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1 Introduction

The topic of this paper are two-dimensional gauged linear sigma models with U(1) gauge
groups.1 These are 2d N = (2, 2) supersymmetric gauge theories coupled to chiral su-
perfields carrying possibly different charges under the U(1) gauge group, such that the
respective superpotentials W are U(1) invariant.

1Indeed, our discussion easily generalizes to models with arbitrary abelian gauge groups.
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As is well known, gauged linear sigma models exhibit different phases for different
ranges of the Fayet-Iliopoulos parameter r associated to the U(1) gauge group [1]. For
non-anomalous gauged linear sigma models, where axial and vector R-symmetries are pre-
served at the quantum level, the RG flow drives the GLSM to a (Kähler) moduli space of
superconformal field theories parametrized by the complexified Fayet-Iliopoulos parameter
t. The phases correspond to different domains of this moduli space. In contrast, in the
anomalous case, the FI parameter is a running coupling constant, and the different phases
correspond to fixed points under the RG flow.

The phases typically exhibit gauge symmetry breaking. For instance, in geometric
phases, in which the theory can be effectively described by a non-linear sigma model, the
gauge group is typically completely broken. On the other hand, in phases in which the
theory can be described by Landau-Ginzburg models (Landau-Ginzburg phases), a finite
subgroup of the gauge group remains unbroken and survives as an orbifold group.

The question we will address in this paper is how the boundary sectors (i.e. the D-
branes) behave under transitions between different phases of GLSMs.

The transport of D-branes between different phases of abelian gauged linear sigma
models has initially been studied in [2] for the non-anomalous “Calabi-Yau” case. Results
on the anomalous “non-Calabi-Yau” case appeared more recently in [3, 4]. With a careful
analysis, the authors of these papers obtain a prescription of the D-brane transport on
the level of individual D-branes: starting in one phase, a D-brane is first lifted to the
gauged linear sigma model. This lift is a priori not unique, but requires certain choices.
These choices correspond to the homotopy classes of paths along which the D-brane can
be smoothly transported in parameter space (“grade restriction rule”). Having lifted a
D-brane in such a way that it can be smoothly transported along the chosen path, one
only has to push down the lift to the other phase.

In this paper, we want to revisit the transport of D-branes between different phases
from an alternative point of view and in particular give a uniform and functorial description
of it. Our basic idea is to construct suitable supersymmetry preserving defect lines (domain
walls) that connect different phases of a GLSM (or a GLSM and one of its phases). Such
defects can be inserted along lines in space-time which separate space-time domains in
which different phases of a GLSM are realized.

phase1 phase2 GLSM phase (1.1)

Supersymmetry preserving defects can be merged with boundaries (“fusion”) and in this
way give rise to an action on D-branes.

B
GLSM 7−→

D
phase GLSM

B D ⊗Bphase

This action is functorial, and hence any supersymmetric defect between two theories yields
a functor between the respective D-brane categories.

In order to find the defects describing the D-brane transport in GLSMs, we will follow
a strategy analogous to the one employed in [5] to describe the behavior of D-branes under
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RG flows. The basic idea of that paper is to consider an RG flow of a UV theory triggered
by a perturbation that is restricted to a domain of space-time.

perturbed UV UV
RG flow

IR UV
R

(1.2)

The RG flow drives the theory to the IR inside this domain, and leaves it at the UV fixed
point outside of it, thereby creating a defect line on the domain boundary, which separates
the UV and IR theories. This kind of construction has found applications in a variety
of contexts, for supersymmetric as well as non-supersymmetric theories, for marginal as
well as relevant perturbations, see [6–8]. This “RG defect” encodes the behavior of the
boundary sector under the flow. In case that the models are N = (2, 2) supersymmetric
and that the respective perturbations preserve half of the supersymmetry, the resulting
defects are also supersymmetric. Their fusion with supersymmetric boundary conditions
can easily be calculated, and the respecting functors can be determined.

Supersymmetric RG defects have some important characteristic properties that were
discussed in [9]. For example, contraction of small unperturbed UV regions inside IR
patches does not change correlation functions. This can be interpreted in terms of fusion,
and one obtains the identity

UVIR IR
R T

IRIR
R⊗ T

∼= IRIR
IIR

where R is the RG defect, T is an adjoint of it and IIR is the invisible identity defect of
the IR theory. Thus, fusion R ⊗ T ∼= IIR yields the identity defect in the IR. This also
implies that the fusion of R and T in the opposite order gives rise to a projection defect
P = T ⊗R in the UV theory. This defect is idempotent with respect to fusion and can be
used to realize the IR theory inside the UV theory.

In this paper we will explain how similar ideas can be employed in the context of
abelian GLSMs to obtain transition defects between different phases of GLSMs as well as
defects between GLSMs and their phases. In this way, we derive a novel method for brane
transport and in particular recover the grade restriction rule of [2–4] from this point of
view. While we do have compatible results, our derivations are rather different from those
of [2–4]. In our discussion we decouple all gauge degrees of freedom and merely take into
account the matter sector, the only remnant of the gauge symmetry being an equivariance
condition. This subsector is under good control and still captures the physics of the (B-
type) supersymmetry preserving sector, including perturbations, boundary conditions and
defects. Our arguments mainly rely on the rigidity of defect constructions in this setting.
The defects we construct on this level directly mediate between the different phases and
do not exhibit an explicit t dependence.

In section 2 we will outline the general ideas. In particular, we will discuss the con-
struction of defects connecting different phases of a GLSM and explain how they factorize
into defects lifting phases to the GLSM and those pushing down the GLSM to phases. Fur-
thermore, we will introduce projection defects which realize the phases inside the GLSM.
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Their action on the D-brane category of the GLSM corresponds, in the language of [2, 4],
to the projection of GLSM branes to “grade restricted” representatives.

The starting point for the construction of the transition defects is the identity defect of
the GLSM theory which will be constructed explicitly in section 2.3.3. For this, one needs
to generalize the known constructions of orbifold identity defects [5, 10] to continuous
(abelian) groups. We show that this can be achieved (in the context of equivariant matrix
factorizations) by introducing new bosonic fields constrained to the defect. Our expectation
is that this idea can be applied more generally in topological field theories.

In section 3, we will illustrate our general construction in an explicit class of examples,
namely the U(1)-gauged linear sigma models with two chiral fields, X and P , and superpo-
tential W = P d

′
Xd, d′ < d. These anomalous models have two different Landau-Ginzburg

orbifold phases. The UV phase is described by the Landau-Ginzburg orbifold with superpo-
tential W = Xd and orbifold group Zd, and the IR phase by the Landau-Ginzburg orbifold
with superpotential W = P d

′ and orbifold group Zd′ . Along the RG flow, d − d′ vacua
decouple to a Coulomb branch taking with them a set of D-branes. All of this is encoded
in the transition defects we construct here. We recover various results from [2–4] on brane
transport. Moreover, in this example the phase transition between UV and IR phase of the
GLSM corresponds to a well understood RG flow between the Landau-Ginzburg models
describing the UV and IR phases [11]. RG defects for these flows have been constructed
in [5] and we indeed find that our transition defects between UV and IR phase agree with
the respective RG defects.

2 Phases of GLSMs and defects

2.1 Phases of GLSMs

We are considering two-dimensional N = (2, 2) gauged linear sigma models with abelian
gauge groups [1]. By Xi, i = 1, . . . , n we denote the chiral superfields of the theory. Their
representation under the gauge group U(1)k is specified by the charge matrix Qai , where
i = 1, . . . , n and a = 1, . . . , k. For each U(1)-factor of the gauge group the theory contains
a field strength multiplet, a twisted chiral field Σa, a = 1, . . . , k. We also allow for a
superpotential W , which is a gauge invariant polynomial in the superfields Xi.

The classical bosonic potential for the scalar parts xi of the chiral superfields Xi and
σa of the twisted chiral fields Σa is given by

U =
n∑
i=1

∣∣∣∣∣
k∑
a=1

Qai σaxi

∣∣∣∣∣
2

+ e2

2

k∑
a=1

(
n∑
i=1

Qai |xi|2 − ra
)2

+
n∑
i=1

∣∣∣∣∂W∂xi (x1, . . . , xn)
∣∣∣∣2 . (2.1)

Here, ra ∈ R is the Fayet-Iliopoulos (FI) parameter of the ath U(1) gauge factor. Together
with the corresponding θ-angle θa it forms a complex parameter ta = ra− iθa. (The gauge
couplings, e of the U(1)-factors are assumed to be equal.)

The classical vacuum manifold is obtained as the space of solutions to the equation
U = 0 modulo gauge transformations. Its nature depends crucially on the specific values
of (r1, . . . , rk). The subspace parametrized by the expectation values of the matter fields is
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commonly referred to as the Higgs branch, whereas the scalars σa parametrize a Coulomb
branch. Phases in which the gauge group is completely broken and all modes transverse
to {U = 0} are massive are called geometric phases. In these phases, the Higgs branch is
effectively described by a non-linear sigma model with target space {U = 0}/U(1)k. If on
the other hand the space of vacua {U = 0}/U(1)k consists of a single point and all modes
transverse to the orbit of the complexified gauge group remain massless, the Higgs branch
is effectively described by a Landau-Ginzburg (orbifold) theory. Such phases are called
Landau-Ginzburg phases. Besides these extreme ones, GLSMs can also exhibit various
mixed phases. Furthermore, classically at r = 0, all fields can be 0. This means that some
of the σa can be non-zero, and parametrize vacua on another branch, the Coulomb branch.

An important quantum effect is the renormalization of the Fayet-Iliopoulus parameters:

ra(µ) = raUV +Qatot log µ

MUV
. (2.2)

HereMUV denotes a UV energy scale, µ the scale under consideration, and Qatot = ∑N
i=1Q

a
i

is the total charge of the respective U(1) factor. If Qatot = 0 for all a, the axial R-symmetry
of the theory is non-anomalous and the FI parameters do not run. The ta are genuine
parameters of the theory. This case is called the “Calabi-Yau case”.

If one of the total charges is non-zero, the respective FI parameter does run under the
RG flow. The direction of the running and with it the nature of the low energy IR phase
is determined by the sign of the total charge.

In general, the low energy IR phase to which the system is driven by the RG flow
consists of several branches. In the specific example considered in section 3, there is a
Higgs branch described by a Landau-Ginzburg model as well as several massive vacua
located on a Coulomb branch.

Note, that also in the anomalous case the system can explore various different phases [4].
For this, one chooses rUV such that at some intermediate energy scale the system is well de-
scribed by the desired phase. Our main example in section 3 features, besides the IR phase
an additional phase corresponding to the UV fixed point. This UV phase is a Landau-
Ginzburg phase as well, but in contrast to the IR phase, it is a pure Higgs phase, i.e. it
does not have additional Coulomb vacua.

2.2 Phases of GLSMs and defects

We now want to obtain defects describing the transition between different phases of the
same GLSM, much in line with the construction of RG defects reviewed in the introduction.
The general idea is to start with the identity or invisible defect IGLSM in the GLSM, and
to push the GLSM down to different phases on the two sides of it:

IGLSM
GLSM GLSM phase2 phase1

RG12

A priori this requires tuning the ta on the two sides of the defect to different regimes. We
avoid doing this explicitly by going to an extreme UV limit of the theory, in which the
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gauge coupling e becomes very small and the gauge sector decouples [2]. In this limit, the
theory reduces to the matter sector, describing the Higgs branch of the original theory.
The gauge group still acts on the matter fields, and physical observables must be gauge
invariant. The defects are B-type supersymmetric, and depend on the parameters ta only
indirectly through stability conditions that can be added consistently to this sector. In
this setup, the transition to a phase restricts the allowed field configurations and breaks
the (remnant of the) gauge symmetry to a subgroup. The details strongly depend on the
respective phase.

For instance, the class of examples we will discuss in section 3 features Landau-
Ginzburg phases. In such phases, some of the fields obtain a vacuum expectation value,
reducing the spectrum of massless excitations and breaking the gauge symmetry to a finite
subgroup. Pushing down to such a phase then involves setting the respective fields to their
vacuum expectation values and relaxing the invariance condition accordingly. The general
strategy outlined here should be applicable to any phases of abelian GLSMs. Transitions
to geometric phases will be discussed in a forthcoming paper [12].

Note that one obtains a possibly different defect for every homotopy class of paths
connecting two given phases in the parameter space spanned by the ta. Thus, in general
there will not be one transition defect descending from the gauged linear sigma model, but
many, and the choices of defects should correspond to choices of paths. On the other hand,
there can be more RG flows and with it RG defects between different phases of a GLSM
then the ones described within the GLSM.

