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1 Introduction

Macroscopic dark matter (MDM) is a general class of models with dark matter (DM) in

a compact and composite state with a large radius and mass. The composite consists

of many elementary dark matter particles and has dramatically different properties from

a microscopic particle. In the literature, MDM appears in many scenarios either within

the Standard Model (SM) or beyond. For instance, the massive astrophysical compact

halo object (MACHO) such as brown dwarfs is made of SM particles and has long been

proposed as a dark matter candidate [1, 2], although their abundance is constrained by

microlensing experiments to occupy only a small fraction of dark matter [3]. For lighter

MDM below the microlensing threshold mass around 10−11M� [4], one could have so-

called quark nuggets that are made of quark matter in the unconfined QCD phase [5–7].

These objects have a QCD scale energy density, ∼ 1015 g/cm3, and a radius ∼ 0.01 cm.

Beyond the SM, MDM can be composed of bosonic constituents, as in non-topological

solitons [8–10]. For example, in ref. [11], electroweak symmetric dark matter balls (EWS-

DMB) were proposed as a MDM candidate in the simple Higgs-portal dark matter model

with an electroweak scale energy density, ∼ 1027 g/cm3 and a radius ∼ 10−8 cm. Other than

quark nuggets or EWS-DMBs with well-defined QCD or electroweak interactions with SM

particles, there are also other MDM models with only gravitational interactions or other

unknown interactions with ordinary matter, including dark quark nuggets [12], asymmetric

dark matter nuggets [13] and dark blobs [14] (for a recent review see [15]).

Some MDM candidates like QCD quark nuggets and EWS-DMBs have relatively large

interaction cross sections with ordinary matter. QCD quark nuggets behave basically like a

very heavy nucleus. When they elastically scatter off a nucleus on the target, various nearby
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bound states of MDM and nucleus enhance the scattering process, leading to a geometric

size cross section at large radius. Similarly, for EWS-DMBs, the nucleus has slightly

different masses inside and outside the dark matter state. For a large radius RΦ above the

bound state threshold radius, the elastic scattering cross section saturates the geometric one

and varies between 2πR2
Φ

and 4πR2
Φ

up to quantum mechanical shadowing effects [11]. This

elastic scattering cross section is rather large such that the MDM may interact with nuclei

multiple times in a detector. Traditional dark matter direct detection experiments that look

for a single-hit event may veto the MDM-induced multi-hit events and may not be suitable

to search for “strongly interacting” MDM [16, 17]. Because of the spectacular multi-hit

signature, potential experiments searching for MDM do not necessarily need to be located

underground. The key requirement is to have a large volume detector to compensate the

smallness of the MDM flux. Indeed, the large neutrino detectors like Borexino, ICARUS,

NOνA, JUNO, Super-Kamiokande (Super-K), DUNE, Hyper-Kamiokande (Hyper-K) or

even IceCube could be used to search for MDM. On the hand, the trigger thresholds of the

neutrino detectors become crucial because the individual MDM scatterings do not deposit

that much energy. For instance, Borexino and JUNO could have a sufficiently low threshold

energy to detect some multi-hit scattering events [11], but not for the other larger volume

experiments, which have energy thresholds of at least 1 MeV.

In this paper, rather than studying elastic scattering events of MDM, we point out

another interesting MDM-induced signature. As MDM hits a nucleus in the detector, the

nucleus and MDM could form one of many bound states, as mentioned in ref. [11] for

EWS-DMBs. Just like hydrogen formation from an electron and a proton, e−+p→ H+γ,

the radiative capture or recombination process can generate a photon in the final state.

The photon carries most of the binding energy and could have an energy higher than the

kinetic energy of the scattering system. Similarly, the nucleus radiative capture process

by a MDM, A
Z N + MDM → bound states + γ, can produce energetic photons in the final

state. Depending on the detailed properties of the MDM, the photons produced could have

an energy above 1 MeV or even up to GeV, which could be observed by a larger volume

neutrino detector.

The calculation for the radiative capture cross section can be found in several systems.

Other than the hydrogen recombination process [18, 19] with a long-range Coulomb force,

the capture of a nucleon or nucleus by a grand unified theory magnetic monopole has been

studied in [20]. For both cases, because of the radiated photon wavelength is much longer

than the Bohr radius, the dipole approximation has been used to simplify the calculation.

The situation is different for a MDM with a hard-sphere structure. The released photon

energy q could be so energetic such that its wavelength 2π/q could be much shorter than

the MDM size RΦ . Therefore, a non-dipole calculation is needed to study the radiative

capture process of MDM with a large RΦ . The situation is similar to the neutron capture

by a nucleus, although the underlying interactions are different and one usually relies on

numerical tools to estimate the cross sections [21]. In this paper, without relying on dipole

approximation, we take the low energy limit with a small scattering momentum k such

that k RΦ � 2π, perform an analytic calculation, and extrapolate the radiative capture

cross section to a large radius beyond this approximation.
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Our paper is organized as follows. We first use the EWS-DMB as a concrete MDM

example to set up the stage for our calculation in section 2. Section 3 contains the main

calculations with the dipole limit in subsection 3.4, low energy limit in subsection 3.5 and

extrapolation to a large radius in subsection 3.6. The prospects of detection in various

neutrino detectors are discussed in section 4. We summarize our results in section 5.

