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1 Introduction

The determination of correlation functions in two-dimensional critical geometrical mod-

els is a difficult and important problem that has stymied the community since the early

days of conformal field theory. A prime example in this context is the Q-state Potts

model [7], which, for Q generic, can be reformulated geometrically in terms of clusters,

via the well-known Fortuin-Kasteleyn (FK) expansion [8]. The limit Q → 1 is then par-

ticularly interesting, since it describes the percolation problem, arguably the most simply

formulated example of geometrical critical phenomena and at the same time a model with

widely ramified applications.

The study of geometrical correlation functions in the Potts model — by which we

understand correlators defined in terms of the connectivities induced by the FK clusters

— has recently revealed remarkable structures, and in particular a profound relationship

with imaginary Liouville conformal field theory (CFT). In [9] a link was found between a

particular three-point function — the probability that the three points belong to the same

FK cluster — and the Liouville structure constants; this was subsequently extended to

more general three-point functions in [10]. The subtle relations clarified there between the

spin correlation functions and the cluster geometrical correlations were also generalized to

the four-point level in [11], paving the way to further tackle the geometrical problem.

Recently a new approach to the study of the geometrical four-point correlations has

been proposed based on the potential connections with Liouville CFT and a systematic

use of the crossing symmetry constraints. In the pioneering work [1], a simple crossing

symmetric spectrum was proposed to describe some of the four-point functions of the

order operator in the Potts model; in terms of clusters, these correspond to probabilities

of having four points connected in different ways, as we shall discuss below. The proposal

was checked using Monte-Carlo simulation, and reasonable agreement was found.1 A later

work [2] based on a combination of algebraic and numerical techniques however showed

that the speculated spectrum cannot be the true spectrum for the Potts model: it misses

an infinite number of states which, despite having small amplitudes, are essential to cancel

the unwanted singularities in Q appearing in the four-point function of [1]. To this day,

the full four-point functions remain therefore unknown.2

Interestingly, it was found afterwards in [4] that the spectrum of [1] could be obtained

from a certain limit of minimal models when the central charge is taken to be an irrational

1Related studies on the torus were carried out later in [12, 13].
2See also [14] for a recent study of the four-spin correlations using the Coulomb Gas approach.
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number (see section 2.4 below). The corresponding CFT was further elucidated analytically

in [3, 6]. The main question however remains: what statistical physics model does the

spectrum in [1] actually describe, if it is not the Potts model, and why does it give results

apparently so close numerically [5] to those of the Potts model? The goal of the present

paper is to answer this question. Remarkably, we shall also obtain results of considerable

importance for the solution of the Potts problem itself, as will be described in a subsequent

work [15].

Our approach follows our general philosophy of analysing lattice models in as much

detail as possible. In the present case, we will focus on the geometrical interpretation of

correlation functions in restricted solid-on-solid (RSOS) models, following and extending

the early work of, in particular, V. Pasquier [16–18] and I. Kostov [19]. We shall find

that the lattice correlation functions of certain operators in these models have graphical

expansions that are very similar to — albeit slightly different from — those occurring in

the Potts model. The main difference between the two models is, perhaps not surprisingly,

the weight given to clusters with non-trivial topologies. The fine structure of these weights

allows for intricate cancellations of the Potts spectrum given in [2], leading to the spectrum

of (unitary or non-unitary) minimal models in the corresponding limits. By following the

logic in [4], and taking appropriate limits of the lattice model, we are then able to provide

a geometrical interpretation of the correlation functions proposed in [1], and explain why

— and by how much — they differ from the true Potts model ones.

The paper is organized as follows. In the next section, we briefly review the geometrical

correlations in the Potts model, and provide further motivations to study the relation

with minimal models. In section 3, we describe the general strategy for comparing the

Potts and RSOS correlations, and we state in particular the main results about the RSOS

lattice model relevant for establishing its connection with the Potts model. These will be

used in the following section to study in detail the geometrical formulation of four-point

functions in minimal models of type A and D. There, we define the relevant geometrical

quantities — the “pseudo-probabilities” in the RSOS minimal models, which are to be

compared with the true probabilities in the Potts model. In section 5, we turn to the

s-channel spectra involved in these two quantities, which we exhibit in terms of the affine

Temperley-Lieb algebra as studied in [2]. The properties of the spectra in the two cases are

characterised by several striking facts about the ratios between certain amplitudes entering

the s-channel expressions of the probabilities. The amplitude ratios are exact expressions

(ratios of integer-coefficient polynomials in Q), which we obtain here conjecturally based on

numerical observations, deferring the task of proving them to a future publication. These

facts are then used in section 6 to recover the minimal models spectra. In section 7, we

discuss the limit when the central charge goes to an irrational number and compare with

the CFT results. The last section contains our conclusions.

To focus on the comparison with the Potts model, we only state relevant results on

the RSOS model in the main text, but also provide a more systematic formulation in the

appendices. In particular, in appendix A we give a proof of the identity of the RSOS and

Potts partition functions.3 In appendix B, we state the rules for computing the RSOS

3This appendix is adapted from an unpublished work by A.D. Sokal and one of the authors [20].
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N -point functions. Appendix C gives the results on 3-point couplings in the type A and

D RSOS model which are used in the main text for the geometrical formulation of the

minimal models four-point functions. Finally, appendix D explain the numerical methods

(beyond those already described extensively in the appendices of [2]) used for extracting

the exact amplitude ratios.

2 Correlation functions in the Potts model

2.1 Lattice model

Let us briefly recall the geometrical problem of interest. The lattice Q-state Potts model [7]

is defined on a graph G = (V,E) with vertices V and edges E. A spin variable σi =

1, 2, . . . , Q is attached to each vertex i ∈ V with the interaction energy −Kδσi,σj associated

with each edge (ij) ∈ E. The partition function is given by

Z =
∑
{σ}

∏
(ij)∈E

eKδσi,σj , (2.1)

where we have absorbed the temperature into the definition of interaction energy K. While

this initial formulation requires Q to be a positive integer, Q ∈ N, it is easy to rewrite Z

more generically in terms of the cluster formulation due to Fortuin and Kasteleyn (FK) [8].

Setting v = eK − 1, one finds

Z =
∑
A⊆E

v|A|Qκ(A) , (2.2)

with the sum going over all 2|E| subsets of E, and |A| denoting the number of edges in

the subset. The partition function is now defined for real values of Q where κ(A) indicates

the number of connected components — the so-called FK clusters — in the subgraph

GA = (V,A). We will take G to be the two-dimensional square lattice and temperature

parameter to be its critical value vc =
√
Q [7, 21] such that in the continuum limit the

model is conformally invariant. In this limit, we consider the geometry of the infinite plane,

so that boundary effects are immaterial.

The partition function (2.2) can be equivalently formulated [22] in terms of the loop

model on the medial lattice M(G) = (VM, EM). The vertices VM stand at the mid-points

of the original edges E, and are connected by an edge EM whenever the corresponding

edges in E are incident on a common vertex of V . In particular, for the two-dimensional

square lattice G we consider,M(G) is just another square lattice, rotated by π
4 and scaled

down by a factor of
√

2. There is a bijection between A ⊆ E in the partition function (2.2)

and completely-packed loops on M(G). The loops are defined such that they turn around

the FK clusters and their internal cycles, and in this way, they separate the FK clusters and

their dual clusters. (See figures 1a and 1b below for an example.) The partition function

is then written as [22]

Z = Q|V |/2
∑
A⊆E

( v
n

)|A|
n`(A) , (2.3)
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where `(A) denotes the number of loops. The loop weight is given by

n =
√
Q = q + q−1 , (2.4)

where q is a quantum group related parameter. Notice that on a square lattice, we have

simply vc
n = 1, i.e., at the critical point, (2.3) depends only on `(A).

2.2 Correlation functions on the lattice

On the lattice, it is natural to consider the correlation functions of the order parameter

(spin) operator

Oa(σi) ≡ Qδσi,a − 1. (2.5)

One can however define more general correlation functions of a geometrical type by switch-

ing to the cluster or loop formulations. We are mainly interested in the geometrical cor-

relation functions defined in terms of the FK clusters as following. Consider a number of

distinct marked vertices i1, i2, . . . , iN ∈ V , and let P be a partition of a set of N elements.

One can then define the probabilities

PP =
1

Z

∑
A⊆E

v|A|Qκ(A)IP(i1, i2, . . . , iN |A) , (2.6)

where Z is given by (2.2), and IP(i1, i2, . . . , iN |A) is the indicator function that, ∀k, l ∈
{1, . . . , N} belong to the same block of the partition P if and only if vertices ik and il
belong to the same connected component in A. We will denote P by an ordered list of N

symbols (a, b, c, . . .) where identical symbols refer to the same block. Taking N = 2 for

instance, Paa is the probability that vertices i1, i2 belong to the same FK cluster, whereas

Pab = 1− Paa is the probability that i1, i2 belong to two distinct FK clusters.

