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1 Introduction

The existence of black holes has been predicted by general relativity. For most black

holes, there is a gravitational singularity at the center. Normally, the singularity should

be surrounded by the event horizon and hides inside the black hole. If the event horizon

vanishes, the naked singularity will be exposed to spacetime. Its emergence can block the

well-define of spacetime and destroy the law of causality because of the curvature diverges

at the position of the singularity. To avoid this situation, Penrose [1] proposed the weak

cosmic censorship conjecture (WCCC), which states that the singularity must be hidden

inside the back hole and the observer at infinity cannot receive any information about

the singularity.

To examine the validity of the WCCC, Wald [2] first proposed a gedanken experiment

and demonstrated that the extremal Kerr-Newman (KN) black hole cannot be overcharged

or overspun by dropping a test particle. Since then, utilizing this method, the WCCC

for other black holes has been examined [3–7]. However, the method has an inherent

defect because the interaction between the particle and the background spacetime has

been neglected. Moreover, Hubeny [8] found that if choosing a special particle with charge,

the Reissner-Nordstöm (RN) black holes can be destroyed. In order to solve the defects,

Sorce and Wald [9] proposed a new version of the gedanken experiment to destroy the

nearly extremal KN black holes at the second-order approximation of the perturbation

that comes from the matter fields. The result showed that after the perturbation, the

WCCC for KN black holes is still satisfied. Furthermore, using this method, the WCCC

for other kinds of black holes is demonstrated to be valid [10–18].

For the new version of the gedanken experiment, the first- and second-order pertur-

bation inequalities are derived based on the Noether charge method proposed by Iyer and

Wald [19]. These inequalities reflect the null energy condition of the perturbation matter

– 1 –



J
H
E
P
0
5
(
2
0
2
0
)
1
6
1

fields at first- and second-order approximations. After imposing the second-order pertur-

bation inequality and the optimal condition of the first-order perturbation inequality, the

result shows that the existing condition of the event horizon h(λ) = M(λ)2 − Q(λ)2 −
J(λ)2/M(λ)2 under the second-order approximation can reduce to

h(λ) ≥
(

(J2 −M4)QδQ− 2JM2δJ

M(M4 + J2)
λ+Mε

)2

≥ 0 , (1.1)

where ε = rh/M−1 is a small parameter. This result shows the WCCC cannot be violated

under the second-order approximation. However, there also exists an optimal option where

the first two order perturbation inequalities are saturated and

δQ =
M2[(M4 + J2)ε− 2JδJλ]

(M4 − J2)Qλ
, (1.2)

which makes h(λ) ' 0 under the second-order approximation. When this happens, the sign

of h(λ) cannot be decided at this order. Therefore, we have to consider the higher-order

approximation to examine the WCCC. For KN black holes, since the integral symplectic

current is quite complex, to simplify the calculation and make the result more clear, we will

use RN black holes to investigate whether the WCCC is still satisfied at the higher-order

approximation.

In 1973, Boulware [20] investigated the process that a thin matter shell with energy

and charge collapses to form RN black holes. It is shown that the shell can form a naked

singularity when the energy density of the shell is negative. When it is positive, the

singularity will be surrounded by the event horizon, and the WCCC cannot be violated.

In this method, the distribution of the matter is just regarded as a discrete thin shell.

However, in our universe, the distribution of matter is generally continuous. If we wish

to examine the WCCC for RN black holes more general and closer to the real physical

process, the matter fields should be regarded as continuously distributed outside the black

hole. Fortunately, the continuous matter fields are taken into account in the new gedanken

experiment. Therefore, in our research, we will use the new method as well to examine the

WCCC for RN black holes under the perturbation that comes from the matter fields.

The organization of the paper is as follows. In section 2, we discuss the spacetime

geometry of RN black holes under the matter fields perturbation. In section 3, we examine

the WCCC for nearly extremal RN black holes under the fourth-order approximation.