2 Example macroscopic dark matter: EWS-DMB

We use EWS-DMB as a working example to discuss the radiative capture of nuclei by

macroscopic dark matter. Our analysis can be also applied to other types of MDM that

have a large interaction strength with SM particles. As discussed in ref. [11], there exists a

non-topological soliton state for dark matter in the simple Higgs-portal dark matter model

with an unbroken U(1)Φ dark matter number symmetry. The relevant interactions beyond

the SM have

L ⊃ −λφhΦ†ΦH†H −m2
φ,0Φ†Φ− λφ(Φ†Φ)2 , (2.1)

with λφh as the Higgs-portal interaction, mφ,0 as the dark matter bare mass independent

of electroweak (EW) symmetry breaking, λφ as the self-interaction of dark matter particle

Φ. After EW symmetry breaking, the free dark matter particle mass is mφ = (m2
φ,0 +

λφhv
2
EW/2)1/2 with vEW = 246 GeV, the EW vacuum expectation value (VEV).

In addition to the free particle dark matter state, there is a non-topological soliton

state of dark matter with a charge Q = i
∫
dx3(Φ†∂tΦ − Φ∂tΦ

†). Solving the classical

equations of motion for both Φ and H and in the large Q limit, the dark matter soliton

state has a mass of

MΦ = Qωc = Q
[
m2
φ,0 + (λφ/4λh)1/2m2

h

]1/2
. (2.2)

Here, λh ≈ 0.13 is the Higgs quartic coupling in the SM and mh ≈ 125 GeV is the Higgs

boson mass. In the parameter region with
√
λφ/λφh < 1.4, one has ωc < mφ, so the

soliton state has a lighter mass per charge than a free dark matter particle state. For a

non-negligible λφ and a spherically symmetric EWS-DMB, the self-interaction of Φ field

induces a step-like or hard-sphere profile for the Φ field up to a radius RΦ and a wall

thickness of 1/vEW. In the large Q limit, there are simple scaling laws between the DMBs

charge, size and mass: MΦ ∼ Q ∼ R3
Φ

. The energy density of a DMB is

ρΦ =
MΦ

(4π/3)R3
Φ

∼ v4
EW ∼ (100 GeV)4 , (2.3)

which is much denser than ordinary matter. The early universe production of the EWS-

DMB from a first-order phase transition has also been discussed in ref. [11]. The EWS-

DMBs can have a macroscopic mass above 1 gram and a radius above 105 GeV−1, dramat-

ically above the electroweak scale. The masses and radii of EWS-DMBs are very sensitive

to the portal coupling strength λφh, which is also responsible for providing the first-order

electroweak phase transition. In the range of λφh from 2 to 9, the average DMB mass
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ranges from 1 × 1024 GeV and 9 × 1033 GeV [11]. There is no collider constraint on the

model parameter space with λφh > 2. For a large coupling, the Φ particle has a mass above

half the Higgs mass and has a suppressed pair-production cross section from an off-shell

Higgs boson at the Large Hadron Collider.

Due to the interplay of Φ and Higgs profiles, the field value of Φ in the inner re-

gion of EWS-DMB is large enough to flip the sign of the effective Higgs mass squared,

λφhΦ†Φ−λhv2
EW, and prefers a zero Higgs VEV or unbroken electroweak symmetry. Hence,

this soliton state is an interesting macroscopic dark matter, because it sustains an EW sym-

metric “vacuum” in a finite region of space, immersed in the normal EW breaking vacuum.

When DMB with a large radius scatters with a nucleon or a nucleus, a large scattering

cross section is generically anticipated. For elastic scattering, there are effects due to

shallow bound states at several partial waves. After summing over these partial waves,

the cross section follows a “hard ball” behavior, between 2 and 4 times the geometric

cross section [11]. Multi-hit signals are the characteristic features of the DMB elastic

scattering events. Since only O(10 keV) are anticipated from each scattering, a low energy

threshold below around 1 MeV is required to identify the dark matter scattering events. In

this paper, we will instead concentrate on the important radiative capture process, which

can convert the binding energy of a nucleus and a DMB into photons with energies of

O(1 MeV–100 MeV), depending on nucleus mass number.

3 Radiative capture cross section

A nucleus can be captured by a DMB while emitting a photon in a process similar to

neutron radiative capture by a nucleus, such as n + 197
79Au → 198

79Au + γ. Explicitly, the

DMB-induced radiative capture process is

A
Z N + Φ → ΦN + γ , (3.1)

with ΦN as a bound state of DMB and a nucleus. For the neutron capture case, depending

on the incident neutron kinetic energy, there is a low energy region with 1/v scaling, an

intermediate resonant region and a fast neutron region. For the DMB case, the relative

speed between the DMB and the target nucleus in a laboratory is roughly the averaged

dark matter speed in our local galaxy or around v ∼ 300 km/s ≈ 10−3 c. Using the reduced

mass µ ≈ Amp and the proton mass mp = 0.938 GeV, the kinetic energy of the scattering

process is Ekin ≈ k2/(2µ) ≈ mA v
2/2 ≈ A × 0.5 keV, which does not vary too much for

comparable nucleus mass number. On the other hand, we do not know the exact radius of

DMB and will keep the radius as a free parameter of the model. As with neutron radiative

capture, we will see three qualitatively different regions: no bound state formation, resonant

scattering and geometric cross section saturation.