The probabilities PP can be related to the correlation functions of the spin operator

Ga1,a2,...,aN = 〈Oa1(σi1)Oa2(σi2) · · · OaN (σiN )〉 , (2.7)

where the expectation value is defined with respect to the normalization Z. Here

a1, a2, . . . , aN is a list of (identical or different) symbols defining a partition P. To evaluate

the expectation value of a product of Kronecker deltas, one initially supposes that Q is

integer, and uses that spins on the same FK cluster are equal, while spins on different

clusters are statistically independent. This leads to Q-dependent relations, which can be

analytically continued to real values of Q. In the case of N = 2, one finds that

Ga1,a2 = (Qδa1,a2 − 1)Paa, (2.8)

i.e., the two-point function of the spin operator is proportional to the probability that

the two points belong to the same FK cluster. Therefore Oa(σi) effectively “inserts” an

FK cluster at i ∈ V and ensures its propagation until it is “taken out” by another spin

operator.

In the context of four-point functions, there are 15 probabilities Paaaa, Paabb, . . . , Pabcd
whose combinatorial properties were discussed in [11]. We will focus on the same subset
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of four-point functions as studied in [1] which are the probabilities of the four points

belonging to one or two clusters, namely: Paaaa, Paabb, Pabba and Pabab. The relation with

the corresponding GP reads [11]

Gaaaa = (Q− 1)(Q2 − 3Q+ 3)Paaaa + (Q− 1)2(Paabb + Pabba + Pabab) , (2.9a)

Gaabb = (2Q− 3)Paaaa + (Q− 1)2Paabb + Pabba + Pabab , (2.9b)

Gabba = (2Q− 3)Paaaa + Paabb + (Q− 1)2Pabba + Pabab , (2.9c)

Gabab = (2Q− 3)Paaaa + Paabb + Pabba + (Q− 1)2Pabab . (2.9d)

As stated before, for arbitrary real values of Q, the left-hand sides of these equations are

only formally defined: it is in fact the right-hand sides that give them a meaning. Notice

that the linear system has determinant Q4(Q− 1)(Q− 2)3(Q− 3) and therefore cannot be

fully inverted for Q = 0, 1, 2, 3.

2.3 Continuum limit

In the continuum limit, and at the critical point, the Potts model is conformally invariant

for 0 ≤ Q ≤ 4. One then expects that the correlation functions (2.9) are given by the spin

correlation functions in the corresponding CFT. Parametrizing

√
Q = 2 cos

(
π

x+ 1

)
, with x ∈ [1,∞] , (2.10)

we can then write the central charge as

c = 1− 6

x(x+ 1)
. (2.11)

Note that the quantum-group related parameter q = e
iπ
x+1 is not a root of unit in this

generic case, i.e., we do not restrict x to be integer, as would be the case for the minimal

models. We also use the Kac table parametrization of conformal weights4

hr,s =
[(x+ 1)r − xs]2 − 1

4x(x+ 1)
. (2.12)

Usually, the labels (r, s) are positive integers, but — like for the parameter x — we shall

here allow them to take more general values. Of course, when (r, s) are not integer, the

corresponding conformal weight is not degenerate. It is well known in particular that the

order parameter operator has conformal weight h1/2,0 [23, 24]. Part of the challenge since

the early days of CFT has been to understand what such weight exactly means — in

particular, what are the OPEs of the field with itself, and how they control the four-point

functions.

4To compare with [1] one must identify β2 = x
x+1

(so that 1
2
≤ β2 ≤ 1). Moreover, the conventions used

in their paper for the exponents are switched with respect to ours: they call ∆sr what we call hrs.

– 5 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
6

2.4 A potential relationship with minimal models

It so happens that when

x =
q

p− q
, with p > q and p ∧ q = 1 , (2.13)

for p even and q odd, the conformal weight h1/2,0 belongs to the Kac table

hm,n =
(pm− qn)2 − (p− q)2

4pq
(2.14)

of the minimal models M(p, q) with central charge

M(p, q) : c = 1− 6
(p− q)2

pq
, (2.15)

where the cases p − q = 1 correspond to unitary minimal models, and p − q > 1 are

non-unitary. Using the parametrization

p = 2n, q = 2m+ 1 , (2.16)

with non-negative integers n > m (and n −m = 1 corresponding to unitary cases), it is

easy to see from (2.14) that indeed h1/2,0 = hm,n (since p/2 = n, while pm − qn = −n).

The question then arises, as to whether (some of) the geometrical correlations of interest

for the corresponding value of Q with√
Q = 2 cos

π(p− q)
p

(2.17)

could conceivably be obtained from the four-point functions of the field with h = hm,n, for

positive integer Kac labels m,n, in a minimal model5 CFT with the same central charge.

In [1], the authors first conjectured CFT four-point functions describing the Potts

probabilities:

conjecture in [1]:

〈V DV NV DV N 〉 ∝ Paaaa + µPabab (2.18)

where µ is a constant, and similarly for Pabba and Paabb with the left hand side replaced

by 〈V DV NV NV D〉 and 〈V DV DV NV N 〉. The V D and V N here have conformal dimension

h1/2,0 = h̄1/2,0 and were later found in [3] to originate from the diagonal and non-diagonal

sectors respectively of the type D minimal models. While the central charge in the minimal

models is rational, the following limit of the minimal models spectrum was taken [3] to

provide an extension to the irrational cases:6

p, q →∞, q

p− q
→ x , (2.19)

where x is a finite number. In such a limit, it was argued in [4, 6] that the levels of the

null vectors, which are removed in irreducible modules of minimal models, go to infinity,

and one obtains Verma modules with the same conformal dimensions: the non-diagonal

sector contains fields with conformal dimensions (hr,s, hr,−s) where r ∈ Z + 1
2 , s ∈ 2Z,

and the spectrum in the diagonal sector becomes continuous. The limit spectrum was

5A rather than the minimal model, as there might be several modular invariants.
6With the identification of the parameters as explained in footnote 4, the p, q in [4] is also switched with

respect to ours and the limit (2.19) correspond to the limit p
q
→ β2 in [4].
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then used in a conformal block expansion for the numerical bootstrap of the four-point

function (2.18), and the results obtained were found to be in reasonable agreement with

Monte-Carlo simulations [5]. The corresponding structure constants were later obtained

and shown to match [3] with a non-diagonal generalization [25] of the Liouville DOZZ

formula [26].

This elegant and tempting procedure does not, however, give the true Potts proba-

bilities. In particular, the latter are expected to be smooth functions in Q (as already

argued in [2]), while there are poles in the four-point functions (2.18) at rational values of

x when [4]:

p ≡ 0 mod 4 , (2.20)

corresponding to the values of Q:

Q = 4 cos2
(π

4

)
, 4 cos2

(π
8

)
, 4 cos2

(
3π

8

)
, . . . . (2.21)

The authors of [1] then further conjectured the following relation in [5] (hence, proposing

an formula for their µ parameter, which was initially adjusted numerically):

conjecture in [5]:

〈V DV NV DV N 〉 ∝∼ Paaaa +
2

Q− 2
Pabab. (2.22)

This expression accommodates the first pole of (2.21) at Q = 2 in the four-point function,

and was observed using Monte-Carlo simulations [5] to be approximately correct. It also

becomes exact for Q = 0, 3, 4. A priori, there is no reason why such a combination of

the geometric quantities should enter the four-point function in the CFT. In addition, it

is unclear how the other poles in Q given by (2.21) — which were truncated out in the

conformal block expansion in [5] — could be accounted for in the four-point function (2.22)

in terms of the geometric quantities.

Despite these issues, it is fascinating to see that the four-point functions of minimal

models (and their irrational limits) do indeed seem to provide some insights on the geo-

metrical problem of the Potts model. The question is why, and whether this is useful.

An important motivation for this paper is to clarify this matter, and to establish in

particular that the geometrical four-point functions (2.6) cannot be obtained by analytic

continuation of the minimal models results in this way. It will turn out that the differ-

ence between the two types of correlation functions is numerically small, and probably

indiscernible by Monte-Carlo methods [5], although they are certainly detectable by the

transfer matrix techniques developed in [2] and used in the present paper. The quantities

defined and studied in [1, 3–6] will prove to be skewed versions of the true correlation

functions (2.6), as we shall explain in detail in section 7.

