non-zero, we
require its variance on |Ψ〉 to be much smaller than one, and to have the characteristic
〈N̂〉−1 behavior, i.e.,

σ2
χ � 1 , σ2

χ ∼ 〈N̂〉
−1

, (2.6)

where the relative variance on |Ψ〉 is defined as

σ2
O = 〈Ô

2〉Ψ − 〈Ô〉
2
Ψ

〈Ô〉2Ψ
.

Equation (2.5a) is of course the embodiment of the averaged effective relational dynamics,
describing the evolution of the expectation value of a given geometric collective operator
in terms of the expectation value of the massless scalar field.

Conditions (2.6) instead, are a formalization of the requirement that the averaged
relational dynamics is not obscured by quantum fluctuations (in which case our relational
clock would be a bad choice because “too quantum” to label evolution). In particular,
notice that while the first condition in (2.6) is usually enough to guarantee a semi-classical
behavior of quantities in the standard frameworks (e.g., the simple harmonic oscillator)
where coherent states are employed (because of their Gaussian form in the phase space), in
this case this might not be enough. Still, if the above relative variance has the characteristic
behavior of N−1 expected for collective observables, as required by the second condition
in (2.6), this can be taken as a strong indication that indeed even higher moments will
be somehow negligible when the number of fundamental degrees of freedom in the state is
large enough, which is expected to be the case in the relevant proto-geometric regime of the
theory. Thus, it is the very large number of fundamental degrees of freedom accommodated
in the states |Ψ〉 that can make fluctuations arbitrarily small.

However, the “clock” resulting from the above conditions might be very far from an
“ideal” one, for different reasons. First, the clock could feature turning points, in which
case it would not be possible to separate positive and negative frequency (or forward
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and backward evolving) modes relative to it (see, for instance, [24]). For such clocks,
equation (2.5) should not be inteded to hold globally, but only on a local, transient level,
far enough from such a singular point. In the case of a minimally coupled massless scalar
field used as a clock one does not expect this issue to appear, as we will see explicitly in the
concrete example of GFT condensate cosmology below. Second, its momentum may suffer
from large quantum fluctuations. In this sense, if one wants a relational description in
terms of a “good, classical clock”, one has to require also that quantum fluctuations on the
momentum (and thus on the Hamiltonian operator, according to the averaged relational
evolution conditions) are small. Assuming that the expectation values of Π̂ and Ĥ on |Ψ〉
are small, this can be obtained by requiring that

{σ2
χ, σ

2
Π, σ

2
H} � 1 , {σ2

χ, σ
2
Π, σ

2
H} ∼ 〈N̂〉

−1
.

In such a case, condition (2.5b) is enough to define an “approximate, effective equality”
between Π̂ and Ĥ.

Of course, one may also require that quantum fluctuations of the geometric operators
Ôa, as well as fluctuations of N̂ , are also negligible. Assuming that the expectation value
of each Ôa and of N̂ on |Ψ〉 are non-zero, we can formulate this condition as a condition
on the relative variances of the relevant operators:

{σ2
Oa , σ

2
N , σ

2
χ, σ

2
Π, σ

2
H} � 1 ∀a ∈ S , (2.7a)

{σ2
Oa , σ

2
N , σ

2
χ, σ

2
Π, σ

2
H} ∼ 〈N̂〉

−1 ∀a ∈ S, (2.7b)

i.e. a fully semi-classical behavior of the system.
Let us conclude this section with three somewhat minor comments:

• First, let us remark that the above conditions on relative variances are of no use in
the case in which the expectation values are identically zero. In that case, as argued
in [34], one has to define some thresholds δ2

i and require that, for each operator Ôi
in the set {Ôa, N̂ , χ̂, Π̂, Ĥ}, ∆2Ôi ≡ 〈Ô2

i 〉Ψ − 〈Ôi〉
2
Ψ < δ2

i . However, notice that,
contrarily to what is done in [34], we will not require that the expectation values of
the desired operators peak on some precise value.

• Second, we want to stress how non-trivial the above requirements are. In particular,
imposing semi-classicality on different operators is a very strong one. A state can
be semi-classical with respect to some operators and not semi-classical at all for
others. For instance, coherent states of the harmonic oscillator are not semi-classical
for its Hamiltonian operator [34]. Another example is the quantum theory of the
Einstein-Rosen waves in 4-dimensional General Relativity [35]. See [34] for a detailed
discussion of the issue of semi-classicality. For our purposes, i.e. defining an effective
relational dynamics, it is important to focus on ensuring semi-classicality at least for
the operators encoding properties of the chosen relational clock subsystem.

• Lastly, let us mention that effective approaches to the problem of relational dynamics
in background-independent canonical systems have been already proposed in [20–
22], and they were already been applied to cosmological settings with interesting
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results [23]. Some aspects of the construction highlighted above are indeed shared
with the framework developed in [20–22]. Besides the most evident one, i.e., the
approximate nature of the approach (which in [20–22] comes with a truncation in
powers of }), there are two more important similarities:

1. The use of expectation values (and moments) as basic quantities of interest.
In [20–22] this is because the quantum theory defined on a Hilbert space is re-
formulated in terms of a quantum phase space where quantum states, instead of
being described by density matrices, are characterized in terms of all the expec-
tation values that states assign to a basis set of observables. In particular, the
Poisson structure of this quantum phase space is defined in terms of expectation
values of the commutator of the corresponding operators (which here appear,
for instance, in equation (2.5)).

2. The evolution of some expectation values relative to the expectation value of a
clock. In [20–22], this comes about because the quantum phase space inherits a
quantum constraint surface on which one can then formulate relational dynamics
in the usual classical manner (except that one has to deal with more degrees of
freedom to encode fluctuations).

Despite these important technical and conceptual similarities, it should however be
stressed that the effective approach described here aims to go beyond the works [20–
22], by addressing a field-theoretical and, most importantly, an emergent scenario.4

3 GFT and effective cosmology

In this section we review the basics of the GFT approach to quantum gravity (focusing on
the quantum simplicial geometric aspects, but also highlighting the connection with the
LQG kinematical space) and the framework of GFT condensate cosmology. In the latter
context, we describe in which sense condensate states represent cosmological geometries
and, importantly, how “relational operators” are defined and their dynamics is obtained
(see for example [12, 36] and [37, 38] for reviews) via the introduction of a “massless scalar
field clock”.

3.1 The GFT Fock space

GFTs are field theories of a (in general complex) field ϕ : Gd → C defined on d copies
of a group manifold, ϕ(gI) ≡ ϕ(g1, . . . , gd). With a careful choice of the dimension d, of
the group manifold G, and of the (combinatorial) action, which may include additional
restrictions on the fields, these theories can be understood as “quantum field theories of
spacetime” [39]. On the one hand, the fundamental quanta of the theory can be seen as
3-simplices, i.e. building blocks of three-dimensional simplicial geometries representing the

4We are however currently working on an attempt to generalize the work in [20–22] to a similar field-
theoretic and emergent scenario, in order to highlight possible similarities and differences between the two
approaches.
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(boundary) states of the theory, with their quantum simplicial geometric properties encoded
in the group-theoretic data. On the other hand, the perturbative expansion of the n-point
functions produces a sum over Feynman diagrams associated to 4-dimensional cellular
complexes, weighted by a discrete gravity path-integral with the same group-theoretic
data as dynamical variables. It is then from this type of discrete structures that one
should reconstruct continuum four-dimensional spacetimes and geometries, in a suitable
approximation. In this sense, therefore, GFTs indeed are theories in which spacetime has
dissolved into pre-geometric “atoms of space”. Typical choices of d and G that allows for
this interpretation are d = 4 (i.e., the spacetime dimension), and G = SL(2,C) (local gauge
group of gravity) or its Euclidean version, Spin(4). For most specific GFT models, the same
group-theoretic data can also be mapped into data taken from G = SU(2), corresponding
to the rotation subgroup of the above groups. As we discuss below, this allows for an
explicit connection of the GFT quantum states with those appearing in LQG, which gives
additional guidelines for extracting continuum physics [11]. From now on, therefore, we
will specialize to d = 4 and G = SU(2).

Field operators. These field theories can be formulated in the language of second quan-
tization. One defines the field operators satisfying the commutation relations:

[ϕ̂(gI), ϕ̂†(g′I)] = IG(gI , g′I) , (3.1a)
[ϕ̂(gI), ϕ̂(g′I)] = [ϕ̂†(gI), ϕ̂†(g′I)] = 0 , (3.1b)

where IG(gI , g′I) is a Dirac delta distribution on the space G4/G.
Let us spend some words about the geometric interpretation of the quantities appearing

in the two equations above. The field operator ϕ̂†(gI), acting on the vacuum |0〉, creates a
“quantum of space” with data {gI}. When such field satisfies the closure condition ϕ(gI) =
ϕ(gIh) for each h ∈ G, and the GFT action encodes appropriate geometricity (“simplicity”)
conditions (which also allow to map these SU(2) data to SL(2,C) ones), this “quantum of
space” can be interpreted as a 3-simplex (tetrahedron) whose 4 faces are decorated with an
equivalence class of geometrical data [{gI}] = {{gIh}, h ∈ G}. The group elements can be
associated to the parallel transport of a gravitational connection associated to the group
G along the links dual to such faces, representing thus a discretization of the same. In the
dual picture, such a “decorated tetrahedron” corresponds to an open spin-network, i.e., a
node from which four links emanate, each of which is assigned group-theoretical data. The
closure condition encodes the invariance under local gauge transformations acting on the
vertex of the spin-network. Such a local gauge invariance requires that the right-hand-
side of equation (3.1a) is the identity in the space of gauge-invariant fields. For example,
for compact groups, we can write this as IG(gI , g′I) =

∫
dh∏4

I=1 δ(gIhg−1
I ), since this is

essentially the projector onto that space. For non-compact groups, additional care with
divergences associated to group integrations is needed, e.g. via gauge fixing [36].

The interpretation of the above “quanta of space” as open spin-network states is made
even clearer once one expands the field on a basis of functions on L2(G4/G) labeled by
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group representations (which, here, for simplicity, we label with a single set of labels ~x)

ϕ̂(gI) =
∑
~x

ĉ~xψ~x(gI) , (3.2a)

ϕ̂†(gI) =
∑
~x

ĉ†~xψ
∗
~x(gI) , (3.2b)

satisfying
[ĉ~x, ĉ†~x ′ ] = δ~x,~x ′ , [ĉ~x, ĉ~x ′ ] = [ĉ†~x, ĉ

†
~x ′ ] = 0 . (3.3)

The quanta created by ĉ†~x, can now be interpreted again as nodes from which 4 links are
emanating, but now they are explicitly decorated with spin-network vertex data,

~x = {~j, ~m, ι} , (3.4)

exactly because of gauge invariance and the choice of G = SU(2). Here ~j and ~m are
respectively spin and angular momentum projection associated to the open edges of a
given vertex, while ι represents the intertwiner quantum number associated to the vertex
itself. In this way we can write the “spin-network wave function” ψ~x(gI) as

ψ~x(gI) ≡ 〈gI | ~x〉 =
[ 4∏
i=1

√
d(ji)Dji

mini(gi)
]
I~j,ι~n , (3.5)

where I is a normalized intertwiner and ~j ≡ {j1, . . . , j4}, similarly for ~n. The operators ĉ~x
and ĉ†~x are creation and annihilation operators for open spin-network vertices.

Starting from the above ladder operators, together with the vacuum state |0〉 anni-
hilated by all ĉ~xs (which represents a “no-space state”), one can construct a Fock space,
whose n-particle states satisfy

ĉ~x |n~x〉 = √n~x |n~x − 1〉 ,
ĉ~x |n~x〉 =

√
n~x + 1 |n~x + 1〉 .

The Fock space introduced in this way is analogous to the kinematical Hilbert space of
LQG [40], in the sense that it encodes similar fundamental degrees of freedom. This
connection is useful because, as we will see below, it offers further guidance (in addition to
the one coming from simplicial geometry) to the geometric interpretation and definition of
geometric operators.

Second-quantized observables. Starting from the field operators, we can construct
quantum observables of geometric interest. The simplest one is the number operator,

N̂ ≡
∫

dgI ϕ̂†(gI)ϕ(gI) , (3.6)

which counts the number of quanta present in a given state and whose eigenvalues dis-
tinguish between the n-body sectors of the GFT Fock space. More generally, one can
consistently construct GFT “(m+ n)-body operators” Ôn+m, as

Ôn+m ≡
∫

( dgI)m( dhI)nOm+n(g1
I , . . . , g

m
I , h

1
I , . . . , h

n
I )

m∏
i=1

ϕ̂†(giI)
n∏
j=1

ϕ̂(hjI) , (3.7)
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from the matrix elements Om+n defined either in a simplicial geometric context between
states associated to quantized tetrahedra, or in the LQG context between spin-network
vertex states. The same kind of construction can be performed of course in any repre-
sentation of the relevant Hilbert space. For example, a generic two-body operator can be
written as

Ô2 =
∑
~x~x ′

O2(~x, ~x ′)c†~xc~x ′ , (3.8)

where again O(~x, ~x ′) are matrix elements between, e.g., spin-network states. All operators
we are interested in here (e.g., the volume operator) are two-body operators of this kind.

Coupling to a scalar field. With the later goal of defining a notion of relational dy-
namics, it is useful to add to the pure quantum geometric data additional ones later to
become a relational matter clock. The simplest choice [12] is a minimally coupled free
massless scalar field5 (see [41] for more details). The inclusion of a minimally coupled free
massless scalar field is performed by adding to the GFT field and action the degrees of
freedom corresponding to a scalar field in such a way that the perturbative expansion of
the GFT partition function can be identified with the (discrete) path-integral of a model
of simplicial gravity minimally coupled with a free massless scalar field (or, equivalently,
with the corresponding spin-foam model). Following this procedure, the definition of the
field operator is modified as follows:

ϕ̂(gI) −→ ϕ̂(gI , χ) . (3.9)

In this way, the one-particle Hilbert space is now L2(SU(2)4/SU(2) × R). So, each GFT
atom carries a value of the scalar field, which is then “discretized” on the simplicial struc-
tures associated to GFT states and (perturbative) amplitudes. The commutation relation
in (3.1a) has to be modified consistently, obtaining[

ϕ̂(gI , χ), ϕ̂†(hI , χ′)
]

= IG(gI , hI)δ(χ− χ′) . (3.10)

Starting from this structure of the Fock space, operators in the second quantization picture
now involve integrals over the possible values of the massless scalar field. For instance, the
number operator (3.6) takes the form

N̂ =
∫

dχ
∫

dgI ϕ̂†(gI , χ)ϕ̂(gI , χ) . (3.11a)

Another one is the volume operator:

V̂ =
∫

dχ
∫

dgI dg′I ϕ̂†(gI , χ)V (gI , g′I)ϕ̂(g′I , χ) , (3.11b)

defined in terms of matrix elements of the first quantized volume operator in the group
representation (the first quantized volume operator is instead diagonal in the spin repre-
sentation), and which adds up the volume contributions (individual 3-volumes) of all the

5The choice of a minimally coupled free massless scalar field remarkably simplifies the form of the
dynamics, as discussed in more detail in subsection 5.2.
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tetrahedra in a given GFT state (themselves not dependent on the value of the discretized
scalar field).