Furthermore, we attempt to discuss whether the WCCC is still satisfied under the kth-

order approximation. In section 4, some discussions and conclusions are given. In appendix

A, we introduce the definition of the Noether charge in Einstein gravity. In appendix B,

the first fourth-order perturbation inequalities are derived, and the general form of the

kth-order perturbation inequality is further obtained.

2 Perturbed geometry of RN black holes

For the four-dimensional Einstein-Maxwell gravitational theory, the Lagrangian is given as

L =
1

16π

(
R− FabF ab

)
ε+Lmt , (2.1)
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where F = dA is the strength of the electromagnetic field, A is the gauge potential of

the electromagnetic field, R is the Ricci scalar, and Lmt is the Lagrangian of the extra

matter fields. In the following, we will denote φ to the collection of gab, A and the extra

matter fields. When the extra matter fields vanish, a class of static spherically symmetric

solutions describing RN spacetimes in Eddington-Finkelstein coordinates is given as

ds2 = −f(r)dv2 + 2dvdr + r2
(
dθ2 + sin2 θdϕ2

)
,

F =
Q

r2
dr ∧ dt.

(2.2)

In the line element of the spacetime, the expression of the blackening factor f(r) is

f(r) = 1− 2M

r
+
Q2

r2
. (2.3)

The parameters M and Q in the blackening factor are associated with the mass and electric

charge of the black hole. The radius of the event horizon rh is the largest root of the

equation f(r) = 0, i.e.,

rh = M +
√
M2 −Q2 . (2.4)

Utilizing the expression of rh, the surface gravity, the area of the event horizon, and the

electric potential can be further given as

κ =
f ′(rh)

2
, AH = 4πr2

h, ΦH =
Q

rh
. (2.5)

Subsequently, we consider a one-parameter family φ(λ) of the field configurations, in

which φ(0) is a RN black hole solution. Each field configuration in the family is a spherical

solution of the Einstein-Maxwell gravity sourced by some spherical matter fields which

carry the energy and the electric charge in a finite region of the spacetime. When the value

of λ is small enough, the process can be regarded as a perturbation. In this family, the line

element of the spacetime can be generally written as

ds2 = −f(v, r, λ)dv2 + 2µ(v, r, λ)dvdr + r2
(
dθ2 + sin2 θdϕ2

)
. (2.6)

When f(v, r, 0) = f(r) and µ(v, r, 0) = 1, the line element can degenerate into the case of

the background spacetime.

Following a similar setup of Sorce and Wald [9], we only pay attention to the case

that the perturbation is vanishing on the bifurcation surface B and satisfying the stability

condition. The stability condition states at sufficiently late times (where the perturbation

matter fields all pass through the event horizon), the spacetime geometry can also be

described by the class of static spherically symmetric solutions of the RN spacetime. It

means that at sufficiently late times, eq. (2.3) can also be used to describe the spacetime

geometry, just the parameters M and Q in the line element are replaced to M(λ) and

Q(λ), i.e.,

ds2(λ) = −f(r, λ)dv2 + 2dvdr + r2
(
dθ2 + sin2 θdϕ2

)
, (2.7)

with

f(r, λ) = 1− 2M(λ)

r
+
Q(λ)2

r2
. (2.8)
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3 Gedanken experiments at higher-order approximation

From here, we first examine whether the WCCC for nearly extremal RN black holes is still

satisfied under the fourth-order approximation of the matter fields perturbation. Based on

the stability condition, the spacetime geometry at late times becomes a static state, which

means that checking the WCCC for RN black holes is equivalent to checking whether

the event horizon also exists at sufficiently late times. For RN black holes, the existing

condition of the event horizon is M2−Q2 ≥ 0. We just need to check whether the condition

is also satisfied, i.e., M(λ)2 −Q(λ)2 ≥ 0. Therefore, we define a function

h(λ) = M(λ)2 −Q(λ)2 (3.1)

and check the sign of the function h(λ) to examine the WCCC. Under the fourth-order

approximation of the parameter λ, we can get

h(λ) 'M2 −Q2 + 2 (MδM −QδQ)λ+
(
δM2 − δQ2 +Mδ2M −Qδ2Q

)
λ2

+

(
δMδ2M − δQδ2Q+

1

3
Mδ3M − 1

3
Qδ3Q

)
λ3

+
1

12

(
3δ2M2 − 3δ2Q2 + 4δMδ3M − 4δQδ3Q+Mδ4M −Qδ4Q

)
λ4.