To make progress, we shall again follow a direct approach, and study the geometrical

correlation functions of minimal models on the lattice. Setting aside the CFT aspects for a

moment, let us recall that minimal models can in fact be obtained as a continuum limit of

well-defined RSOS lattice models associated with Dynkin diagrams of the ADE type [16,

– 7 –
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17, 27]. In this formalism, the correlation functions of the order parameters on the lattice

become, in the continuum limit, (some of) the correlation functions of minimal models. In

particular, certain order parameter(s) in the RSOS lattice model give rise to the field with

conformal weight hm,n in the Kac table and thus coincide with the Potts order parameter at

the same central charge — recall the relation (2.16). On the other hand, the RSOS lattice

model has a natural formulation in terms of clusters and loops [16–19], somewhat similar to

the one in the Potts model, and therefore the correlation functions acquire a geometrical

interpretation which can be compared with that of the Potts model. In the following

sections, we will study the RSOS four-point functions and their geometrical content, with

focus on the operator whose conformal weight coincides with the one of the Potts order

parameter, in order to understand the relation and differences with geometrically defined

correlation functions of the Potts model. We will use the main results of RSOS correlations

functions without detailed proofs, and leave this to the appendices.

3 Comparing Potts and RSOS correlations: general strategy

Let us take a more detailed look at the formulation of the Potts model in terms of clusters

and loops. Consider a Potts cluster configuration given by the subgraph GA = (V,A),

where the loops are formulated in the usual way as described in section 2.1. Taking the

centers of each plaquette (i.e., lattice face), and defining them as the vertices V ∗ of another

lattice, we obtain the dual Potts model on the graph G∗ = (V ∗, E∗). The previous loop

configuration in fact predetermines the clusters on the dual lattice given by subgraph

G∗A∗ = (V ∗, A∗), where the A∗ are all the edges in E∗ which do not cross the loops. There

is thus a one-to-one map between the Potts cluster configurations GA and its dual G∗A∗ .

As shown in figures 1a and 1b, we see that when put together, the loops separate the

Potts clusters from their dual clusters. A consequence of this mapping, which will turn out

particularly important in the following, is that going from one Potts cluster to another one

requires traversing an even number k = 2l of loops, with l ≥ 1 integer. Namely, when the

first Potts cluster is separated from the second one by l − 1 distinct surrounding clusters,

there will also be l surrounding dual clusters, and since clusters and dual clusters alternate

each time we traverse a loop, the number of surrounding loops will be 2l indeed. In this

paper we are only interested in correlation functions in which all the marked clusters reside

on the direct (not dual) lattice.

The RSOS model, on the other hand, is defined through a map from the lattice to a

finite graph H [28, 29]. The nodes on H are taken as the possible values of a “height”

variable σi associated with site i, while neighbouring sites are constrained to have heights

which are neighbours on H. As a result, the clusters on the RSOS lattice are formed by

linking the diagonals of the plaquettes, and each plaquette takes one of the diagonal links:

σ1

σ4

σ2

σ3
= δσ1σ3 σ1

σ4

σ2

σ3
+ δσ2σ4 σ1

σ4

σ2

σ3
(3.1)

where the choice of the local weights multiplying each term will be deferred to the next

paragraph. It is straightforward to see that there is an equivalence between the RSOS

– 8 –
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(a) (b) (c)

Figure 1. In 1a, we show a cluster configurations on the Potts lattice (blue) and the corresponding

loops (red). The clusters are separated by even number of loops. From here, one can draw the

clusters on the dual lattice (black) as shown in 1b. An RSOS clusters/loops configuration 1c is

equivalent to this Potts clusters/loops configuration. The links forming the clusters are on the

diagonals of the plaquettes, the latter being indicated with dashed lines. The loop configuration is

the same as in the Potts case; however, the weights of the loops are different.

clusters/loops configurations and the ones in the Potts model, as shown in figure 1b and 1c.

This is discussed in more details in appendix A, where we also give a proof of the equivalence

between the partition functions of the two models. Notice, however, that two distinct

clusters on the RSOS lattice are mapped to Potts clusters only when separated by an even

number of loops (otherwise one is mapped to a Potts cluster and the other one to a dual

Potts cluster). This will play a role when we consider the geometric four-point functions

of the two models.

Taking the graph H to be a Dynkin diagram D of the ADE type with Coxeter number

p and introducing its adjacency matrix A, the eigenvalues λ(r) take the form

λ(r) = 2 cos
rπ

p
, (3.2)

and the normalized eigenvectors are denoted Sσi(r), where r takes values in the set D∗ of

exponents of the algebra. (See table 1 for the diagramsD and their corresponding exponents

D∗ to be considered in this paper.) They enter the definition of the Boltzmann weight of

a certain configuration, as we discuss in details in appendices A and B. Choosing a special

eigenvector

Sσi ≡ S
σi
(p−q), (3.3)

where p > q and p ∧ q = 1 as in (2.13), a representation of the Temperley-Lieb (TL)

algebra [30] is defined by the basic action of the generator e on a face:7

ei := e(σi−1σiσi+1|σi−1σ
′
iσi+1) = = δσi−1,σi+1

(
SσiSσ′i

)1/2

Sσi−1

. (3.4)

7Since we shall consider non-unitary cases in which some of the components Sσ are non-positive, we

stress that one should use the determination of the square root satisfying always (SσSσ)1/2 = Sσ.
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Here the label i refers to the spatial position of the face. These generators satisfy the

relations

e2
i = λ(p−q)ei , (3.5a)

eiei±1ei = ei , (3.5b)

eiej = ejei , when |i− j| ≥ 2 (3.5c)

defining the TL algebra [30]. The continuum limit of the RSOS model thus defined is

known to be given by the ADE minimal models with central charge (2.15) [31, 32].

Like for the Potts model, the torus partition function of the RSOS model can be

expanded into configurations of clusters/loops [16–19]. For each configuration, the con-

tractible loops get the weight λ(p−q), while the situation for the non-contractible loops is

more complicated: one must sum over terms for r ∈ D∗ [33], in each of which the non-

contractible loops get the weight λ(r). This is in contrast with the Potts model [34] where

one sums over only two terms: one where non-contractible loops get the same weight as

contractible ones, and one where they get the weight zero (this last term comes formally

with multiplicity Q− 1). As a result, the operator content of the two models is profoundly

different: the minimal models are rational, while the Potts model is irrational.

In general, the operators whose two-point function is defined by assigning to non-

contractible loops (on the twice punctured sphere) the weight λ(r) have conformal weight8

hr = h̄r =
r2 − (p− q)2

4pq
. (3.6)

The difference between the minimal models and Potts spectra thus becomes particularly

important in the non-unitary case, p − q > 1. In this case, the minimal models always

contain an operator of negative conformal weight associated with the term for which non-

contractible loops get the weight λ(1). This operator leads thus to an effective central

charge ceff = c− 24h1 = 1− 6
pq . Meanwhile, in the Potts model, all conformal weights are

positive, and ceff = c. The only potential origin of non-positive conformal weights is the

sector where non-contractible loops have vanishing weight. But since
√
Q > 0,9 we have

necessarily p− q < p
2 , and thus the dimension of the order parameter h1/2,0 > 0.

To study the correlation functions, we consider the RSOS order parameters originally

obtained in [16, 17]:

φr(i) =
Sσi(r)

Sσi
, (3.7)

with the conformal weights given in (3.6). We therefore see that if p is even, p = 2n,

we have hp/2 = h1/2,0, i.e., the conformal weight of the operator φp/2 coincides with the

conformal weight of the Potts order parameter. In the case of type D, there are two such

operators which we will denote as φp/2 and φp̄/2. Therefore we will be mainly interested in

the four-point functions of the operators φp/2 and φp̄/2 in the RSOS model and their cluster

8While not explicitly appearing in the literature as far as we know, this equation follows the mapping

of the non-unitary minimal models onto a Coulomb gas — see, e.g., [33].
9We are restricting here to the “physical part” of the self-dual Potts model [35].
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interpretation, for the purpose of comparing with the geometric correlations in the Potts

model. Notice that with our special eigenvector (3.3), the contractible loops weight is

λ(p−q) = 2 cos
π(p− q)

p
=
√
Q , (3.8)

the same as in the Potts model. Since hp−q = 0 by (3.6), this corresponds to the identity

field.

3.1 RSOS four-point functions

Consider now the four-point function 〈φr1(i1)φr2(i2)φr3(i3)φr4(i4)〉 on the sphere where the

operators are inserted at the special sites i1, i2, i3, i4. Similar to the torus partition function,

the four-point function can be expanded in terms of clusters/loops configurations [19]. A

detailed study of the RSOS weights (see appendix B) reveals that the weight of any loop

is unchanged when it is turned inside out, i.e., wrapping around the “point at infinity” on

the sphere punctured at the positions of the operator insertions. In particular, the loops

surrounding all four insertion points are in fact contractible on the sphere, and hence they

receive the usual weight λ(p−q) =
√
Q as in the Potts model. We will from now on refer to

the contractible/non-contractible loops in this sense of the four-times punctured sphere.