Though the radiated photon of course requires a relativistic description, both the initial

scattering state and final bound state are well described by non-relativistic mechanics. For

a heavy DMB with MΦ � mA, the center-of-mass frame is approximately the rest frame

of DMB. Effectively, one can think that a nucleus enters the inner region of DMB.
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For simplicity, we only consider spherically symmetric DMBs in this work. The change

in the profile of the Higgs field from non-zero outside to zero inside is rapid, forming a

“wall” of thickness roughly π/v−1
EW � RΦ [11]. This change in the Higgs VEV modifies

the contribution of the quark masses to the mass of the nucleus, which is to excellent

approximation the reduced mass of the system. The shift of the nucleus mass from outside

to inside of the DMBs is given by

∆mA ≈ −AyhNN vEW , (3.2)

where A is the mass number of the nucleus and yhNN is the nucleon Yukawa coupling,

which is roughly the same for protons and neutrons and has a value of 1.1× 10−3 [22, 23].

The shift in the mass is small since the contribution of the Higgs-generated quark masses

to the nucleon masses is small compared to that of QCD dynamics. A non-relativistic

expansion of the Klein-Gordon equation for the nucleus in the background of the changing

Higgs VEV profile through the spherically symmetric DMB can be performed. Note that

physical fields of any Lorentz representation nevertheless satisfy the Klein-Gordon equation.

The spin degrees of freedom decouple in the non-relativistic limit. Thus, the Schrödinger

analysis applies to nuclei of any spin.

If the expansion is done around the outside mass Z mp + (A − Z)mn, the changing

Higgs VEV generates a spherical potential well for the nucleus inside the DMB in the “thin

wall” approximation. The potential has a depth of

V0 = −∆mA . (3.3)

We allow for some uncertainty in the determination of this effective potential due to nuclear

effects as well as other models different from the baseline EWS-DMB model and with a

suppressed modification on the nucleus mass. More concretely and in our later numeric

calculation, we will use V0 = A × 32 MeV, which is around one eighth of the maximal

electroweak restored case. The scattering cross section becomes a “textbook” one, although

we are not aware of the relevant results in the large radius parameter region, where the

usual dipole approximation breaks down. In the DMB-nucleus center-of-mass frame, the

relevant Schrödinger equation is

− 1

2µ
∇2ψ(x) + V (x)ψ(x) = E ψ(x), V (x) =

{
−V0 , r ≤ RΦ

0 , r > RΦ

, (3.4)

where r = |x| is the magnitude of the center of mass coordinate.

3.1 Bound states

For bound states, i.e. states with E < 0, we write the wave functions in the spherical

coordinate with quantum numbers n, `,m

ψn`m(x) = Rn`(r)Y`m(x̂) . (3.5)

Here, Y`m(x̂) is a spherical harmonic. The bound state is normalized as
∫
d3x |ψn`m(x)|2 =

1. The normalizable radial wave functions can be expressed in terms of spherical Bessel

– 5 –
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Figure 1. Left panel: the energy levels for nucleus-DMB bound states for different partial wave

numbers `. Right panel: the 12 radial wave functions as a function for r for the p-wave bound

states with ` = 1.

functions

Rn`(r) =

 Rin
n`(r) = d1 j`(κn` r) , r ≤ RΦ ,

Rout
n` (r) = d2 [j`(i kn` r) + i y`(i kn` r)] , r > RΦ ,

(3.6)

with κn` =
√

2µ (V0 − |En`|) and kn` =
√

2µ |En`|. The coefficients d1,2 and the en-

ergy eigenvalues En` are determined by the boundary conditions Rin
n`(RΦ ) = Rout

n` (RΦ ),

R′ inn` (RΦ ) = R′ out
n` (RΦ ) and the normalization condition

∫∞
0 dr r2R2

n`(r) = 1. While the

energy eigenvalue equation cannot be solved analytically without any approximations, the

coefficients d1 and d2 are found to be

d1 =
1

Nn` j`(κn`RΦ )
, d2 =

1

Nn` [j`(i kn`RΦ ) + i y`(i kn`RΦ )]
, (3.7)

where

N2
n` =

1

2
R3

Φ

[
K`−1/2(kn`RΦ )K`+3/2(kn`RΦ )

K2
`+1/2(kn`RΦ )

−
J`−1/2(κn`RΦ ) J`+3/2(κn`RΦ )

J2
`+1/2(κn`RΦ )

]
, (3.8)

in terms of Bessel functions Jν and Kν .

For each partial wave `, there is a threshold radius R`th below which there are no bound

states. The threshold is given by

R`th =
π

2
√

2µV0
J`−1/2,1 , (3.9)

with Jν,1 as the first zero of the Bessel function Jν . For example, one has R0
th = 0.41 GeV−1

and R1
th = 0.80 GeV−1 for A = 16. For a large radius RΦ , many bound states exist. For

A = 16 and RΦ = 10 GeV−1, we show the energy levels in the left panel and the radial

wave functions for ` = 1 in the right panel of figure 1. There are totally 194 bound states,

including 12 s-wave and 12 p-wave bound states. For more excited bound states with a

smaller value of |En`|, there are more nodes in the wave function.

– 6 –



J
H
E
P
0
5
(
2
0
2
0
)
1
6
0

In the limit that kn`RΦ � 1, the bound state wave function outside the ball is ex-

ponentially small. In this limit, the bound state solution is well-approximated by the

infinite well solution, for which Rout
n` ≈ 0. The energy eigenvalues are given by the condi-

tion κn` = J`+1/2,n/RΦ , where J`+1/2,n are the Bessel function zeroes. For n � `, these

wavenumbers are well approximated by κn` ≈ [π(n+ `/2− 1/4)]/RΦ .