(3.2)

In the above expression, we have defined

δkχ =
dkχ

dλk

∣∣∣∣
λ=0

(3.3)

for the quantity χ. Moreover, for nearly extremal RN black holes, since the value of the

parameter M extremely approaches to the value of the parameter Q, a small parameter ε

can be defined as

ε =
√
M2 −Q2. (3.4)

With a similar consideration of [9], this parameter is chosen as the same order of the

parameter λ. In order to simplify the calculating process and make the result more clearer,

the value of the parameter M can be set as M = 1 without loss of generality. Then, we

have Q =
√

1− ε2.

If we only consider the first-order approximation, the function h(λ) can be expressed as

h(λ) ' 2(δM − δQ)λ , (3.5)

where we have used the fact that the parameter ε is the same order as the parameter λ. In

appendix B, the null energy condition of the matter fields at the first-order approximation

has been derived, which gives the first-order perturbation inequality

δM − ΦHδQ ≥ 0 . (3.6)

It implies that the function h(λ) under the first-order approximation can reduce to

h(λ) ≥ 0. (3.7)
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It is shown that the WCCC cannot be violated under the first-order approximation. For

h(λ) > 0 at the first-order approximation, the higher-order approximation can be largely

ignored. However, there is an optimal option δM = ΦHδQ such that h(λ) = 0 under the

first-order approximation. In this situation, the higher-order corrections will mainly affect

the sign of h(λ). Therefore, we should further consider the second-order approximation

of h(λ).

Under the first-order optimal option, the null energy condition of the matter fields

at the second-order approximation gives the second-order perturbation inequality (see ap-

pendix B)

δ2M − ΦHδ
2Q− δQ2

rh
≥ 0 . (3.8)

Together with the first-order optimal option, h(λ) under the second-order approximation

can reduce to

h(λ) ≥ (ε− λδQ)2 ≥ 0. (3.9)

This result shows that the WCCC cannot be violated under the second-order approxima-

tion, which has also been obtained in [9] for the nearly extremal KN black holes. However,

analogous to the case of the first-order, there also exists a second-order optimal option,

δ2M − ΦHδ
2Q − δQ2/rh = 0 and δQ = ε/λ, such that h(λ) = 0 under the second-order

approximation. In this situation, we should further consider the third-order approxima-

tion. When the first two order perturbation inequalities are both saturated, the null energy

condition under the third-order approximation gives (see appendix B)

δ3M − ΦHδ
3Q− 3δQδ2Q

rh
≥ 0 . (3.10)

Together with the first two order optimal options, we have

h(λ) ≥ 0 (3.11)

under the third-order approximation. It is shown that the WCCC cannot be violated

under the third-order approximation. However, under the third-order approximation, we

can choose the optimal option as before, δ3M − ΦHδ
3Q − 3δQδ2Q/rh = 0. This optimal

option makes h(λ) = 0. In this case, the WCCC cannot be examined. Therefore we

have to continue to consider the fourth-order approximation. Considering first three order

saturation conditions, the null energy condition under the fourth-order approximation gives

(see appendix B)

δ4M − ΦHδ
4Q− 3δ2Q2 + 4δQδ3Q

rh
≥ 0 . (3.12)

Therefore, utilizing the optimal options of the first three order perturbation and the fourth-

order perturbation inequality, the function h(λ) under the fourth-order approximation can

be obtained as

h(λ) ≥ 1

4

(
ε2 − λ2δ2Q

)2 ≥ 0. (3.13)
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Figure 1. Plot showing the value of the parameter logA2m.