For non-contractible loops, their weights in a certain configuration are given by simple

rules of which we provide the detailed formulation in appendix B and give a brief summary

here. As illustrated in figure 2, one starts by representing the domains between loops

(namely, the clusters) as vertices on a graph, and loops separating the domains as legs

connecting these vertices. The graph thus obtained can be evaluated by giving the legs

and vertices the factors as shown in the figure. Notice that one needs to sum over r ∈ D∗

for the internal legs.

In the special cases where there are no non-contractible loops involved, i.e., all four

points belong to the same big cluster, one still represents the cluster by a vertex and as-

sociate it with a four-leg vertex. As studied in appendix B (see (B.30) and (B.31)), the

four-leg vertex can be decomposed into three-leg vertices [19] as indicated in the last dia-

gram in the box of figure 2. This results in the diagram’s acquiring a non-trivial multiplicity,

of which we will see an explicit example in the next section.10

In the example of figure 2, we have the contribution of the diagram:

λ2
(r1)λ(r2)λ(r3)λ(r4)

∑
r

Cr1r3rCrr2r4λ
2
(r) , (3.9)

as well as extra factors for the contractible loops (not shown). The three-point coupling

Crr′r′′ can be calculated as we discuss in detail in appendix B, and we also give the explicit

expressions for type A and type D in appendix C, which will be used in the next section.

There, we will see that things simplify drastically for the four-point functions of φp/2 (and

φp̄/2 in type D) we are interested in, where we can make direct contact with the Potts

correlation functions.

10Here there is no factor associated with the internal leg, since it does not represent any loops.
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Figure 2. Determination of the weights of non-contractible loops in the four-point function

〈φr1(i1)φr2(i2)φr3(i3)φr4(i4)〉. In this example, the loop encircling points 1, 3 is represented by

a three-leg vertex fusing r1, r3, and the one encircling points 2, 4 by a vertex fusing r2, r4. The

weight of these two loops must be equal since they are connected by a topologically trivial domain

as indicated by the two-leg vertex in the graph, and one needs to sum the loop weight λ(r) over

r ∈ D∗. We give in the box the general rule for assigning factors to the vertices and legs. The

last diagram in the box is relevant for the configurations where all four points are within the same

cluster.

Note. In our notations we shall henceforth not differentiate between the lattice correlation

functions and their continuum limit, with the latter interpreted as the minimal-models

correlation functions.

4 Geometrical interpretation of four-point functions in minimal models

Since we are mainly interested in the comparison with the Potts model, in this section,

we focus on the RSOS four-point functions 〈φrφrφrφr〉 where φr coincides with the Potts

order parameter, i.e., hr = h1/2,0. This involves the operator φp/2 in type A (with p even)

and φp/2, φp̄/2 in type D (with p = 2 mod 4). In table 1, we list the Dynkin diagrams

D involved and the relevant conventions, which are used in appendix C for obtaining the

three-point couplings Cr1,r2,r3 . As it turns out, the four-point functions we are interested in

can be expanded in terms of clusters/loops configurations exactly like in the Potts model,

but the geometric interpretation is different.

4.1 Type Ap−1

In the case of type A, we consider the four-point function 〈φp/2φp/2φp/2φp/2〉. Since λp/2 =

2 cos(π/2) = 0, any diagram with a loop encircling a single special site has weight 0

and does not contribute. The four-point function then involves four types of diagrams as

shown in figure 3. We denote them using the notations Dabcd with the same convention

as the Potts probabilities Pabcd. For example, the first type of diagrams Daaaa involves

configurations where the four points are all within the same cluster, and the other three
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Table 1. The type A and type D Dynkin diagrams D we are studying, where p is even. In the

case of type D we have N even, i.e., p ≡ 2 mod 4, and the exponents r = 1, 3, . . . , p − 1, odd. In

the following, we will often denote DN as D1+ p
2
.

— Daabb, Dabab, Dabba — involve two distinct clusters for the four points with Dabab, for

instance, denoting the set of diagrams where 1 and 3 are within the same cluster, while 2

and 4 belong to another cluster.

The three-point couplings in this case are given in (C.2) and with ri = p/2 are simply:11

Cp/2,p/2,r =

{
(−1)b, 1 ≤ r ≤ p− 1 and r odd, r + bp = a(p− q)
0, otherwise.

(4.1)

In the following, we will consider the weight of a diagram where all loops get the factor√
Q as its “basic weight” for the obvious reason to relate to the Potts model, and refer to

the ratio of the weight in the graphical expansion with respect to this basic weight as the

“multiplicity”. According to the rules summarized in section 3.1 (see the last diagram in

the box in figure 2), we obtain that the multiplicities in Daaaa are equal to

M
Ap−1
aaaa =

∑
r

(Cp/2,p/2,r)
2 =

p−1∑
r=1 odd

1 =
p

2
. (4.2)

The other three types of diagrams have the special sites encircled pairwise by one

or more big loops respectively and connected by a topologically trivial domain where, in

the case of type Ap−1, one should sum over r = 1, 2, . . . , p − 1 for the weight λ(r) of the

non-contractible loops. However, thanks to the simplicity of the three-point coupling (4.1)

for the four-point function we are considering, one in fact only needs to sum over r =

1, 3, . . . , p − 1, odd. Denoting the number of non-contractible loops as k, we therefore see

a significant simplification of the diagrammatic expansion involved: since

p−1∑
r=1 odd

λk(r) =

p−1∑
r=1 odd

(
2 cos

rπ

p

)k
= 0, for k odd, (4.3)

any diagram with the two clusters separated by odd number of loops has weight zero in the

four-point function 〈φp/2φp/2φp/2φp/2〉. Recalling that two RSOS clusters are mapped to

11As discussed in appendix C, the expression of the three-point coupling involves integers a, b from

solving a Diophantine equation r+bp = a(p−q) for given r, p, q. This can be done easily using the function

FindInstance in Mathematica.
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1

2

3

4

Figure 3. Four types of diagrams contributing to the four-point function 〈φp/2φp/2φp/2φp/2〉. Here

we only draw the basic clusters while there can be extra contractible and non-contractible clusters

surrounding them.

Potts clusters only when they are separated by even number of loops, here we see that for

the four-point function we are interested in, these are exactly the types of configurations

that contribute. For this reason we henceforth suppose k even and set

k = 2l . (4.4)

From the remarks made at the beginning of section 3 this is equivalent to supposing that

all clusters marked in the correlation functions that we shall consider are of the Potts (and

not dual) type.

In the next section, we will consider the s-channel spectrum involved in the RSOS

four-point functions using the techniques developed in [2] for the Potts model, where we

take the four points to be on a cylinder as discussed at the beginning of section 5.1 below.

If we now consider the contribution from the third type of diagrams Daabb in figure 3 we

see that, after mapping to the cylinder, this will give rise to diagrams just like for the

calculation of Paabb in the Potts case, but there is the important difference that in the sum

over sectors, loops encircling the cylinder between points 1, 2 and 3, 4 have weight λ(r).

The appearance of λ(1) is crucial. In the non-unitary case, it does not correspond to the

identity field, but rather to the field with dimension

h1 =
1− (p− q)2

4pq
< 0 . (4.5)

As mentioned before, this is in fact the field of most negative dimension in the theory,

responsible for the value of the effective central charge ceff = 1− 6
pq . In the case of the Potts

model, however, as discussed in [2], only states with positive conformal weights propagate

along the cylinder and no effective central charge appears despite the non-unitarity of

the CFT.
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The full diagrammatic expansion of the four-point function with 〈φp/2φp/2φp/2φp/2〉 is

summarized in figure 4. Note that in Daabb, Dabab, Dabba, there are always two basic clusters

connecting a to a and b to b respectively, plus extra clusters encircling the basic pair, and

non-contractible on the sphere. Instead of clusters we can count their boundaries:12 the

basic pair gives rise to two boundaries, and every surrounding cluster contributes an extra

pair. The total number of boundaries — namely, the number of non-contractible loops —

k (even) give rise to the multiplicity of the configurations

MAp−1(k) ≡ 1
√
Q
k

p−1∑
r=1 odd

λk(r)

=
1
√
Q
k

p−1∑
a=1 odd

(qa + q−a)k ,

(4.6)

where q = e
iπ p−q

p , and a is given in (4.1). It is not hard to find a general formula for these

multiplicities:

MAp−1(k) =
p

2
√
Q
k

(
k

k/2

)
+

p
√
Q
k

⌊
k
p

⌋∑
n∈N∗

(
k

k−np
2

)
(−1)n. (4.7)

Notice when p > k,
⌊
k
p

⌋
= 0 and (4.7) reduces to

MAp−1(k) =
p

2
√
Q
k

(
k

k/2

)
. (4.8)

In particular we have in this case MAp−1(2) = p/Q, MAp−1(4) = 3p/Q2, etc. The multi-

plicity p/2 in the Daaaa diagram (eq. (4.2)) where all loops are contractible is independent

of Q. Note that this formally coincides with MAp−1(0) as it should.