3.2 Scattering states

The scattering state is also an eigenstate of energy, though with E = k2/(2µ) > 0. It is

not an eigenstate of angular momentum as the scattering state is incident from far away

with fixed momentum. The incident scattering wave function has the form eik·x far from

the potential. As angular momentum is conserved in scattering off of a spherical potential,

the full wave function can be decomposed as

ψk(x) =
∑
`m

Rk`(r)Y
∗
`m(k̂)Y`m(x̂) . (3.10)

The radial wave function can also be expressed in terms of spherical Bessel functions,

Rk`(r) =

 Rin
k`(r) = c3 j`(κ r) , r ≤ RΦ ,

Rout
k` (r) = c1 j`(k r) + c2 y`(k r) , r > RΦ ,

(3.11)

where κ =
√
k2 + 2µV0 and k =

√
2µE. Unitarity implies that scattering off of a

spherical potential leads to a phase shift in the exterior wave function partial waves far away

from the ball. In the decomposition of the wave function into partial waves, the phase shift

condition corresponds to
√
c2

1 + c2
2 = 4πi`. The remaining combinations of coefficients are

determined by the boundary conditions Rin
k`(RΦ ) = Rout

k` (RΦ ) and R′ ink` (RΦ ) = R′ out
k` (RΦ ).

The coefficients for the exterior wave function can be written as

c1 = 4π i` cos δ , c2 = 4π i` sin δ , (3.12)

where δ is the partial wave scattering phase, given by

tan δ =
k j`(κRΦ ) j`+1(k RΦ )− κ j`+1(κRΦ ) j`(k RΦ )

κ j`+1(κRΦ ) y`(k RΦ )− k j`(κRΦ ) y`+1(k RΦ )
. (3.13)

For s-wave scattering state, the normalization factors have a simple analytic formula.

For instance,

c3 =
4
√

2π κ√
κ2 + k2 + (κ2 − k2) cos (2κRΦ )

≈ 4π

|cos (κRΦ )|
, (3.14)

where we have taken the limit of k � κ for the small kinetic energy E � V0. So, the

amplitude of the inner-region wave function has a large peak value at RΦ = (2m+1)π/(2κ)

for integer m, which is coincident with the values of RΦ to have an s-wave resonant elastic

scattering. In our later calculation of the radiative capture cross section, σγ , the oscillating

peak structure of c3 will induce a similar behavior for σγ as a function of RΦ . For other

partial-wave scattering states, the similar resonant enhancement occurs for certain values

of RΦ ≈ J`−1/2,n/κ where Jν,n are Bessel function zeros.

– 7 –
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3.3 General scattering amplitude

We begin by writing the general formula for the scattering amplitude. We then derive the

analytic formulas to calculate the cross sections in two interesting limits: the dipole and

low energy limits.

The electromagnetic coupling of the nucleus to the vector potential is given by the

interaction Hamiltonian

Hint =
1

2µ
Z e [pN ·A(xN) + A(xN) · pN] , (3.15)

where xN and pN are the nucleus position and momentum operators respectively. In the

MΦ � mA limit, these nucleus operators reduce to X + x and p, where uppercase letters

denote center-of-mass motion and lowercase letters denote relative motion. The scattering

matrix element is then given by

Mn`m =
1

2µ
Z e ε∗ ·

∫
d3x e−iq·x [∇ψ∗n`m(x)ψk(x)− ψ∗n`m(x)∇ψk(x)] , (3.16)

where ε = ε(q) is the photon polarization satisfying q · ε(q) = 0 and ψk/ψn`m are the

scattering/bound state wave functions relative to the center of mass respectively. Note that

the scattering and bound state wave functions have different normalizations and different

mass dimensions. The scattering wave function is not normalizable as the incident wave

is a plane wave. The photon momentum and energy have |q| = ωn` ≈ Ek + |En`|. For a

small dark matter velocity, the kinetic energy is in general smaller than the binding energy

and the photon energy is approximately the binding energy.

The radiative capture cross section in the non-relativistic normalization is then given by

σγ,n` =
1

v

∫
dΩ
|En`|
8π2

∑
m

|Mn`m|2 . (3.17)

In general, one can keep all partial wave functions in the scattering state, expanding e−iq·x

in partial waves as well and performing the integration to calculate σγ,n`. This procedure

is conceptually clear, but practically tedious. Instead, we mainly focus on few parameter

regions with good approximation schemes, derive analytic formulas and present the cross

sections based on them.

The most relevant parameters for radiative capture of the EWS-DMB is the radius

RΦ , the scattering kinetic energy or momentum k ≡ |k| and the radiated photon energy

q ≡ |q|. The three limits are

• Dipole limit : qRΦ � 1. In this limit, the wavelength of the emitted photon is much

larger than the radius of the DMB, so that the wave function of the emitted photon

becomes trivial or e−iq·x → 1.

• Low energy limit : kRΦ � 1. In this limit, only the s-wave mode of the scattering

state has a significant contribution.

• Semi-classical limit : qRΦ � 1 and kRΦ � 1. In this limit, a large number of closely

spaced bound states can be produced and all wave functions are oscillating rapidly

across the potential.
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For the semi-classical limit, we cannot take the classical limit as the dominant radiation

effect comes from the suppressed quantum effects over the entire radius of the potential.