Having introduced new “pre-matter” degrees of freedom, one can find a new whole
set of observables related to them, which are the second-quantized GFT counterpart of
the standard observables of a scalar field, namely polynomials in the scalar field and its
derivatives. The two fundamental ones that can be constructed in this way are the scalar
field operator and the momentum operator [12]:

X̂ ≡
∫

dgI
∫

dχχϕ̂†(gI , χ)ϕ̂(gI , χ) , (3.11c)

Π̂ = 1
i

∫
dgI

∫
dχ
[
ϕ̂†(gI , χ)

(
∂

∂χ
ϕ̂(gI , χ)

)]
. (3.11d)

From the scalar field momentum operator and the volume operator one can in principle
define an operator corresponding to the energy density of the scalar field, of obvious rel-
evance for cosmological dynamics. For technical reasons, however, it is more convenient
to define a quantity with this interpretation in terms of expectation values, as done for
instance in [12]. Notice that all the above operators are self-adjoint, as it should be.

Starting from them, in [12] new “relational operators” Ô(χ) have been defined es-
sentially as the integrand in the general expression for observables Ô ≡

∫
dχÔ(χ). For

instance, the relational number operator at “a time χ” was defined as

N̂(χ) =
∫

dgI ϕ̂†(gI , χ)ϕ̂(gI , χ) ; (3.12)

similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities, thus indirectly of an internal time

variable, that applies at the level of the fundamental presentation of the theory. It is not
preceded by any sort of coarse-graining procedure or continuum approximation.

This definition allows to derive a number of interesting results, producing a promising
effective cosmological dynamics from the fundamental quantum gravity formalism. We
will review some of these results in the next subsection. At the same time, however, it is
problematic, as we are also going to discuss in the following. The main difficulty is that
these operators have a distributional nature, leading to divergences in the computation of
several physically relevant quantities. These divergences, we argue, indicate a fundamental
problem with such definition, rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop in this work. A number of other,
somewhat minor issues with the above definition arise, motivating further the search for
an alternative route toward the extraction of a relational dynamics from the theory. For
example, the operator corresponding to the scalar field momentum “at given time χ” it is
not self-adjoint, and it has to be made so by adding to it its hermitian conjugate operator.

3.2 Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics from a GFT, the first necessary step
is to identify a class of states in the quantum theory which can be consistently interpreted
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as continuum cosmological spaces. Two criteria are fundamental for the construction of
such states:

1. First, since they are supposed to represent continuum geometries, they should be
composed by a very large (possibly infinite) number of GFT quanta.

2. Second, they should encode some notion of homogeneity (required in the coarse-
grained cosmological setting), in some probabilistic sense.

The second condition can be satisfied if the chosen quantum state is collectively described
by a single function over the space of geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry requirement that has to be imposed on
the collective function) to the minisuperpsace of homogeneous geometries [42]. In turn, one
way to achieve this simplified collective description is by endowing each fundamental spin-
network vertex/tetrahedron with the same information. This matches the intuitive idea of
a condensate state, and it is often labeled “wavefunction homogeneity” in the literature.
However, many different states can be constructed with this same prescription, basically
because GFT quanta, even if they are in the same configuration, can still be “glued” one
to another in different ways.

Coherent states. In [12], the simplest choice satisfying the two criteria above has been
studied: states which completely neglect all the connectivity information.6 These are
coherent states of the GFT field operator,

|σ〉 = Nσ exp
[∫

dχ
∫

dgI σ(gI , χ)ϕ̂†(gI , χ)
]
|0〉 , (3.13)

where

Nσ ≡ e−‖σ‖
2/2, (3.14a)

‖σ‖2 =
∫

dgI dχ|σ(gI , χ)|2 ≡ 〈σ | N̂ | σ 〉 . (3.14b)

By definition, such coherent states satisfy the important property

ϕ̂(gI , χ) |σ〉 = σ(gI , χ) |σ〉 , (3.15)

i.e., they are eigenstates of the annihilation operator. Equations (3.13) and (3.15) can also
be rewritten in the spin representation:

|σ〉 = e−‖σ‖
2/2 exp

[∫
dφ
∑
~x

σ~x(φ)ĉ†~x(φ)
]
|0〉 , (3.16)

and
ĉ~x(φ) |σ〉 = σ~x(φ) |σ〉 . (3.17)

6Obviously, this could be at best an approximation to more realistic quantum states corresponding to
continuum homogeneous quantum geometries.
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Isotropy. Besides homogeneity, cosmological geometries are assumed to be (approxi-
mately) isotropic. In [12], isotropy has been imposed as an additional restriction on the
condensate wave function, drastically simplifying the effective continuum dynamics. Notice
that imposing a particular symmetry on the condensate wave function is in general very
different from the symmetry reduction of the microscopic deegrees of freedom, basically
because the condensate wave function is a macroscopic variable (in the simple case of co-
herent condensate states this point is somewhat obscured by the fact that the colllective
wavefunction is also, at the same time, the individual wavefunction of each tetrahedron
in the system). In [12], isotropy of the wave function has been imposed by requiring the
associated tetrahedra to be equilateral, resulting in the following condensate wavefunction:

σ(gI , χ) =
∞∑
j=0

σj(χ)Ijjjj,ι+m1m2m3m4I
jjjj,ι+
n1n2n3n4

√
d4(j)

4∏
i=1

Dj
mini(gi) , (3.18)

where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner representation matrices, I are

intertwiners, and ι+ is the largest eigenvalue of the volume operator compatible with j.
For the condensate wavefunction in spin representation we then have

σ~x(χ) ≡ σ{j,~m,ι+}(χ) = σj(χ)Ijjjj,ι+m1m2m3m4 . (3.19)

3.3 Dynamics

In [12], the effective dynamics of the condensate has been obtained using the connection
between the path-integral and the operator formulation provided by the Schwinger-Dyson
(SD) equations, i.e.,

0 =
∫
DϕDϕ̄ δ

δϕ̄(gI)
(
O[ϕ, ϕ̄]e−S[ϕ,ϕ̄]

)
=
〈
δO[ϕ, ϕ̄]
δϕ̄(gI)

−O[ϕ, ϕ̄]δS[ϕ, ϕ̄]
δϕ̄(gI)

〉
, (3.20)

for any functional O[ϕ, ϕ̄] of the field and its complex conjugate. In the above equation,
S[ϕ, ϕ̄] is the GFT action, typically including a quadratic kinetic term and some higher
order (in powers of the field operator) interaction term, chosen so that the perturbative
expansion of the GFT partition function around the Fock vacuum matches the spin-foam
model one is attempting to reproduce (see also the discussion about the coupling to a
scalar field in subsection 3.1). The expectation value, here, is to be interpreted as taken
in the “ground state” of the full dynamics. If the ground state is assumed to be given,
approximately, by the above isotropic condensate states, the resulting dynamics, truncated
at the level of the simplest SD equation, i.e., considering only O = 1 among the infinitely
many possibilities, corresponds to the classical equation of motion of the underlying GFT
action, with the field replaced by the condensate wavefunction. In fact, the same result
could simply be understood as the mean field approximation of the full GFT quantum
effective action, evaluated in the isotropic restriction. Such mean-field dynamics can also
can be described by the following effective action [12]:

Seff =
∞∑
j=0

∫
dχ
(
Aj |∂χσj(χ)|2 +Bj |σj(χ)|2 − 1

5wjσ
5
j (χ)− 1

5wjσ
5
j (χ)

)
, (3.21)
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where the dependence on the details of the GFT model are encoded in the coefficient
functions Aj , Bj and wj .

It should also be pointed out that this dynamics, with a differential operator of sec-
ond order with respect to the scalar field variable, results from a further approximation,
obtained in the limit in which the GFT field varies slowly with respect to the scalar field
variable. Whether or not this assumption is satisfied for the solutions of the equations of
motion derived from the above action is not obvious. In particular, let us notice that this
truncation is not guaranteed to be reasonable for exponential solutions, which indeed is
the form of the classical solutions for the volume relational evolution first obtained in [12].
We will return to this issue below.

The interaction term corresponds, at the level of the discrete structures asssociated
to GFT states, to the gluing of five tetrahedra to obtain a 4-simplex. This interactions is
typical in quantum geometric GFT models.

Symmetries. From the symmetries of the above action, one can deduce the following
conserved quantities:

• The first quantity which is conserved for every j,

Ej = Aj |∂χσj(χ)|2 −Bj |σj(χ)|2 + 2
5<

(
wjσ

5
j (χ)

)
, (3.22)

can be interpreted as a “condensate energy” for the wave function σj .

• In the limit where the interaction term is small, there is another conserved quantity,
which is related to the U(1) symmetry σj(χ)→ eiασj(χ),

Qj = − i2 [σ̄j(χ)∂χσj(χ)− σj(χ)∂χσ̄j(χ)] . (3.23)

This quantity can be related to the expectation value of the momentum of the scalar
field at given χ in the condensate state σ:

〈Π̂(χ)〉σ ≡ 〈σ | Π̂(χ) | σ 〉 =
∑
j

Qj . (3.24)

In the small-interaction limit, therefore, the quantity 〈Π̂(χ)〉σ is a constant. Modulo
the mentioned issues with this definition of the relational scalar field momentum
observable, this could be seen as the quantum geometric analogue of the continuity
equation for the massless scalar field.

Negligible interactions. In the mesoscopic regime where interactions are negligible,
characterized by a relatively “small” |σj(χ)|2 (but not so small as to endanger the hydro-
dynamic approximation, since |σj(χ)|2 controls the average number of condensate quanta),
the equations of motion from the action (3.21) can be written as

0 = ∂2
χρj − [m2

j + (∂χθj)2]ρj
0 = 2∂χρj∂χθ + ρj∂

2
χθ ,
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where ρj and θj are determined from σj = ρj exp[iθj ] and m2
j = Bj/Aj . The second

equation is nothing but the conservation of Qj = ρ2
j∂χθ (recall that we are neglecting

interactions), while the first one, via the introduction of Qj , can be rewritten as

∂2
χρj −

Q2
j

ρ3
j

−m2
jρj = 0 . (3.25)

Now, if one interprets Π̂(χ) as the momentum operator of the massless scalar field at a
given value of it, in order for it to have a non-zero expectation value, at least one of the Qj
has to be non-zero. This, in turns, implies that ρj stays finite at all times. Since, as we will
see below, the expectation value of the volume operator is controlled by ρj , this in turn
will imply that the average of the volume never reaches zero, thus solving (on average) the
cosmological singularity.

Volume dynamics. Given the above dynamics of the condensate wave function one can
study the dynamics of the expectation value of the “relational volume operator”. According
to the rule of subsection 3.1, such an operator is defined by

V̂ (χ) =
∫

dgI dg′I ϕ̂†(gI , χ)V (gI , g′I)ϕ̂(g′I , χ) , (3.26)

in the group representation. The action of the volume operator on spin-network states
depends only on the intertwiner label ι:

V (~x, ~x ′) = V (ι, ι′)δ~x−{ι},~x ′−{ι′} , (3.27)

where ~x and ~x ′ are spin-network labels. By using equations (3.8) and (3.17), together with
the orthonormality of the intertwiners I, we see immediately that, in the spin representa-
tion, we can write

V (χ) ≡ 〈σ | V̂ | σ 〉 =
∑
~x~x ′

〈σ | V (ι, ι′)δ~x−{ι},~x ′−{ι′}ĉ
†
~xĉ~x ′ | σ 〉

=
∑
j,~m

Vj |σ{j,~m}|2 =
∑
j

Vj |σj |2 =
∑
j

Vjρ
2
j , (3.28)

where we have used that when ĉ~x acts on |σ〉 the resulting wave function has support
only on the intertwiner which is an eigenvalue of the volume operator with the highest
possible eigenstate compatible with the spin quantum number j, which we call Vj , and
where we have suppressed for notational simplicity the explicit dependence on χ. Since the
expectation value of the number of equilateral tetrahedrons with spin quantum number j
associated to each face is

n̂j ≡
∑
~m

ĉ†j,~mcj,~m ,

so that 〈σ | n̂j | σ 〉 = |σj |2, we see that equation (3.28) means that the expectation value
of the volume operator is given by the sum over all the possibles spins j of the average
number of “isotropic atoms” with spin j multiplied by their volume, Vj .
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The volume operator then satisfies the equations:

[
∂χV

3V

]2
=

2∑j Vjρjsgn(∂χρj)
√
Ej −Q2

j/ρ
2
j +m2

jρ
2
j

3∑j Vjρ
2
j

2

, (3.29a)

∂2
χV

V
=

2∑j Vj
[
Ej + 2m2

jρ
2
j

]
∑
j Vjρ

2
j

. (3.29b)

We mention three interesting features of this volume dynamics, already stressed in [12]:

Bounce In the mesoscopic regime considered in [12], where equation (3.25) holds, the
expectation value of the volume operator never reaches zero, as long as at least one
of the Qjs is non-zero. In [12], it was argued that in order to get both a meaningful
relational dynamics and a proper FRW spacetime (rather than a Minkowski space-
time), the energy density of the massless scalar field has to be non-zero, in turns
implying that the expectation value of the massless scalar field momentum has to
be non-zero as well. Because of equation (3.24), [12] concluded that at least one of
the Qjs has to be non-zero. In this context, therefore, a bouncing scenario with an
always non-vanishing volume seems very natural.

Classical limit Further, [12] observed that in the limit in which ρ2
j � |Ej |/m2

j and ρ4
j �

Q2
j/m

2
j , the above equations become

[
∂χV

3V

]2
=
[

2∑j Vjmjρ
2
j

3∑j Vjρ
2
j

]2

, (3.30a)

∂2
χV

V
=

4∑j Vjm
2
jρ

2
j∑

j Vjρ
2
j

, (3.30b)

leading to the classical flat space (k = 0) Friedmann equations(
∂χV

V

)2
= V ′′

V
= 12πG̃ ,

as long as all the m2
j s satisfy m2

j = 3πG̃, where G̃ ≡ GM2 is the dimensionless
gravitational constant. Also, the classical Friedmann equations are obtained in the
limit in which one of the js dominates the above sums, say jo, satisfying m2

jo = 3πG̃.

Single spin Lastly, [12] considered the case of a single-spin scenario, i.e., with ρj = 0 for
each j 6= jo. This situation, mirroring the Loop Quantum Cosmology (LQC) context,
leads to a dynamics of the form[

∂χV

3V

]2
= 4πG

3

(
1− ρ

ρc

)
+ 4VjoEjo

9V , (3.31a)

∂2
χV

V
= 12πG̃+ 2VjoEjo

V
, (3.31b)
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where it was assumed that m2
jo = 3πG̃ and ρ = 〈Π̂(χ)〉2σ /(2V 2), with 〈Π̂(χ)〉σ = Qjo

and V = Vjoρ
2
jo . The quantity ρc [12], instead, is defined as in equation (5.36). Inter-

estingly enough, this dynamics resembles the effective LQC dynamics, with additional
terms due to the Ejo contributions.

As we will see in subsection 5.5, the volume dynamics obtained in the “improved” relational
framework that we will construct below will be remarkably similar to the one described
here. However, some of the parameters will differ (essentially because of the use of different
states), and some of the interpretations proposed in [12] will not be justified anymore.