We then introduce “pseudo-probabilities”, such as

P̃
Ap−1

abab =
1

ZPotts

∑
D∈Dabab

WPotts(D)MAp−1(k) , (4.9)

where k is the number of boundaries of the diagram D. We similarly define the pseudo-

probabilities P̃aabb and P̃abba for the other cases of interest. Notice that in this notation,

we have the true Potts probability given by

Pabab =
1

ZPotts

∑
D∈Dabab

WPotts(D). (4.10)

We can then reexpress the four point-function in a more compact form

〈φp/2φp/2φp/2φp/2〉 ∝
p

2
Paaaa + P̃

Ap−1

abab + P̃
Ap−1

aabb + P̃
Ap−1

abba . (4.11)

12Although we have used so far mostly the language of loops, the mapping on the cluster formulation is

obvious, simply by taking loops as cluster boundaries.
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Figure 4. The diagrammatic expansion of four-point function 〈φp/2φp/2φp/2φp/2〉. The first type of

diagram where all four sites are in one big loop comes with a multiplicity p
2 . In the last three types

of diagrams, one needs to sum over λk(r) , r = 1, 3, . . . , p−1 for even k — number of non-contractible

loops encircling two of the special sites.

Note that, while we use the notation P for the last three terms, the sum of pseudo-

probabilities is not equal to unity anymore.

Let us as an application consider the Ising model with p = 4, q = 3, corresponding

to
√
Q = 2 cos π4 = λ(1). In the expansion, the Daaaa diagrams get multiplicity p/2 = 2,

corresponding to the two fusion channels

σ × σ = I + ε , (4.12)

where σ and ε denote the order parameter and energy operators, and we have used the

usual simplified notation for operator product expansions (OPE). Meanwhile, the other

geometries also get multiplicity two, because λk(1) = λk(3) =
√
Q
k
: in other words P̃A3 = 2P .

Hence, in this case we find

〈φp/2φp/2φp/2φp/2〉 ∝ Paaaa + Paabb + Pabba + Pabab , (4.13)

which is a well known result as can be seen directly from (2.9a).

Consider now the case p = 6, q = 5, corresponding to
√
Q = 2 cos π6 = λ(1). Diagrams

Daaaa now get multiplicity p/2 = 3, or since there are three fusion channels:

σ × σ = I + σ + ε. (4.14)

The other diagrams still get multiplicity two since λk(1) = λk(5) =
√
Q
k

while λk(3) = 0. Hence

in this case, we have

〈φp/2φp/2φp/2φp/2〉 ∝ 3Paaaa + 2(Paabb + Pabba + Pabab). (4.15)

Meanwhile, since there is only one field with conformal weight h1/2,0 = h33 = 1
15 , this

four-point function should be the same as the four-point function of the spin operator in

the three-state Potts model, in agreement with (2.9a).

The φp/2 four-point function will cease being expressed entirely in terms of the prob-

abilities P for other minimal models. Consider for instance the case p = 8, q = 7, corre-

sponding to
√
Q = 2 cos π8 = λ(1). In this case we have λk(1) = λk(7) = (2 +

√
2)k/2 =

√
Q
k
,
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whilst λk(3) = λk(5) = (2−
√

2)k/2 6=
√
Q
k
. So for instance, a diagram in Dabab with one loop

encircling each pair of points gets a weight 2(λ2
(1) + λ2

(3)), while a diagram with two loops

encircling each pair of points gets a weight 2(λ4
(1) + λ4

(3)), etc. As soon as λ2
(1) 6= λ2

(3), this

skews the statistics compared with the pure probability/Potts problem: the P̃ ’s are not

proportional to the P ’s.

Note that in weighing the diagrams, p and q play quite different roles. The weight

of topologically trivial loops is
√
Q = 2 cosπ p−qp , while the weight of configurations with

non-contractible loops depends only on p, since it involves a sum over all the eigenvalues

of the adjacency matrix.

4.2 Type D1+p
2

The above results can be easily extended to the type D models by considering the corre-

sponding Dynkin diagram DN where p = 2(N−1), as shown in table 1. This is particularly

interesting when p ≡ 2 mod 4, corresponding to the case N even. In this case, it is known

that the modular invariant partition function contains two primary fields with dimension

h1/2,0 = hm,n, where we recall that m and n are defined in (2.16). Associated to these

two fields are in fact two order parameters which we denote φp/2 and φp̄/2. The existence

of these two fields is related to the symmetry of the DN diagram under the exchange of

the two fork nodes traditionally labeled as N − 1 and N − 1, as can be seen from table 1.

Their lattice version can still be obtained using equation (3.7).

Since λp/2 = λp̄/2 = 0, the two operators cannot be distinguished by their two-point

function which, in both cases, are obtained by giving a vanishing weight to non-contractible

loops on the twice punctured sphere. Four-point functions are much more interesting, and

can be obtained by the same construction as for the type A models. It is easy to see that

in this case the result (4.3) still holds. Also, the same four types of diagrams (figure 3)

with even number of non-contractible loops k = 2l participate and can be directly related

to the Potts model. To expand the four-point functions in terms of diagrams, one needs

the three-point couplings (C.8) for ri = p/2, p̄/2 given by:

Cp/2,p/2,r = (−1)
a−1

2 , r + bp = a(p− q) (4.16a)

Cp̄/2,p̄/2,r = 1 , (4.16b)

Cp/2,p/2,p̄/2 = Cp̄/2,p̄/2,p̄/2 = 0 , (4.16c)

with 1 ≤ r ≤ p − 1 and r odd, and one has
∑

r =
∑

a.
13 Note that the vanishing of

Cp/2,p/2,p̄/2 follows from invariance of the DN diagram under exchange of the two fork

13This comes from the fact that a is simply a rearrangement of r with a shift (p − q − 1)/2 and a

cyclic spacing p − q, which results from normalizing with the Sσ(p−q). Taking p = 10, q = 7 for instance,

r = 1, 3, 5, 7, 9 and a = 7, 1, 5, 9, 3 where the position of 1 is shifted by (p − q − 1)/2 = 1 and the spacing

of consecutive odd integers is p − q = 3. It is of course essential here that p ∧ q = 1, as we have supposed

in (2.13).
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nodes. We see that the fields of interest obey the OPEs

φp/2φp/2 ∼ φp/2 , (4.17a)

φp̄/2φp̄/2 ∼ φp/2 , (4.17b)

φp/2φp̄/2 ∼ φp̄/2 . (4.17c)

These OPEs are similar to those of the fields V D, V N from [4], as mentioned below

eq. (2.18). Since there are only two fields with the correct dimensions in the CFT, we

will in what follows make the identifications

φp/2 ↔ V D, φp̄/2 ↔ V N . (4.18)

Among the four-point functions involving φp/2, φp̄/2, only the ones with even numbers

of φp̄/2 are non-vanishing, as can been seen by directly carrying out the cluster expan-

sions. This is similar to what happens for the four-point functions of V D, V N in [4].

On the other hand, the cluster expansions of the four-point functions 〈φp/2φp/2φp/2φp/2〉
and 〈φp̄/2φp̄/2φp̄/2φp̄/2〉 in this case are exactly the same as the four-point function

〈φp/2φp/2φp/2φp/2〉 in the type A models. This is easily seen by recognizing that the cal-

culation of the multiplicities in the cluster expansion of these four-point functions involves

the factors

C2
p/2,p/2,r = C2

p̄/2,p̄/2,r = 1 , (4.19)

so the situation reduces to the case of type A. Namely, the non-trivial sign difference in

the three-point couplings (4.16a), (4.16b) and (4.1) between type D and type A does not

manifest itself in the four-point functions 〈φp/2φp/2φp/2φp/2〉 and 〈φp̄/2φp̄/2φp̄/2φp̄/2〉.
A particularly interesting case here is to consider the four-point function

〈φp/2φp̄/2φp/2φp̄/2〉 ∝ 〈V DV NV DV N 〉 , (4.20)

which is in fact the four-point function (2.18), (2.22) studied in details in [1, 3–6]. In this

case, since the only three-point coupling involving φp/2 and φp̄/2 is Cp/2,p̄/2,p̄/2, and since

λp̄/2 = 0, considerable simplification occurs in the cluster expansion of this correlator:

diagrams where φp/2 and φp̄/2 are in the same cluster with no other insertions are given a

vanishing weight and thus disappear. Regarding (4.20) we are thus left with diagrams of

type Dabab and Daaaa only.