This limit is the most challenging to compute due to the large number of contributing states

and amplitudes. We approximate the cross section via scaling relations inferred from the

other two limits as well as the behavior of the neutron capture cross sections by a nucleus

in the similar limit.

We also note that the hydrogen radiative capture process satisfies both dipole limit

and low energy limit because of the smallness of the electromagnetic coupling and the

long-range property of Coulomb interactions. A simple analytic result can therefore be

obtained in that case [18, 19, 24].

3.4 Dipole limit

In the dipole limit with qRΦ � 1, |q ·x| � 1 for all |x| ≤ RΦ . In this limit, we simplify the

calculation using the operator relation p = −i µ [x, H] [25], where H is the Hamiltonian

excluding the interaction (3.15). The matrix element becomes

|Mn`m| = Z e (|En`|+ Ek)

∫
d3xψ∗n`m(x) ε∗ · xψk(x) . (3.18)

Starting with eq. (3.18), we perform the angular integration over spherical harmonics,

square the amplitude, integrate over the photon emission angle, and sum over photon

polarizations and m of the bound states to obtain the radiative capture cross section for

the bound state (n, `)

σγ,n` =
1

v

Z2 α

3π
|En`|(|En`|+ Ek)2

×

[
`

∣∣∣∣∫ dr r3Rn`(r)Rk`−1(r)

∣∣∣∣2 + (`+ 1)

∣∣∣∣∫ dr r3Rn`(r)Rk`+1(r)

∣∣∣∣2
]
.

(3.19)

Using the oxygen nucleus as an example, we show the radiative capture cross section

as a function of RΦ in figure 2. Since photon energy can be as large as the depth of

potential barrier, V0 ≈ A × 32 MeV, and if all deep bound states are included, the dipole

approximation is only valid up to a radius of RΦ ≈ 2π/V0 ≈ 12 GeV, which sets the upper

end of the x-axis in figure 2. The oscillating peak structure is also obvious for this plot.

As we discussed around (3.14), the scattering states could be close to a bound state for a

certain RΦ , leading to resonant enhancement of the cross section.

3.5 Low energy limit

In the low energy limit with kRΦ � 1, we find it convenient to use integration by parts

and the on-shell photon conditions q · ε = 0 to rewrite the amplitude as

Mn`m = − 1

µ
Z e ε∗ ·

∫
d3x e−iq·x ψ∗n`m(x)∇ψk(x) . (3.20)
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Figure 2. Radiative capture cross section as a function of the DMB radius for the oxygen nucleus

with Z = 8 and A = 16 in the dipole approximation. The dominant p-wave bound states and

s-wave scattering states are included in this plot. Two different dark matter averaged velocities of

v̄ = 10−3 and v̄ = 10−2 are considered.

For the dipole factor e−iq·x, we decompose its complex conjugate in spherical harmonics as

eiq·x =
∑
`′,m′

4π i`
′
j`′(q r)Y

∗
`′m′(q̂)Y`′m′(x̂) . (3.21)

The scattering state wave function for kr � 1 outside the DMB scales as

ψk ≈
∑
`m

ak` (kr)` Y ∗`m(k̂)Y`m(x̂) ≈ ak0 Y
∗

00(k̂)Y00(x̂) , (3.22)

where ak` are non-zero numerical coefficients. In other words, for kRΦ � 1, the s-wave

term dominates at the boundary of the potential, which can further simplify our calculation.

Putting these pieces together, squaring, summing over polarizations and the final state m

number and integrating over the photon emission angle, we find the cross section is given by

σγ,n` =
1

v
` (`+ 1) (2`+ 1)

Z2 α |En`|
2π µ2 q2

∣∣∣∣∫ dr r j`(q r)Rn`(r)R
′
k0(r)

∣∣∣∣2 (` ≥ 1) . (3.23)

We first note that the above formula could have a broader application beyond the dark

matter phenomenology here. The radiative capture cross section in the low energy limit

could also be applied to other quantum mechanical systems. Secondly, note that in the

simultaneous dipole and low energy limits, both (3.19) and (3.23) reduce to1

σγ,n1 =
1

v

Z2 α

3π
|En1| (|En1|+ Ek)2

∣∣∣∣∫ dr r3Rn1(r)Rk0(r)

∣∣∣∣2 . (3.24)

1For eq. (3.23) in the low-energy limit, one can use integration by parts and the Schrödinger equations

to derive (3.24).
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Figure 3. Radiative capture cross section as a function of the binding energy of the bound states

for Z = 8, A = 16, V0 = A × 32 MeV and v̄ = 10−3, as well as RΦ = 10 GeV−1 (left) and

RΦ = 100 GeV−1 (right).

In this simultaneous limit, an analytic result for the cross section can be obtained,

σγ,n1 =
1

v

Z2 α

3πN2
n1

R8
Φ |En1| (|En1|+Ek)2× (3.25)

c3

{
κ̂ cos κ̂ [(κ̂2−3 κ̂2n1) sin κ̂n1+κ̂n1 ∆κ̂2 cos κ̂n1]+κ̂2n1 sin κ̂ (∆κ̂2 sin κ̂n1+2 κ̂n1 cos κ̂n1)

}
κ̂ (∆κ̂2)2 (κ̂n1 cos κ̂n1−sin κ̂n1)

+
4π
{
k̂ [k̂2 (1+k̂n1)+k̂2n1 (3+k̂n1)] cos(k̂−δ)+k̂2n1(k̂2+k̂2n1+2 k̂n1) sin(k̂−δ)

}
k̂ (k̂2+k̂2n1)2 (k̂n1+1)


2

,

where δ is the elastic scattering phase, given in our convention by tan δ = c2/c1 from

eq. (3.13), x̂ = xRΦ , and ∆κ̂2 = κ̂2
n1− κ̂2. The factor c3 is given in (3.14), while N2

n1 given

in (3.8).