4 Relational dynamics in GFT

As we have seen, GFTs describe the universe as a quantum many-body system, from which
General Relativity is expected to emerge as some kind of collective phenomenon [43]. For
GFTs therefore, the general arguments concerning the extraction of an effective relational
dynamics from pre-geometric theories, discussed in subsection 2, are very fitting. Some
technical and conceptual difficulties in the definition of relational dynamics in GFTs, both
in “tempus ante quantum” and in “tempus post quantum” approaches were discussed
in [12, 44], and we will review them in section 4.1.

At a technical level, the GFT Fock space and more generally their close-to-standard
QFT formulation allow to deal with the continuum limit using powerful QFT methods, and
to identify and manipulate more easily states with proto-geometric features. How these
features can be exploited to define a relational evolution on such proto-geometric states
will be discussed in subsection 4.2.

We will consider GFT models which include among their degrees of freedom those
corresponding to a discretized scalar field, as introduced above, and focus on how one
could proceed to extract a notion of time, i.e. an internal clock, and relational dynamics
using it.

4.1 On a “pre-geometric relational time”

In GFT models for discrete gravity/geometry coupled to a discretized scalar field, each
GFT quantum has an internal variable that could be used in principle as its own “relational
clock”. As we argue in the following, this “single-quantum time”, however, fails to provide
a notion of relational dynamics for generic (many-body) quantum states (which can only
have a pre-geometric interpretation), both from a “tempus ante quantum” and a “tempus
post quantum” perspective. The main difficulty is that, at this pre-geometric level, the
many “single-quantum times” fail in general to give rise to a notion of relational time that
is “organized enough” to label the evolution in the whole Fock space. In fact, the same
difficulty arises in a classical description of the same pre-geometric degrees of freedom,
making it clear that the core difficulty does not lie in the quantum properties of the degrees
of freedom, but in their pre-geometric nature.
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4.1.1 Pre-geometric GFT “tempus ante quantum”
Let us give an example of a pre-geometric “tempus ante quantum” approach based on the
identification of the internal scalar field degree of freedom as a relational clock. Follow-
ing [44], let us consider a system of N GFT atom, i.e. tetrahedra, each characterized at
the classical level by its own extended phase space7 Γ(i)

ex , possibly subject to some (e.g.
dynamical) constraint C(i)

full : Γ(i)
ex → R. In the case of a GFT coupled with M mass-

less scalar degrees of freedom, the extended configuration space of each GFT “atom” is
C(i)
ex = Gd × RM 3 (g(i)I , χ(i)a), with I = 1, . . . , D a = 1, . . .M , and the corresponding

phase space is8 Γ(i)
ex = T ∗(C(i)

ex ) ' Gd × RM × (gd)× RM 3 (g(i)I , χ(i)a, x
(i)
I , pχ(i)a).

Further, we assume that each single-atom subsystem is deparametrizable, meaning
that each single-atom constraint can be rewritten as

C(i) = pχ(i)c +H(i)(g(i)I , χ(i)α, x
(i)
I , pχ(i)α) , (4.1)

where α = 1, . . . ,M−1 labels all the scalar matter values except for χ(i)c. This form of the
constraint matches that of a non-relativistic system: the constraint surface Σ(i)

full defined by
C

(i)
full = 0 in this case admits a foliation in clock time, Σdep = R× Γ(i)

can [2], which in turns
allows to identify a reduced canonical phase space Γ(i)

can = T ∗(C(i)
can) 3 (g(i)I , χ(i)α, x

(i)
I , pχ(i)α)

constructed out of the initial partial observables (and their momenta) but without the
variable playing the role of time. The function H(i) : Γ(i)

can → R is then the Hamiltonian
defining the evolution with respect to the relational time.9

Once any time variable χ for each individual particle is chosen, the idea [16, 44–46]
is to select a clock t among them and to “synchronize” the others by imposing χ(2)c2 =
F2(t), . . . , χ(N)cN = FN (t), satisfying F ′i (t) = ki, with ki non-zero real constants. The
deparametrized system is now defined on Cex = R× Γcan 3 (t, g(1)I , χ(1)α, . . . g(N)I , χ(N)γ),
with Γex = T ∗(Cex), together with a single combined constraint function Cdep,N = pt +HN

on Γex. The physical Hamiltonian HN = ∑N
i=1 kiH

(i) describes the relational evolution in
terms of the single particle Hamiltonians H(i) acting on the single particle reduced phase
space Γ(i)

can.

Quantization of the deparametrized system. After the system is deparametrized,
one can perform a canonical quantization. The details of such quantization procedure will
not be important.10 Rather, we will focus on the main conceptual steps [44].

7Since GFT lacks a preferred time evolution, the study of its classical formulation is best done in the
framework of extended phase space and presymplectic mechanics [2, 16], which are manifestly independent
of any notion of absolute time. One could also imagine to deal with an external time parameter for each
tetrahedron, and work with usual symplectic mechanics, but since this external parameter would a priori
be different in each tetrahedron, on top of not appearing in the dynamics of the theory, it is not useful to
refer to it at all.

8Notice that, differently from what we do in the rest of the paper, here we are denoting the group
elements gI instead then gI in order to maintain a clear phase space notation.

9Notice, however, that in order for C(i) to be equivalent to C(i)
full, one has to rely on two approximations:

first that C(i)
full can be linearized in terms of pχ(i)c , and second that the remaining part of the constraint

is actually independent of χ(i)c, which thus behaves as a good global clock (see also the discussion in
subsection 2.2).

10In particular, we will not describe the mathematical details of a quantization map of the geometric part
of the phase space, which can be found instead in [47].
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Quantizing means choosing a quantization map between the classical algebra of observ-
ables, which are real smooth functions on the phase space, and the quantum algebra of ob-
servables, then represented as self-adjoint operators acting on a Hilbert space. Correspond-
ingly, classical Poisson brackets are mapped into commutators. After the deparametrization
approximation, this procedure can be straightforwardly applied to map the N -atoms canon-
ical phase space Γcan,N to the Hilbert space Hcan,N ≡ H⊗Ncan , where Hcan = L2(Gd×RM−1).
Correspondingly, Poisson brackets on Γcan,N {χ(i)α, pχ(j)β} = δijδαβ are mapped into com-
mutators [χ̂(i)α, p̂χ(j)β ] = iδijδαβ on Hcan,N . Notice that, by construction, the single clock
variable t chosen to deparametrize the system, is now treated as a parameter and not
quantized. The Hamiltonian operator defining the evolution along t is ĤN = ∑N

i=1 kiĤ
(i).

The resulting (bosonic) Fock space can be written as

Fcan =
⊕
N≥0

symH⊗Ncan , (4.2)

and it is generated by the action of operators ϕ̂, ϕ̂† on the Fock vacuum |0〉 and satisfying
the equal Fock-time commutation relations

[ϕ̂(tF ,g1, ~χ1), ϕ̂†(tF ,g2, ~χ2)] = I(g1,g2)δ(~χ1 − ~χ2) , (4.3)

all the other commutators being zero. Here we have defined ~χ ≡ (χ1, . . . , χM−1), and
g ≡ (g1, . . . , gd) in order to make the notation simpler. Operators in this Fock space are
then defined following the usual procedure. For instance, the operator

N̂ =
∫

dgI dχαϕ̂†(gI , χα)ϕ̂(gI , χα) , (4.4)

is the occupation number operator at a given value of the relational time tF .
However, as emphasized in [44], the nature of the Fock time tF is not entirely clear.

We would like a time parameter to be common to all the multi-atom sectors of the Fock
space. This is not the case for the relational time that we have constructed above because
that time is related only to one specific sector. On the other hand, the notion of time in
equation (4.3) must be flexible enough to be compatible with a variable N . So, despite
the deparametrization approximations and the explicit use of a “tempus ante quantum”
approach, the fact that “each fundamental GFT atom has its own clock”, together with
the desired Fock space structure of the resulting quantum theory, conspires to a lack of a
clear notion of relational time in the resulting reduced Fock space.

4.1.2 “Tempus post quantum” in GFT

Similar issues are expected to appear also in a “tempus post quantum” approach based on
the use of the internal single-particle χ-variable as a relational clock, for instance as the
one developed in [12] and briefly reviewed in section 3. The reason is that they are due
to the difficulty in organizing (“synchronizing”) the individual clocks associated to each
microscopic constituent of the system, and not to their classical or quantum nature.

One should expect that the relational observables defined in subsection 3.1, can only
be true relational quantities in some sector of the theory. Indeed, let us notice first that
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for each one-particle state |gI , χ〉 ≡ ϕ̂†(gI , χ) |0〉, the massless scalar field operator acts as

χ̂ |gI , χ〉 = χ |gI , χ〉 . (4.5)

Thus eigenvectors of the massless scalar field operator span the one-particle Hilbert space
H1. Moreover, when interpreting χ as a relational time, as suggested from the definition
of “relational operators” given for instance in (3.12), these eigenstates satisfy the desired
Schrödinger equation,

− i d
dχ |gI , χ〉 = Π̂ |gI , χ〉 , (4.6)

where the Hamiltonian generating relational evolution is indeed given by the momentum
of the massless scalar field Π̂. Therefore, if we were to consider just the one-particle
Hilbert space H1, “χ-diagonal” geometric (which we assume having χ-independent matrix
elements) two-body operators defined following the prescription in (3.12), which we denote
by Ô2(χ) and by construction satisfying

[Π̂, Ô2(χ)] = i∂χÔ2(χ) ,

would indeed have a good relational meaning.11

By the same token, (geometric and χ-diagonal) operators defined according to the
prescription (3.12) would be proper relational quantities if we were restricting our attention
to the space F̃ ⊂ F , generated by the algebra of the GFT operator evaluated at the
same eigenvalue of the massless scalar field operator. Indeed, for such states |ψ(giI , χ)〉, a
relational Schrödinger equation

− i d
dχ |ψ(giI , χ)〉 = Π̂ |ψ(giI , χ)〉 , (4.7)

holds. This is not surprising: the prescription of (3.12) defines relational operators ac-
cording to an internal “one-atom time”, so by considering only “synchronized” atoms the
construction is still satisfactory.

This, however, suggests that such prescription is not well-defined and fails to provide
a meaningful relational dynamics for structures outside F̃ (which, instead, have a “multi-
fingered” time), and for general (i.e., non-diagonal) (n+m)-body operator of the form

Ôn+m =
∫

( dχ)m
∫

( dχ̃)n
∫

( dgI)m( dhI)n
m∏
i=1

ϕ̂†(giI , χi)
n∏
j=1

ϕ̂(hjI , χ̃j)

×Om+n(g1
I , . . . , g

m
I , χ1, . . . , χm, h

1
I , . . . , h

n
I , χ̃1, . . . , χ̃n) . (4.8)

Indeed, consider any such geometric operator, for which

Om+n(g1
I , . . . , g

m
I , χ1, . . . , χm, h

1
I , . . . , h

n
I , χ̃1, . . . , χ̃n) = Om+n(g1

I , . . . , g
m
I , h

1
I , . . . , h

n
I ) .

11Notice that these operators are not the Heisenberg version of the Schrödinger operators defined in the
full second quantization framework.
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If we suppress (as suggested by (3.12)) all the integrals and leave the dependence on the
various {χi}i=1,...,m, {χ̃j}j=1,...,n, the commutator with Π̂ gives

[Ôm+n ({χi}i=1,...,m, {χ̃j}j=1,...,n) , Π̂] = i
n∑
i=1

∂χiÔm+n ({χi}i=1,...,m, {χ̃j}j=1,...,n)

+ i
n∑
j=1

∂χ̃j Ôm+n ({χi}i=1,...,m, {χ̃j}j=1,...,n) ,

generating indeed evolution, but now along all the possible “time directions”. On the
other hand, considering only the diagonal part (in terms of χ-eigenvalues) of the operator
Ôm+n, so that we obtain an operator Ôm+n(χ), amounts to rejecting a large amount of
potentially relevant information without any good physical justification, in particular when
such operators are applied to states outside F̃ . Of course, this observation applies also to
“non-diagonal” two-body operators of the form

ˆ̃O ≡
∫

dχ dχ̃ dgI dhI Õ(gI ;hI)ϕ̂†(gI , χ)ϕ̂(hI , χ̃),

making the construction not entirely clear even at the level of the one-atom space H1.
Moreover, states outside F̃ played, in the construction of [12], a crucial role, since

the coherent states (3.13) do not live in F̃ . Therefore, not only they do not have a robust
Schrödinger relational dynamics, but one could also be interested in computing expectation
values of general (m + n)-body operators on these states, thus having to face all the
aforementioned ambiguities.

The bottom line is no different from the one we have discussed in the classical case:
generic “pre-geometric” states in the Fock space have intrinsic “multi-fingered” relational
times. Defining a notion of relational dynamics for such states becomes therefore a remark-
ably complicated task.

Divergences. Besides the mentioned conceptual difficulties, the prescription (3.12) leads
also to some technical difficulties. One could be interested in the variances of quantum
operators at a given value of the parameter χ on coherent states. But then, defining for
instance Ô2(χ) = Ô(χ)Ô(χ) (thus using the diagonal prescription) one finds that the result
is always divergent.

A similar divergent behavior of the above “relational” operators were reported in [19],
where it was noticed that, in presence of thermal fluctuations, even the one-atom diagonal
operators are ill-defined. They observed, however, that those divergences can be kept under
control by defining smeared operators of the form

â~x(t) ≡
∫

dgI
∫

dχD~x(gI)t(χ)ϕ̂(gI , χ) , (4.9a)

â†~x(t) ≡
∫

dgI
∫

dχD~x(gI)t(χ)ϕ̂(gI , χ) , (4.9b)

for an arbitrary test function t(χ). Similarly, they defined (regularized) “relational” oper-
ators of the form

V̂x ≡
∑
~x

v~xâ
†
~x(t)â~x(t) .
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The dynamics was then obtained as in [12], i.e., by imposing the averaged quantum equa-
tions of motion (or, equivalently, only considering the SD equations for the operator O = 1)〈

σ

∣∣∣∣ δŜ[ϕ,ϕ†]
δϕ̂†(gI , χ)

∣∣∣∣σ
〉

= 0 , (4.10)

where |σ〉 was again a coherent (but thermal) state, neglecting interactions and by assuming
a local kinetic term. This leads to a functional dynamics for the condensate wavefunction
of the form12

∇2
tσ~x(t)−M~xσ~x(t) = 0 , (4.11)

where M~x ≡ −B~x/A~x, and

σ~x(t) ≡
∫

dχt(χ)σ~x(χ) ,

∇t ≡ −
∫

dχ
(
∂χt

δ

δt(χ) + ∂χt
δ

δt(χ)

)
.

As remarked in [19], the use of a delta distribution peaked on χ, i.e., t(χ) = δ(χ′ − χ)
reproduces the framework defined in [12].