Indeed, the transition defects RG12 between two phases of a GLSM factorize over the
GLSM, i.e. RG12 can be obtained as the fusion of a defect T 1 from phase1 to the GLSM
and a defect R2 from the GLSM to phase2:

RG12 ∼= R2 ⊗ T 1 .

phase1GLSMphase2
R2 T 1

The defects T 1 and R2 are obtained from the GLSM identity defect, by pushing down only
on one side. T 1 is obtained by pushing down IGLSM on the right to phase1 and R2 by
pushing down IGLSM on the left to phase2:

IGLSM
GLSM GLSM GLSM phase1

T 1

IGLSM
GLSM GLSM phase2 GLSM

R2

The Ri encode the push down from the GLSM to phasei and the T i, the embedding of
phasei into the GLSM. The functors associated to those defects describe the respective
operation on D-brane categories.
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Note that in the same way that there can be several transition defects RG12 between
different phases we expect more than one possible defect T i lifting the phase to the GLSM.2
This will be discussed in more detail for the concrete example in section 3.

Since the transition between one and the same phase has to be trivial, the defects Ri
and T i have to satisfy the condition

Ri ⊗ T i ∼= Iphasei , (2.3)

where Iphasei is the invisible defect of phasei. This implies that the combination

P i = T i ⊗Ri

is a projection defect from the GLSM to itself. That means P i is an idempotent with
respect to fusion, P i ⊗ P i ∼= P i, and realizes phasei inside the GLSM in the sense of [9].
In particular, the corresponding functor projects the category of D-branes of the GLSM
onto the image of the functor associated to T i. Thus, the phasei branes are realized by
P i-invariant branes in the GLSM. Indeed, the latter precisely play the role of the branes
called grade restricted in [2] and the action of the projection defects corresponds to the
operation of associating to a GLSM brane a grade restricted representative. We will see
this explicitly in the example discussed in section 3.

We have collected the various defects and their actions on D-branes in the follow-
ing diagram:

GLSM branes

P j -invariant
subcategory

P i-invariant
subcategory

phasej
branes

phasei
branes

push down Ripush down Rj
transition P j

lift T j lift T i
transition Rj ⊗ T i

⊂ ⊂

Note that along an RG flow, Higgs vacua can migrate to the Coulomb branch and become
massive. Since we only include the Higgs branch in our discussion, we cannot see this
directly. Instead, we observe that D-branes attached to those vacua decouple from the
theory. This decoupling of D-branes is encoded in the defects introduced above. They can
be constructed out of the identity defect of the respective GLSM, which will be introduced
in the next section.

2.3 GLSM identity defects

Starting point of our construction are the identity defects of abelian GLSMs, which have
not appeared in the literature so far. As discussed above, we will focus on the Higgs branch

2Indeed, one could also push the path dependence on the Rj .
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of the respective GLSM. In particular, we will decouple the gauge sector and only consider
the U(1)k-orbifold of the matter sector. The relevant defects and D-branes can then be
described by means of U(1)k-equivariant matrix factorizations.

Before discussing the identity defects in GLSMs, we will briefly introduce
some useful facts about matrix factorizations and discuss the identity defects in
Landau-Ginzburg models.

2.3.1 Matrix factorizations and associated modules

Defects in Landau-Ginzburg (orbifold) models are described by (equivariant) matrix fac-
torizations of the superpotential, see the appendix for a brief discussion and references to
the literature. Consider a matrix factorization

P : P1

p1

p0

P0

of a polynomial W in a polynomial ring S = C[X1, . . . , Xn]. Here, P = P0 ⊕ P1 is a
Z2-graded free module over S and

dP =
(

0 p1
p0 0

)

is an odd endomorphism of P such that d2
P = W · idP . In the following, instead of dealing

with matrix factorizations we will often consider certain associated modules. To P as
above, one can associate the module

MP = coker (p1 : P1 ⊗S C → P0 ⊗S C)

over the respective quotient ring C = S/(W ). This module has a free two-periodic resolu-
tion defined by the matrix factorization [13]

. . .
p0−→ P1 ⊗S C

p1−→ P0 ⊗S C
p0−→ P1 ⊗S C

p1−→ P0 ⊗S C −→MP → 0 .

Isomorphisms between modules MP and MQ associated to matrix factorizations P and Q
of the same polynomial W lift to these resolutions and give rise to isomorphisms of the
respective matrix factorizations. We will make excessive use of this fact in our analysis.
Indeed, the above argument works in the same way for any C-moduleMP , which has a free
resolution turning, after finitely many steps, into a two-periodic resolutions defined by the
matrix factorization P . This point of view carries over to the case of equivariant matrix
factorizations, cf. the appendix.

2.3.2 The identity defect in Landau-Ginzburg models

The identity or invisible defect IW in a Landau-Ginzburg model with superpotential W ∈
C[X1, . . . , Xn] is given by the following Koszul matrix factorization (I, dI) [14]. Denote by
S(X)(X′) = C[X1, . . . , Xn, X

′
1, . . . , X

′
n] the polynomial ring of the chiral fields on both sides

of the defect. For later use, we will also denote by S(X)(−) = C[X1, . . . , Xn] the ring of
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chiral fields on the left and by S(−)(X′) = C[X ′1, . . . , X ′n] the ring of chiral fields on the right
of the defect. Then

I = I0 ⊕ I1 = S(X)(X′) ⊗ Λ (V ) (2.4)

is the tensor product of the algebra of chiral fields S(X)(X′) with the exterior algebra of a
vector space V = spanC{θ1, . . . , θn} spanned by additional variables θ1, . . . , θn. The latter
correspond to fermions on the defect, and the Z2-degree is inherited from the Z-degree of
the exterior algebra. The differential can be written as

dI =
n∑
i=1

[
(Xi −X ′i) · θ∗i + ∂X,X

′

i W · θi
]

with ∂X,X
′

i W =
W (X ′1, . . . , X ′i−1, Xi, . . . , Xn)−W (X ′1, . . . , X ′i, Xi+1, . . . , Xn)

Xi −X ′i
(2.5)

where {θ∗1, . . . , θ∗n} denotes the dual to the basis {θ1, . . . , θn}, i.e. θ∗i (θj) = δij . Physi-
cally, the θi correspond to boundary fermions. Note that ∂X,X

′

i W is a polynomial in the
Xi uand X ′i.

This defect is the unit under fusion with other defects or boundaries, which means
that for any defect P , the fusion IW ⊗ P and P ⊗ IW are isomorphic to P . This can
be easily seen using the associated modules. To the identity defect, we can associate the
C(X)(X′) = S(X)(X′)/(W (X1, . . . , Xn)−W (X ′1, . . . , X ′n))-module

MI = C(X)(X′)/(X1 −X ′1, . . . , Xn −X ′n) .

This module has a free resolution, which after finitely many steps turns into the two-
periodic resolution defined by the matrix factorization (2.5), see e.g. [15].

Let P ′ be a matrix factorization of W (X ′1, . . . , X ′n). Fusion of I with P ′ is given by
the tensor product of the respective matrix factorizations I ⊗ P ′ [16]. Let

C(−)(X′) = S(−)(X′)/
(
W (X ′1, . . . , X ′n)

)
,

and C(X)(−) = S(X)(−)/ (W (X1, . . . , Xn)) .

Then the C(−)(X′)-module

MP ′ = coker
(
p′1 : P ′1 ⊗S(−)(X′) C(−)(X′) → P ′0 ⊗S(−)(X′) C(−)(X′)

)
is associated to the matrix factorization P ′. Now, the tensor product MI ⊗S(−)(X′) MP ′ is
a C(X)(−)-module, which has a free resolution turning, after finitely many steps, into the
tensor product matrix factorization I⊗P ′ ofW (X1, . . . , Xn). Of courseMI⊗S(−)(X′)MP ′ is
isomorphic to the cokernel of the matrix p1, obtained by setting all entries X ′i in p′1 to Xi.
After all, the relations Xi −X ′i in MI just set X ′i to Xi. This module has a free resolution
given by the matrix factorization P , which is obtained by replacing all the X ′i in P ′ by Xi.
Hence, fusion with I maps matrix factorizations to equivalent ones.

In case the Landau-Ginzburg model has a symmetry group GW which linearly acts on
the chiral fields, Xi 7→ g(Xi) for g ∈ GW such thatW (g(X1), . . . , g(Xn)) = W (X1, . . . , Xn),
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one can construct defects gI that implement the symmetry operation. The matrix factor-
izations of these symmetry defects are built on the same module as the identity matrix
factorization, but the differential is twisted by the symmetry [16]

dgI =
n∑
i=1

[
(Xi − g(X ′i)) · θ∗i + ∂X,X

′

i W (X, g(X ′)) · θi
]
.

In the Landau-Ginzburg phases appearing here, the gauge group is not completely
broken, and its remnant survives as a finite abelian orbifold group, acting by multiplying
the chiral fields Xi by phases.

Defects in Landau-Ginzburg orbifolds can be described by matrix factorizations of the
superpotential which are equivariant with respect to the action of the orbifold group, see
the appendix for a brief discussion and references.

The identity defect in Landau-Ginzburg orbifolds can be constructed from the identity
defect of the unorbifolded LG model (2.4), (2.5) using the method of images (i.e. summing
images under the orbifold group and specifying a representation of the stabilizer subgroup).
Let G be a finite abelian orbifold group. The identity defect of the orbifold model can be
obtained by summing over all symmetry defects gI

non-orb of the unorbifolded Landau-
Ginzburg model associated to orbifold group elements [5]

Iorb =
⊕
g∈G

gI
non-orb . (2.6)

Note here that one has to orbifold by G×G, the product of the orbifold groups on the left
and on the right of the defect, but that the diagonal subgroup acts as an isomorphism on
the non-orbifolded identity defect. Hence only a non-diagonal copy of G, which we take to
be the copy Gr acting trivially on the left of the defect contributes to the sum above.

The module on which the orbifolded identity matrix factorization is built is therefore
a direct sum of |G| copies of the module (2.4) associated to the identity defect in the
unorbifolded Landau-Ginzburg model. We can regard it as a tensor product of the module
Inon-orb with the regular representation Vreg of the group Gr: Iorb ∼= Inon-orb ⊗ Vreg.

The differential acts diagonally in the standard basis g ∈ Gr of the regular represen-
tation, while the orbifold group acts in this basis by permuting the copies of the modules
Inon-orb according to the group law.

Since Gr is finite and abelian, we can diagonalize the group action on Iorb. This can
be accomplished by decomposing the regular representation into irreducibles, which in the
case of abelian Gr are all one-dimensional. In this way, we obtain a basis of Iorb, in which
Gr acts diagonally.

Any finite abelian group is isomorphic to a product Zd1 × . . . × Zdr . We will spell
out the details for the case, in which it is isomorphic to a single factor Gr ∼= Zd. The
generalization to more factors is straight-forward.

A basis of Vreg corresponding to the irreducible representations can be obtained by
performing the following transformation:

ej =
∑
g∈Zd

ξ−gjg , 0 ≤ j < d , (2.7)
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where ξ = exp(2πi/d) is an elementary dth root of unity. g 7→ ξjg is the character of the
irreducible representation ρj defined by ρj([n]d) = ξjn. Hence, ej is the basis vector of the
irreducible representation ρj([n]d) = ξjn, which is of course nothing but the j-fold tensor
product of ρ1: ρj = ρ⊗j1 . Thus, we can write ej = e⊗j1 . Note that ρ⊗d1 = ρ0. Writing
ej = α−j , the regular representation can be expressed as

Vreg ∼= C[α]/(αd − 1) . (2.8)

Note that this is not only a vector space, but also a ring, and that multiplication in
this ring corresponds to taking the tensor product of representations. This allows us to
rewrite the identity matrix factorization in the Landau-Ginzburg orbifold with orbifold
group G = Zd as

Iorb = S(X)(X′) ⊗ Λ(V )⊗ C[α]/(αd − 1) (2.9)
with differential

dIorb =
n∑
i=1

[
(Xi−αQiX ′i)·θ∗i +∂X,αX

′

i W ·θi
]

with

∂X,αX
′

i W =
W (αQ1X ′1, . . . ,α

Qi−1X ′i−1,Xi, . . . ,Xn)−W (αQ1X ′1, . . . ,α
QiX ′i,Xi+1, . . . ,Xn)

Xi−αQiX ′i
.

Here, Qi denote the charges of the chiral fields Xj under the orbifold group Zd, i.e. [n] ∈ Zd
acts on the chiral fields as Xj 7→ ξQjnXj . α can be regarded as a new bosonic defect field
carrying charg (1,−1) under the product Zd × Zd of the left and right orbifold groups.3

The representation on Iorb under G × G is now completely fixed by the choice of a
one-dimensional representation of the diagonal subgroup, since the latter left the identity
defect of the non-orbifold theory invariant. We choose it to be trivial to obtain the identity
defect in the orbifold theory. (Other choices lead to defects implementing the quantum
symmetry of the orbifold theory.) The representations of G × G on the module (2.9) is
determined by the representation on the chiral fields Xi, the θi (which transform like the
Xi) and the representation on αi.