After numerical integration of eq. (3.23), we show the cross sections for two benchmark

radii in figure 3 for illustration, RΦ = 10 GeV−1 and RΦ = 100 GeV−1, along with the

oxygen element and v = 10−3. For RΦ = 10 GeV−1, the energy levels can be found in

the left panel of figure 1, while the RΦ = 100 GeV−1 case shows similar behaviors. The

most excited p-wave state has E11 ≈ 32.7 MeV for RΦ = 10 GeV−1 and E11 ≈ 2.2 MeV

for RΦ = 100 GeV−1. As can be seen from figure 3, the radiative capture cross section

is dominated by the most excited state of ` = 1 bound states, which is precisely the

limit in which the dipole approximation applies. For a fixed `, the cross section decreases

exponentially for deeper bound states with larger binding energy.

In figure 4, we show the capture cross section as a function of RΦ up to a radius slightly

smaller than 2π/k ≈ 2π/(Amp v̄) ≈ 400 GeV−1. Again, one can see a clear oscillation

behavior, which is due to the resonance effects in the scattering state. The cross section

envelope has a mild dependence on the radius, although it is very sensitive to the actual

value of RΦ within one period of the wave.
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Figure 4. Radiative capture cross section as a function of the DMB radius for Z = 8, A = 16,

V0 = A × 32 MeV, and v̄ = 10−3 in the low energy limit, in which only s-wave scattering state is

included. The right panel narrows the range to the largest radii considered.

It is instructive to compare the radiative capture cross section to the elastic scattering

cross section. Using the phase shift method, the elastic scattering cross section is calculated

in the low energy limit by

σelastic ≈
4π

κ2

[
tan (κRΦ )− κRΦ

]2
, (3.26)

which has a similar oscillating behavior with the same periodicity. The ratio of the radiative

capture cross section (in the region under computational control) to this value is shown in

figure 5, which still has an oscillating behavior. In the dashed and black lines, we guide

the general envelop behavior of this ratio. The general behavior of this ratio as a function

of v and RΦ has a simple scaling

σγ/σelastic ∝ v−1R
−3/2
Φ

, (3.27)

with the range of radii satisfying the low energy approximation.

Note that as RΦ is varied, the scattering wave function in each partial wave mode can

be resonantly enhanced when

RΦ ≈
J`−1/2,n

κ
, (3.28)

where Jν,n are Bessel function zeros. The s-wave wave function gets enhanced by a factor

of κ/k, leading to an enhancement of the radiative capture cross section by (κ/k)2.

The dependence on the DMB radius of the total radiative capture cross section in the

dipole limit is shown in figure 2. Beyond RΦ ≈ 12 GeV−1, we work in the low energy

approximation. The dependence on RΦ in this limit is shown in figure 4. Beyond RΦ ≈
100 GeV−1, the low energy limit is no longer applicable.

3.6 Large radius limit

In the large radius limit, the approximations we have used cease to apply and the calculation

of the radiative capture cross section becomes computationally prohibitive. The elastic

scattering cross section, on the other hand, can be determined in this limit by summing
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Figure 5. Ratio of the radiative capture to elastic scattering cross section of DMB in the low

energy limit. The benchmark Z = 8, A = 16, V0 = A× 32 MeV and v̄ = 10−3 is used. The dashed

and black line has the ratio ∝ R−3/2

Φ
.

our analytic expression for the partial wave cross section to a sufficiently high partial wave

number. As seen in ref. [11], it saturates the geometric cross section πR2
Φ

up to an O(1)

factor. We proceed by estimating the ratio of the radiative capture cross section to the

known elastic cross section in two different ways: by extrapolating the ratio shown in

figure 5 to large radius and by determining this ratio in neutron capture data. Neither

procedure is entirely robust, but they are meant to provide a guideline for the possibilities.

In the low energy limit, we have found that the ratio of the radiative capture to elastic

scattering cross sections scales as R
−3/2
Φ

. Extrapolating this behavior to large RΦ indicates

that the radiative capture cross section scales as R
1/2
Φ

. We estimate that for kRΦ � 1 the

σγ should saturate to

σγ ∼ 60 GeV−2 ×
(

10−3

v

) (
RΦ

105 GeV−1

)1/2

. (3.29)

Alternatively, this ratio can be estimated from neutron radiative capture data (see

figure 6). The data are plotted as a function of the incident neutron momentum. Since the

relevant comparison for determining the large RΦ limit is kRΦ � 1, the limit is expected

to be reached at large kinetic energy when the momentum becomes comparable to the

effective inverse radius of the nucleus. Only for relatively heavy elements does radiative

capture reach the large kRΦ limit below the complicated MeV scale. The data are not

sufficiently homogeneous across different nuclei to determine a clear numerical pattern.

Nevertheless, the ratios are seen to follow the expected qualitative behavior, going to a

smooth function in the large kRΦ limit (the region to the right of the resonance region).