From the result, we can clearly see that after the perturbation, the WCCC also cannot

be violated under the fourth-order approximation of the perturbation. Obviously, there

still exists an optimal option such that h(λ) = 0 under the forth-order approximation. In

principle, we should extend the discussion to any high-order approximation. The extension

is straightforward but tedious. We attempt to extend this discussion into first 100 order

approximation and summarize the results as: for the kth-order approximation, we have

h(λ) ≥ 0 , for k = 2(j + 1)

h(λ) ≥ Bk/2(λk/2δk/2Q−Ak/2εk/2)2 ≥ 0 , for k = 2j ,
(3.14)

under the first (k−1) optimal options δiQ = Ai(ε/λ)i and δlM− 1
2rh

∑l
i=0C

i
kδ
k−iQδiQ = 0

for any i ≤ [(k − 1)/2] and l ≤ k − 1, where Bi is some positive parameter. When i is an

odd number greater than 1, we have Ai = 0. When i is an even number, we show the value

of A2m in Figure 1. From the above results, it is not difficult to believe that the WCCC for

nearly extremal RN black holes are always valid in any order approximation of the matter

fields perturbation.

4 Conclusions

In this research, we extended the new version of the gedanken experiment proposed by

Sorce and Wald to the higher-order approximation of the perturbation that comes from

the matter fields in the nearly extremal RN black holes. First of all, we generally derived

the kth-order perturbation inequalities when the first (k−1) order perturbation inequalities

are saturated. Based on the general form of the perturbation inequality, we discussed the

gedanken experiments up to 100th order. The results show that the WCCC is always valid

under the higher-order approximation. Therefore, we can infer that the WCCC is strictly

satisfied at the perturbation level for the nearly extremal RN black holes.
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A Noether charges in Einstein-Maxwell gravity

In this appendix, we will review the Noether charge method proposed by Iyer and Wald [19].

In Einstein gravity, the Lagrangian four-form is

L =
ε

16π
R . (A.1)

Considering the spacetime configuration with a one-parameter family, i.e., gab(λ), we can

generally derive the off-shell variation of the Lagrangian as

δL = Eab
g δgab + dΘ(g, δg) , (A.2)

where

Eab
g = − ε

16π
Gab = − ε

16π

(
Rab − 1

2
Rgab

)
,

Θabc(g, δg) =
1

16π
εdabcg

degfg (∇gδgef −∇eδgfg) .
(A.3)

Here we have defined the kth order variation of the metric as

δkgab =
dkgab(λ)

dλk

∣∣∣∣
λ=0

. (A.4)

The symplectic current three form can be defined as

ω(g, δ1g, δ2g) = δ1Θ(g, δ2g)− δ2Θ(g, δ1g) , (A.5)

which can be explicitly written as

ωabc =
1

16π
εdabcw

d, (A.6)

where

wa = P abcdef (δ2gbc∇dδ1gef − δ1gbc∇2gef ) , (A.7)

with

P abcdef = gaegfbgcd − 1

2
gadgbegfc − 1

2
gabgcdgef − 1

2
gbcgaegfd +

1

2
gbcgadgef . (A.8)

We set ζa as an infinitesimal generator of a diffeomorphism. Furthermore, replacing δ to

Lζ in eq. (A.2), one can define the Noether current three-form Jζ associated with ζa, which

can be written as

Jζ = Θ(g,Lζg)− ζ ·L. (A.9)

On the other hand, it has been shown in ref. [2] that the Noether current can also be

formally written as

Jζ = Cζ + dQζ , (A.10)

in which

(Qζ)ab = − 1

16π
εabcd∇cζd ,

Cζ = ζ · C with Cabcd =
1

8π
εebcdGa

e
(A.11)

are the Noether charge two form and the constrains of the Einstein gravity, respectively.