Diagrams of type Daaaa come with multiplicity

M
D1+

p
2

aaaa =

p−1∑
r=1 odd

(−1)
a−1

2 =

p−1∑
a=1 odd

(−1)
a−1

2 = 1 . (4.21)

For the other three types of diagrams, we can again define the multiplicities

M
D1+

p
2 (k) ≡ 1

√
Q
k

p−1∑
r=1 odd

(−1)
a−1

2 λk(r), with k even

=
1
√
Q
k

p−1∑
a=1 odd

(−1)
a−1

2 (qa + q−a)k ,

(4.22)
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where again q = e
iπ p−q

p . It is easy to transform this expression into one that depends only

on q and not on p (provided p ≡ 2 mod 4). One finds

M
D1+

p
2 (k = 2l) =

2

Ql

l∑
m=−l

(
2l

l + m

)
1

q2m + q−2m
. (4.23)

Using
√
Q = q + q−1, we can express these in terms of Q. This is most easily done by

noticing that

qj + q−j = 2Tj

(√
Q

2

)
, (4.24)

where Tj(x) denotes the j’th order Chebyshev polynomial of the first kind. We obtain the

explicit expressions

M
D1+

p
2 (k = 2) =

2

Q− 2
, (4.25a)

M
D1+

p
2 (k = 4) =

2(3Q− 10)

(Q− 2)(Q2 − 4Q+ 2)
, (4.25b)

M
D1+

p
2 (k = 6) =

4(5Q2 − 35Q+ 61)

(Q− 2)(Q2 − 4Q+ 2)(Q2 − 4Q+ 1)
. (4.25c)

A number of special cases of these will be discussed in section 7. Note that the multiplicities

in the D case can be expressed only in terms of Q, while in the A case, an extra factor

of p remains (see equation (4.8)). We see that the multiplicity M
D1+

p
2 (k) has poles at

q = eiπ(2n+1)/4m, for any m = −l, . . . , l, corresponding to√
Q = 2 cos

(
π(2n + 1)

4m

)
. (4.26)

The pseudo-probabilities can then be defined as usual, for example

P̃
D1+

p
2

abab =
1

ZPotts

∑
D∈Dabab

WPotts(D)M
D1+

p
2 (k) , (4.27)

and it follows that

〈φp/2φp̄/2φp/2φp̄/2〉 ∝ Paaaa + P̃
D1+

p
2

abab . (4.28a)

Other correlations with two φp/2 and two φp̄/2 follow by braiding:

〈φp/2φp/2φp̄/2φp̄/2〉 ∝ Paaaa + P̃
D1+

p
2

aabb , (4.28b)

〈φp/2φp̄/2φp̄/2φp/2〉 ∝ Paaaa + P̃
D1+

p
2

abba . (4.28c)

4.2.1 Three-state Potts model

The simplest of all cases for the DN models of interest is with p = 6, q = 5, corresponding

to the D4 unitary CFT which is in fact the same as the Q = 3 state Potts model [36, 37].

Notice that the D4 Dynkin diagram is a three-star graph having the same S3 symmetry
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as the permutations of the three Potts spins. In this case, r takes values r = 1, 3, 5 and

the multiplicity (4.22) becomes simply 2, due to the symmetry λk(1) = λk(5) =
√
Q
k
; note

also that λ(3) = 0. In other words, P̃D4
abab = 2Pabab, P̃

D4
abba = 2Pabba and P̃D4

aabb = 2Paabb. We

conclude that, for Q = 3,

〈φp/2φp̄/2φp/2φp̄/2〉 ∝ Paaaa + 2Pabab. (4.29)

Consider now the antisymmetric combination

〈φp/2φp̄/2φp/2φp̄/2〉 − 〈φp/2φp̄/2φp̄/2φp/2〉 ∝ P̃
D1+

p
2

abab − P̃
D1+

p
2

abba (4.30)

which, for the Q = 3 state Potts model becomes simply

P̃D4
abab − P̃

D4
abba ∝ Pabab − Pabba . (4.31)

In general, at Q = 3, we expect that combinations such as (4.29) or the antisymmetric

combination (4.31) simplifies considerably. This, we believe, is in sharp contrast with the

Pabcd themselves, whose expressions remain as complicated for Q = 3 as in the generic case.

This is confirmed by concrete numerical evidence (eigenvalue cancellations) on finite-size

cylinders.

This expectation is of course also in agreement with general results from representation

theory of affine Temperley-Lieb algebras. Indeed, as we will discuss in more details in the

following sections, from the set of all possible affine Temperley-Lieb modules Wj,z2 appear-

ing generically in the Q-state Potts model, only the simple tops X of W0,q2 ,W0,−1,W2,−1

(with q = eiπ/6) are relevant for the D4 RSOS model [38]. The continuum limit of these

modules is

X0,q2 7→
4∑
r=1

|χr,1|2 =

4∑
r=1

|χr,5|2 , (4.32a)

X2,−1 7→
4∑
r=1

χr,1χr,5 =

4∑
r=1

χr,1χr,5 , (4.32b)

X0,−1 7→
4∑
r=1

|χr,3|2 . (4.32c)

The structure of the W2,−1 module is shown for example in figure 5.

Note that the particular combinations (4.29) and (4.31) at Q = 3 could in fact be

obtained from the general relationship (2.9) between spin correlation functions in the Potts

model Gabcd and geometrical objects Pabcd. Setting Q = 3 in these relations gives

4Gabab −Gaaaa = 6(Paaaa + 2Pabab) , (4.33a)

Gabab −Gabba = 3(Pabab − Pabba) . (4.33b)

Since the left hand sides can be expressed strictly within the Q = 3 Potts model, this

means the same holds for the right-hand side, as we have directly established in eqs. (4.29)

and (4.31).
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Figure 5. When q = eiπ/6, the generically irreducible affine Temperley-Lieb module W2,−1 (which

contributes in its entirety to the Potts correlations for q generic) becomes reducible, and admits a

decomposition in terms of submodules as represented in this figure. Only the “top” contributes to

the Q = 3 correlations, leading to the disappearance of a large number of states in the s-channel.

5 Pseudo-probabilities and affine Temperley-Lieb algebra

5.1 General setup

To proceed, we first recall the general framework discussed in [2]. In the scaling limit, the

Potts model correlation functions (2.9) as well as the geometrical correlations Pabcd admit

an s-channel expansion

G(z, z̄) =
∑

∆,∆̄∈S

CΦ1Φ2Φ∆∆̄
CΦ∆∆̄Φ3Φ4F

(s)
∆ (z)F (s)

∆̄ (z̄)

=
∑

∆,∆̄∈S

AΦ∆∆̄
F (s)

∆ (z)F (s)

∆̄ (z̄) ,
(5.1)

where AΦ∆∆̄
denotes the amplitude of the field Φ∆,∆̄ and the conformal blocks themselves

can be expanded in (integer) powers of z. This full z expansion is analogous to the expan-

sion of lattice correlation functions on a cylinder in powers of eigenvalues of the geometrical

transfer matrix discussed in [2], where the s-channel geometry as shown in figure 6 corre-

sponds to taking the two points i1, i2 to reside on one time slice and i3, i4 on another. The

two expansions can be matched exactly in the limit where all lattice parameters (the width

of the cylinder L as well as the separation between points) are much larger than 1,14 using

the usual logarithmic mapping. We shall occasionally in the following also need to discuss

the other two channels. For future reference, the definition of the channels is

s-channel : i1 ∼ i2 and i3 ∼ i4 , (5.2a)

t-channel : i1 ∼ i4 and i2 ∼ i3 , (5.2b)

u-channel : i1 ∼ i3 and i2 ∼ i4 , (5.2c)

14All measured in units of the lattice spacing.
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i1

i2

a

a

i3

i4

l

Figure 6. Four-point functions in the cylinder geometry. The distance between the two operator

insertions on each time slice is denoted 2a.

where the t and u-channels can just be obtained from the s-channel by relabelling the

points.