Let us mention that while the algebra (3.10) is distributional, and needs to be smeared
with test functions in order to produce meaningful results, expectation values of a general
second quantized operator (4.8) (and of any product of them) on coherent states do not
show a distributional behavior. The reason is that these operators are defined in such a way
that there is (at least) one integration for any couple ϕ–ϕ† on their domain of dependence
which accounts for the distributional nature of their commutator. Thus, while divergences
may appear because of redundant integrations on a non-compact region, δ-like divergences
are not expected. As a consequence, a smearing of the algebra (3.10) is not needed as long as
one is interested in expectation values of operators on coherent states. On the other hand,
distributional behavior of expectation values on coherent states is expected to manifest
itself if one modifies the definition (4.8) by suppressing some integrations. Therefore, the
origin of this kind of divergences should be attributed to the chosen definition of relational
many-body operators rather than on the distributional nature of the algebra (3.10).

Moreover, while the use of suitable smooth functions regularizes the algebra (3.10), it
does not make any more clear in which sense this allows for a good relational dynamics,
since all the ambiguities we discussed in defining (even regularized) relational operators
are still present. Finally, one would like to have a clear physical meaning of the functional
dynamics expressed by the function t(χ). This is instead missing at the moment, because
we lack of a manifest physical interpretation for the clock it should represent.

These issues call for a different way of defining a relational dynamics in GFT. Given
the aforementioned difficulties, we argue that this should be done in a “proto-geometric
regime”, thus tackling the problem of time from an effective point of view.

12Notice that for such a kinetic term which is also quadratic, as it was indeed assumed in [12], the resulting
equations of motion for σ~x are equivalent to the equations of motion for σ̄~x.
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4.2 On a “proto-geometric relational time”

In a sense, a “proto-geometric” notion of relational dynamics has been already postulated
in some previous works [17, 48, 49]. In particular, in [48], classical “same-time” Poisson
brackets of the form

{ϕ~x(χ), π~x ′(χ)} = δ~x~x ′ , (4.12)

(cfr. with equation (4.3)) were assumed among the GFT field and its momentum (obtained
from a Legendre transform of the GFT action, assuming the kinetic kernel can be expanded
by retaining only second derivative contributions13). In other words, this followed from a
canonical reformulation of the classical GFT action, which singled out one variable in the
domain of the GFT field (the one corresponding to the scalar field degree of freedom) and
treated it as a time parameter. This step has been done at the classical level. It has been
performed also at the level of a collective, coarse-grained description of the microscopic GFT
degrees of freedom, since the GFT field is in fact a collective variable. Thus, the choice
of a “collective” relational time in the whole Fock space resulting from the above equation
corresponds, in our classification, to a proto-geometric (collective) relational dynamics from
a “tempus ante quantum” perspective. It is subject to the general limitations (and therefore
criticisms) that characterize “tempus ante quantum” approaches, i.e., that they lack the
important notion of clock-covariance.

On the other hand, as argued in subsection 2.2, it would be best to work at the post-
quantum level. Indeed, we have at our disposal all the needed structures and ingredients:
geometric observables with a collective character (e.g. the total volume operator, together
with the number operator (3.6)), and candidate proto-geometric states encoding a notion
of continuum, i.e. the condensate states used in GFT condensate cosmology framework.

We also have operators related to the massless scalar degree of freedom, like X̂ and
Π̂. However, it is important to notice that the operator X̂ can not straightforwardly be
interpreted as a massless scalar field, not even when the expectation value on a proto-
geometric state is taken. Indeed, such an operator is extensive, while a scalar field is an
intensive quantity (from the microscopic QG perspective). As already pointed out in [38],
this is a standard feature even in non-relativistic quantum mechanics, where the canonically
conjugate operators x̂ and p̂ become two extensive quantities, the “total position” operator
X̂ and the total momentum operator P̂ , whose commutator would now be given by [X̂, P̂ ] =
iN̂ . The position variable, which should correspond to an intensive variable, has now
become an extensive one. To obtain an intensive quantity, we can not just “divide” the
operator X̂ by the number of particles, since the operator N̂−1, containing zero in its
spectrum, is not well defined in the Fock space.14 The best we can do is to define the
“center of mass variable” in terms of expectation values: xc.o.m ≡ 〈X̂〉 / 〈N̂〉. Similarly,

13This is not a quite general assumption: as explained in subsection 5.2, such truncation of the kinetic
kernel can be seen as a approximation that might not be satisfied by solutions of the resulting dynamical
equations. This is particularly relevant in the cosmological case.

14Moreover, the resulting operator would act non-linearly on a quantum state. Correspondingly, we
could not identify it as an “observable” in the sense of a self-adjoing (and therefore, linear) operator. Still,
such non-linearities are expected to be negligible when the quantum properties of the number operator are
negligible as well, as we will assume below.
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we can define the intrinsic quantity corresponding to χ̂ as χ̂ ≡ X̂/ 〈N̂〉Ψ. This definition
is expected to be good as long as the quantum features of the number operator are not
relevant, so that it can be approximated with its expectation value without losing physical
information. This is one of the requirements already expressed by the small fluctuations
conditions (2.7), as relevant for a good relational dynamics (in fact, it is needed, before
that, for a sensible continuum proto-geometric interpretation of the theory).

We will therefore proceed to the definition of an effective relational dynamics in GFT
condensate cosmology, implementing the general ideas defined in section 2.2.

5 Effective relational GFT cosmology

In the cosmological case, thanks to the assumptions of homogeneity and isotropy, we can
explicitly construct states allowing for a meaningful notion of relational dynamics in an
effective regime for the only relevant geometric observable: the volume operator. We do
so in subsection 5.1, while their explicit dynamics is derived in subsection 5.2. Then, in
subsection 5.4, we discuss the validity of the conditions (2.5), while a detailed study of
the soundness of the conditions (2.7) is presented in [50]. Finally, in subsection 5.5 we
will study the relational dynamics of the volume operator, in particular checking whether
it matches the classical expectation at least at a certain semi-classical effective level and
whether the singularity is resolved at least in terms of expectation values.

5.1 States of a leaf: Coherent Peaked States

In order to construct appropriate relational states, we can take inspiration from the classical
spacetime intuition. The easiest way to define a relational dynamics of geometric quantities
at the classical level is to fix a gauge and choose a foliation of spacetime adapted to the
massless scalar field itself. Analogously, in our case, what we need is to construct states
which can be interpreted as “bona fide” leaves of a χ-foliation.15 Starting from the class of
coherent states (3.13), we want to specialize to states which are sharply peaked on a given
value of the massless scalar field variable χ. In other words, we want states which represent
an infinite superposition of atoms of space and which are associated in a precise way (i.e.,
with an a priori defined small margin of error) to a given value χ0 of the massless scalar field.
In a sense, we are reconstructing collectively, coarse-grained synchronized states, similar
to those living in F̃ (but with important differences, see the comments below). Since, in
the simple condensate states considered, all the tetrahedra share the same information,
encoded in the condensate wavefunction σ(gI , χ), the needed states can be constructed by
assuming that the condensate wavefunction takes the following form:

σε(gI , χ) ≡ ηε(gI ;χ− χ0, π0)σ̃(gI , χ) , (5.1)

where ηε is a peaking function around χ0 with a typical width given by ε. The simplest
example of such peaking function is given by a Gaussian,

ηε(χ− χ0, π0) ≡ Nε exp
[
−(χ− χ0)2

2ε

]
exp[iπ0(χ− χ0)] , (5.2)

15The connection between GFT coherent states and 3-geometries was already suggested in [36].
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where Nε is a normalization constant to be fixed later, and where we have assumed, for
simplicity, that the peaking function does not depend on the group variables gI . Of course,
in order for the condensate wavefunction to be truly peaked around χ0 it is necessary for
the reduced wavefunction σ̃ not to spoil the peaking properties of ηε. Since, as we will see
below, σ̃ will be dynamically determined, only solutions which satisfy this requirement (if
there are any) should be considered.

5.1.1 Comments on the properties of the CPSs

Let us briefly comment on some features of these Coherent Peaked States (CPSs).
In order to implement a notion of effective relational dynamics, these states should

satisfy the conditions discussed in subsection 2.2, at least in some regimes and in some
regions of the parameter space. A first condition that we impose on the above parameters
in order for these CPSs to actually meet the requirements in subsection 2.2 is

ε� 1 . (5.3a)

This condition, as the computations below will clarify further, is what allows us to “syn-
chronize the internal clocks” of the fundamental GFT quanta,16 and thus to consider the
CPSs as some kind of discrete counterpart of proper leaves of a foliation based on the
massless scalar field itself. As a consequence, one can interpret (at the effective level)
the expectation value of an operator on a CPS characterized by χ0 as the same operator
computed at a relational time χ0 (i.e., on a slice labelled by χ0). The resulting relational
averages (see subsection 5.4) are thus very similar in spirit to those that can be obtained
from the relational operators constructed in [20, 21, 24, 51]. Such a good peaking property
on the clock value is expected to be necessary simply because only in such case one could
meaningfully speak of clock values, and thus relational dynamics, to start with. On the
other hand, this is expected to hold only approximately, for the simple reason that also
the system we choose to play the role of relational clock is a quantum system and exact
specification of its reading cannot be expected to hold with absolute precision.

Therefore, the above “synchronization condition” has to be taken with care. Taking
the limit ε → 0, in fact, would produce [50] arbitrarily large quantum fluctuations on the
momentum of the massless scalar field. Such infinite fluctuations can not be of course
included in a self-consistent framework implementing a notion of effective relational dy-
namics. From now on, we will therefore consider a small but finite ε. Formally, therefore,
CPSs do not live in F̃ , though they can be thought to be “very close” (small ε) to such
“synchronized states”.17

Still, even with a finite, but small ε, the relative variance of the operator Π̂ (and
similarly of the operator Ĥ to be defined below) turns out to be possibly very large [50].

16For generic condensate states, such synchronization realized at the level of the collective condensate
wavefunction would be only performed at the coarse-grained level; for the simple coherent condensate states
we use here, this is in fact also implemented at the level of the individual GFT quanta. It is important to
distinguish the general rationale from the peculiarities of the specific implementation.

17Notice that from this perspective (coherent) perfectly “synchronized states” living in F̃ should not be
seen as defining an appropriate effective notion of relational dynamics.
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This feature should not be surprising, since χ̂ and Π̂ are canonically conjugate. However,
while one expects such large fluctuations to naturally arise in a truly pre-geometric phase
of the theory, there must exist a regime in a proto-geometric phase in which they are
suppressed, eventually leading to a good semi-classical description of the scalar field. For
instance, this can be achieved in the limit of very large number of GFT quanta by imposing
the condition

επ2
0 � 1 , (5.3b)

on the parameters ε and π0 [50], which we will therefore assume from now on. So, we
see that the conditions (5.3) are related to very different aspects of the implementation
of the relational dynamics: while the good clock condition (5.3a) is important to obtain
an almost perfect “synchronization” of the fundamental “atoms of space” (and thus it is
relevant even at the level of average values of operators), condition (5.3b) is related only
to quantum fluctuations of the conjugate clock variable.

Second, these states, by construction, can not be “minimum uncertainty states” (MUCs)
for the couple of operators (X̂, Π̂). Indeed, it is well-known that a couple of operators Â
and B̂ saturates the Heisenberg uncertainty inequality on a state |ψ〉 if and only if [52]

[Â+ iλB̂] |ψ〉 =
[
〈Â〉ψ + iλ 〈B〉ψ

]
|ψ〉 ,

where λ is a complex number. Now, it is easy to realize that the CPSs introduced above
(and, more generally any coherent state of the GFT field of the form (3.13)) do not satisfy
the above equation for the operators X̂ and Π̂, given explicitly in equations (3.11c), (3.11d):[

X̂ + iλΠ̂
]
|σ〉 6=

[
〈X̂〉σ + iλ 〈Π̂〉σ

]
|σ〉 .

In particular, the state obtained at the left-hand-side of this equation does not contain the
vacuum state, while the second one does. Typically, it is precisely the property of being
minimum uncertainty states (MUCs) for some operators satisfying a certain algebra, which
defines coherent states as being states behaving “as classical as possible” with respect to
those quantities. In this case, we are using states which are indeed coherent, but just
according to the GFT operators, for which they indeed are MUCs. Still, they are not
MUCs for X̂ and Π̂. It would be therefore surprising if these states turned out to fit
perfectly a classical description of a massless scalar field coupled to geometry. And indeed,
as we will see in subsection 5.5, this will not be the case.

In general, we have not exploited the possibilities, offered by the second quantized for-
malism, to define coherent states which would minimize the uncertainty relations between
X̂ and Π̂ in particular minimizing as much as possible also the variance of the collective
observable Π̂. We have not done so because we are not aiming, in the present context, to
identify relational clocks that would also be ideal (i.e., “as classical as possible”), but only
to define a good relational dynamics. Should we be interested in imposing additional and
more stringent semi-classicality condition on our clock, we could for example adapt to the
GFT condensate context the techniques developed in [53] to construct coherent states for
collective variables in the LQG context.
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Third, on the same line, we want to emphasize that, given the specific form of a CPS
with peaking function as in (5.2), taking the limit ε→∞ will not lead to a localization of
the wavefunction in momentum space around π0, as one would naively guess. In fact, the
very same assumption of the factorization of the CPS wavefunction into a peaking function
and a χ-dependent reduced wavefunction, implies that the wavefunction in momentum
space is given by the following convolution product

σf,ε(gI , π;χ0, π0) ≡
∫

dπ′ηε(π − π′;χ0, π0)σ̃(gI , π′) .

This shows immediately that, even if the Fourier transform ηε(π;χ0, π0) of the peaking
function is peaked on π0, the convolution integral is not going to be peaked on π0. More
precisely, when ε→∞ (when ηε(π;χ0, π0) is indeed peaked) the above equation becomes

σf,ε(gI , π;χ0, π0) ' Nεe−χ
2
0/(2ε)σ̃(gI , π − π0) .

For instance, this implies that the expectation value of the occupation number on the
factorized state in the limit ε→∞ is given by (see section 5.4 for similar computations)

〈N̂〉σf,ε;π0,χ0
=
∫

dπ
∫

dgI |σf,ε(gI , π;χ0, π0)|2 ' N 2
ε e
−χ2

0/ε
∫

dgI
∫

dπ|σ̃(gI , π)|2 ,

which does not depend at all on the variable π0. However, as we have already mentioned,
the role of π0 is crucial in order to make the above states meet some semi-classicality
requirements (at least in some regimes), by ensuring some control over the variance of the
momentum and the Hamiltonian operator.

Lastly, we remark that, as a consequence of the above construction, the divergences
that plague general n-point “relational” operators in the prescription of [12], can not be
present in this framework. In fact, since we use no redefinition of second-quantized opera-
tors to define relational quantities, but rather we stick to an effective “Schrödinger picture”,
the commutation relations between ϕ̂ and ϕ̂†, which ultimately produced the ill-defined be-
havior of “relational” operators as defined in [12], are in this case always compensated by
an integration. In our framework, therefore, there is no need to introduce smeared cre-
ation and annihilation operators (see equations (4.9)) as proposed in [19] in order to tame
the aforementioned divergences.18 By construction, the choice of our states produces a
regular and “almost perfect localization” of the expectation values of operators, effectively
reproducing the results obtained by considering expectation values of operators constructed
out of creation and annihilation operators smeared with the very same peaking function
appearing in (5.1).