Let us give an explicit example which will be important later. Consider the Landau-
Ginzburg model with a single chiral superfield X, superpotential W (X) = Xd and orbifold
group G = Zd. [n]d ∈ Zd acts on X by multiplication with a phase X 7→ e

2πind′
d X which

leaves W (X) invariant. (X has charge d′ under Zd.) Following the construction above, one
obtains the identity matrix factorization

Iorb : Sα{[1]d, [0]d}
i1 = (X − αd′X ′)

i0 = ∏d−1
i=1 (X − ξiαd′X ′)

Sα{[0]d, [0]d} ,

where Sα := C[X,X ′, α]/(αd − 1), and the {·, ·} denote a shift in Zd × Zd-charges. The
associated C(X)(X′)-module is given by

Sα/(X − αd′X ′) . (2.10)
3The charge under the action of the right group is clear, because α represents the basis vector of the

irreducible representation ρ−1 under the right group. That it has charge 1 under the left group follows
because Vreg was chosen to be invariant under the left-right diagonal subgroup.
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One can unpack this, by replacing α by a cyclic shift matrix. This yields the equivalent
representation

Iorb : Sd


{[1]d, [0]d}
{[2]d, [−1]d}

...
{[d]d, [−1 + d]d}


ı1 = (XId − εd

′
X ′)

ı0 = ∏d−1
i=1 (XId − ξiεd

′
X ′)

Sd


{[0]d, [0]d}
{[1]d, [−1]d}

...
{[d− 1]d, [−1 + d]d}


(2.11)

Here S = C[X,X ′], Id is the d× d-identity matrix, and

εd =


0 1

1 . . .
. . . . . .

1 0

 (2.12)

denotes the d× d-shift matrix.

2.3.3 The identity defect in abelian gauged linear sigma models

For gauged linear sigma models, mainly boundaries were considered in the literature, see [2,
3, 17]. Defects can in principle be discussed along the same lines, for example using the
folding trick, see [18, 19]. In [18] identity defects of Landau-Ginzburg phases of GLSMs
are lifted to GLSMs. Using such constructions, one cannot obtain an identity defect of the
GLSM itself, because the lifts are matrix factorizations of finite rank.

We now use the method presented in the previous section to construct an identity
defect for a U(1)-orbifold of a Landau-Ginzburg model with chiral fields X1, . . . , Xn and
superpotential W ∈ C[X1, . . . , Xn]. The action of U(1) on the chiral fields is specified by
their charges (Q1, . . . , Qn), where ϕ ∈ U(1) acts on Xj by Xj 7→ e2πiQjϕXj . (Generaliza-
tions to higher rank abelian gauge groups are straight-forward.)

Since the orbifold group is infinite (and not even countable), the method of images can-
not be applied in this situation. As it turns out, the formulation with the additional defect
field α however can be adapted. The irreducible representations of U(1) are countable,
ρj(ϕ) = e2πijϕ, j ∈ Z, with ρi ⊗ ρj ∼= ρi+j . But in contrast to the case of representations
of Zd, not all representations can be obtained as tensor products of a single representation
ρ−1. One needs an additional representation ρ1 to generate all representations by means
of the tensor product. So in the U(1)-case, instead of one additional bosonic defect field
α, one has to introduce two fields α, α−1 which are inverse to each other, i.e. αα−1 = 1.
They carry U(1)×U(1)-charges (1,−1) and (−1, 1), respectively.

With these additional fields one can construct the following defect in complete analogy
to (2.9)

I = S(X),(X′) ⊗ Λ(V )⊗ C
[
α, α−1

]
/
(
αα−1 − 1

)
(2.13)
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with differential

dI =
n∑
i=1

[
(Xi−αQiX ′i)·θ∗i +∂X,αX

′

i W ·θi
]
, ,

∂X,αX
′

i W =
W (αQ1X ′1, . . . ,α

Qi−1X ′i−1,Xi, . . . ,Xn)−W (αQ1X ′1, . . . ,α
QiX ′i,Xi+1, . . . ,Xn)

Xi−αQiX ′i
.

The U(1) × U(1)-representation on this matrix factorization is completely determined by
the transformation properties of the fields Xi, i.e. their U(1)-charges Qi. The θi transform
as the Xi.

Note that this matrix factorization is of infinite rank!
As in the case of finite orbifolds, there is the possibility of shifting the charges of the

orbifold group on one side, relative to the one on the other. The defect with such a shift
implements a quantum symmetry. Since we are interested in the identity defect, we set
this shift to zero.

As alluded to above, the generalization to orbifold groups U(1)k k > 1 is straight-
forward. One just has to introduce a pair of additional fields (α, α−1) for each U(1)-factor.

In the discussion of the identity defect of finite Landau-Ginzburg orbifolds in the last
subsection, we just gave a different but equivalent representation of the known identity
defect. In the case of the U(1)-orbifold, the defect (2.13) is new, and we have to show that
it really is the identity defect, i.e. that under fusion it behaves as the unit.

To do so, we use associated modules as explained in section 2.3.2. For this we have to
introduce some notation:

S(X),(X′) = C
[
X1, . . . , Xn, X

′
1, . . . , X

′
n

]
S

(α,α−1)
(X),(X′) = S

[
α, α−1

]
/
(
αα−1 − 1

)
C(X),(X′) = S(X),(X′)/

(
W (X1, . . . , Xn)−W

(
X ′1, . . . , X

′
n

))
C

(α,α−1)
(X),(X′) = C(X),(X′)

[
α, α−1

]
/
(
αα−1 − 1

)
.

Replacing X or X ′ by − in the subscripts means setting the respective variables to zero.
To the matrix factorization I constructed above we associate the C(X),(X′)-module

MI = C
(α,α−1)
(X),(X′)/

(
X1 − αQ1X ′1, . . . , Xn − αQnX ′n

)
. (2.14)

As in the discussion of the identity defects in unorbifolded Landau-Ginzburg models in
section 2.3.2, this module has a free Koszul-type resolution, which after finitely many steps
turns into the two-periodic complex induced by the matrix factorization I.

Let P ′ be a U(1)-equivariant matrix factorization of W (X ′1, . . . , X ′n). The analysis
of the fusion I ⊗ P ′ now runs in complete analogy of the discussion of the fusion of the
identity defect in the unorbifolded Landau-Ginzburg models in section 2.3.2, except for the
fact that the fusion in the orbifold corresponds only to the part of the tensor product matrix
factorization which is invariant under the gauge group associated to the model squeezed in
between the two defects.
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Let
MP ′ = coker

(
p′1 : P ′1 ⊗S(−)(X′) C(−)(X′) → P ′0 ⊗S(−)(X′) C(−)(X′)

)
be the module associated to P ′. The matrix factorization given by the fusion of I and P ′
can be extracted from the U(1)-invariant part MU(1) of the C(X),(−)-module

M = MI ⊗C(−)(X′) MP ′ .

The relations in (2.14) can now be used to replace all X ′i by α−QiXi. This eliminates all
the variables X ′i. Let us next choose generators er of MP ′ , on which U(1) acts diagonally,
with respective U(1)-charge qr. Then M is generated by αi ⊗ er, where i ∈ Z. Most of
these generators are not U(1)-invariant though. Only the ẽr := α−qr ⊗ er generate MU(1).
Thus, for each generator er of MP ′ of U(1)-charge qr there is exactly one generator of
MU(1), which also has U(1)-charge qr. (Recall that α has U(1) × U(1)-charge (1,−1).)
The relations between the generators er in MP ′ become relations between the respective
generators ẽr, where all the X ′i are replaced by Xi. Thus, MU(1) is isomorphic to the
module MP associated to the matrix factorization P obtained from P ′ by replacing all X ′i
by Xi. Therefore, fusion with I maps matrix factorizations to equivalent ones, and the
matrix factorization I acts as the identity matrix factorization.

3 Example: GLSM with superpotential W (X, P ) = XdP d′

3.1 The model and its phases

In this section we exemplify our method in a concrete example of a gauged linear sigma
model with two Landau-Ginzburg phases. The model has a single U(1)-gauge group and
two chiral fields X and P of U(1)-charges Qx = d′, respectively Qp = −d. Its superpotential
is given by W = XdP d

′ . We assume d > d′, and for simplicity we restrict to the case where
d and d′ are coprime integers.

For this model, the scalar potential (2.1) takes the form

U = |σ|2
(
Q2
x|x|2 +Q2

p|p|2
)

+ e2

2
(
Qx|x|2 +Qp|p|2 − r

)2
+ |∂xW (p, x)|2 + |∂pW (p, x)|2 .

The total charge Qtot = d′ − d < 0 is negative, which means that the Fayet-Iliopoulos
parameter (2.2) runs under the RG flow, from r � 0 in the UV to r � 0 in the IR. The
model exhibits two Landau-Ginzburg phases.

For r < 0, the D-term constraint coming from the second term above, requires p 6= 0.
This breaks the U(1) gauge symmetry to Z|Qp| = Zd and σ must vanish according to the first
term. Because of the first superpotential term, x also vanishes and hence |p|2 = r

Qp
= − r

d .
We obtain a Landau-Ginzburg orbifold model with one chiral field X, superpotential Xd

and orbifold group Zd. This model is well known to give a Landau-Ginzburg realization of
the N = (2, 2) minimal superconformal model with central charge c = (d− 2)/d.

For r > 0, the roles of X and P are interchanged. The D-term constraint yields x 6= 0,
which further implies that σ and p vanish. The U(1) gauge group is broken to Z|Qx| = Zd′ ,
and |x|2 = r

Qx
= r

d′ . We arrive at a Landau-Ginzburg orbifold model with chiral field P ,

– 14 –



J
H
E
P
0
5
(
2
0
2
1
)
0
0
6

superpotential P d′ and orbifold group Zd′ . Again, this yields a Landau-Ginzburg realization
fo the N = (2, 2) minimal model with the smaller central charge c = (d′ − 2)/d′, to which
the systems flows at low energies.

Classically, there is a Coulomb branch emerging at r = 0, parametrized by σ. Due to
a twisted superpotential, the values of σ will be restricted to a finite set of d− d′ massive
vacua that appear in the IR phase.

In the following we will use our general strategy to construct defects describing the
transitions between UV and IR phase of this model, defects embedding the two phases in
the GLSM as well as defects projecting the GLSM to the phases.

Note that there is an effective description of the mirror of this GLSM in terms of an
ordinary Landau-Ginzburg model [20], namely the Landau-Ginzburg model with one chiral
field X and superpotential

W = Xd + e
t
dXd′ .

The deformation parameter λ = e
t
d of the superpotential is related to the complexified

Fayet-Iliopoulus parameter t = r− iθ of the GLSM. λ runs under the RG flow from λ = 0
in the UV to λ =∞ in the IR. In the UV, the model is therefore described by a LG model
with superpotential W = Xd and in the IR by a LG model with superpotential W = Xd′ .

Now, flows of Landau-Ginzburg models triggered by deformations of the superpoten-
tials are relatively well under control, and at least some aspects of them can be studied
very explicitly. For instance, it is not difficult to analyze what happens to the vacua of
the model, which correspond to critical points of the superpotential. In the case at hand,
some of these vacua (d − d′ many) move off to infinity under the RG flow, and decouple
from the theory, taking with them some (A-type) D-branes attached to them.

This decoupling of D-branes is well described by RG defects associated to the flows.
Indeed, all the RG defects corresponding to flows of Landau-Ginzburg models with a single
chiral superfield but general deformations of the superpotential

W = Xd +
d−1∑
i=1

λiX
i , (3.1)

have been constructed in [5].4 Thus, the transition defects between UV and IR phases
of the GLSM which we will obtain here can be checked against known results. We find
complete agreement.

3.2 GLSM identity defect

The starting point of our analysis is the identity defect of the GLSM as constructed for the
general abelian GLSMs in section 2.3.3. In this case, it is a U(1)×U(1)-equivariant matrix
factorization of the difference W (X,P )−W (Y,Q) = XdP d

′−Y dQd
′ of the superpotentials

of the gauged linear sigma models on either side of the defects. The two U(1)-factors
correspond to the gauge groups of the models on the left and the right of the defect,
respectively.

4More precisely, they have been constructed in the mirror theories.
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For clarity, we will repeat and spell out some details of the construction of the identity
defect in this example. We first introduce new variables (corresponding to degrees of
freedom on the identity defect) α and α−1 which satisfy αα−1 = 1 and which carry U(1)×
U(1)-charges |α| = (1,−1) and |α−1| = (−1, 1). Using these fields, we can write the
difference of the superpotentials as follows

W (X,P )−W (Y,Q) = XdP d
′ − Y dQd

′ = XdP d
′ − αdd′Y dP d

′ + αdd
′
Y dP d

′ − Y dQd
′

=
(
Xd − (αd′Y )d

)
P d
′ + Y d

(
(αdP )d′ −Qd′

)
= P d

′
d−1∏
i=0

(X − ξiαd′Y ) + Y d
d′−1∏
i=0

(αdP − (ξ′)iQ) .

Here ξ = e
2πi
d and ξ′ = e

2πi
d′ are elementary dth, respectively d′th roots of unity.