Utilizing the above expressions, we can further obtain the first-order variational identities as

d [δQζ − ζ ·Θ (g, δg)] = ω (g, δg,Lζg)− ζ ·Eab
g δgab − δCζ . (A.12)
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B Derivation of the perturbation inequality

In this appendix, we will give the detailed derivation process of each order perturbation

inequalities which are involved in the paper. In the following, we consider the perturbation

that comes from the collision process with a one-parameter family for the RN black holes

as introduced in section 2. First of all, we introduce a hypersurface Σ = Σ0 ∪ Σ1, in

which Σ0 is a portion of the future event horizon of the background spacetime (i.e., the

hypersurface r = rh) starting from the bifurcation surface B and continuing to a cross

section B1 at a sufficiently late time, and Σ1 is starting from the cross section B1 and

along the time-slice to go to the infinity. Note that in this choice, the hypersurface Σ is

independent on the variational parameter λ (i.e., rh is only the radius of the event horizon

of the background spacetime and independent on λ). According to the stability condition,

the spacetime geometry on the hypersurface Σ1 can be described by the line element in

eq. (2.7).

After replacing ζa by ξa = (∂/∂v)a, the integral of eq. (A.12) on the hypersurface

Σ gives ∫
S∞

[
dQξ(λ)

dλ
− ξ ·Θ

(
g(λ),

dg(λ)

dλ

)]
+

∫
Σ1

ξ ·Eab
g (λ)

dgab(λ)

dλ
+

d

dλ

[∫
Σ1

Cξ(λ)

]
− V ′0(λ)− E0(λ) = 0,

(B.1)

where

E0(λ) =

∫
Σ0

ω

(
g(λ),

dg(λ)

dλ
,Lξg(λ)

)
,

V0(λ) = −
∫

Σ0

Cξ(λ) .

(B.2)

Here we have utilized the fact that ξa is tangent to Σ0 and therefore the integral of ξ ·Eab
g is

vanishing on Σ0. Meanwhile, we have used the assumption that the perturbation vanishes

on the bifurcation surface B and the stability condition. The stability condition makes

gab(λ) stable after the perturbation and Lξgab(λ) = 0 on the hypersurface Σ1. For the first

term, performing the explicit expression of the line element in eq. (2.7), we can obtain∫
S∞

[
dQξ(λ)

dλ
− ξ ·Θ

(
g(λ),

dg(λ)

dλ

)]
= M ′(λ) . (B.3)

Utilizing the specific expression of the metric (2.7), we can easily check that the stress-

energy tensor and the variation of the metric satisfy the following relation

T ab(λ)
dgab(λ)

dλ
= 0 , (B.4)

where Tab(λ) = Gab(λ)/8π is the total stress-energy tensor of the electromagnetic field and

perturbation matter fields. After using the above relation, the second term of eq. (B.1)

vanishes. For the third term, the straight calculation gives∫
Σ1

Cξ(λ) = −Q
2(λ)

2rh
. (B.5)

– 8 –



J
H
E
P
0
5
(
2
0
2
0
)
1
6
1

For the fourth term, performing the explicit expression of the line element in eq. (2.6), we

can get

V0(λ) = − 1

8π

∫
Σ0

εebcd(λ)ξaT ea(λ)

=

∫
Σ0

ε̃µ(v, rh, λ)Tab(λ)ξa(dr)b .

(B.6)

Here we have denoted the volume element of the hypersurface Σ0 as ε̃ = dv ∧ ε̂, where

ε̂ = r2 sin θdθ∧dϕ is the volume element of the section of the event horizon. This term will

reflect the null energy condition of the matter fields. To show this connection, we choose

a null vector field

la(λ) = ξa + β(λ)ra, (B.7)

with

ra =

(
∂

∂r

)a
, β(λ) =

f(v, rh, λ)

2µ(v, rh, λ)
(B.8)

on the hypersurface Σ0. Then, the null energy condition implies that

Tab(λ)la(λ)lb(λ) ≥ 0 . (B.9)

It can be proven that the null energy condition can be expanded as

Tabl
a(λ)lb(λ) = µ(v, rh, λ)Tab(λ)ξa(dr)b + β(λ)2Tab(λ)rarb. (B.10)

Then, we have

N0(λ) = V0(λ) + Ṽ0(λ) , (B.11)

in which

N0(λ) =

∫
Σ0

ε̃Tab(λ)la(λ)lb(λ) ,

Ṽ0(λ) =

∫
Σ0

ε̃β2(λ)Tab(λ)rarb .