5.2 CPSs dynamics

Following the same procedure of [12], we can now obtain the dynamical equations for the
reduced wavefunction σ̃ starting from the Schwinger-Dyson equation. We need then to
fully specify the GFT action S[ϕ, ϕ̄], including a massless scalar field. If such a field is

18Of course suitable smearing may well be needed to define rigorously the full GFT Weyl algebra of
observables; simply, it is not our concern here.
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minimally coupled to gravity, one can use the symmetries of the classical action (which
are assumed to be present also at the quantum level, and in the GFT amplitudes, which
generate simplicial gravity path integrals including a discretized scalar field [12]) to place
strict constraints on the GFT action. This, in general, can be written as

S = K + U + Ū , (5.4)

where K represents the kinetic term and U encodes interactions. In the following, we will
restrict our analysis only to the kinetic term, thus neglecting interactions. However, a brief
discussion about the contributions to the model coming from simplicial interactions can be
found in subsection 5.3.

Given the aforementioned symmetry assumptions, the kinetic term takes the form [12]

K =
∫

dgI dhI
∫

dχ dχ′ ϕ̄(gI , χ)K(gI , hI ; (χ− χ′)2)ϕ(hI , χ′) , (5.5)

where the dependence of the kinetic kernel from (χ − χ′)2 is due to the fact that the
scalar field propagates between neighbouring 4-simplices along dual links, and that we are
requiring the classical shift and reflection symmetries of the massless scalar field action
to be preserved at the quantum level. On the other hand, the dependence of K from gI
and hI is determined by the specific choice of the GFT model we are interested in (see for
instance [12] for an example in the case of a GFT based on the EPRL spinfoam model).

5.2.1 Reduced wavefunction effective dynamics
In light of the effective and approximate nature of the relational framework we want to
implement (see the discussion in subsection 2.2), we content ourselves with extracting an
effective mean field dynamics from the full set of Schwinger-Dyson equations, assuming that
the relevant states for cosmological dynamics are CPSs, and then an averaged relational
dynamics for interesting geometric observables from it. Thus we only impose the equation〈

δS[ϕ̂, ϕ̂†]
δϕ̂†(gI , χ0)

〉
σε;χ0,π0

≡
〈
σε;χ0, π0

∣∣∣∣ δS[ϕ̂, ϕ̂†]
δϕ̂†(gI , χ0)

∣∣∣∣σε;χ0, π0

〉
= 0 , (5.6)

to be satisfied, where |σε;χ0, π0〉 is the CPS with wavefunction (5.1) and with peaking
function (5.2). After a change of variable χ − χ0 → χ, and neglecting the contribution
from GFT interactions, equation (5.6) becomes∫

dhI dχK(gI , hI ;χ2)ηε(χ;π0)σ̃(gI , χ+ χ0) = 0 .

We further assume that the kinetic kernel can be written in terms of a series expansion as

K(gI , hI ;χ2) =
∞∑
n=0

K(2n)(gI , hI)
(2n)! χ2n . (5.7)

Let us notice that while this assumption might appear too restrictive, given the typical
distributional nature of kinetic kernels in general QFTs, the situation might be different
in GFT. Indeed, existing studies [41] on the form of the action of a GFT for gravity
minimally coupled to a massless scalar field suggest a form of the kinetic kernel in terms of
a non-polynomial function of second derivatives with respect to the argument of the GFT
field encoding the scalar field degrees of freedom (our χ) acting on a δ function of the same
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argument. The GFT kinetic kernel so identified admits a representation in terms of smooth
functions of the arguments of the fields appearing in the action, thus it would satisfy our
assumption. We believe this is an interesting point which deserve further scrutiny.

Since, because of the function ηε, the integrand is peaked around χ = 0, we Taylor
expand the reduced wavefunction σ̃ around that point, so that the kinetic term contribution
can be written as

∞∑
n=0

∞∑
m=0

∫
dhI

K(2n)(gI , hI)
(2n)!

σ̃(m)(hI , χ0)
m! I2n+m(π0, ε) ,

where the apex on the reduced wavefunction indicates the m-th derivative of the function
with respect to the massless scalar field variable, and where

I2n+m(π0, ε) ≡ Nε
∫

dχχ2n+me−χ
2/(2ε)+iπ0χ = Nε

√
2πε (−i)2n+m ∂2n+m

∂π2n+m
0

e−π
2
0ε/2

= Nε
√

2πε
(
i

√
ε

2

)2n+m
e−π

2
0ε/2H2n+m

(√
ε

2π0

)
,

where H2n+m are Hermite polynomials of order 2n+m.
We now retain only the lowest order contributions,19 truncating the above sum at order

ε, i.e., with the combination 2n+m ≤ 2. We thus obtain

Nε
√

2πεe−π2
0ε/2

∫
dhI K(0)(gI , hI)

[
σ̃(hI , χ0)

(
1− ε

4H2

(√
ε

2π0

)
K(2)(gI , hI)
K(0)(gI , hI)

)

+ i

√
ε

2H1

(√
ε

2π0

)
σ̃′(hI , χ0)− ε

4H2

(√
ε

2π0

)
σ′′(hI , χ0)

]
.

Notice that the truncation at order 2n+m = 2 might not be entirely understood as a
truncation in powers of ε. In fact, the features of the weight function I2n+m depend on ε
and on π0 as well, so it might well be that, in some regimes, this truncation is not allowed.
However, as discussed in appendix A, in the case of π0ε < 1, such a truncation is possible.

The same computation can of course be performed in the spin representation. After
imposition of isotropy, one finds that the reduced wavefunction σ̃j obeys the following
equation of motion:

σ̃′′j (χ0)− 2iπ̃0σ̃
′
j(χ0)− E2

j σ̃(χ0) = 0 , (5.8)

where we have defined the parameters π̃0 and E2
j as

π̃0 = π0
επ2

0 − 1 , (5.9a)

E2
j = ε−1 2

επ2
0 − 1 + Bj

Aj
, (5.9b)

where the coefficients Aj and Bj and wj are defined in the same way as in [12].
19This additional approximation should be understood in the spirit of the discussion in subsection 2.2,

as one of the approximations characterizing the effective nature of the approach.
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Comments on the effective dynamics. Let us briefly comment on this result.
First, the dynamics we have obtained is intended to describe an evolution with respect

to the quantity χ0, which now truly is a parameter. Different values of χ0 at the effective
level correspond to different spacetime slices, so that the evolution has an immediate phys-
ical interpretation. This is also what happens in the effective approach of [20, 21] already
mentioned in subsection 2.2, where, through a deparametrization at the quantum phase
space level, one obtains a relational dynamics in which evolution is specified with respect
to the expectation value of the clock.

In fact, the above equations of motion can be obtained from the effective action for
the reduced wavefunction

Seff =
∑
j

∫
dχ0

[
σ̃j(χ0)σ̃′′j (χ0)− 2iπ̃0σ̃j(χ0)σ̃′j(χ0)− E2

j σ̃j(χ0)σ̃j(χ0)
]
, (5.10)

where the role of χ0 as evolution parameter is manifest.
Second, the introduction of the “synchronization parameter” ε allowed us not to make

specific requirements on the properties of the reduced wavefunction. This is an important
progress with respect to the way dynamics was introduced in [12]. In fact, one of the crucial
conditions used to obtain the condensate dynamics was a “hydrodynamic” one, requiring
the condensate wavefunction to be slowly varying with respect to the relational time. This
is what allowed the suppression of higher order derivatives (with respect to the scalar
field variable) in the Taylor expansion of the wavefunction, and, in turn, of the dynamical
equations (and kinetic kernel). However, this condition may not be satisfied by condensate
wavefunctions that represent a cosmological spacetime satisfying the Friedmann equation
at late (clock) times; this requires an exponential behavior for the volume operator, and
thus for the wavefunction as well, as the computations in [12] explicitly show.

Third, let us notice that the quantity E2
j will play an important role for the semi-

classical limit of the theory. For the moment, let us only say that, if επ2
0 ≥ 1, the above

quantity is positive, assuming that the ratio Bj/Aj is either positive as well or smaller than
the first term in the expression for E2

j .
Fourth, we remark that the effective dynamics obtained from (5.6) can not be straight-

forwardly mapped to the effective dynamics obtained from (4.10). The reason lies precisely
in the choice of the states |σε, χ0, π0〉 with respect to the general coherent states |σ〉, used
in [12] and [19]. In fact, the choice of the condensate wavefunction (5.1) is highly non-
trivial, and rather specific. It localizes the condensate wavefunction itself as much as it
is allowed by quantum-mechanical rules, but it is still not what would correspond to an
exact localization. Therefore, it will not in general lead to just a “smeared” version of the
equations of motion obtained in [12], as in [19] (see equation (4.11)). For example, param-
eters of the peaking function enter in a non-trivial way into the parameters regulating the
dynamics, i.e., π̃0 and E2

j . Of course, this should be expected, since any notion of averaged
effective dynamics deeply depends on the choice of states that are expected to realize it.
Nonetheless, it is remarkable that the effective dynamics obtained above is very similar to
the one obtained in [12], which is based on a quite different choice of states. This similarity
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will be even more manifest when analysing the relational evolution of the averaged volume
(see subsection 5.5).

Lastly, let us notice that computing the equations from the Schwinger-Dyson prescrip-
tion and via the definition of an effective action as

Seff =
∫

dχ0

〈
σε;χ0, π0

∣∣∣∣Ŝ∣∣∣∣σε;χ0, π0

〉
,

one does not obtain exactly the same result. Still, as described in appendix B, the dynamical
equations obtained in these two ways are equivalent modulo the substitution ε→ 2ε in going
from Schwinger-Dyson to the effective action prescriptions. The mathematical reason why
this happens is that in the second case we have one more peaking function, while in the first
case one of them is eliminated by the variation. The physical reason is that the Schwinger-
Dyson equation somehow “perfectly localizes” the equations of motion on a given slice (i.e.,
value of χ0), while in the second procedure, the localization happens because of the CPS
itself. Nonetheless, since there is no a priori determination of the parameter ε, it seems fair
to say that the two dynamics are equivalent (and so are all the results described below).
Still, there is probably more to be understood about this difference.

5.2.2 Analysis of the effective dynamics

As already noticed in [12], equation (5.8) is best studied by splitting the reduced wave-
function into a phase and a modulus part, i.e. adopting a more conventional hydrodynamic
form of the condensate dynamical equations. Defining σ̃j ≡ ρj exp[iθj ], we find

0 = 2θ′j(χ0)ρ′j(χ0) + ρj(χ0)θ′′j (χ0)− 2π̃0ρ
′
j(χ0) , (5.11a)

0 = ρ′′j (χ0)− ρj(χ0)[θ′j(χ0)]2 + 2π̃0ρj(χ0)θ′j(χ0)− E2
j ρj(χ0) . (5.11b)

Multiplying both sides of equation (5.11a) by ρj(χ0), we find immediately that

θ′j(χ0) = π̃0 + Qj
ρ2
j (χ0) , (5.12)

which in turn can be substituted in equation (5.11b) to get

ρ′′j (χ0)−
Q2
j

ρ3
j (χ0) − µ

2
jρj(χ0) = 0 , (5.13)

where

µ2
j = E2

j − π̃2
0 = π2

0
επ2

0 − 1

( 2
επ2

0
− 1
επ2

0 − 1

)
+ Bj
Aj

. (5.14)

Notice that in the regime επ2
0 � 1, the first term is always positive, which means that

µ2
j is positive as long as either Bj/Aj is positive too, or it is less (in modulus) than the

first term in the above expression (which is positive). As we will see in subsection 5.5, the
positivity of µ2

j is necessary in order to obtain a Friedmann-like behavior for the volume of
the universe.
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It is remarkable that our improved procedure for extracting a relational cosmological
dynamics from quantum gravity has produced equations of motion with the same functional
form as obtained in [12], but with redefined parameters and conserved quantities. These
parameters and conserved quantities now carry a dependence on the properties of our
relational quantum clock.

An explicit solution to equation (5.13) is given by [50]

ρ2
j = − Ej2µ2

j

+

√
E2
j + 4µ2

jQ
2
j

2µ2
j

cosh
(
2µj(χ0 − χj0)

)
, (5.15)

where χj0 are integration constants and Ej are conserved quantities (see below). From
both this explicit expression and from equation (5.13) we can see that the behavior of the
reduced condensate wavefunction does not spoil the peaking properties of the condensate
wavefunction induced by ηε.

Also, again from both equations (5.13) and (5.15), we notice that if one of the Qjs is
different from zero, the associated ρj is always different from zero. The value of Qj might
therefore be important, at least at the mean field level, to tell if the volume of the universe
ever reaches zero. Indeed, as we already know from equation (5.31) and we will see again
in subsection 5.5, in an effective relational dynamics framework the volume operator is
made of a sum of ρ2

j . This is an important factor for determining whether the classical
big bang singularity is replaced by a bouncing scenario in GFT condensate cosmology.
However, notice that even if all the Qjs are identically zero, it is still possible to have an
always strictly positive volume, as long as at least one of the Ej is strictly negative. We
will discuss further this point below, in subsection 5.5.

Symmetries and conserved quantities. Before moving to the study of expectation
values and variances of quantum operators, it is useful to recall which quantities are con-
served by the above dynamics.

We have two conserved quantities [12]. The first one, Qj , entering in equation (5.12), is
the conserved charge related to a U(1) symmetry of the effective action (5.10): σ̃j → σ̃je

iαj ,
with αj constant; this symmetry is in general only approximate, subject to the GFT
interactions being negligible. It is given by

Qj = −1
2

[
∂Lj

∂σ̃′j(χ0) iσ̃j(χ0) + ∂Lj
∂σ̃
′
j(χ0)

(−iσ̃j(χ0))
]

= − i2
(
σ̃j σ̃

′
j − σ̃

′
j σ̃j − 2iπ̃0|σ̃j |2

)
= ρ2

j (θ′j − π̃0) . (5.16)

The second conserved charge is obtained by multiplying equation (5.13) by ρ′j : it is the
“bulk condensate energy”

Ej = (ρ′j)2 +
Q2
j

ρ2
j

− µ2
jρ

2
j . (5.17)
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This, however, is not exactly the charge generating translations of the reduced wavefunction
σ̃j along the effective “time” direction χ0. The latter is given by

Ēj = −
(
∂Lj
∂σ̃′j

σ̃′j + ∂Lj
∂σ̃
′
j

σ̃
′
j − Lj

)
= |σ̃′j |2 − E2

j |σ̃j |2 = Ej + 2Qj π̃0 , (5.18)

and it represents the total “relational energy” of the condensate. This quantity is, of course,
also conserved. And we see from the above equation that such energy consists of two terms:
a “bulk condensate energy” Ej , and a term given by 2π̃0Qj , which is the result of a sort of
“energy injection” due to the precise choice of the peaking function (5.2).