The ratios of radiative capture to elastic scattering cross sections for isotopes of uranium,

tungsten and silver are shown in figure 6 using the TENDL-2017 model [26, 27]. These

nuclei are chosen as cases where there is a significant amount of data that agree with the

model, as the quality and availability of data varies widely between different isotopes.
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Figure 6. Ratio of the radiative capture to elastic cross sections for neutron capture by three

different nuclei using the TENDL-2017 model [26, 27] in blue color. The dashed orange lines

indicate a 1/v behavior expected at energies below the nuclear resonances and at energies above

the nuclear resonances, but below onset of free nucleon scattering.

4 Prospects for detection

Radiative capture of nuclei by MDM entering the detector deposits significantly more

energy than elastic scattering. The radiation from the initial capture is seen in figure 3

to be of order MeV or larger. Furthermore, excited states are typically produced; their

subsequent decay leads to additional emission totaling around 100 s of MeV.

A full study of these signals in individual detectors is beyond the scope of this work.

Nevertheless, we consider some basic properties of current and forthcoming detectors to

determine the viability of this signal. Direct detection experiments such as Xenon1T [28]

and LZ [29] should be sensitive to radiative capture as the deposited energy far exceeds

their threshold. Current analyses veto multiple energy deposits in a short time window [30].

A single energy deposit would likely be beyond their current search window, but should be

visible if it exceeds the radioactive background. More striking would be several deposits of

comparable energies. We consider this multi-hit signal as our primary signal.

The main advantage of considering radiative capture signals, however, is to consider

higher energy threshold, but larger detectors. These detectors are primarily large neu-

trino detectors. The threshold in the full IceCube volume is at the 100 GeV scale [31],

above the energies typically deposited by MDM. The next largest that could be sensitive

is Hyper-Kamiokande [32]. A few MeV energy deposit, which is the energy released in

the initial capture, is close to the threshold and, even if it is reconstructable, may not

be distinguishable from radioactive and other backgrounds if it is isolated. We therefore

put the requirement that at least 5 capture events occur during MDM passage through

the detector for all detectors considered for our main analysis. This could be particularly

striking at detectors with tracking capabilities like DUNE [33], where the deposits would
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form a line in the detector. Highly segmented detectors like NOνA [34] may also be able

to track the MDM passage in 2D.

A multi-hit signal would be a spectacular event that would be hard to fake with

any background. It may, however, not be required in order to identify an event with

radiative capture during MDM passage. The radiative capture event typically produces

a highly excited bound state, which de-excites and leads to further photon production.

This proceeds until the ground state is reached with a binding energy of 100 s of MeV,

that is with the release of 100 s of MeV in photons. Such photons are unlike the dominant

potential backgrounds from solar and atmospheric neutrinos in their energy spectrum and

topology respectively, while they are above the radioactive decay energy range. Cosmic

rays could be an additional background for surface detectors like ProtoDUNE [35], though

the cosmic ray tagger should reduce this background significantly. If the search can indeed

be made background free by judicious selection criteria, then a very small number of

radiative capture single-hit events would be required for a discovery. The expected event

rate scales like 1/MΦ until a point is reached that the number of MDM passing through

the detector over the course of the experiment running time is less than one. At that point,

corresponding to an upper bound on MΦ , expected sensitivity is lost. A detailed study of

the feasibility of such a low event count search is beyond the scope of this work.

We now comment further on the capabilities of water Cherenkov, liquid argon time

projection chamber (LArTPC), and liquid scintillator detectors to detect photons of the

relevant energies. In any of these detectors, the visible result of the photon that is emitted

during radiative capture is an electron/positron produced by Compton scattering at low

energies or e+e− pair production above 1 MeV. The remaining question is what is the

threshold for detecting the charged particles produced in these processes.

The largest suitable water Cherenkov detector at the moment is Super-Kamioka-

nde [36]. Another detector, Hyper-Kamikande, with similar technology, but an order of

magnitude larger mass and volume is planned. The physical threshold is given by the

Cherenkov momentum of the electron in water, namely p = 583 keV. In principle, any

photon above the corresponding Cherenkov kinetic energy of 263 keV can produce a vis-

ible electron. The efficiency for detection at these low energies is likely to be poor, but

if multiple such events are lined up through the detector, the detection prospects may be

improved. In practice, the lowest threshold analyses have pushed down to electron kinetic

energies of 3.5 MeV [37].

LArTPC is an up-and-coming detector technology. The largest such detector will be

the Deep Underground Neutrino Experiment (DUNE). Other smaller detectors based on

this technology, such as ProtoDUNE [35], are currently operating. In between sits the

ICARUS experiment [38], slated to start taking data in December 2019. These detectors

track charged particles as they pass through the Argon. The threshold energy at DUNE

and in LArTPC detectors in general is less well known as reconstruction in these detectors

is still under active development. The limit is set by the travel distance of the electron

in liquid Argon. The TPC wire pitch is roughly 4 mm at DUNE, so the electron should

travel at least that distance to have multiple hits, corresponding to a kinetic energy of

around 900 keV. In order to reconstruct particles, at least 10 hits are generally required.
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Detector Aeff (cm2) Leff (cm) Nuclei nA (1022 cm−3)

Xenon 1T 1.09× 105 64.2 Xe 1.42

LZ 2.65× 105 100 Xe 1.42

ICARUS 5.08× 105 255 Ar 2.10

ProtoDUNE 6.78× 105 446 Ar 2.10

Borexino 5.67× 105 567 C 3.96

NoνA 1.17× 107 1400 C 3.10

JUNO 9.84× 106 2360 C 3.79

Super-Kamiokande 1.88× 107 2670 O 3.34

DUNE 2.14× 107 2290 Ar 2.10

Hyper-Kamiokande 1.12× 108 4580 O 3.34

Table 1. Properties of the detectors considered in our estimation of MDM discovery potential.