(B.12)

The null energy condition implies that N0(λ) ≥ 0. For the last term, we have

E0(λ) =
rh
2

∫ v1

v0

dv [∂vp∂λf − ∂λp∂vf ]r=rh , (B.13)

where v0 is the coordinate of the bifurcation surface B, v1 is the coordinate of the hyper-

surface B1, and we have denoted p(v, r, λ) = 1/µ(r, v, λ). Combining the above results,

we can obtain the variational identity as

M ′(λ)− Q(λ)Q′(λ)

rh
= V ′0(λ) + E0(λ) . (B.14)

– 9 –
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The first-order perturbation inequality. First, we consider the first-order perturba-

tion inequality. After evaluating the value of the variation of eq. (B.14) on the background

geometry (i.e., λ = 0), we have

δM − ΦHδQ = V ′0(0) , (B.15)

where we have used the fact that the background geometry is static and therefore E0(0) = 0.

For the null energy condition, according to eq. (B.11), we have

N0(λ) ' λN ′0(0) = λV ′0(0) ≥ 0 (B.16)

under the first-order approximation of λ. Here we have used the fact β(0) = 0 for the

background geometry such that Ṽ ′0(0) = 0. The first-order variational identity in eq. (B.15)

reduces to

δM − ΦHδQ ≥ 0 . (B.17)

It is called the first-order perturbation inequality. This inequality is saturated when V ′0(0) =

0. Using the explicit expression of the line element, this indicates that ∂vδf(v, rh) = 0.

The second-order perturbation inequality. When the first-order perturbation in-

equality is saturated, the second-order perturbation inequality can be derived. Taking a

variation of eq. (B.14) and evaluating it on the background geometry, we can further obtain

δ2M − ΦHδ
2Q− δQ2

rh
= V ′′0 (0) + E ′0(0) . (B.18)

Using the first-order saturation condition V ′0(0) = 0 and the fact that β(0) = 0 for the back-

ground geometry, the null energy condition under the second-order approximation gives

N0(λ) ' λ2

2
N ′′0 (0) =

λ2

2
V ′′0 (0) ≥ 0 . (B.19)

For the second term on the right hand side, we have

E ′0(0) =
rh
2

∫ v1

v0

dv [δf∂vδp− δp∂vδf ]r=rh

=
rh
2
δf(v1, rh)δp(v1, rh) = 0 ,

(B.20)

where we have used the stability condition such that p(v1, rh, λ) = 1 in the last step.

Summing the above results, the second-order variational identity (B.18) reduces to

δ2M − ΦHδ
2Q− δQ2

rh
≥ 0 . (B.21)

It is the second-order perturbation inequality. This inequality is saturated when V ′′(0) = 0.

Using the explicit expression of the line element and considering the first-order saturation

condition, this indicates that ∂vδ
2f(v, rh) = 0.

– 10 –
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The third-order perturbation inequality. When the first two order inequalities are

both saturated, the third-order perturbation inequality can be derived. Taking two vari-

ations of eq. (B.14) and evaluating it on the background, we have

δ3M − ΦHδ
3Q− 3δQδ2Q

rh
= V(3)

0 (0) + E ′′0 (0) . (B.22)

Using the first two order saturation conditions, the null energy condition under the third-

order approximation implies that

N0(λ) ' λ3

3!
N (3)

0 (0) =
λ3

3!
V(3)

0 (0) ≥ 0 . (B.23)

Combining the two saturation conditions with the stability condition, the second term on

the right hand side gives

E ′′0 (0) =
rh
2

∫ v1

v0

dv
[
δf∂vδ

2p+ 2δ2f∂vδp
]
r=rh

=
rh
2

[
δfδ2p+ 2δ2fδp

]
v=v1,r=rh

= 0 .