The matrix factorization associated to the identity defect is then given by the Koszul-
type matrix factorization associated to (X−αd′Y ) and (αdP−Q). More precisely, denoting
the C[X,P, Y,Q]-modules

S = S(X,P )(Y,Q) = C[X,P, Y,Q]

and S̃ = S
(α,α−1)
(X,P )(Y,Q) = S(X,P )(Y,Q)

[
α, α−1

]
/
(
αα−1 − 1

)
.

the identity matrix factorization can be written as

I : S̃2
(
{d′, 0}
{0,−d}

)
i1

i0

S̃2
(
{0, 0}
{d′,−d}

)
(3.2)

Here {·, ·} indicates the U(1)×U(1)-charge of the respective generator and

i1 =
(

(X − αd′Y ) −(αdP −Q)
Y d∏d′−1

i=1 (αdP − (ξ′)iQ) P d′∏d−1
i=1 (X − ξiαd′Y )

)

i0 =
(

P d
′∏d−1

i=1 (X − ξiαd′Y ) (αdP −Q)
−Y d∏d′−1

i=1 (αdP − (ξ′)iQ) (X − αd′Y ) .

)

This is nothing but the GLSM identity matrix factorization (2.13) spelled out for the special
case at hand. To it we associate the module

MI = C
(α,α−1)
(X,P )(Y,Q)/

(
(X − αd′Y ),

(
αdP −Q

))
(3.3)

over the ring
C = C(X,P )(Y,Q) = S(X,P )(Y,Q)/(W (X,P )−W (Y,Q)) ,

where
C

(α,α−1)
(X,P )(Y,Q) = C(X,P )(Y,Q)

[
α, α−1

]
/
(
αα−1 − 1

)
,

cf. the general case (2.14). The Koszul resolution ofMI turns into the two-periodic complex
induced by the identity matrix factorization I after two steps.
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3.3 Pushing down the identity defect into phases

Going into the phases of the GLSM, one of the two chiral fields gets a vacuum expecation
value (which we can take to be 1), and the gauge group is broken to the subgroup leaving
this chiral field invariant. We can therefore push down any defect of the GLSM into a
phase by setting the respective chiral field to 1 in the associated matrix factorization and
considering it equivariant with respect to the residual gauge group. In fact, this can be
done on either side of the defect yielding defects from the GLSM into the phases or from
the phases to the GLSM. Moreover, one can push down to phases on both sides of the
defect, possibly into different phases on the two sides, which gives rise to defects in the
phases or from one phase to another.

In the next section, we will employ this push-down to the GLSM identity defect.
Pushing down to the UV phase on the right side and the IR phase on the left, we will
obtain a defect describing the transition from the UV phase to the IR phase. Indeed, we
will reproduce RG defects of [5], as expected.

Before we will come to this, as a warm-up we first discuss the simpler case, where the
GLSM identity defect is pushed down to the same phase on both sides. We choose the UV
phase. The push down to the IR can be dealt with in a similar way.

To push down the GLSM identity defect to the UV phase on both sides, we have to set
P and Q to 1 in the matrix factorization (3.2) and consider it equivariant with respect to
the residual gauge group Zd×Zd. We can do this on the level of the associated module (3.3).

It will be useful to introduce some notation. Replacing the name of a variable with a
‘·’ in the subscripts of the rings S(X,P )(Y,Q), C(X,P )(Y,Q) or C(α,α−1)

(X,P )(Y,Q) just means setting
the respective variable to one.5 For instance

S(X,·)(Y,Q) = C[X,Y,Q]

C(X,·)(Y,Q) = S(X,·)(Y,Q)/(W (X, 1)−W (Y,Q))

C
(α,α−1)
(X,·)(Y,Q) = C(X,·)(Y,Q)

[
α, α−1

]
/
(
αα−1 − 1

)
.

Pushing down the GLSM identity defect to the UV phase on both sides yields the module

MUV UV
I = C

(α,α−1)
(X,·)(Y,·)/

((
X − αd′Y

)
, (αd − 1)

)
.

Note that due to the relation αd− 1 this module is of finite rank, and in fact isomorphic to
the module (2.10) associated to the identity matrix factorization of the LG model describing
the UV phase. In fact, identifying6

C
(α,α−1)
(X,·)(Y,·)/

(
αd − 1

)
∼= Cd(X,·)(Y,·)


{[0]d, [0]d}
{[1]d, [−1]d}

...
{[d− 1]d, [−d+ 1]d}

 ,

5Or to put it differently, by diving the rings by the corresponding ideals.
6The generator αi is sent to the generator ei.
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where {·, ·} denotes the shift in Zd × Zd-charge of the respective generators, one can write
MUV UV
I as cokernel

MUVUV
I

∼= coker

ıUV
1 :Cd(X,·)(Y,·)


{[d′]d,[0]d}

{[d′+1]d, [−1]d}
...

{[d′+d−1]d, [−d+1]d}

→Cd(X,·)(Y,·)


{[0]d, [0]d}
{[1]d, [−1]d}

...
{[d−1]d, [−d+1]d}




of the map ıUV
1 = (XId − Y εd

′
d ). Here, as before Id denotes the d × d-identity matrix and

εd the d× d-shift matrix (2.12).
Indeed, ıUV

1 ıUV
0 = (Xd − Y d)Id for

ıUV
0 =

d−1∏
i=1

(XId − ξiY εd
′
d ) .

Hence, ıUV
1 is a factor of a matrix factorization of W (X, 1)−W (Y, 1), namely

IUV : Sd(X,·)(Y,·)


{[1]d, [0]d}
{[2]d, [−1]d}

...
{[d]d, [−d+ 1]d}


ıUV
1

ıUV
0

Sd(X,·)(Y,·)


{[0]d, [0]d}
{[1]d, [−1]d}

...
{[d− 1]d, [−d+ 1]d}


(3.4)

This matrix factorization corresponds to the identity defect (2.11) in the UV phase. Thus,
the module MUV UV

I is associated to the identity matrix factorization in the UV phase.
Pushing down the GLSM identity defect on both sides to the UV, one therefore produces
the identity defect in the UV phase. Similarly, pushing down the GLSM identity defect
to the IR phase on both sides yields the IR identity defect. This is of course what is
to be expected.

3.4 RG defects from the GLSM identity

Next, we push down the GLSM identity defect to the UV on the right and to the IR on
the left, to obtain a transition defect between UV and IR phase. Note that there is more
than one (homotopy class of) paths from UV to IR. So there should be more than one
such transition defects.

Implementing the push-down involves setting those variables to 1 in the GLSM identity
matrix factorization, which correspond to fields acquiring a vacuum expectation value in
the respective phases. These are X (IR phase on the left of defect) and Q (UV phase on
the right). On the level of C(·,P )(Y,·)-modules this yields

MUV IR
I = C

(α,α−1)
(·,P )(Y,·)/

((
Y − α−d′

)
,
(
P − α−d

))
.

In contrast to the push down to the same phase on both sides, this module is of infinite
rank, leading to a matrix factorization of infinite rank, which does not correspond to one of
the RG defects between the respective Landau-Ginzburg models. We propose that under
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the push-down to the phases, the module (and the respective matrix factorization) has
to be truncated to finite rank. The truncation is not unique, but it turns out, that the
different choices of truncation exactly correspond to the different paths from UV to IR.7
Concretely, we introduce an upper bound N on the α-exponents8

MUV IR
I (N) = αNC(·,P )(Y,·)

[
α−1

]
/
((
Y − α−d′

)
,
(
P − α−d

))
αNC(·,P )(Y,·)

[
α−1

]
.

This module is now of finite rank. It has generators ei := αN−i for 0 ≤ i < d′ of Zd′ × Zd-
charges ([N − i]d′ ,−[N − i]d). To write down the relations in a convenient way we define
a, b ∈ N with b < d′ such that

d = ad′ + b . (3.5)

Then the generators satisfy relations

Pei = PαN−i = αN−d−i = Y aαN−d−i+ad
′

=
{
Y aei+b , i+ b < d′

Y a+1ei+b−d′ , i+ b ≥ d′

and the module MUV IR
I (N) is isomorphic to the cokernel of a map

rg1 :Cd′(·,P )(Y,·)


{[N−d]d′ , [−N ]d}

{[N−d−1]d′ , [−N+1]d}
...

{[N−d−d′+1]d′ , [−N−1+d′]d}

→Cd′(·,P )(Y,·)


{[N ]d′ , [−N ]d}

{[N−1]d′ , [−N+1]d}
...

{[N−d′+1]d′ , [−N+d′−1]d}

,

which can be written as rg1 = (P Id′ − εbd′IY ), where IY denotes the diagonal d′× d′-matrix
with Y a as its first d′−b diagonal entries and Y a+1 as the last b diagonal entries. Explicitly

rg1 =



P −Y a+1

. . . . . .
. . . −Y a+1

−Y a . . .
. . . . . .
−Y a P


.

Now
d′−1∏
i=0

(
P Id′ −

(
ξ′
)i
εbd′IY

)
=
(
P d
′ − Y d

)
Id′ ,

7We expect the truncation to be related to the gradability of the resulting matrix factorization with
respect to R-symmetry. The latter ensures definite gluing conditions for the spectral flow operators of the
respective SCFTs along the defect. This is needed to impose a stability condition in the sense of [21] on
the level of the defect.

8Later we will show that N determines the charge window for the grade restriction rule which appears
in [2].

– 19 –



J
H
E
P
0
5
(
2
0
2
1
)
0
0
6

and hence, rg1 together with rg0 = ∏d′−1
i=1 (P Id′ − (ξ′)iεbd′IY ) defines a matrix factoriza-

tion RGN :

Sd
′

(·,P )(Y,·)


{[N−d]d′ ,−[N ]d}

{[N−1−d]d′ ,−[N−1]d}
...

{[N−d′+1−d]d′ ,−[N−d′+1]d}


rg1

rg0

Sd
′

(·,P )(Y,·)


{[N ]d′ ,−[N ]d}

{[N−1]d′ ,−[N−1]d}
...

{[N−d′+1]d′ ,−[N−d′+1]d}


(3.6)

Pushing down the GLSM identity defect to the UV on the right and to the IR on the
left with truncation N yields a defect between the Landau-Ginzburg models in the UV
and in the IR, given by the matrix factorization RGN . Note that N only appears in
the grading of the matrix factorization RGN , and that RGN = RGN+dd′ . Furthermore,
the shift in N corresponds to conjugation with the quantum symmetries of the respective
Landau-Ginzburg phases, RGN+1 = Q−1

IR ⊗RN ⊗QUV.
Thus, we obtain dd′ many different transitions defects between the two phases. These

indeed correspond to particular renormalization group defects between Landau-Ginzburg
orbifolds describing the UV and IR phases [5]. In fact RG defects between these Landau-
Ginzburg orbifolds corresponding to general perturbations of type (3.1) would allow for a
more generic distribution of powers of Y in the map rg1, of the form

rggen1 =



P −Y nb

. . . . . .
. . . −Y nd′

−Y n1
. . .

. . . . . .
−Y nb−1 P


.

where ∑na = d and the grades appearing in (3.6) have to be modified accordingly, cf. [5].
The transition defects we obtain from the gauged linear sigma model are special cases of
these defects which exhibit a maximally homogeneous distribution of powers of Y in rg1.

Summarizing, by pushing down to UV and IR on the right, respectively left side of the
GLSM identity defect with an additional truncation we obtain an RG defect between the
UV and IR phases, which is known to describe the transport between UV and IR Landau-
Ginzburg models. Different choices of the truncation parameter N only shift the charges
of the matrix factorization, in particular RGN ∼= RG0{[N ]d′ ,−[N ]d} ∼= QNIR⊗RG0⊗Q−NUV .
The charge shifts are quantum symmetries of the Landau-Ginzburg orbifolds in IR and UV.
They can be obtained as monodromies of the GLSM upon encircling the Landau-Ginzburg
points in the Kähler parameter space. Thus, up to winding around the limit points, we
obtain one defect describing the flow between UV and IR phases of the GLSM.

3.5 Factorization of RG defects

Using the fact that the GLSM identity defect is an idempotent,

I ∼= I ⊗ I , (3.7)
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we can factorize the RG defects RGN over the GLSM. More precisely

RGN ∼= RIR ⊗ TUV
N ,

where RIR is a defect from the GLSM to the IR phase obtained by pushing down the GLSM
identity defect to the IR on the left side, and TUV

N is a defect from the UV phase to the
GLSM model obtained by pushing the GLSM identity defect to the UV on the right and
truncating.9 Let us discuss the factor defects in turn.

3.5.1 T UV
N

The module associated to TUV
N is obtained by setting Q = 1 in (3.3) and then truncating

the α-spectrum. This yields the C(X,P )(Y,·)-module

MUV GLSM
I (N) = αNC(X,P )(Y,·)

[
α−1

]
/
((
Y − α−d′X

)
,
(
P − α−d

))
αNC(X,P )(Y,·)

[
α−1

]
.