A key aspect of the geometrical transfer matrix is that it can be expressed in terms

of the affine Temperley-Lieb (ATL) algebra. The eigenvalues can therefore be classified

in terms of (generically irreducible) representations of this algebra. The representations

of interest in the case of the Potts model are of two types, denoted by Wj,z2=e2iπp/M

and W0,z2=q2 , which respectively indicate conformal weights
(
hZ+ p

M
,j , hZ+ p

M
,−j

)
and

(hZ,1, hZ,1). Their contributions to the correlation functions Pabcd in the s-channel have

been established in [2] and are summarized in the table:15

s-channel Parities

Paaaa W0,−1 ∪Wj,e2iπp/M j ∈ 2N∗, jp/M even

Paabb W0,−1 ∪W0,q2 ∪Wj,e2iπp/M j ∈ 2N∗, jp/M even

Pabab/abba Wj,e2iπp/M j ∈ 2N∗, jp/M integer

(5.3)

We will often consider the symmetric and anti-symmetric contributions:

PS = Pabab + Pabba , (5.4a)

PA = Pabab − Pabba . (5.4b)

Their spectra select jp/M even and odd respectively.

The ATL representationsWj,z2 have been discussed in details in [2]. They are standard

modules of the algebra acting on so-called link patterns that encode the necessary informa-

tion about the state of the loop model to the left of a given timeslice of the cylinder (recall

figure 6), namely the pairwise connectivities between loop ends intersecting the time slice,

as well as the position of certain defect lines. More precisely, the number j corresponds

to the number of clusters propagating along the cylinder: this number is half the number

of cluster boundaries, often referred to as “through lines” in the literature. When j = 0,

modules W0,z2 correspond to giving to non-contractible loops wrapping around the axis of

the cylinder the weight z+z−1, and we shall need in particular the module with z+z−1 = 0

that imposes the propagation of one cluster (although no through lines are present). When

j 6= 0, the parameter z encodes the phases gathered by through lines as they wrap around

15We take this opportunity to correct a few misprints in [2]: in remark 3 of this reference, Wj,z (resp.

Wj,z′) should read Wj,z2 (resp. Wj,z′2).
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the cylinder: there is a weight z (resp. z−1) for a through line that goes through the peri-

odic direction in one directon (resp. the opposite direction). To account for these factors of

z, it is in general necessary to keep track of whether a pairwise connectivity between loop

ends straddles the periodic direction or not. However, when no cluster is propagating, the

latter information is nugatory, and we shall need only the smaller quotient representation

W0,z2 that is devoid of this information.

For the ease of comparison with the appendices of [2], we recall that this reference also

used the following simpler notation:

• V0 is the sector with no through-lines, and non-contractible loops have weight
√
Q:

V0 =W0,z2=q2 ,

• V1 is the sector with no through-lines, and non-contractible loops have weight zero:

V1 =W0,z2=−1,

• V`,k is the sector with j = ` ≥ 2 pairs of through-lines and phases z2 = e2iπk/j :

V`,k =Wj,z2=e2iπk/j .

The basic fact we want to explain now is how the complicated spectra for the Pabcd
found in [2] can reduce to the much simpler s-channel spectra of minimal models where,

instead of the genuine probabilities, we consider the proper combinations of pseudo-prob-

abilities P̃A,D that appear in the geometrical reformulation of the four-point functions of

order operators in minimal models. Note that this reduction should occur in finite size

as well.

Recall that after the logarithmic conformal mapping, the s-channal corresponds to

the cylinder geometry shown in figure 6. This can be studied in finite size by performing

transfer matrix computations on an L×M lattice strip, with periodic boundary conditions

in the L-direction, and in the semi-infinite limit M � L. The representations acted on by

the transfer matrix are those of the corresponding affine Temperley-Lieb (ATL) algebra.

Using the numerical methods described in appendix D — and with further technical de-

tails being given in the appendices of [2] — we can extract, for each correlation function

Pa1,a2,a3,a4 of interest, the finite-size amplitude Ai := A(λi) of each participating transfer

matrix eigenvalue λi; see eq. (D.1). These Ai are the finite-size precursors of the conformal

amplitudes AΦ∆∆̄
appearing in (5.1).

We have made a number of striking obversations about ratios of the amplitudes Ai,

which, crucially, turn out to be independent of L and hence should carry over directly to

their conformal counterparts, after the usual identification of representations. Although we

do not presently have complete analytical derivations of these amplitude-ratio results in the

lattice model, we wish to stress that the numerical procedures by which the observations

were made and thoroughly checked leaves no doubt that they are exact results. For the

lack of a better word, we shall therefore simply refer to them as facts in the following.

In full analogy with the occurence of minimal model representations of the Virasoro

algebra in the continuum limit, it is well known indeed that only a small set of “minimal”

representation of the affine Temperley-Lieb algebra appears in the correlation functions of
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minimal RSOS models on the lattice [16, 17, 39]. The reduction to the spectra of minimal

models is made possible by virtue of the facts which we have observed.

We will now list these facts, and use them in our discussion of minimal models in the

next section.

5.2 Facts of type 1

Whenever the same ATL module contributes to different Pabcd, the ratios of the correspond-

ing amplitudes in these different Pabcd, depend only on the module, and are independent of

the eigenvalues within this module. They also do not depend on the size L.

To make this more explicit, consider for instance the modules Wj,e2iπp/M with jp/M

even that contribute to Paaaa, Paabb and PS , where we recall (5.4). For such a module, con-

sider in a certain size L the eigenvalues λi of the transfer matrix. The powers of these eigen-

values contribute to different probabilities with different amplitudes Aaaaa(λi), Aaabb(λi)

and AS(λi). Our claim is that the ratios Aaabb(λi)/Aaaaa(λi) and AS(λi)/Aaaaa(λi):

• are the same for all eigenvalues λi in a given module, and thus only depend on the

module;

• are independent of the size L of the system (provided it is big enough to allow the

corresponding value of j)

The same claim holds for eigenvalues within W0,z2=−1 for Aaaaa/Aaabb.

We were able, by numerical fitting, to determine some of these ratios in closed form.

Defining first

αj,z2 ≡
Aaabb
Aaaaa

(Wj,z2) , (5.5)

we have then

α0,−1 = −1 , (5.6a)

α2,1 =
1

1−Q
, (5.6b)

α4,1 = −Q
5 − 7Q4 + 15Q3 − 10Q2 + 4Q− 2

2(Q2 − 3Q+ 1)
, (5.6c)

α4,−1 =
2−Q

2
. (5.6d)

Similarly defining

αj,z2 ≡
AS
Aaaaa

(Wj,z2) , (5.7)

we have then

α2,1 = 2−Q (5.8a)

α4,1 = −(Q2 − 4Q+ 2)(Q2 − 3Q− 2)

2
(5.8b)

α4,−1 =
(Q− 1)(Q− 4)

2
. (5.8c)
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Figure 7. Diagrams of the types Dabab and Dabba with an extra cluster surrounding the basic

clusters, i.e., the number of non-contractible loops is k = 4.

We now turn to the question of weighing differently non-contractible loops. This must

be done in two quite different cases. For diagrams of type Daabb, we can have a large

number of such loops separating our two pairs of points in the s-channel cylinder geometry

in figure 6. For diagrams Dabab and Dabba on the contrary, this number of loops — which

is at least equal to two by definition — remains finite and bounded by L/2, and cannot

increase during imaginary time propagation. Accordingly, we have two different sets of

facts.

5.3 Facts of type 2

We focus now on the Potts probabilities involving long clusters: Pabab and Pabba. A suitable

modification of the code in [2] — details of which are provided in appendix D.2 — allows us

to determine, for a given eigenvalue λi fromWj,z2 , the refined amplitudes corresponding to

imposing a fixed number k (even) of non-contractible loops. These refined amplitudes will

allow us to reweigh the non-contractible loops and hence relate the pseudo-probabilities P̃

to the true probabilities P .

We first claim that the two pseudo-probabilities, P̃abab and P̃abba involve the same ATL

modules exactly as their siblings Pabab and Pabba: the only effect of the modified weights

M(k) is to modify the amplitudes. To be more precise, let us consider the amplitude

A(λi) of some eigenvalue λi occurring in the s-channel of the diagram of the type Dabab or

Dabba in finite size (for simplicity we do not indicate which type of diagram in the ampli-

tudes). In the Potts case, this amplitude comes from summing over configurations where

all loops, contractible or not, are given the same weight
√
Q. We now split this amplitude

into sub-amplitudes corresponding to configurations with a fixed number k (even) of non-

contractible loops occurring in the diagrams. Note that k ≥ 2 since we have a least two

loops each surrounding one cluster. The case k = 4, for instance, corresponds to having, on

top of these two basic clusters, an extra “surrounding cluster”, i.e., an extra pair of loops

as shown in figure 7. Denoting by A(λi) the total amplitude — that is, the one occurring

in the Potts model, where no distinction is made between different values of k, as discussed

in [2] — we have

A(λi) =
∑

k=2 even

A(k)(λi) (5.9)

We now state our facts of type 2:

for the eigenvalues in Wj,e2iπp/M, the ratios of their amplitudes contributing

to configurations with precisely k non-contractible loops, depend only on the
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module and on k, and are independent of the eigenvalues within this module.