(B.24)

Summing the above results, the third-order variational identity (B.22) reduces to

δ3M − ΦHδ
3Q− 3δQδ2Q

rh
≥ 0 . (B.25)

It is the third-order perturbation inequality. This inequality is saturated when V(3)(0) = 0.

Using the explicit expression of the line element and together with the first two order

saturation conditions, this indicates that ∂vδ
3f(v, rh) = 0.

The fourth-order perturbation inequality. We will derive the fourth-order pertur-

bation inequality when the first three inequalities are all saturated. Taking three variation

of eq. (B.14) and evaluating it on the background geometry, we have

δ3M − ΦHδ
3Q− 3δ2Q2 + 4δQδ3Q

rh
= V(4)

0 (0) + E(3)
0 (0) . (B.26)

Analogous to the calculating process of the first three order inequalities, using the first three

order saturation conditions, the null energy condition under the fourth-order approximation

implies that V(4)
0 (0) ≥ 0. Together with the stability condition, the second term on the

right hand side gives

E ′′0 (0) =
rh
2

∫ v1

v0

dv
[
δf∂vδ

3p+ 3δ3f∂vδp+ 3δ2f∂vδ
2p
]
r=rh

=
rh
2

[
δfδ3p+ 3δ2fδ2p+ 3δ3fδp

]
v=v1,r=rh

= 0 .

(B.27)
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Summing the above results, the second-order variational identity (B.26) reduces to

δ3M − ΦHδ
3Q− 3δ2Q2 + 4δQδ3Q

rh
≥ 0 . (B.28)

It is the fourth-order perturbation inequality. This inequality is saturated when V(4)(0) = 0.

Using the explicit expression of the line element and together with the first three order

saturation conditions, this indicates that ∂vδ
4f(v, rh) = 0.

The kth-order perturbation inequality. Finally, we would like to perform the math-

ematical induction to prove the (k + 1)th-order perturbation inequality when the first k

order perturbation inequalities are all saturated. We assume that the kth-order perturba-

tion inequality is expressed as

δkM − 1

2rh

k∑
i=0

Cikδ
k−iQδiQ ≥ 0 , (B.29)

and the saturation of this inequality gives the additional condition V(k)(0) = 0 and

∂vδ
kf(v, rh) = 0. Here Cik is the binomial coefficient. After that, we would like to prove

that the expressions of the (k+ 1)th-order perturbation inequality and the related satura-

tion condition are the same as the expressions of kth-order, just replacing the index k as

k + 1. Taking k variations on eq. (B.14) and evaluating it on the background, we have

δk+1M − 1

2rh

k+1∑
i=0

Cik+1δ
k+1−iQδiQ = V(k+1)

0 (0) + E(k)
0 (0) . (B.30)

When the first k order saturation conditions are taken into account, it is not difficult

to verify that the null energy condition under the (k + 1)th order approximation gives

V(k+1)
0 ≥ 0. For the second term of the right side, we have

E(k)
0 (0) =

rh
2

i=k−1∑
i=0

Cik

∫ v1

v0

dv
[
δi+1f∂vδ

k−ip− δi+1p∂vδ
k−if

]
r=rh

=
rh
2

i=k−1∑
i=0

Cik

[
δi+1f∂vδ

k−ip
]
r=rh,v=v1

= 0 ,

(B.31)

where we have used the first k order saturation inequality such that ∂vδ
if = 0 for any

i ≤ k and the stability condition δjp = 0 for any j at sufficiently late times. Summing the

above results, the (k + 1)th-order perturbation inequality reduces to

δk+1M − 1

2rh

k+1∑
i=0

Cik+1δ
k+1−iQδiQ ≥ 0 . (B.32)

This inequality is saturated when V(k+1)
0 (0) = 0. Using the explicit expression of the line

element and together with the first k order saturated inequalities, it is not difficult to check

that this condition implies that ∂vδ
(k+1)f(v, rh) = 0. Until now, we have proved that the

kth-order perturbation inequality and the related saturation condition can be expressed as

eq. (B.29).
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