It is finitely generated with generators ei = αN−i, of U(1)× Zd-charge (N − i,−[N − i]d),
where 0 ≤ i < d. The generators satisfy relations

Y ei = Y αN−i = XαN−i−d
′

=
{
Xei+d′ , i+ d′ < d

PXei+d′−d , i+ d′ ≥ d
, (3.8)

and MUV GLSM
I (N) is isomorphic to the cokernel of the map

t1 :Cd(X,P )(Y,·)


{N,−[N−d′]d}

{N−1,−[N−1−d′]d}
...

{N−d+1,−[N−d+1−d′]d}

→Cd(X,P )(Y,·)


{N, [−N ]d}

{N−1,−[N−1]d}
...

{N−d+1,−[N−d+1]d}

 ,

with t1 = (εd′d IPX−Y Id). Here IP is the diagonal d×d-matrix with 1 in the first b= d−d′

diagonal entries and P in the last d′ diagonal entries. Explicitly,

t1 =



−Y PX
. . . . . .

. . . PX

X
. . .

. . . . . .
X −Y


.

Now,
d−1∏
i=0

(
εd
′
d IPX − ξiY Id

)
= P d

′
Xd − Y d ,

9Note that the truncation could also be implemented on R instead, or on both R and T . As it turns
out, pushing the truncation on T and not on R leads to a nice interpretation of the factor defects.
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and hence, together with the map t0 = ∏d−1
i=1 (εd′d IPX − ξiY Id), t1 defines a matrix factor-

ization of W (X,P ) −W (Y, 1). Thus, the module MUV GLSM
I (N) has a free two-periodic

resolution induced by the matrix factorization

TUV
N :Sd(X,P )(Y,·)


{N,−[N−d′]d}

{N−1,−[N−1−d′]d}
...

{N−d+1,−[N−d+1−d′]d}


t1

t0

Sd(X,P )(Y,·)


{N,−[N ]d}

{N−1,−[N−1]d}
...

{N−d+1,−[N−d+1]d}

 .

(3.9)
This matrix factorization represents the factor defect TUV

N . Note that it is of rank d and
exhibits U(1)-charge shifts only in the set {N − d+ 1, N − d+ 2, . . . , N} of d consecutive
integers starting at N−d+1. Fusion with the defect TUV

N therefore lifts D-branes from the
UV phase to GLSM branes in the charge window {N−d+1, . . . , N} in the terminology of [2].

Indeed, there is another way to arrive at the defects TUV
N . One can start with the

identity defect in the UV phase and then lift on the left to the GLSM. Lifting in this case
means inserting variables P into the rank-d Zd × Zd-equivariant matrix factorization of
Xd − Y d in such a way as to make it into a U(1)× Zd-equivariant matrix factorization of
P d
′
Xd−Y d. (Lifting D-branes in such a manner is an important ingredient in the discussion

of D-brane transfer between LG and geometric phases of abelian GLSMs in [2].) In this
way one obtains a defect from the UV phase to the GLSM. This defect is automatically
of finite rank, so a truncation of the kind we had to impose when coming from the GLSM
is not necessary. On the other hand, the lift involves many choices. One of the choices
corresponds to the choice of N , the maximal U(1)-charge. When that is fixed there are
still choices left, and only one of them leads to the defects TUV

N . In fact, TUV
N corresponds

to the unique lift of the UV identity defect, which has maximal U(1)-charge N , and whose
U(1)-charges populate {N − d+ 1, . . . , N}. That means it is the only such lift, which upon
fusion sends all UV branes to GLSM branes in the respective charge window of length d in
the terminology of [2].

As a side remark, pushing down the defect TUV
N on the left to the IR (setting X = 1),

one obtains the RG defect RGN . Pushing down on the left to the UV (setting P = 1),
yields the identity defect in the UV phase.

Of course, defects TN can be constructed for any phase. Pushing the GLSM identity
defect to the IR on the right, in a similar fashion yields defects T IR

N from the IR phase to
the GLSM.

3.5.2 RIR

RIR is obtained by pushing down to the IR on the left of the GLSM identity defect. Pushing
down on the level of modules yields the C(·,P )(Y,Q)-module

MGLSM IR
I = C

(α,α−1)
(·,P )(Y,Q)/

((
Y − α−d′

)
, (P − α−dQ)

)
.

This module is of infinite rank. Note that Y is invertible in this module. One way to look
at it is as a limit of truncated modules

MGLSM IR
I = lim

N→∞
MGLSM IR
I (N)
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with

MGLSM IR
I (N) = αNC(·,P )(Y,Q)

[
α−1

]
/
((
Y − α−d′

)
,
(
P − α−dQ

))
αNC(·,P )(Y,Q)

[
α−1

]
.

The truncated module is finitely generated with generators ei = αN−i, 0 ≤ i < d′ of
Zd′ ×U(1)-charges ([N − i]d′ ,−N + i). They satisfy relations

Pei = PαN−i = QαN−i−d = Y aQαN−i−b

=
{
Y aQei+b , i+ b < d′

Y a+1Qei+b−d′ , i+ b ≥ d′

Therefore, MGLSM IR
I (N) is isomorphic to the cokernel of the map

rIR
1 :Cd′(·,P )(Y,Q)


{[N−d]d′ ,−N}

{[N−1−d]d′ ,−N+1}
...

{[N−d′+1−d]d′ ,−N+d′−1}

→Cd
′

(·,P )(Y,Q)


{[N ]d′ ,−N}

{[N−1]d′ ,−N+1}
...

{[N−d′+1]d′ ,−N+d′−1}

 ,

with rIR
1 = (P Id′ − Qεbd′IY ). Here IY is the d′ × d′-diagonal matrix with Y a as the first

d′ − b diagonal entries and Y a+1 as the last b diagonal entries. Explicitly,

rIR
1 =



P −QY a+1

. . . . . .
. . . −QY a+1

−QY a . . .
. . . . . .
−QY a P


.

Now, ∏d′−1
i=0 (P Id′ − (ξ′)iQεbd′IY ) = P d

′ − Y dQd
′ =: rIR

1 rIR
0 , and therefore the truncated

modules have two-periodic resolutions induced by the matrix factorizations

RIR
N :Sd′(X,P )(Y,·)


{[N−d]d′ ,−N}

{[N−1−d]d′ ,−N+1}
...

{[N−d′+1−d]d′ ,−N+d′−1}


rIR

1

rIR
0

Sd
′

(X,P )(Y,·)


{[N ]d′ ,−N}

{[N−1]d′ ,−N+1}
...

{[N−d′+1]d′ ,−N+d′−1}


One can think of the matrix factorization associated to RIR as the limit limN→∞R

IR
N . Note

that N only shifts the charges of this matrix factorization!
As we will see later, left-fusion with the defect RIR just sets X to 1 in the matrix

factorization RIR is fused with.
In the following we will also need the defects RUV obtained by pushing the GLSM

identity defect to the UV on the left. The associated module is given by

MGLSM UV
I = C

(α,α−1)
(X,·)(Y,Q)/

((
X − αd′Y

)
,
(
αd −Q

))
,
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which can be obtained as a limit N → −∞ of the truncated modules10

MGLSM UV
I (N) = αNC(X,·)(Y,Q) [α] /

((
X − αd′Y

)
,
(
Q− αd

))
αNC(X,·)(Y,Q) [α] .

An analysis analogous to the IR case yields an associated matrix factorization

RUV
N :Sd(X,P )(Y,·)


{[N+d′]d,−N}

{[N+1+d′]d,−N−1}
...

{[N+d−1+d′]d,−N−d+1}


rUV

1

rUV
0

Sd(X,P )(Y,·)


{[N ]d,−N}

{[N+1]d,−N−1}
...

{[N+d−1]d,−N−d+1}


with rUV

1 = (XId − Y εd
′
d IQ), rUV

0 = ∏d−1
i=1 = (XId − ξiY εd

′
d IQ), where IQ is the diagonal

matrix with 1 in its first d− d′ diagonal entries and Q in its last d′. Explicitly,

rUV
1 =



X −QY
. . . . . .

. . . −QY

−Y . . .
. . . . . .
−Y X


.

The matrix factorization RUV can then be thought of as the limit limN→−∞R
UV
N . Left-

fusion with RUV implements the push-down to the UV phase, i.e. setting P to 1.

3.6 Projection defects

In the previous section we have shown that the defects RGN describing the transition from
UV to IR phase factorize as RGN ∼= RIR ⊗ TUV

N . Here TUV
N is the defect lifting the UV

phase into the GLSM, and RIR is the defect from the GLSM to the IR phase implementing
the push-down to the IR.

Indeed, we can also consider the fusion RUV ⊗ TUV
N . This defect describes the lift of

the UV to the GLSM and the subsequent push-down to the same phase. Since identity
defects are idempotent, I ⊗ I ∼= I, this defect can be obtained by pushing down to the
UV phase on both sides of the GLSM identity defect, combined with a truncation. The
untruncated push-down was calculated in section 3.3. The result is the identity defect of
the UV phase. Indeed, it is not difficult so see that the truncation essentially does not
change the calculation, and that also the truncated push-down yields the identity defect of
the UV phase

RUV ⊗ TUV
N
∼= IUV . (3.10)

Another way to obtain this result is to use the fact (discussed below) that left-fusion with
defects Ri just implements the push-down to phasei, i.e. it just sets the variable to 1, which
is associated to the field obtaining a non-trivial vacuum expectation value in phasei. In

10Note that compared to the IR case, truncation is implemented in the opposite direction.
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the case of RUV, this is the variable P . Setting P = 1 in the matrix factorization TUV
N

given in (3.9) indeed yields the UV identity matrix factorization IUV, cf. (3.4).
Of course, one can also straight-forwardly calculate the fusion. As we already used in

section 2.3.3, on the level of modules, fusion corresponds to the part of the tensor product
which is invariant under the gauge group of the model in between the fused defects [5].
One obtains(
MGLSM UV
I ⊗MUV GLSM

I (N)
)U(1)

∼=

 C
(α,α−1)
(X,·)(Y,Q)

((X − αd′Y ), (αd −Q)) ⊗C[Y,Q]
βNC(Y,Q)(Z,·)

[
β−1]

((Z − β−d′Y ), (Q− β−d))βNC(Y,Q)(Z,·) [β−1]

U(1)

∼=

 βNC(X,·)(Z,·)
[
α, α−1, β−1]

((αα−1 − 1) ,
(
Z − (αβ)−d′ X

)
, (αd − β−d))βNC(X,·)(Z,·) [α, α−1, β−1]

U(1)

∼=
(αβ)NC(X,·)(Z,·)

[
(αβ)−1

]
(
(
Z − (αβ)−d′ X

)
,
(
1− (αβ)−d

)
)(αβ)NC(X,·)(Z,·)

[
(αβ)−1

] .
With the same arguments as in section 3.3 this can be seen to be a module associated to
the identity matrix factorization IUV of the Landau-Ginzburg orbifold in the UV.

Analogously one finds
RIR ⊗ T IR

N
∼= IIR .

Relation (3.10) implies that the defect

PUV
N = TUV

N ⊗RUV

is idempotent, i.e. PUV
N ⊗PUV

N
∼= PUV

N . This defect realizes the UV phase inside the GLSM
in the sense of [9]. In particular, the category of D-branes in the UV phase is equivalent
to the subcategory of GLSM branes invariant under fusion with PUV

N .
A module associated to PUV

N can be obtained as

MPUV
N

=MUVGLSM
I (N)⊗MGLSMUV

I

=

 αNC(X,P )(Y,·)[α−1]
((Y −α−d′X),(P−α−d))αNC(X,P )(Y,·)[α−1]⊗C[Y ]

C
(β,β−1)
(Y,·)(Z,R)

((Y −βd′Z),(βd−R))

Zd

∼=
(

αNC(X,P )(Z,R)[α−1,β,β−1]
((ββ−1−1),(P−α−d),(βd−R),(α−d′X−βd′Z))αNC(X,P )(Z,R)[α−1,β,β−1]

)Zd

The Zd-invariant generators are given by (αβ)N−i(βd)m for i ∈ N0 and m ∈ Z. They carry
U(1)×U(1)-charges (N − i,−N + i−md). Defining γ := αβ and δ := β−d of U(1)×U(1)
charges (1,−1) and (0, d) respectively, one can write

MPUV
N

∼=
γNC(X,P )(Z,R)[γ−1, δ]

((P − γ−dR) , (Xγ−d′ − Z) , (δR− 1)) γNC(X,P )(Z,R) [γ−1, δ] .
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Note that R is invertible in this module! It can be considered as a module over the ring

Cδ(X,P )(Z,R) :=
C(X,P )(Z,R)[δ]

(δR− 1)C(X,P )(Z,R)[δ]

in which R is invertible. Over this ring, MPUV
N

is finitely generated with generators ei :=
γN−d+1+i, 0 ≤ i < d of U(1) × U(1)-charges (N − d + 1 + i,−N + d − 1 − i). They
satisfy relations

Xei = Zei+d′ , i+ d′ < d

PXei = RZei+d′−d , i+ d′ ≥ d

Thus, as module over the ring Cδ(X,P )(Z,R), MPUV
N

is isomorphic to the cokernel of the map

p1 :
(
Cδ(X,P )(Z,R)

)d



{N−d+1+d′,−N+d−1}
{N−d+2+d′,−N+d−2}

...
{N,−N+d′}

{N−d+1,−N+d′−1}
{N−d+2,−N+d′−2}

...
{N−d+d′,−N}


→ (Cδ(X,P )(Z,R))d


{N−d+1,−N+d−1}
{N−d+2,−N+d−2}

...
{N,−N}

 ,

with p1 = (XIP −Zεd
′
d IR). Here IP is the diagonal d×d-matrix whose first d−d′ diagonal

entries are 1 and whose last d′ diagonal entries are P , and IR is the diagonal d× d-matrix
whose first d− d′ entries are 1 and whose last d′ entries are R. Concretely,

p1 =



X −PZ
. . . . . .