5.3 Simplicial interactions

Even though in the main discussion below we will neglect interactions, in this subsection
we briefly comment about the role of interaction terms in the above model, focusing in
particular on simplicial ones. As we will see, the strength of these interactions grows very
quickly as the number of particle grows, and therefore, at a certain point of the evolution
of the Universe, these interactions can become important, as already emphasised in [12]
and studied, in a more phenomenological approach, in [54–56]. Simplicial interactions are
interpreted as five tetrahedra (i.e. five GFT quanta) gluing to form (the boundary of)
one 4-simplex. Crucial for this interpretation is their non-locality in the group variables,
which are connected by the interaction kernel with the same combinatorial pattern of
shred triangles in the gluing of the five tetrahedra [9, 40]. The requirement that the GFT
Feynman amplitudes take the form of nice lattice path-integrals for gravity coupled to a
discretized scalar field, on the other hand, imposes a local dependence of the interaction
kernel on χ. In fact, as we will see below, crucial differences appear also in the effective
dynamics if we impose from the beginning locality20 of interactions with respect to the
massless scalar field variable χ or if we do not make any particular assumption on them.

Local interactions. In [12], it has been considered a local interaction term of the form

Uloc =
∫

dχ
∫ ( 5∏

a=1
dgaI

)
Uloc(g1

I , . . . , g
5
I )

5∏
a=1

ϕ(gaI , χ) , (5.19)

entering in the GFT action S = K + Uloc + Ūloc, with K a kinetic term. The form of the
above interaction term, as said, is suggested by the discrete gravity interpretation of the
GFT amplitudes. The fact that the interaction kernel Uloc does not depend on χ is due to
the fact that we are considering a massless free scalar field, and that we are assuming the
shift symmetry of its classical action to be conserved at the quantum level as well [12].

As in subsection 5.2, the mean field equations of motion can be obtained from (5.6),〈
δS[ϕ̂, ϕ̂†]
δϕ̂†(gI , χ0)

〉
σε;χ0,π0

= 0 ,

20Here, by locality, we mean that the value of the scalar field is the same in all of the (five) interacting
fields appearing in the interaction term of the Lagrangian.
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and the interaction term contribution is given by

N 4
ε

∫ ( 4∏
a=1

dgaI

) [
U loc(gI , g1

I , . . . , g
4
I ) + · · ·+ U loc(g1

I , . . . , g
4
I , gI)

] 4∏
a=1

σ̃(gaI , χ0) .

When we also impose isotropy of the wavefunction, the effective equation (5.8) becomes

σ̃′′j (χ0)− 2iπ̃0σ̃
′(χ0)− E2

j σ̃(χ0)− ulocj σ̃
4(χ0) = 0 ,

where

ulocj = N 3
ε√

2πε
eπ

2
0ε/2

wloc
j

Aj
,

where the coefficients wloc
j are defined as in [12].

Both the factors N 3
ε /(
√

2πε) and eπ2
0ε/2 are indeed large when the conditions (5.3) are

satisfied, so the validity of the assumption of negligible interactions with respect to the
kinetic term depends crucially on the parameters of the fundamental GFT model, i.e., Aj
and wloc

j (and thus, generally speaking, on choice of the kinetic and interaction kernels).
Let us notice that including interactions results in different coefficients governing the

dynamics depending on whether one follows equation (5.6) or the “effective action proce-
dure” described in appendix B to obtain it. In fact, a quick computation shows that in
this second case, the coefficient of the interaction term is given, instead, by

w̃loc
j = N

2
ε√
5
e−3π2

0ε/2
wloc
j

Aj
.

From this formula we see that the different exponential dependence might indeed allow
for a regime where interactions are under better control. This is not actually surprising,
since the two ways of obtaining dynamics have very different features. As we have already
mentioned, the one involving the use of equation (5.6), basically localizes the dynamics “on
a given slice” via the functional derivative and subsequently via the expectation value on the
appropriate CPS. On the other hand, the effective action procedure lets the localization
happen via the projection on the states themselves. Therefore, for interactions whose
localization in the variable χ has been imposed beforehand, the first procedure will result
in more singular contributions, while the second one will be more regular.

Non-local interactions. Interestingly (but given the above remark, not surprisingly),
non-local interactions, even though not very well motivated from the discrete gravity (and
scalar field) point of view, can be kept under control more easily. To be concrete, let us
consider a model of the form

Unon-loc =
∫ ( 5∏

a=1
dgaI dχa

)
Unon-loc(g1

I , . . . , g
5
I , χ

1, . . . , χ5)
5∏

a=1
ϕ(gaI , χa) , (5.20)

– 40 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
5

which is the most general possibility we can consider for the case of simplicial interactions.
Its contribution to the dynamical equations would be of the form

e−2π2
0εN 4

ε (2πε)2
[∫ ( 4∏

a=1
dhaI

)[
Unon-loc(gI , h1

I , . . . , h
4
I , χ0)

+ · · ·+ Unon-loc(h1
I , . . . , h

4
I , gI , χ0)

] 4∏
a=1

σ̃(haI , χ0)
]
,

where again higher order contributions have been neglected. This quantity can be well
behaved if the kernel Unon-loc is a regular function of its variables. In particular, in the
isotropic limit, equation (5.8) becomes, after the introduction of interactions,

σ̃′′j (χ0)− 2iπ̃0σ̃
′(χ0)− E2

j σ̃(χ0)− unon-locj σ̃
4(χ0) = 0 ,

where
unon-locj = N 3

ε (2πε)3/2e−3π2
0ε/2

wnon-loc
j

Aj
,

where again the quantities wnon-loc
j are defined as in [12]. Interactions of this form can

indeed be small (even with the presence of N 4
ε and regardless of the precise functional form

of the interaction kernel), provided that the factor π2
0ε is large enough.

5.4 Validity of the averaged dynamics conditions

From our defining equations (2.5), three operators play a crucial role in the definition of
the averaged relational evolution: the internal degree of freedom chosen as relational clock
χ̂, its conjugate momentum Π̂ and the relational Hamiltonian operator Ĥ. We will define
this Hamiltonian operator later in this section. We now focus on these three operators, as
defined in our GFT condensate cosmology context, making clear in which sense they realize
an averaged relational evolution as defined in subsection 2.2. Notice, however, that while in
order to meet all the “averaged relational evolution conditions” described in subsection 2.2
one would need in principle to compute all the moments of Π̂ and Ĥ on CPSs, here we will
content ourselves to check only the validity of equation (2.5b). We stress again that this
condition is actually enough to guarantee an effective approximate equality between Ĥ and
Π̂ in the regime in which relative quantum fluctuations of these operators are negligibly
small.

Since in the following we will need to compute expectation values of these operators on
CPSs, it is useful to sketch the typical computation for a generic (non-derivative) two-body
operator:

〈Ô〉σε;χ0,π0
=
∫

dgI dhI
∫

dχO(gI , hI ;χ)|σε̃(gI , χ;χ0, π0)|2

=
∫

dgI dhI
∫

dχO(gI , hI ;χ)|σ̃(gI , χ)|2|ηε(χ− χ0, π0)|2

'
∫

dgI dhI O(gI , hI ;χ0)σ̃(gI , χ0)σ̃(hI , χ0) ,
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where in the last line we have used the lowest saddle point approximation (allowed by
the form of the ηε function in the scalar field variables), and resting on the “good clock
condition” ε � 1. This approximation will be used to compute the expectation values on
CPSs of all the relevant operators below, and its validity is discussed in appendix A and in
much more detail in [50]. Notice that the normalization of the peaking function has been
chosen such that ∫

dχηε(χ− χ0, π0)ηε(χ− χ0, π0) = 1 , (5.21)

which, in our case, implies N 2
ε = (πε)−1/2. For instance, for the number operator, we have

N(χ0) ≡ 〈N̂〉σ;χ0,π0
=
∑
j

∫
dχ|σε(gI , χ;χ0, π0)|2 '

∑
j

ρ2
j (χ0) . (5.22)

Massless scalar field operator. As we have already explained in subsection 4.2, the
role of χ̂ in equation (2.5) can be taken by the operator X̂/N(χ0). Its expectation value is
then given by

〈χ̂〉σε;χ0,π0
≡
〈X̂〉σ;χ0,π0

N(χ0) ' χ0 , (5.23)

where in the last line we have followed the same computations strategy outlined before. Let
us remark, however, that in this case the lowest order saddle point approximation is not
expected to hold true at any value of the parameter χ0. However, for π0 large enough (or,
equivalently, ε small enough), this approximation is reasonable even for “small” values of
χ0. We refer again to appendix A and to [50] for a more thorough discussion. In conclusion,
we see that the intensive quantity associated to the second quantized scalar field operator
has an expectation value on a CPS which is indeed given by χ0.

Momentum operator. The momentum operator, as defined in equation (3.11d), is the
conjugate variable to the massless scalar field operator, as defined by equation (3.11c).
Indeed, their commutator gives

[Π̂, X̂] = −iN̂ . (5.24)

The action of this operator on a CPS is given by(
I + iδχΠ̂

)
|σε;χ0, π0〉 =

(
1 + δχ

∫
dgI dχϕ̂†(gI , χ)∂χσε(gI , χ;χ0, π0)

)
|σε;χ0, π0〉

' e−‖σε‖2/2 exp
[
δχ

∫
dgI dχϕ̂†(gI , χ)∂χσε(gI , χ;χ0, π0)

]
× exp

[∫
dgI dχϕ̂†(gI , χ)σε(gI , χ;χ0, π0)

]
|0〉 ,

so that, for each δχ small enough, we can approximately write the above quantity as

exp
[∫

dgI dχϕ̂†(gI , χ)σε(gI , χ+ δχ;χ0, π0)
]
|0〉 ≡ |σε;χ0, δχ, π0〉 .

From the above equation, we immediately see that the expectation value of the number
operator on these new “translated states” is given by

〈N̂〉σ;χ0,δχ,π0
=
∫

dgI dχρ2
ε (gI , χ+ δχ;χ0, π0) =

∫
dgI dχ, ρ2

ε (gI , χ;χ0, π0) = 〈N̂〉σ;χ0,π0
.
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The same result of course holds for the volume operator (and in the same fashion, for all
those operators whose matrix elements do not depend on χ). On the other hand, the scalar
field operator satisfies

〈X̂〉σ;χ0,δχ,π0
=
∫

dgI dχχρ2
ε (gI , χ+ δχ;χ0, π0) ' (χ0 − δχ) 〈N̂〉σ;χ0,π0

,

so that the label associated to the leaf, i.e. 〈X̂〉σ;χ0,δχ,π0
/ 〈N̂〉σ;χ0,π0

, is not χ0, but χ0−δχ.
In conclusion, after the action of the momentum operator, all the physical properties

of these states, except for their label (and of course all the functions of it), are not changed.
This is not surprising, since the momentum operator commutes with N̂ and V̂ . In fact, this
is exactly the action we would expect from the (exponential of the) operator representing
the momentum of the massless scalar field, changing the massless scalar field quantum
number and leaving unchanged all the other quantum numbers associated to the other
operators.

Its expectation value on a CPS is given by

〈Π̂〉σ;χ0,π0
= 1
i

∫
dχ
∑
j

σε,j(χ;χ0, π0)∂χσε,j(χ;χ0, π0)

=
∑
j

∫
dχρ2

j (χ)(θ′j(χ) + π0)|ηε(χ− χ0;π0)|2

= π0

( 1
επ2

0 − 1 + 1
)
N(χ0) +

∑
j

Qj , (5.25)

where in the last line we have used the equations of motion. We see immediately that
there are two contributions to this operator: the first one, depending on the momentum
parameter π0 assigned to each tetrahedron, is proportional to the number of spacetime
atoms at the relational time χ0, and the second one, intensive and independent of χ, which
is related to the U(1) charge of the effective theory. Interestingly enough, in the regime
επ2

0 � 1, which, we remind, is a necessary condition to maintain quantum fluctuations small
at least in some regime [50], the extensive contribution above reduces simply to π0N(χ0).

Relational Hamiltonian. The operator Π̂, however, does not describe in general the
evolution of our CPSs with respect to the parameter χ0, which, in virtue of equation (5.23)
it is what enters in the derivative in the left-hand-side of equation (2.5a), and thus it is
the parameter describing the averaged relational dynamics. To characterize the relational
evolution enconded in a CPS |σε;χ0, π0〉, on the other hand, we define21 a Hermitean
operator Ĥ

Ĥ ≡ −i
[∫

dgI
∫

dχ ϕ̂†(gI , χ)∂χηε(χ− χ0, π0)σ̃(gI , χ)

−
∫

dgI
∫

dχ ϕ̂(gI , χ)∂χηε(χ− χ0, π0)σ̃(gI , χ)
]
− π0N(χ0) , (5.26)

21Let us stress that, since the very definition of Ĥ is subject to a prior choice of states encoding the
relational dynamics (in this case the CPSs), this operator should only be intended as an effective Hamiltonian
operator. Thus, it would be better denoted as Ĥσε;χ0,π0 . For sake of notation, however, we will drop the
subscript in the main text.
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constructed so that its action on |σε;χ0, π0〉 is given by

Ĥ |σε;χ0, π0〉 ≡ −i
(
N ′(χ0)

2 +
∫

dgI
∫

dχ ϕ̂†(gI , χ)∂χηε(χ− χ0, π0)σ̃(gI , χ)
)
|σε;χ0, π0〉 .

(5.27)
It is easy to see that, in the limit of small ε, the state resulting from the action of exp[iδχĤ]
is |σε;χ0 − δχ, π0〉. This Hamiltonian operator is not directly obtained from the (averaged)
quantum equations of motion, but it is certainly related to them, since its definition is
based on the form of the CPSs that are supposed to approximately satisfy them. Its
interpretation as effective relational evolution operator then, is only to be intended in light
of the validity of equations (2.5a) and (2.5b), which we now discuss.

It follows from the above definition that the expectation values of all quantum operators
are now computed at relational time χ0 − δχ, in the limit of small ε. In particular, the
operator Ĥ governs a Schrödinger equation of the form

− i d
dχ0
|σε;χ0, π0〉 = Ĥ |σε, χ0, π0〉 . (5.28)

Of course this implies that equation (2.5a) is satisfied. In order to understand whether
equation (2.5b) is satisfied as well, we compute the expectation value of Ĥ on a CPS.
Defining ˆ̄H the operator whose action on the CPSs is given by the second term in the
round brackets in equation (5.27), we get

〈 ˆ̄H〉σε;χ0,π0
= −i

∫
dgI

∫
dχηε(χ− χ0, π0)∂χηε(χ− χ0, π0)|σ̃(gI , χ0)|2

= π0

∫
dgI

∫
dχ|ηε(χ− χ0, π0)|2ρ2(gI , χ)

− i

2

∫
dgI

∫
dχρ2(gI , χ)∂χ|ηε(χ− χ0, π0)|2

= π0

∫
dgI

∫
dχ|ηε(χ− χ0, π0)|2ρ2(gI , χ)

+ i

2∂χ0

∫
dgI

∫
dχρ2(gI , χ)|ηε(χ− χ0, π0)|2.

Recognizing the above integrals to correspond to N(χ0), we obtain

〈 ˆ̄H〉σε;χ0,π0
= π0N(χ0) + i

2N
′(χ0) .

In conclusion, we have, for the operator Ĥ, the relation

〈Ĥ〉σε;χ0,π0
= 〈 ˆ̄H〉σε;χ0,π0

− iN
′(χ0)
2 = π0N(χ0) . (5.29)

Therefore, we see that equation (2.5b) is indeed approximately satisfied in the regime
επ2

0 � 1 if we also impose ∑
j

Qj = 0 , (5.30)
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which however can be imposed without losing generality, since the Qjs are just constants
of integration. Still, it is important to notice that for large enough N(χ0) equation (2.5b)
is approximately satisfied regardless of the imposition of condition (5.30).