In other words, the electron should travel at least 40 mm, corresponding to a kinetic

energy of around 9 MeV. On the other hand, the DUNE CDR sets a e±/γ threshold at

30 MeV [33], as low energy electromagnetic particles may become difficult to disentangle

from other charged particles such as muons. Above 30 MeV, an electron will typically

undergo Bremsstrahlung before stopping, leading to a characteristic shower.

The largest liquid scintillator detectors are currently Borexino [39] and the NOνA [34]

far detector. JUNO [40], a forthcoming detector that also uses a liquid scintillator, will

be significantly larger. The medium in the latter is a linear alkyl benzene (LAB) that is

planned to have excellent energy resolution. The LAB is 88% carbon by mass. The low

energy reconstruction is limited by the requirement of a minimum number of photoelectrons

to reconstruct the radiative capture event. The threshold for the trigger can be as low as

0.065 MeV [41] and easily below 0.5 MeV [42], which should easily be able to detect a

radiative capture event. Borexino has a similarly low threshold [39]. The NOνA detector

is designed for higher energy events and a threshold around 15 MeV [34]. This would likely

make it challenging to observe the capture photon, but the de-excitation photons could

still be seen.

The properties of the detectors, including geometry and the largest nuclei that make

up a significant fraction of the medium are also provided in table 1. The effective area

Aeff of the detector is the average area normal to the DM trajectory over the DM velocity

distribution and uniform position distribution. The effective length Leff is the average

length of the DM path through the detector. For detectors with multiple modules, it is

assumed that the modules are sufficiently closely spaced that they operate functionally as a

single large detector. Radiative capture is dominated by the most massive common nuclei

in the detector, so we consider only interactions with these nuclei. The number density of

the dominant nuclei are denoted by nA.

Given this analysis strategy, we proceed to determine the region of parameter space

to which each of these detectors is sensitive. We parameterize the models in terms of the
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Figure 7. Sensitivity of Xenon 1T (blue) [28], LZ (orange) [29], ProtoDUNE (red) [35], ICARUS

(purple) [38], Borexino (green) [39], NOνA (brown) [34], JUNO (light blue) [40], Super-Kamiokande

(teal) [36], DUNE (dark blue) [43], and Hyper-Kamiokande (dark green) [32] to radiative capture of

nuclei by MDM. The experiments are listed in order of increasing mass sensitivity. The dashed lines

indicate the sensitivity if at least 5 radiative capture events are required for each MDM passage

through the detector. A running time of 10 years is assumed for Borexino, Super-Kamiokande,

DUNE, and Hyper-Kamiokande, 5 years is assumed for ICARUS and NOνA and one year at the

direct detection experiments and ProtoDUNE. The dotted lines for DUNE and Hyper-Kamiokande

indicate the region in which at least one radiative capture event is expected over the whole running

time. The black line indicates the estimated radiative capture cross section for QCD and EW

density MDM.

MDM mass and radiative capture cross section of the heaviest nucleus in the detector in

question in order to maintain model independence. Pending a detailed study, we assume

that 5 energy deposits during the MDM passage is reconstructed with 100% efficiency and

is efficiently separable from potential backgrounds such as radioactive decays, cosmic rays

and neutrinos. The resulting estimated sensitivity is presented in figure 7. We assume a one

year running time for Xenon 1T, LZ, and ProtoDUNE, a 5 year running time at ICARUS

and NOνA and a 10 year running time for the remaining large neutrino experiments. In

addition, for the DUNE and Hyper-Kamiokande experiments, we indicate the region in

which at least one radiative capture event will occur over 10 year in order to assess the

potential sensitivity of a single-hit analysis.

5 Discussion and conclusions

The signal of radiative capture appears to be rather striking and should be detectable by

any of the experiments considered in this work. That said, a full study of the reconstruction

of this signal in each experiment is left to future work. In particular, we have left open the

question of whether single radiative capture event can be reconstructed and distinguished

from background or whether even more distinctive multi-hit events are required in order
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to have a background free search. Furthermore, triggering and data acquisition may be an

issue in large, high granularity detectors. While it should be possible to design a system to

collect radiative capture events, the current systems may unfortunately miss these events.

We also note that searching for radiative capture events is complimentary to performing

traditional dark matter direct detection experiments, which are searching for single hit,

low energy threshold elastic scattering events. For a large radius, above the threshold to

have a bound state, radiative capture events have an advantage because one can utilize

a larger detector with a higher threshold. For a small radius, traditional direct detection

experiments have an advantage due to their a low energy threshold.

In summary, we have studied the process of radiative capture nuclei by macroscopic

dark matter. We have found that the radiative capture process can be comparable to the

elastic scattering process, but has generally more promising detection prospects at higher

energy threshold neutrino detectors. Current large neutrino detectors such as ProtoDUNE,

ICARUS, Borexino, NOνA and Super-Kamiokande have sensitivity beyond that of direct

detection experiments. The next generation of experiments, that is JUNO, DUNE, and

Hyper-Kamiokande, should further expand the sensitivity to MDM. A search for multi-hit

events would probe parameter space for QCD density MDM such as quark nuggets, while a

background free single event analysis could be sensitive to electroweak density MDM such

as EWS-DMBs.
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