X
. . .

PX
. . .

. . . −PZ

−Z . . .
. . . . . .
−Z PX


Note that11

d−1∏
i=0

(
Xε−id

′

d IP ε
id′
d − ξiZεd

′
d IR

)
= XdP d

′ − ZdRd′ .

11In fact, this is true for any choice of diagonal matrices IP = diag(Pn1 , . . . , Pnd ) and IR =
diag(Rm1 , . . . , Rmd ) with

∑
ni = d′ =

∑
mi.
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Hence, p1 together with p0 = ∏d−1
i=1

(
Xε−id

′

d IP ε
id′
d − ξiZεd

′
d IR

)
forms a matrix factorization

PUV
N :

(
Sδ(X,P )(Z,R)

)d



{N−d+1+d′,−N+d−1}
{N−d+2+d′,−N+d−2}

...
{N,−N+d′}

{N−d+1,−N+d′−1}
{N−d+2,−N+d′−2}

...
{N−d+d′,−N}



p1

p0

(
Sδ(X,P )(Z,R)

)d

{N−d+1,−N+d−1}
{N−d+2,−N+d−2}

...
{N,−N}



of W (X,P )−W (Y,Q) over the ring Sδ(X,P )(Z,R) = C[X,P,Z,R, δ]/(δR− 1)C[X,P,Z,R, δ]
of chiral fields of the GLSM on the left and right of the defect, in which the field R is
made invertible.

3.7 Action on D-branes

Here, we will discuss the action of the defects T iN , Ri and P iN on D-branes (bound-
ary conditions).

3.7.1 Ri

Fusion with a defect Ri acts on D-branes by pushing down the respective GLSM matrix
factorizations to phasei by setting the variable obtaining a vacuum expectation value in
the phase to 1. More precisely, let

P : P1 = Sr(Y,Q)


b1
...
br


p1

p0

Sr(Y,Q)


a1
...
ar

 = P0

be a U(1)-equivariant matrix factorization of Y dQd
′ representing a D-brane in the GLSM.

Here, we use the following notation:

S(Y,Q) = C[Y,Q]

C(Y,Q) = S(Y,Q)/
(
Y dQd

)
.

As before, replacing one of the variables in the subscript with a ‘·’ means that we set the
respective variable to 1. So, in particular S(Y,·) = C[Y ] and C(Y,·) = C[Y ]/(Y d). To this
matrix factorization we associate the C(X,P )-module

MP = coker

P ′1 := Cr(Y,Q)


b1
...
br


p1−→ Cr(Y,Q)


a1
...
ar

 =: P ′0

 .
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We can now calculate the fusion P̂ = RUV ⊗ P . On the level of modules we obtain an
associated C(X,·)-module

M
P̂

=
(
MGLSM UV
I ⊗S(Y,Q) MP

)U(1)
=

 C
(α,α−1)
(X,·),(Y,Q)

((Y − α−d′X) , (Q− αd)) ⊗S(Y,Q) MP

U(1)

The U(1)-invariant generators of this module are given êi := αaiei, where the ei, 1 ≤ i ≤ r
are the generators the module P ′0 of U(1)-charge ai. Note that α has Zd × U(1)-charge
([1]d,−1), and hence, the Zd-charge of êi are just the induced Zd-charges [ai]d. The relations
from the first tensor factor set the variable Y to α−d′X and Q to αd. The relations from
the second tensor factor, coming from the matrix p1 can then be written in terms of
the matrix p̂1 = p1(Y = X,Q = 1) obtained from p1 by setting Y to X and Q to 1.
One obtains

M
P̂
∼= coker

P̂ ′1 := Cr(X,·)


[b1]d
...

[br]d


p̂1−→ Cr(X,·)


[a1]d
...

[ar]d

 =: P̂ ′0

 .

This module is associated to the Zd-equivariant matrix factorization

P̂ : P̂1 = Sr(X,·)


[b1]d
...

[br]d


p̂1

p̂0

Sr(X,·)


[a1]d
...

[ar]d

 = P̂0

of Xd. The matrices p̂i are obtained from the respective pi by setting Y to X and Q to 1.
An analogous result holds for the action of RIR.

Thus, Ri indeed fuses with GLSM branes by setting the variables acquiring a non-
trivial vacuum expectation value in phasei to 1 in the respective matrix factorization, and
breaking the gauge symmetry accordingly.

3.7.2 T i
N

Fusion with TUV
N lifts Zd-equivariant matrix factorizations of Xd to U(1)-equivariant matrix

factorizations of P d′Xd. Since RUV⊗TUV
N
∼= IUV and RUV acts by setting P = 1, the lifted

matrix factorization has to reduce to the original one upon setting P = 1. Thus, such lifts
are obtained by inserting P ’s into the matrices of the original matrix factorizations in such
a way that the Zd-representations on the matrix factorizations lift to U(1)-representations.
In fact, for a given matrix factorization there are many possible lifts. As it turns out, fusion
with TUV

N produces lifts whose U(1)-representations have charges in {N − d + 1, N − d +
2, . . . , N}.

Let us illustrate this in the example of Zd-equivariant linear rank-1 factorizations

LUV
[a]d : S(Y,·){[a+ d′]d}

Y

Y d−1
S(Y,·){[a]d}
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of Xd. These matrix factorizations generate the category of Zd-equivariant matrix factor-
izations of Xd, i.e. the category of UV D-branes.

Now, any of the U(1)-equivariant rank-1 matrix factorizations

LGLSM
c,m : S(X,P ){c+ d′ −md}

Y Qm

Y d−1Qd
′−m

S(Y,Q){c}

of XdP d
′ is a lift of LUV

[a]d for c ∈ a+ dZ and 0 ≤ m ≤ d′. Namely,

RUV ⊗ LGLSM
c,m

∼= LUV
[a]d ,

or to put it differently, setting Y = X and Q = 1 in LGLSM
c,m produces LUV

[a]d .
Next, we will compute to which of the lifts LGLSM

c,m a matrix factorization LUV
[a]d is

mapped under fusion with TUV
N . As before we will compute the fusion on the level of

modules. To LUV
[a]d we associate the C(Y,·)-module

MLUV
[a]d

= C(Y,·){[a]d}/(Y ) .

The fusion TUV
N ⊗ LUV

[a]d is then given by the matrix factorization associated to the
C(X,P )-module given by the Zd-invariant part of the tensor product(

MUV GLSM
I ⊗C[Y ] MLUV

a

)Zd

=
(

αNC(X,P )(Y,·)[α−1]
((Y − α−d′X), (P − α−d))αNC(X,P )(Y,·)[α−1] ⊗C[Y ]

C(Y,·){[a]d}
(Y )

)Zd

∼=
(

αNC(X,P )[α−1]{a}
((P − α−d), α−d′X)αNC(X,P )[α−1]{a}

)Zd

.

There is just one Zd-equivariant generator of this module over C(X,P ), namely αN−{N−a}d
of U(1)-charge N − {N − a}d. Here {·}d denotes the representative of the rest class [·]d
modulo d in the range {0, . . . , d− 1}. There is one relation, namely

PnXαN−{N−a}d = 0 , where n =
{

0 , d′ − {N − a}d ≤ 0
1 , d′ − {N − a}d > 0 . (3.11)

Hence, (
MUV GLSM
I ⊗C[Y ] MLUV

[a]d

)Zd ∼= C(X,P )/P
nXC(X,P ) .

which is associated to the matrix factorization

S(X,P ){N − {N − a}d + d′ − nd}
XPn

Xd−1P d
′−n

S(X,P ){N − {N − a}d} ,

This is nothing but LGLSM
N−{N−d}d,n, where the value of n depends on a as stated in (3.11).

Hence:
TUV
N ⊗ LUV

[a]d
∼= LGLSM

N−{N−d}d,n .
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Note that due to the specific dependence of n on a, the U(1)-charges of the generators (of
the module of) the matrix factorization lie in the set {N − d + 1, N − d + 2, . . . , N} of d
consecutive integers ≤ N .

Indeed, this is the way TUV
N acts on any boundary condition.12 It lifts the Zd-

equivariant matrix factorization of Xd to a U(1)-equivariant matrix factorization of P d′Xd

by inserting factors of P into the matrix factorization in such a way that the
Zd-representation lifts to U(1), and that furthermore the U(1)-charges of the lifted rep-
resentation all lie in {N − d+ 1, N − d+ 2, . . . , N}. More precisely, let

P : Sr(Y,·)


[b1]d
...

[br]d


p1

p0

Sr(Y,·)


[a1]d
...

[ar]d


be a rank-r Zd-equivariant matrix factorization of Y d. Then one can show that TUV

N ⊗ P
is given by the U(1)-equivariant matrix factorization

P̂ : Sr(X,P )


N − {N − b1}d

...
N − {N − br}d


p̂1

p̂0

Sr(X,P )


N − {N − a1}d

...
N − {N − ar}d


of XdP d

′ , where the matrix p̂1 is obtained from p1 by replacing each monomial Y r in the
matrix entry (p1)ij by PnXr, with

n = max{0,−
(
{N − ai}d − d′r

)
div d} .

‘div’ denotes the division with (non-negative) remainder. Similarly p̂0 is obtained from p0
by replacing monomials Y r in (p0)ij by PnXr with

n = max{0,−
(
{N − bi}d − d′r

)
div d} .

One arrives at a similar conclusion for the action of T IR
N , where however the U(1)-charges

of the lifted matrix factorization have to lie in the smalle set {N − d′ + 1, . . . , N} of d′
consecutive integers ≤ N .

3.7.3 P i
N

Since fusion is associative, the last two sections imply the following action of the projection
defects PUV

N
∼= TUV

N ⊗RUV. Let

P : Sr(Y,Q)


b1
...
br


p1

p0

Sr(Y,Q)


a1
...
ar


12Or more generally defects.
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be a U(1)-equivariant matrix factorization of Y dQd
′ . Then PUV

N ⊗ P is isomorphic to the
U(1)-equivariant matrix factorization

P̂ : Sr(X,P )


N − {N − b1}d

...
N − {N − br}d


p̂1

p̂0

Sr(X,P )


N − {N − a1}d

...
N − {N − ar}d


of XdP d

′ . Here the matrix p̂1 is obtained from p1 by replacing each monomial Y rQs in the
matrix entry (p1)ij by XrPn, with

n = max{0,−
(
{N − ai}d − d′r

)
div d} .

Similarly p̂0 is obtained from p0 by replacing monomials Y rQs in (p0)ij by XrPn with

n = max{0,−
(
{N − bi}d − d′r

)
div d} .

Thus, the matrix factorization P̂ is obtained from P by shifting all U(1)-charges into the
range {N − d+ 1, . . . , N} by adding integer multiples of d, setting all Q in the matrices to
1 and inserting factors of P in a way ensuring U(1)-equivariance of P̂ .

One finds an analogous result for P IR, where the charges are shifted by integer multiples
of d′ into the smaller set {N − d′ + 1, . . . , N}, Y is set to 1 and factors of X are inserted
in a way ensuring U(1)-equivariance.

3.7.4 RGN

As alluded to above, the defects RGN describing the transitions between UV and IR phase
are special RG defects between the Landau-Ginzburg orbifolds in the UV and the IR. The
action of general RG defects have been discussed at length in [5]. In particular, there is an
instructive picture of the D-brane transport coming from the corresponding flow between
unorbifolded Landau-Ginzburg models in the mirror theory. These flows are tiggered by
lower order perturbations of the superpotential W (X) = Xd+∑i<d λiX

i. During the flows
some vacua of the theory, corresponding to critical points of W move off to infinity and
decouple, taking with them certain A-branes attached to them. (For more details see [5].)