Thus we conclude that our CPSs indeed satisfy also the requirement (2.5b), thus
leading to a satisfying implementation of the “averaged relational evolution conditions” of
subsection 2.2 (at least when fluctuations in Π̂ and Ĥ are small).

5.5 Volume dynamics

We now study the average effective relational evolution of the volume operator. Given our
restriction to homogeneous and isotropic states, this effective relational evolution encodes
the cosmological dynamics emergent from our fundamental quantum gravity formalism.

Expectation value of the volume operator. Using the same techniques explained in
subsection 3.3, in particular equations (3.27) and (5.31), we compute the expectation value
of the volume operator on a CPS:

V (χ0) ≡ 〈V̂ 〉σ;χ0,π0
=
∑
j,~m

Vj |σ{j,~m}(χ;χ0, π0)|2 =
∑
j

Vj |σj(χ;χ0, π0)|2

'
∑
j

Vjρ
2
j (χ0) . (5.31)

Once again, we have used a lowest order saddle point approximation, whose validity is
discussed in appendix A and in more detail in [50]. We clearly see the similarity of this
equation with equation (3.28), leading again to the interpretation of the total volume being
given by the sum over j of the average number of “isotropic atoms” with assigned spin j

“at a time χ0” weighted by their individual volume contribution Vj .

Effective relational cosmological dynamics. By deriving equation (5.31) and using
equation (5.17), we see that

(
V ′

3V

)2
'

2∑j Vjρjsgn(ρ′j)
√
Ej −Q2

j/ρ
2
j + µ2

jρ
2
j

3∑j Vjρ
2
j

2

, (5.32a)

V ′′

V
'

2∑j Vj
[
Ej + 2µ2

jρ
2
j

]
∑
j Vjρ

2
j

. (5.32b)

These are the effective cosmological equations for the GFT condensate in terms of the
relational time χ0. Remarkably enough, they have the same functional form as the equa-
tions (3.29) obtained in [12], though this time some of the coefficients in the equations
depend on the CPS parameters, which are in fact part of the definition of our quantum
relational clock. For instance, µ2

j carries now a dependance on both ε and π0.

Classical limit. We can easily check that equations (5.32) reproduce the expected clas-
sical limit for small energy densities. Along the same lines as in subsection 3.3, in the limit
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ρ2
j � |Ej |/m2

j and ρ4
j � Q2

j/m
2
j , the above equations become

(
V ′

3V

)2
'
(

2∑j Vjµjρ
2
j sgn(ρ′j)

3∑j Vjρ
2
j

)2

, (5.33a)

V ′′

V
'

4∑j Vj
[
µ2
jρ

2
j

]
∑
j Vjρ

2
j

. (5.33b)

A sufficient (but not necessary) condition for the above approximate equations to coincide
with the Friedmann equations (in relational time) is either that all the µ2

j s are equal
to 3πG̃, where G̃ ≡ GM2 is the dimensionless Newton’s gravitational constant, or even
just that one of the js is dominating, say jo, and its characterized by µ2

jo = 3πG̃ [12,
48]. Notice that this would amount to a definition of the Newton’s constant, from the
fundamental parameters and dynamics of the quantum gravity theory. Interestingly, among
the parameters conspiring to the definition of the Newton’s constant, we find both π0 and
ε, which are directly related to the “bona fide slice properties” of our CPSs, and to the
quantum properties of our relational clock. In this sense, we find an interesting hint of a
connection between the relational dynamics, and the choice of quantum clock defining it,
and the emergent classical gravitational physics. This connection, and the dependence of
the effective gravitational coupling from the properties of the chosen quantum clock, are
certainly worth exploring further.

Bounce. Analogously to the framework of [12], also in our improved relational cosmo-
logical dynamics we have that, if at least one of the Qjs is not zero, or at least one of the
Ej is strictly negative, then the expectation value of the volume operator never vanishes.
This would lead to a bouncing scenario replacing the cosmological big bang singularity, in
the very early universe.

However, there is a key difference with respect to [12]. In that case, the sum of the
Qjs was equal to the expectation value of the “relational massless scalar field momentum”.
The latter could not vanish, for physical reasons, since it would make the whole relational
setting unjustified (with no matter energy density, one would expect a flat or constantly
curved spacetime).

In this case there seems to be no physical obstruction to requiring that sum to be zero.
In fact, it is reasonable to actually require the condition (5.30), since in this framework
it has to be imposed in order to have fully coherent relational dynamics even at “early
times” (i.e. not arbitrarily large N(χ0)).22 As a consequence, there might be an interplay
between the requirement of having a bounce at early times and the condition that the
momentum of the scalar field used as a clock behaves as a good relational Hamiltonian.
The dependence of the resolution of the initial singularity on the properties of the clock
used to define evolution has been also highlighted in [57].

As a conclusion, while in [12] the bounce appeared as a fully general result of the
volume dynamics, in this improved relational framework the presence of a bounce depends

22In particular, notice that, in the specific case of a single-spin scenario, the constraint (5.30) implies that
the single remaining Qjo has to vanish.
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on the integration constants Ej and Qj , meaning that in this context there is no necessary
reason to select a bouncing solution, although it remains rather generic.

In addition, we remark that such a bounce, were it to be present in the chosen solution,
would be in any case only an average result. That is, it would be a feature of the dynamics
of the mean value of the volume operator in the chosen state. In order to give a more solid
ground for its physical interpretation, one has to check for the behaviour of quantum fluc-
tuations in the same regime of the effective dynamics. Leaving a detailed analysis for [50],
one can already expect that the dynamics of mean values is reliable only in the regime in
which N(χ0) � 1 (see equations (2.7)) i.e., until the number of GFT “atoms of space” is
large. It is not obvious that this would be the case in the very early universe.23 Finally,
all the results obtained so far heavily rely on a lowest order saddle point approximation
(i.e., almost “perfect peaking” of the condensate wavefunction). When these two conditions
(small fluctuations of relevant operators and almost perfect peaking) are not satisfied, we
might lose the ability to interpret χ0 as a relational parameter (possibly because fluctua-
tions on the massless scalar field operator are large or because the expectation value of the
massless scalar field is not χ0 or both) and the expectation value of V̂ might not be able
to capture the relevant features of the volume anymore.

A careful analysis of these issues has be performed in [50], with a particular focus to
the bounce and the classical regime discussed above.

Single-spin scenario. The special case in which all the ρjs are identically zero except
for a non-zero ρjo is interesting for three main reasons: first, it was shown to reproduce
the effective dynamics of Loop Quantum Cosmology (up to a term that could be fixed
to zero as a choice on the relevant class of solution); second, the dominance of single-
spin configurations has been shown to arise dynamically in several analyses of the GFT
condensate dynamics [55, 56, 58]; third, it is obviously a technical simplification allowing
to push much further the analysis of the emergent cosmological dynamics, in particular
when including the effect of GFT interactions.

This case can immediately be obtained from equations (5.32). Similarly to equa-
tions (3.31), we fin

[
V ′

3V

]2
= 4πG̃

3 −
4V 2

joQ
2
jo

9V 2 + 4VjoEjo
9V , (5.34a)

V ′′

V
= 12πG̃+ 2VjoEjo

V
. (5.34b)

The first of these two equations can be recast as

[
V ′

3V

]2
= 4πG̃

3

(
1− ρ

ρc

)
− π2

0
2V 2

jo

+ 1
V

(4VjoEjo
9 − π0Qjo

)
, (5.35)

23Notice that it may be possible that in this very same regime also quantum fluctuations of Π̂ and Ĥ

are important. If that is the case, one should check the equality of all of their moments on a given CPS in
order to establish the validity of a consistent relational dynamics framework.
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where we have defined

ρ ≡
〈Π̂〉2σε;χ0,π0

2V 2 , ρc ≡
3πG̃
2V 2

jo

. (5.36)

Equation (5.35) resembles the effective Friedmann dynamics of LQC [59], with two addi-
tional contributions: a constant one, and one scaling as V −1.

They lead to a further modification of the Friedmann dynamics and may possibly have
an interpretation in terms of effective matter or geometry contributions.

Notice, however, that if we impose the condition ∑j Qj = 0, which in this case trans-
lates into Qjo = 0, and which we have seen is required for a fully coherent relational
interpretation of the cosmological dynamics, the first equation becomes[

V ′

3V

]2
= 4πG̃

3 + 4VjoEjo
9V ,

which is different from equation (3.31a), as well as from the effective LQC dynamics. The
reason, indeed, lies in the different role of the constants Qj with respect to [12], due to the
fact that equation (3.24) for the scalar field momentum is, in this framework, substituted
by equation (5.25). When the condition is imposed, thus, the bounce implied by the LQC
dynamics disappears. However, it might still be possible to have a bouncing solution, when
Ejo < 0, though it would be implemented via a very different physical mechanism.

Also on this point, a deeper analysis of the effective cosmological dynamics, and of the
physical meaning of the various conserved charges associated to it, is needed.

On the Hamiltonian and the momentum. Even though the averaged relational dy-
namics yields the correct classical limit for the relational evolution of the volume operator,
it is interesting to check if a self-consistent classical description of the effective dynamical
system represented by our cosmological observables can be constructed, in the late times
regime. How to construct such a description from the full quantum theory is, however, not
entirely clear (see appendix C for a review of the dynamics and the Hamiltonian analysis
of a flat FRW spacetime in the harmonic gauge where the massless scalar field is used as
a clock). In fact, notice that 〈Ĥ〉σε,χ0,π0

retains a χ0-dependence from the factor N(χ0).
This has twofold consequences.

First, it creates a tension if one wants to apply equation (2.5a) to the expectation value
of Ĥ itself. In fact, the right-hand-side would give precisely zero, while the left-hand-side is
non-zero because N(χ0) depends on χ0. However, let us recall that, in standard Quantum
Mechanics, the Ehrenfest theorem (to which equation (2.5a) is inspired) includes a term of
the form 〈∂Ô/∂t〉Ψ which becomes relevant when the operator Ô depends explicitly on time.
Such a term was not included in equation (2.5a), since that equation is expected to hold
for geometric observables, which in a clock neutral picture should by definition not depend
on clock variables. On the other hand, in the spirit of obtaining an evolution equation
for the (expectation value of) the Hamiltonian operator, such a term might end up to be
needed. Even though we obviously can not directly include a term of the form 〈∂Ô/∂t〉Ψ in
equation (2.5a) because we do not have a notion of (effective) relational time before taking
the expectation value on an appropriate class of states, by construction we are choosing
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the massless scalar field as a relational clock. So, one could replace the term 〈∂Ô/∂t〉Ψ
with 〈[Ô,Π]〉Ψ in our clock-netrual framework, which indeed realizes a “derivative” of the
operator Ô with respect to χ̂ once the former is expanded in a formal power series in the
latter. With such a modification, equation (2.5a) would read

i
d

d 〈χ̂〉Ψ
〈Ôα〉Ψ = 〈[Ĥ, Ôα]〉Ψ + 〈[Ôa, Π̂]〉Ψ , (5.37)

where now we are including Ĥ among the set of operators (labelled by α, and formerly only
including geometric operators) for which the above equation is expected to hold. While
for any geometric operator Ôa, the above equation reduces to equation (2.5a) in virtue of
[Ôa,Π] = 0, the dynamical equation for Ĥ would now read

i
d

d 〈χ̂〉Ψ
〈Ĥ〉Ψ = 〈[Ĥ, Π̂]〉Ψ = i

d
d 〈χ̂〉Ψ

〈Π̂〉Ψ ,

the last identity following from the assumed identification of all the moments of Π̂ and Ĥ
on |Ψ〉. Notice, in particular, that this implies that equation (5.37) applies to Π̂ as well.
So, this realizes a self consistent extension of the framework proposed in equation (2.5a).

Second, the non-constancy with respect to χ0 of the expectation value of the Hamilto-
nian implies that the dynamical trajectories generated by Ĥ through an averaged quantum
evolution, and which effectively produce a classical Friedmann dynamics for the volume
operator at late times, are not the same that are generated by the average Hamiltonian
itself.24 Phrased differently, the effective Hamiltonian generating the classical Friedmann
dynamics at late times is not the expectation value of the quantum Hamiltonian25 Ĥ. Such
a difference between the expectation value of the quantum Hamiltonian and the classical
one is encoded in the N(χ0) dependency of the former which, being N(χ0) related to
the miscroscopic nature of spacetime and geometry, has no straightforward classical coun-
terpart in General Relativity. From a simplicial perspective, one can think of N as the
number of sites of a lattice covering a given homogeneous patch [61], i.e., N = V0/`

3
0, where

`0 is a coordinate length and V0 is the coordinate volume of the homogeneous patch under
consideration. From this point of view, having a variable N means performing a “lattice
refinement”26 (or, equivalently, a “running” of V0 [63]).

Even though it is possible that this mismatch between the classical and the effective
Hamiltonian (and, of course, between the classical and the effective massless scalar field
momentum, see footnote 25), is unavoidable and deeply connected to the granularity of
spacetime in the GFT approach to quantum gravity, let us recall that the implementation
of the effective relational dynamics defined above always relies on a choice of states. So,
a different choice of states might indeed lead to a dynamics which can be better framed

24Interestingly, similar problems appear also when comparing the effective dynamics in LQC with the
quantum one obtained (with currently available tools) from the full LQG [60].

25Of course, by construction, the same kind of issue appears for the momentum of the massless scalar
field. However, in a truly relational framework, clock variables should not be accessible. We thus prefer
formulating the problem only in terms of Ĥ.

26Comparing again the situation to the LQC case, it has been shown that the lattice refinement has
non-trivial consequences on the matter sector as well [62].
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into a purely classical one. The possible inconsistency to which the CPSs lead to, i.e., the
non-constancy in χ0 of the expectation values of Ĥ and Π̂ on such CPSs is related to the
introduction of the scale π0. In turns, π0 was introduced in order to allow fluctuations on
the momentum operator to stay small, at least in some regimes. Indeed, one can see [50]
that such fluctuations take a contribution (among others) of the form N/ε. By taking
π0 → 0 relative fluctuations on the momentum operator grow large for large N , which was
instead expected to characterize a classical regime. This behavior of relative fluctuations is
actually expected and it is a clear feature of our choice of states: since we are localizing each
wavefunction of every single GFT atom around χ0 with a (good) precision ε, fluctuations
in the variable conjugated to χ̂/N (i.e., Π̂) are expected to grow as 1/ε × N , and this is
the very same behavior of relative fluctuations as well, if the expectation value of Π̂ on a
CPS is not extensive (if it was the case, it would depend on N and thus on χ0). The way
out of this problem, thus, may be to construct more realistic condensate states encoding
non-trivial correlations among the fundamental GFT quanta (thus possibly allowing for a
suppression of quantum fluctuations on the momentum operator) while still implementing
a notion of χ-localization of macroscopic observables.