The factorization RGN ∼= RIR ⊗ TUV
N together with the action of the RIR and TUV

N

discussed in the previous sections now leads to a stepwise description of the action of RGN .
Start with a D-brane in the UV phase. For simplicity we only discuss D-branes described
by a rank-1 matrix factorizations

P : S(Y,·){[a+ rd′]d}
Y r

Y d−r
S(Y,·){[a]d} . (3.12)

Under the action of TUV
N P gets lifted to the U(1)-equivariant matrix factorization

P ′ : S(X,P ){N − {N − a− rd′}d}}
XrPn

Xd−rP d
′−n

S(X,P ){N − {N − a}d} ,
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of XdP d
′ , where

nd = rd′+{N−a−rd′}d−{N−a}d =⇒ n = rd′ div d+
{

0 , {N − a}d ≥ {rd′}d
1 , {N − a}d < {rd′}d

(3.13)

RIR then pushes down this matrix factorization to the IR Landau-Ginzburg model by
setting X = 1, resulting in the Zd′-equivariant matrix factorization

P ′′ : S(·,P ){[N − {N − a− rd′}d}]d′}
Pn

P d
′−n

S(·,P ){[N − {N − a}d]d′} , (3.14)

of P d′ . Thus, RGN ⊗ P ∼= P ′′.
Note that in case n = 0 and n = d′ in (3.13), the matrix factorization P ′′ is trivial, and

hence the D-brane corresponding to the matrix factorization P in (3.12) decouples under
the RG flow. That is the case whenever rd′ < d and {N−a}d ≥ {rd′}d (n = 0) or r ≥ d−s
with sd′ ≤ d and {N − a}d < {−sd′}d (n = d′).

So for instance, the degree-1 linear matrix factorizations P (i.e. those with r = 1) with
a = N − b for d > b ≥ d′ decouple under the RG flow, whereas the ones for d′ > b ≥ 0 are
mapped to degree-1 linear matrix factorizations in the IR.

In general, it follows from (3.13) that n ≤ r, so the degree of the matrix factorization
does not increase during the flow. Either it stays the same, or it decreases. A decrease
means that the corresponding D-brane decays during the flow and at least one constituent
decouples.

Let us illustrate this in a specific example, namely for d = 8 and d′ = 5, i.e. we are
considering a U(1)-GLSM with superpotential W = X8P 5, where the U(1)-charges of X
and P are 5 and −8, respectively. The transition defects RGN describe a certain RG flows
between the Landau-Ginzburg orbifolds X8/Z8 and P 5/Z5. For simplicity we will discuss
the action of RG0, i.e. we set N = 0.13 Let us first consider the action on linear rank-1
factorizations

P : S(Y,·){[−b+ 5]8}
Y

Y 7
S(Y,·){[−b]8} (3.15)

for 0 ≤ b < 8. Under the action of T0 these are mapped to the matrix factorizations

P ′ : S(X,P ){−b+ 5}
X

X7P 5
S(X,P ){−b} , (3.16)

for 5 ≤ b < 8, and to

P ′ : S(X,P ){−b− 3}
XP

X7P 4
S(X,P ){−b} , (3.17)

13N can be shifted by a quantum symmetry. This is a charge shift which can be implemented by a charge
shifted versions of the identity defect in the respective LG orbifold [5].
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for 0 ≤ b < 5. These are the lifts of the Z8-equivariant matrix factorizations (3.15)
of X8 to U(1)-equivariant matrix factorizations of X8P 5 whose charges are contained in
{−7,−6, . . . , 0}. Acting with RIR essentially sets X = 1 and breaks the U(1) to Z5.
In the first case, 5 ≤ b < 8, the matrix factorizations (3.16) are mapped to the trivial
matrix factorizations

P ′′ : S(·,P ){−[b]5}
1

P 5
S(·,P ){−[b]5} .

The D-branes corresponding to (3.15) for 5 ≤ b < 8 therefore decouple under the RG flow.
For 0 ≤ b < 5, on the other hand, the matrix factorizations (3.17) are mapped to the
linear factorizations

P ′′ : S(·,P ){−[b+ 3]5}
P

P 4
S(·,P ){−[b]5} .

The corresponding D-branes do not decouple.
Next, let us discuss the action on quadratic matrix factorizations

P : S(Y,·){[−b+ 2]8}
Y 2

Y 7
S(Y,·){[−b]8} . (3.18)

Acting on them with T0, one obtains

P ′ : S(X,P ){−b+ 2}
X2P

X6P 4
S(X,P ){−b} , (3.19)

for 2 ≤ b < 8 and

P ′ : S(X,P ){−b− 6}
X2P 2

X6P 3
S(X,P ){−b} , (3.20)

for 0 ≤ b < 2. Again, the matrix factorization P ′ is the lift of the matrix factorization P
in (3.18) to the GLSM whose charges lie in {−7, . . . , 0}. Acting with RIR then yields the
linear matrix factorizations

P ′′ : S(·,P ){−[b+ 3]5}
P

P 4
S(·,P ){−[b]5} .

for the case 2 ≤ b < 8 and the quadratic matrix factorizations

P ′′ : S(·,P ){−[b+ 1]5}
P 2

P 3
S(·,P ){−[b]5} .

for 0 ≤ b < 2. In the latter case, a quadratic matrix factorization is mapped to a quadratic
matrix factorization under the action of RG0. In the case 2 ≤ b < 8, the degree decreases
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degree of P : r charge shift of P specified by b charges of lift TN ⊗ P degree of P ′′ : n
1 5 ≤ b < 8 −b,−b+ 5 0
1 0 ≤ b < 5 −b,−b− 3 1
2 2 ≤ b < 8 −b,−b+ 2 1
2 0 ≤ b < 2 −b,−b− 6 2
3 7 ≤ b < 8 −b,−b+ 7 1
3 0 ≤ b < 7 −b,−b− 1 2
4 4 ≤ b < 8 −b,−b+ 4 2
4 0 ≤ b < 4 −b,−b− 4 3
5 1 ≤ b < 8 −b,−b+ 1 3
5 0 ≤ b < 1 −b,−b− 7 4
6 6 ≤ b < 8 −b,−b+ 6 3
6 0 ≤ b < 6 −b,−b− 2 4
7 3 ≤ b < 8 −b,−b+ 3 4
7 0 ≤ b < 3 −b,−b− 5 5

Table 1. Summary of action of transition defect RG0 between Landau-Ginzburg orbifold models
X8/Z8 and P 5/Z5 on rank-1-matrix factorizations.

from 2 to 1. Indeed, this can be completely understood in terms of the linear matrix
factorizations. Namely, the quadratic matrix factorizations P in (3.18) can be written as
a cone of two linear matrix factorizations as in (3.15), one specified by the same label b
and one specified by {b − 5}8. In case both of those linear matrix factorizations survive
the flow, i.e. for 0 ≤ b < 2 the quadratic matrix factorization P is again mapped to a
quadratic matrix factorization under RG0. For the other cases, 2 ≤ b < 8, however, one
of the two linear matrix factorizations is mapped to the trivial one under RG0. Under
the RG flow, the quadratic matrix factorization decays into the two constituent linear
factorizations and one of them decouples. Thus, the quadratic matrix factorization flows
to a linear matrix factorization.

In this way, one can explain the action of RG0 on any rank-1 matrix factorization

P : S(Y,·){[−b+ 5r]8}
Y r

Y 8−r
S(Y,·){[−b]8} . (3.21)

The result can be read off from the general formulas above. We summarize it in table 1.
Indeed, there is a nice pictorial representation of the action of RGN , which has its origin

in the mirror dual of the branes [22] and flows described by the GLSM. Consider a disk
partitioned into d segments labelled (clockwise) by the rest classes [0]d, [d′]d, [2d′]d, . . . , [(d−
1)d′]d, cf. figure 1. Each of these corresponds to a linear matrix factorization, namely the
matrix factorization (3.15) with r = 1 and [a]d given by the respective label of the segment.
Now, the linear matrix factorizations corresponding to consecutive segements form non-
trivial cones. More precisely, the matrix factorization (3.12) with r > 1 can be obtained as
successive cone of r linear matrix factorizations labelled by [a]d, [a+d′]d, . . . , [a+rd′]d. In the
picture we represent it by the union of the respective segments. The pictorial representation
of matrix factorizations of the IR theory consists of a disk partitioned into d′ segments.
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[0]d

[d′]d

[2d′]d

[3d′]d[4d′]d

[5d′]d

Figure 1. Pictorial representation of rank-1 matrix factorizations (3.12). Disk segments labelled
by [id′]d correspond to linear matrix factorizations, i.e. r = 1 with the respective charge label
[a]d = [id′]d. Unions of r neighboring segments correspond to matrix factorizations with r > 1. For
instance the union of the two green segments above corresponds to the matrix factorization (3.12)
with r = 2 and [a]d = [d′]d.

Under the action of RGN all linear factorizations labelled by [a]d with {N − a}d ≥
d′ are mapped to trivial matrix factorizations, while all the other ones are mapped to
linear matrix factorizations of the IR theory, labelled by [N − {N − a}d]d′ . Note that
linear factorizations in the UV theory labelled by [a]d and [a+ d′]d, which are mapped to
linear matrix factorizations under the action of RGN , and which can form bound states
(and are therefore represented by neighboring disk segments) are mapped to linear matrix
factorizations in the IR theory, which can form bound states as well (and are therefore
represented by consecutive segements in the pictorial representation of matrix factorizations
of the IR theory).14

Thus, one arrives at the following pictorial representation of the action of RGN , cf. fig-
ure 2. RGN acts by shrinking the disk segments corresponding to decoupling linear matrix
factorizations. These are the segments labelled by [a]d with {N − a}d ≥ d′. In this way
one arrives at a disk partitioned into d′ segments. This is a pictorial representation of the
matrix factorizations describing D-branes in the IR theory. A segment labelled by [a]d in
the original UV picture gets label [N −{N − a}d]d′ in the IR. One can now read off, what
happens to a general matrix factorization under the action of RGN from this pictorial rep-
resentation. A matrix factorization (3.12) corresponds to a union of r consecutive segments
in the UV picture. After shrinking the respective segments, it is represented by the union
of n < r consecutive segments in the IR picture, which is the representation of the matrix
factorization (3.14). For more details see [5].

14This follows from the fact that {N − a− d′}d − {N − a}d is either −d′ if {N − a}d ≥ d′ or it is d− d′

in case {N − a}d < d′. Hence,

[N − {N − a}d]d′ − [N − {N − a− d′}d]d′ =
{

[d]d′ , {N − a}d < d′

[0]d′ , {N − a}d ≥ g′
.

In the first case, both linear matrix factorization are mapped to linear matrix factorizations under RGN ,
which can form a cone. In the second case the first one is mapped to a trivial matrix factorization.
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[0]8 7→ [0]5

[5]8 7→ [2]5

[2]8 7→ ∅

[7]8 7→ [4]5[4]8 7→ [1]5

[1]8 7→ ∅

[6]8 7→ [3]5

[3]8 7→ ∅

Figure 2. Pictorial representation of action of RG0 in the example of d = 8, d′ = 5. The
red segments correspond to linear matrix factorizations which are mapped to the trivial matrix
factorization under RG0. They are collapsed under the action. The arrows ‘ 7→’ indicate to which
linear matrix factorizations in the IR the respective UV linear matrix factorization is mapped. For
instance [0]8 7→ [0]5 means that the linear factorization with label [0]8 in the UV is mapped to the
linear factorization [0]5 in the IR. From this, one can read off, how any rank-1-matrix factorization
is mapped. For instance the matrix factorization with r = 3 and [a]8 = [5]8 corresponds to the
union of consecutive segments [5]8, [2]8 and [7]8, marked with yellow dashed boarder in the figure.
Under the flow, segment [2]8 is collapsed, and the other two obtain labels [2]5 and [4]5. They are
neighboring in the IR, and their union corresponds to the matrix factorization in the IR with r = 2
and [a]5 = [2]5.

3.8 Comparison with other approaches

D-Brane transport between phases of abelian gauged linear sigma models has been inves-
tigated before with very different methods. The non-anomalous “Calabi-Yau” case was
studied in [2]. A discussion going beyond abelian gauge groups as well as an extension to
anomalous models can be found in the more recent work [3, 4].

In [3, 4], hemisphere partition functions are computed in curved backgrounds with
B-type boundary conditions on the equator by means of path integral localization. As a
result of the curvature of the background, these precisely capture the dependence of B-type
boundary conditions on the parameters appearing in the gauge sector. A thorough analysis
of analytic and convergence properties of hemisphere partition functions, then allows to
determine the brane transport between different phases. This as well as the arguments
in [2] rely on a detailed analysis of the boundary conditions imposed in the gauge sector.

The approach taken in the present paper is very different. We decouple the gauge
sector, and boundary conditions in this sector are not taken into account. Essentially,15 we
only consider information accessible to the B-twisted model. That means that we cannot
control any analycity or explicit dependence on t. Remarkably, our approach still yields
many similar results that we highlight in the following.

A crucial ingredient in the discussion of D-brane transport in [2] as well as [3, 4] are
so called “charge windows”. A D-brane whose U(1)-charges all lie in this window can

15With the exception of the truncation, which we introduced to obtain the RG defects from the GLSM
identity defect, and which presumably is related to stability.
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be transported smoothly from one phase to another. Partition functions of these grade
restricted branes are well behaved in both phases involved. Any D-brane in the GLSM has
a grade restricted representative, which can be obtained by binding D-branes which are
trivial in the phase in which the transport starts. The charge window is determined by
the choice of the homotopy class of paths in parameter space, along which the D-branes
are transported.

In our approach, the defect RGN automatically takes care that branes are transported
through such windows. Indeed the defect T iN lifting a phase i to the GLSM automatically
maps D-branes from phasei to grade restricted GLSM branes, where the exact window is
determined by the truncation parameter N . The projection defect P iN realizing phasei in
the GLSM projects the category of GLSM branes on the grade restricted subcategory, i.e.
it maps every D-brane to the respective grade restricted representative.

Note that a in the treatment of [3, 4] a D-brane transport between two phases actu-
ally involves two charge windows, a “large window” which ensures smooth transport as
alluded to above, and a “small window” lying in the large one.16 D-branes, whose charges
completely lie in the small window flow to the new conformal fixed points, while D-branes,
whose charges lie in the large window, but not completely in the small one undergo some
kind of decay. (In [3, 4] this is determined by analyzing the asympotics of the hemisphere
partition functions.)

In our approach both these windows appear naturally and on the same footing. The
large window is determined by the projection PUV

N associated to the phase, in which the
transport starts, and the small window comes from the projection P IR

N associated to the
phase, in which the transport ends. Indeed, on the level of the GLSM the transport
from phase i to phase j can be described by the fusion P IR

N ⊗ PUV
N of the respective

projection defects.
Transporting branes from one phase to another can involve monodromies. In [3, 4]

these are naturally associated with shifts in the two windows, either the large window
as a whole, or the small window inside the large window. In our case, the windows are
determined by the truncation parameters N , which can be shifted by a quantum symmetry,
which exactly realizes the monodromy around the fixpoint of the respective phase.

Transporting branes from the GLSM to a phase can be done using two different func-
tors. The authors of [4] consider geometric phases and define two functors Fflow and Fgeom.
The first one corresponds to the actual flow from the GLSM to the phase, the second one to
a restriction to field configuration allowed by the deleted sets of the toric geometry/GLSM
description. In our case, we have two defects from the GLSM to a given phasei, RiN and
Ri, the truncated and the untruncated descent defects. RiN depends on the truncation
parameter, and hence a path in parameter space, whereas Ri merely sets certain fields to
1. So these are precisely the analogues of Fflow and Fgeom. In the same way as in [4],
where the two functors agree on grade restricted branes, we have RjN ⊗ P iN ∼= Rj ⊗ P i.
This is also the reason, why RIR

N does not feature more prominently in our discussion: the
lifts TUV

N directly lift the UV phase to grade restricted branes, and we chose to factor-

16The two windows coincide in the Calabi-Yau case.
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ize RGN = RIR ⊗ TUV
N . We could have used the cutoff version of RIR as well, writing

equivalently RGN = RIR
N ⊗ TUV

N .
One reason, why our approach, which is essentially based on the B-twisted model, still

captures all this information might be the fact that functoriality is a strong constraint.
Functoriality is inherent in the defect approach, and B-type defects seem to be rather
rigid. With the exception of the truncation, which we introduced in an ad-hoc fashion to
obtain RG defects from the GLSM identity defect, and which probably has its origins in
stability considerations, there were no choices involved in our construction. Furthermore,
this choice exactly aligns with the choice of paths between the respective phases.

It would be very interesting, to understand the relation of our approach to the ones
in [2–4] even better. For one thing, in [3, 23] the D-brane central charge and concrete
dependence on the twisted chiral moduli is investigated quite explicitly. In particular,
in [23] the mathematics of central charges in Landau-Ginzburg orbifolds is studied in detail.
By general arguments, we expect that RG (or deformation) defects act on these objects via
fusion, and it should be possible to formulate this operation in a natural way. On the other
hand, one could try to incorporate the functoriality constraint directly into the approach
of [3, 4] by applying their analysis to the GLSM identity defect constructed in section 2.3.3.

4 Conclusions

In this paper, we have constructed defects that concretely describe the behavior of D-
branes under transitions between phases of abelian gauged linear sigma models. They act
on objects and morphisms of the respective D-brane categories via fusion, and this action
is automatically functorial. A key ingredient is the new construction of the identity defect
in gauged linear sigma models presented in section 2.3.3. Our approach gives a novel
perspective on earlier work [2–4] on D-brane transport in GLSMs. We conclude this paper
with a list of interesting points for future investigation.

• The starting point for the construction of our defects RGN that implement the tran-
sition between a UV and IR Landau-Ginzburg phase of a U(1)-gauged linear sigma
model is the identity defect of the GLSM. The bosonic defect fields that we use to
construct it create an infinite dimensional Chan-Paton-like space. In other words, the
modules on which the associated equivariant matrix factorization is built are of infi-
nite rank. Introducing a finite cutoff N for these modules, we obtain defects RGN in
agreement with expectations and earlier results [5]. The choice of cutoff corresponds
to a choice of homotopy class of paths in Kähler parameter space. While we formu-
late all defects and boundaries on the level of the B-twisted model, which decouples
from Kähler parameters, a (mild) Kähler dependence sneaks back in via the cutoff.
We expect the choice of cutoff to be related to stability, one of the indicators being
that the cutoff is necessary to ensure consistent gluing conditions on a spectral flow
operator of an IR conformal field theory. It would be very interesting to investigate
further, whether stability conditions in phases can be discussed on the level of the
GLSM, and how this relates to defects.
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• It would be very interesting to combine our approach with the one of [2–4]. Apply-
ing their methods to the GLSM identity defect would at the same time explicitly
incorporate the constraint of functoriality in their approach as well as elucidate the
precise origin of the cutoff appearing in our construction.

• In section 3 we applied the general approach outlined in section 2 to a specific class
of U(1)-gauged linear sigma models which only exhibit Landau-Ginzburg phases.
It would be very interesting to apply it to more interesting models, in particular
those featuring geometric or mixed phases. Indeed, a paper, in which we employ our
methods to models with geometric phases is already in preparation [12].

• The construction of the identity defect should also generalize to non-abelian gauged
linear sigma models. It would be very interesting to spell this out and obtain transi-
tion and monodromy defects also for phases of non-abelian GLSMs.

• While in two dimensions our methods are particularly powerful, as the fusion of
defects is well-controllable, our basic ideas are not limited to this and it would be
quite interesting to discuss phase transitions and possibly dualities from this point
of view also in higher dimensions.

Acknowledgments

IB thanks Lukas Krumpeck for discussions and Christoph Gärtlein for comments on the
manuscript. FK is thankful to Friedrich-Naumann-Stiftung for supporting this project.
DR is supported by the Heidelberg Institute for Theoretical Studies. DR also thanks the
MSRI in Berkeley for its hospitality, where part of this work was done. (Research at MSRI
is partly supported by the NSF under Grant No. DMS-1440140.) IB is supported by the
Excellence Cluster Origins and the DFG.

A Defects in LG models and their orbifolds

In this appendix, we summarize some aspects of the description of defects in Landau-
Ginzburg models and their orbifolds in terms of (equivariant) matrix factorizations, paying
particular attention to defect fusion. The exposition is very brief. For a more detailed
exposition we refer to the literature. In particular, matrix factorizations where related to
categories of D-branes in [24] from a mathematical point of view, and in [25–27] from a
physical point of view. We refer to [28] for a brief summary of the basic physical aspects.
The description of defects in Landau-Ginzburg models by means of matrix factorizations
has been established in [5, 16, 29], see [30] for an exposition emphasizing categorical aspects.

Defects in LG models. A defect D : W → V from a LG model with chiral
fields X1, . . . Xn and superpotential W ∈ C[X1, . . . , Xn] to a LG model specified by
V ∈ C[Z1, . . . , Zm] is described by a matrix factorization of the difference of the potentials
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V −W over S := C[Z1, . . . , Zm, X1, . . . , Xn]. That is, there is a Z2-graded free module
D = D0 ⊕D1 over S with an odd endomorphism

dD =
(

0 dD1
dD0 0

)
such that d2 = W · idD.

Matrix factorizations can also be regarded as two-periodic complexes twisted by W

D : D1

dD1

dD0

D0

with dD1 · dD0 = W · idD0 and dD0 · dD1 = W · idD1.17

(Right) boundary conditions are the special class of defects, for which the right LG
model is trivial, i.e. does not feature any chiral fields.

To a matrix factorization D as above one can associate an R = S/(W )-module

M = coker(dD1 : D1 ⊗S R→ D0 ⊗S R) ,

which has a two-periodic free resolution induced by the matrix factorization

. . .
dD1−−→ D0 ⊗S R . . .

dD0−−→ D1 ⊗S R
dD1−−→ D0 ⊗S R −→M −→ 0 .

More generally, it is useful to consider R-modules which have free resolutions which, after
finitely many steps turn into the resolutions induced by the matrix factorizations. Such
R-modules can be used for instance to find isomorphisms between different matrix factor-
izations. This is explained in section 2.3.1 and we also refer to [15] for an exposition that
is useful for the line of arguments in the current paper.

The fusion of defects is given in terms of the tensor product of matrix factorizations [16].
More precisely, consider superpotentials U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn], W ∈
C[Z1, . . . , Zo] together with matrix factorizations D of V − W , and D′ of U − V . The
tensor product D′ ⊗D is then a matrix factorization of U −W , with modules

(D′⊗D)0 =D′0⊗C[Yi]D0⊕D′1⊗C[Yi]D1, (D′⊗D)1 =D′1⊗C[Yi]D0⊕D′0⊗C[Yi]D1 (A.1)

and differential
dD′⊗D = dD′ ⊗ idD + idD′ ⊗ dD . (A.2)

This differential is to be understood with Koszul signs, meaning that

(idD′ ⊗ dD)(ν ⊗ ω) = (−1)deg(ν)⊗ dD(ω).

While this tensor product a priori has infinite rank over C[Xi, Zj ] it can be shown that it
is always isomorphic to a finite rank matrix factorization.

17As is customary in the literature, D refers to the free module as well as the defect and matrix factor-
ization.
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Defects in LG orbifolds. A symmetry of a Landau-Ginzburg model is a homomorphism
of the ring of chiral fields, which leaves the superpotential invariant. Given a group of
symmetries of a Landau-Ginzburg model, one can take the orbifold by that group. Defects
and boundaries in Landau-Ginzburg orbifolds are well understood in the case of finite
orbifold groups.

Let V ∈ C[X1, . . . , Xn] andW ∈ C[Y1, . . . , Ym] be two superpotentials and GV and GW
orbifold groups of the respective LG models. Then B-type defects between these models
can be described by G = GV ×GW -equivariant matrix factorizations of V −W [5, 31, 32].
The defects are equipped with a representation ρD of G that is compatible with the action
of the combined polynomial ring S := C[X1, . . . , Xn, Y1, . . . , Ym] on the modules D0, D1.
Denoting by ρ the representation of G = GV ×GW on S this means that for all g ∈ G

ρD(g)(s · p) = ρ(g)(s) · ρD(g)(p), ∀s ∈ S, p ∈ D = D0 ⊕D1,

ρD(g) ◦ dD = dD ◦ ρD(g) .

We are interested in abelian orbifold groups here. The action of the latter gives the polyno-
mial ring S the structure of a graded ring, and the representations ρD turn D1 and D0 into
graded S-modules. The map dD respects the grading and one can associate grade 0 to it.
In all our discussions in this paper, the group action can be diagonalized on the modules,
and we will often pick generators of D0 and D1 on which ρD acts diagonal. The action of
G = GV ×GW can then be specified by assigning GV ×GW grades to the generators. We
denote these grades (or rather their shifts) using curly brackets. To illustrate our notation,
we would specify a rank k Zd × Zd′ equivariant matrix factorization as follows

D : Sk


{[lk]d, [rk]d′}
{[lk+1]d, [rk+1]d′}
{[lk+2]d, [rk+2]d′}

...


dD1

dD0

Sk


{[l0]d, [r0]d′}
{[l1]d, [r1]d′}
{[l2]d, [r2]d′}

...

 .

Here li and ri are integers, [ . ]d denotes the rest class modulo d, and {[li]d, [ri]d′} signify
that the respective generator in Sk carries Zd × Zd′-charge ([li]d, [ri]d′).

Defect fusion can be extended to orbifold LG theories in a straight-forward way [5].
Let U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn] and W ∈ C[Z1, . . . , Zo] be polynomials invari-
ant under actions of groups GU , GV , GW on the respective polynomial rings. Consider a
GW ×GV equivariant matrix factorization D of U − V and a GV ×GU -equivariant matrix
factorizations E of V −W . The tensor product D ⊗ E a priori yields a GU × GV × GW -
equivariant matrix factorization of U −W . The fusion in the orbifold theory is now given
by the GV invariant part of (D ⊗ E)GV of the tensor product factorization D ⊗ E. This
yields a GU ×GW equivariant factorization of U −W over C[X1, . . . , Xm, Z1, . . . Zo].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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