6 Conclusions

In this paper we have offered, first of all, a general perspective on the problem of time in
quantum gravity and, more specifically, on the relational strategy to solve it. We have dis-
cussed the different ways in which to implement this strategy, emphasizing the distinction
between a classical implementation and one taking place at the quantum level, which we
argued should be preferred. We have also pointed out the fundamentally new dimension
that the problem takes in a quantum gravity context in which spacetime and geometry are
understood as emergent notions from a different type of pre-geometric entities, and argued
that the relational dynamics should be seen, in such context, as emergent as well, thus
obtained only at an effective, approximate level.

Then, we have realized concretely the general relational strategy we have advocated
in the context of the tensorial group field theory formalism for quantum gravity, leading
to the extraction of an effective relational cosmological dynamics from quantum geometric
models, in which the universe is described as a quantum many-body system of simplicial
building blocks, and a continuum cosmological dynamics with the correct classical limit
can be extracted using the effective relational strategy.

We have then analysed in some detail the emergent cosmological dynamics, highlight-
ing: a) the improvements over previous work, at both technical and conceptual level; b)
the modifications that our effective relational strategy implies for the emergent cosmologi-
cal dynamics, in particular c) the contribution of the quantum properties of the relational
clock to it; d) the delicate interplay between the conditions ensuring a bona fide relational
dynamics throughout the cosmological evolution and the existence of a quantum bounce
in the early universe replacing the classical big bang singularity.

Many physical and conceptual issues, concerning cosmology seen from a fundamental
quantum gravity perspective, can now be tackled on a more solid basis, starting from
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the issue of quantum fluctuations of relevant geometric observables along the cosmological
dynamics and of the limits of validity of the hydrodynamic approximation within which
this dynamics has been extracted in our quantum gravity context [50].
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A Approximations and scales

It is important to analyze for which values of the parameters introduced above the approx-
imations performed give rise to a self-consistent framework. In order to make the analysis
simpler, we will consider all the “purely geometric quantities” i.e., all the K(2n)s and the
derived objects Bj and Aj to be of order 1. Moreover, we will neglect interactions and we
will stick to the large ρjs case, which is of crucial important for the semi-classical limit.
While in this appendix we will provide only a simplified discussion, we refer to [50] (where,
for instance, the assumption of large ρjs is dropped) for more details.

The first approximation we did was to obtain the dynamic equation (5.8). The crucial
object weighting differently derivatives of different order of the condensate wavefunction is
the integral I2n+m, which is basically given by

I2n+m(ε, π0) ∝
(
ε

2

)(2n+m)/2
H2n+m

(√
ε

2 π0

)
. (A.1)

As we have already noticed, a condition which allow us to keep variances of quantum
operators small in the limit of large number of particles, is the condition

επ2
0 � 1 . (A.2)

If this condition is satisfied, we can approximate the Hermite polynomial just with its
higher order term, which is going to be proportional to (επ2

0/2)(2n+m)/2. Thus, the factor
suppressing higher order derivatives can now be approximated as I2n+m ∼ (επ0)2n+m. So
we see that the condition

π0ε < 1 (A.3)

allows us to perform the truncation as discussed above.
The second important approximation we made was to use a saddle point approxima-

tion to compute the expectation value and the variances of the operators. For example,
for the expectation value of the number operator, we have neglected a term of the form
[ρ2
j ]′′(χ0)(ε/4) with respect to the term ρ2

j (χ0). The neglected quantity, on shell, is

ε
(
Ej/(2ρ2

j ) + µ2
j

)
.
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So we see that we have two contributions, the first one which is obviously negligible for
large enough ρjs, and a second one which is actually negligible only when

µ2
jε = επ2

0
επ2

0 − 1

( 2
επ2

0
− 1
επ2

0 − 1

)
+ ε

Bj
Aj
� 1 . (A.4)

We see immediately that under our assumptions επ2
0 � 1 and Bj/Aj � ε−1, this second

term is always negligible. The same arguments of course hold for the expectation value
of the volume operator and for the effective hamiltonian Ĥ and the momentum operator
as well (in fact, the expectation value of these two operators actually reduce to just a
computation of the expectation value of the number operator).

About the expectation value of the scalar field operator, the situation is very similar,
but this time the term we neglected is actually of the form

ε

4χ0

(χρ2
j )′′(χ0)
ρ2
j (χ0) = ε

4χ0

[χ0(ρ2
j )′′(χ0) + 2(ρ2

j )′(χ0)]
ρ2
j (χ0) .

For the first term the same arguments as before hold, while for the second one, the main
contribution for large ρjs is given in modulus by ε|µj |/|χ0|, from which we deduce that, in
this limit, it is necessary that

|χ0| � ε|µj | , (A.5)

in order to make the approximation meaningful. In particular, since εµj ∼ π−1
0 when

επ2
0 � 1, this implies that ε|µj | �

√
ε. Thus the above condition is satisfied as long as

|χ0| �
√
ε. Notice, that

√
ε can be seen as the statistical relative variance of a Gaussian

distributed variable with mean χ0 and width of order ε. The requirement |χ0| �
√
ε seems

therefore a very natural one in our “peaked framework”.

B Dynamics from an effective action

Here we want to show how a different procedure to define dynamics actually leads, in the
limit where interactions are neglected to the same dynamical equations as in (5.8), but
with different parameters.

The way we want to obtain the dynamics, here, consists in writing an effective action
of the form

Seff =
∫

dχ0 〈Ŝ〉σε;χ0,π0
.

We will restrict, for simplicity, just to the case of negligible interactions. First, we compute

〈K̂〉σε;χ0,π0
=
∫

dgI dhI
∫

dχ dχ′ σ̃(gI , χ)ηε(χ− χ0, π0)

×K(gI , hI ; (χ− χ′)2)σ̃(hI , χ′)ηε(χ′ − χ0, π0)

=
∫

dgI dhI
∫

dχ du σ̃(gI , χ)ηε(χ− χ0, π0)

×K(gI , hI ;u2)σ̃(hI , χ+ u)ηε(χ− χ0 + u, π0) .

– 52 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
5

Next, we notice that, by changing variables and defining x ≡ χ − χ0 + u/2, we have that
the product of peaking functions is given by

ηε(x− u/2, π0)ηε(x+ u/2, π0) = N 2
ε e
−u2/4εe−x

2/εeiπ0u ,

so that the kinetic term becomes

〈K̂〉σε;χ0,π0
= N 2

ε

∫
dgI dhI

∫
duK(gI , hI ;u2)e−u2/4ε+iπ0u

×
∫

dx σ̃
(
gI , x+ χ0 −

u

2

)
σ̃

(
hI , x+ χ0 + u

2

)
e−x

2/ε .

The factor in the second line can be expanded in a Taylor series around x = 0, given the
exponential peaking function around that point. The lowest order in ε containing derivative
terms is given by

ε

2

[1
2
[
σ̃(2)(gI , χ0,−)σ̃(hI , χ0,+) + σ̃(gI , χ0,−)σ̃(2)(hI , χ0,+)

]
+ σ̃(1)(gI , χ0,−)σ̃(1)(hI , χ0,+)

]
,

where χ0,± ≡ χ0 ± u/2. Now, these quantities are already of higher order, so for the u
integration we can just use the lowest order and evaluate all the above quantities in u = 0.
It is easy to see that this quantity, which now depends entirely on χ0, when it is integrated
on χ0 (and when isotropy is assumed) to obtain the effective action, gives exactly zero by
integration by parts (it is a total derivative). Since higher derivative contributions will be
of order higher than ε, which is where we want to stop our perturbative expansion, we are
going to neglect them and just consider the non-derivative term, which is given by

〈K〉σε;χ0,π0
=
√
πεN 2

ε

∫
dgI dhI

∫
duK(gI , hI ;u2)e−u2/4εe−iπ0uσ̃(gI , χ0−u/2)σ̃(hI , χ0 +u/2) .

We next assume that

K(gI , hI ;u2) ≡
∞∑
n=0

K(2n)(gI , hI)
(2n)! u2n .

Now, we use again that the exponential peaks on u = 0 and we expand the reduced wave-
functions in Taylor series around u = 0, so that we find

〈K〉σε;χ0,π0
=
√
πεN 2

ε

∫
dgI dhI

∫
du e−u2/4εeiπ0u

∞∑
n=0

K(2n)(gI , hI)
(2n)! u2n

∞∑
m=0

(−1)m
m!

um

2m

×
[
∂m

∂χm
σ̃(gI , χ)

]
χ0

∞∑
l=0

1
l!
ul

2l

[
∂l

∂χl
σ̃(gI , χ)

]
χ0

=
√
πεN 2

ε

∫
dgI dhI

∑
n,m,l

K(2n)(gI , hI)
(2n)!

(−1)m
m!l!

1
2m+l

×
[
∂m

∂χm
σ̃(gI , χ)

]
χ0

[
∂l

∂χl
σ̃(gI , χ)

]
χ0

J2n+l+m(ε, π0) ,
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where

I2n+l+m(π̃0, ε̃) =
∫

du e−u2/4εeiπ0uu2n+m+l = (−i)2n+m+l ∂
2n+m+l

∂π2n+m+l
0

∫
du e−u2/4εeiπ0u

= (−i)2n+m+l2
√
πε

∂2n+m+l

∂π2n+m+l
0

e−π
2
0ε = (−i)2n+m+l2

√
πεε(2n+m+l)/2 ∂

2n+m+l

∂x2n+m+l e
−x2

= (i)2n+m+l2
√
πεε(2n+m+l)/2H2n+m+l(π0

√
ε)e−π2

0ε .

Putting everything together, we are left with

〈K〉σε;χ0,π0
= 2πεN 2

ε

∫
dgI dhI

∑
n,m,l

K(2n)(gI , hI)
(2n)!

(−1)m
m!l!

i2n+m+l

2m+l ε(2n+m+l)/2H2n+m+l(π0
√
ε)

× e−π2
0εσ̃

(m)(gI , χ0)σ̃(l)(hI , χ0) .

Consistently with what we did before, we keep only terms with 2n+m+ l = 2. We have:

• Zeroth order : this means n = m = l = 0. Thus we have immediately that

〈K〉(0,0,0)
σε;χ0,π0

= 2πεN 2
ε K

(0)e−π
2
0ε
∫

dgI dhI σ̃(gI , χ0)σ̃(hI , χ0) .

• First order : this means n = 0 and m = 0, l = 1 or m = 1, l = 0. The two
contributions are (recall that H1(x) = 2x)

〈K〉(0,1,0)
σε;χ0,π0

= −2iπεN 2
ε K

(0)e−π
2
0ε
√
επ0
√
ε

∫
dgI dhI σ̃(1)(gI , χ0)σ̃(hI , χ0) ,

〈K〉(0,1,0)
σε;χ0,π0

= 2iπεN 2
ε K

(0)e−π
2
0ε
√
επ0
√
ε

∫
dgI dhI σ̃(gI , χ0)σ̃(1)(hI , χ0) .

• Second order : this means n = 1 and m = l = 0 or n = 0 and m + l = 2, i.e.,
m = 2, l = 0, m = 1, l = 1, m = 0, l = 2. We list all these four possibilities (recall
that H2(x) = 4x2 − 2):

〈K〉(1,0,0)
σε;χ0,π0

= −2πεN 2
ε

K(2)

2 (4επ2
0 − 2)e−π2

0εε×
∫

dgI dhI σ̃(gI , χ0)σ̃(hI , χ0) ,

〈K〉(0,2,0)
σε;χ0,π0

= −2πεN 2
ε

K(0)

8 e−π
2
0ε(4επ2

0 − 2)ε
∫

dgI dhI σ̃(2)(gI , χ0)σ̃(hI , χ0) ,

〈K〉(0,0,2)
σε;χ0,π0

= −2πεN 2
ε

K(0)

8 e−π
2
0ε(4επ2

0 − 2)ε
∫

dgI dhI σ̃(gI , χ0)σ̃(2)(hI , χ0) ,

〈K〉(0,1,1)
σε;χ0,π0

= 2πεN 2
ε

K(0)

4 e−π
2
0ε(4επ2

0 − 2)ε
∫

dgI dhI σ̃(1)(gI , χ0)σ̃(1)(hI , χ0) .

Now we write the action as the integral of 〈K〉σε;χ0,π0
over χ̃0, and we find

Seff ' 2πεN 2
ε e
−π2

0ε
∫

dgI dhI
∫

dχ0

[
σ̃(gI , χ0)σ̃(hI , χ0)

(
K(0) −K(2)(2επ2

0 − 1)ε
)

+ 2iK(0)επ0σ̃(gI , χ0)σ̃′(gI , χ0)−K(0)(2επ2
0 − 1)εσ̃(gI , χ0)σ̃′′(gI , χ0)

]
,
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where a prime denotes a derivative with respect to χ0 and we have integrated by parts some
terms. From this we find the following equations of motion for the reduced wave-function:

σ̃′′j (χ0)− 2iπ̃0σ̃
′
j(χ0)− E2

j σ̃j(χ0) = 0 , (B.2)

where
π̃0 ≡

π0
2π2

0ε− 1 , E2
j ≡

1
ε

1
2επ2

0 − 1 −
Bj
Aj

. (B.3)

We see that equations (B.2) are identical to equations (5.8) with the replacement ε→ 2ε.

C Classical relational dynamics of flat FRW spacetime

In order to compare our effective relational results with the classical ones, in this appendix
we review the classical relational setting. We will start from the total Hamiltonian of a flat
FRW spacetime with a minimally coupled massless scalar field. This is given by [64]

S = 3
8πG

∫
dtN

(
−aV0ȧ

2

N2 + V

N

χ̇2

2N

)
= − 3

8πG

∫
dtNV

(
H2

N2 −
4πG

3
χ̇2

N2

)
,

where χ is the massless scalar field, a dot denotes a derivative with respect to t and V0
is the fiducial coordinate volume (so that V ≡ V0a

3). The constraint obtained from an
Hamiltonian analysis of the above action is

C = − 3
8πGNVH

2 +
Nπ2

χ

2V = 0 . (C.1)

Together with the Poisson brackets {H,V } = 4πG and {χ, πχ} = 1, the above constraint
implies that the equation of motion for the massless scalar field and the volume are

χ̇ = {χ, C} = Nπχ/V , V̇ = {V, C} = 3NVH ,

and inserting the former into the latter, together with the constraint equation, we obtain( 1
3V

dV
dχ

)2
≡
(
V ′

3V

)2
= 4πG

3 . (C.2)

By deriving this equation with respect to χ, we find

V ′′/V =
(
V ′/V

)2 = 12πG . (C.3)

These are the relational equations for a spatially flat FRW spacetime.

Gauge fixing. Let us now perform a gauge fixing, choosing χ as our time, i.e., choosing
N = V χ̇/πχ. In this way, we obtain

S = − 3
8πG

∫
dtχ̇V

2

πχ

(
H2π2

χ

V 2χ̇2 −
4πG

3
χ̇2π2

χ

V 2χ̇2

)
= − 3πχ

8πG

∫
dχ
(
H2 − 4πG

3

)
. (C.4)

The equations of motion generated by this action are easily obtained by writing H=V ′/(3V ):

V ′′/V = (V ′)2/V 2 ,
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which is the second Friedmann equation, and which gives indeed the correct dynamics.
The Hamiltonian obtained from the above Lagrangian, therefore, neglecting irrelevant con-
stants, can be written immediately as

Hrel = − 3πχ
8πGH

2 . (C.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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