They also do not depend on the size L.

We define

β
(k)
j,z2 ≡

A
(k)
abab

A
(2)
abab

(Wj,z2). (5.10)

Note that, since the amplitudes for the symmetric combination PS involve only jp/M

even, the amplitudes for jp/M odd are necessarily equal and opposite in Pabab and Pabba.

Similarly, since the amplitudes for PA involve only jp/M odd, the amplitudes for jp/M

even are the same for Pabab and Pabba. The ratios β
(k)
j,z2 are thus the same for both cases.

Numerical determination leads to the following results (by definition, β(2) = 1):

β
(4)
4,1 = − Q2

3Q+ 2
, (5.11a)

β
(4)
4,−1 = −Q(Q− 2)

3Q− 4
, (5.11b)

β
(4)
4,i = −Q

2 − 4Q+ 2

3Q− 10
. (5.11c)

We finally turn to the case of Paabb, which as we will see must be handled a bit

differently.

5.4 Facts of type 3

We now consider calculating statistical sum with Daabb geometries. Unlike the previous

cases, the non-contractible loops are now those that wrap around the axis of the cylinder.

For a finite separation l of the points along the cylinder axis (recall figure 6) there can be

up to 2l such loops. As l → ∞, it is known that the average number of such loops in the

Potts model grows like ln l [40]. In this case, the natural thing to do is not to focus on

fixing the number of such loops, but rather in modifying their fugacity, i.e., giving them a

modified weight

na ≡ qa + q−a . (5.12)

We denote such sums by P̃
(a)
aabb. The probability Paabb in the Potts model corresponds to

a = 1 and involves modules W0,q2 ,W0,−1, and Wj,e2iπp/M with j ∈ N∗, jp/M even. The

sums in P̃
(a)
aabb involve the same modules, except for W0,q2 which is replaced byW0,q2a . This

is expected, since such modules precisely correspond to giving to non-contractible loops

the weight na.

For different values of a (including a = 1, i.e., the case of Potts), the P̃
(a)
aabb involve

eigenvalues from different modules. Among these are of course the modules W0,q2a for

which, since they themselves depend on a, there is not much point comparing amplitudes.

However, the modules W0,−1 and Wj,e2iπp/M also contribute to the P̃
(a)
aabb. For these, we

can indeed compare the amplitudes of their eigenvalues contributions. Like before, another

type of remarkable facts is then observed:
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the ratios of the amplitudes of eigenvalues from W0,−1, and Wj,e2iπp/M that

contribute to the P̃
(a)
aabb depend only on the module and on a, and are independent

of the eigenvalues within this module. They also do not depend on the size L.

Now define

γ
(a)
j,z2 ≡

A
(a)
aabb

Aaabb
(Wj,z2) , (5.13)

where A(a) is the amplitude in P̃
(a)
aabb, and A the amplitude in Paabb = P̃

(1)
aabb. Denoting

Qa = n2
a such that we have Q = n2 as usual, we have determined the following:

γ
(a)
0,−1 = 1 , (5.14a)

γ
(a)
2,1 =

(Q2 −Q1)Qa

(Q2 −Qa)Q1
, (5.14b)

γ
(a)
4,1 =

(c1 +Qa)Qa(Q4 −Q1)

c2(Q4 −Qa)
, (5.14c)

γ
(a)
4,−1 =

Qa

Q1
. (5.14d)

The expression for γ
(a)
4,1 involves two quantities, c1 and c2, which are independent of a, but

which have a complicated Q-dependence. They are given by the following expressions:

c1 =
8− 26Q+ 60Q2 − 110Q3 + 112Q4 − 54Q5 + 12Q6 −Q7

Q(2− 4Q+Q2)
, (5.15a)

c2 =
(Q− 4)(Q− 1)(2− 4Q+ 10Q2 − 15Q3 + 7Q4 −Q5)

2− 4Q+Q2
. (5.15b)

The fact that the ratios (5.5), (5.7), (5.10) and (5.13) exist and are independent of

the size of the system suggests strongly that they have a simple, algebraic origin — e.g.,

occurring as recoupling coefficients in quantum group representation theory. We hope to

discuss this more in a forthcoming paper. For now, we use these facts (which, strictly

speaking, must be considered as conjectures, since we have only checked them for a finite

number of values of L — see appendix D for details) to discuss correlation functions in the

RSOS models.

We also note that when a is an integer, the representation theory of ATL is not generic:

the modules W0,q2a are reducible, and contain a sub-module isomorphic to Wa,1. This does

not affect the coefficients in (5.14): more details can be found in appendix D.

6 Recovering minimal model four-point functions

Recovering the s-channel spectrum of the minimal model transfer matrix is a subtle process.

It involves not only “throwing away” many modules Wj,z2 , but also restricting to the

irreducible tops of those which are kept. More precisely, in the continuum limit, the

representation of the ATL algebra relevant for the Ap−1 RSOS minimal model is [38, 41]:

ρper '
p−1⊕
n=1

X0,q2n , (6.1)
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Figure 8. The structure of the standard modules involved in the RSOS model for q = eiπ/2n

corresponding to p = 2n, q = 2n−1. The RSOS model is obtained by restricting to the simple tops.

with q = e
iπ p−q

p . Here, each module X0,q2n is the irreducible top of the modules W0,q2n ,

which become reducible when q is a root of unity. The structure of the some of these

modules is given in figure 8.

In addition, different affine Temperley-Lieb modules Wj,z2 may get glued in the loop

model representation relevant for the Potts correlation functions. The full analysis of what

happens is not our concern here, however, and will be discussed elsewhere. In this paper,

we simply wish to illustrate the mechanism by which unwanted eigenvalues disappear from

the s-channel spectrum in finite size. This turns out to be in one-to-one correspondence

with the simplification of the spectrum in the continuum limit, since we have [38]:

X0,q2n 7→
q−1∑
r=1

|χrn|21 . (6.2)

Note in particular that this only involves diagonal fields.

6.1 The case of Ap−1

Consider the Ap−1 models for which we have seen in (4.11) that

〈φp/2φp/2φp/2φp/2〉 ∝
p

2
Paaaa + P̃

Ap−1

aabb + P̃
Ap−1

abba + P̃
Ap−1

abab . (6.3)

Let us now examine, for instance, the module W4,−1 corresponding to j = 4 and

z2 = e2iπp/M = −1 with p/M = 1/2. Using that q = eiπ/2n, we can write z2 = q2s

with s = n. For p > 4, it is clear that the module W4,−1 does not appear in any of the

“ladders” (such as the ones in figure 8) associated with the simple modules describing the

minimal model. Barring spurious degeneracies,16 this means the total amplitude for the

corresponding eigenvalues in (6.3) should vanish. Let us now see how each term in (6.3)

contributes to this amplitude.

16Since we study a specific Hamiltonian or transfer matrix, such degeneracies cannot be excluded a priori,

though they are not observed in our numerical analysis.
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While the first term in (6.3) involves Paaaa, all other terms involve modified weights.

The total amplitude can thus be written as:

Ã(W4,−1) =
p

2
Aaaaa(W4,−1) + Ãaabb(W4,−1) + Ãabba(W4,−1) + Ãabab(W4,−1) . (6.4)

Here we have introduced modified amplitudes Ã, determined by the modified weights given

to non-contractible loops in the RSOS correlation functions, when compared to the Potts

model ones. For notational simplicity, we ignore the superscript Ap−1 for Ã here — and

similarly we shall omit in the next subsection the superscripts for modified amplitudes of

type D — , while one should keep in mind that the modified amplitudes depend on the

algebra in consideration due to the difference in the three-point couplings (4.1) and (4.16).

We have in general

Ã(λi) =

j∑
k=2 even

A(k)(λi)M(k) , (6.5)

where A denotes the Potts amplitudes in (5.9). The sum in (6.5) is truncated to the

maximum value j since for an eigenvalue λi in Wj,z2 , we have at most k = j, as is clear

from the geometrical interpretation of the ATL modules in section 5.1. Using our facts of

type 2 — see eq. (5.10) — we can therefore write

Ãabab
Aabab

∣∣∣∣∣
Wj,z2

=

∑j
k=2 even β

(k)
j,z2M(k)∑j

k=2 even β
(k)
j,z2

. (6.6)

The same holds for Aabba, since, for W4,−1, the amplitudes for the two sectors Aabab and

Aabba are identical. We therefore write

Ãabab(W4,−1) = Aabab(W4,−1)
MAp−1(2) + β

(4)
4,−1M

Ap−1(4)

1 + β
(4)
4,−1

. (6.7)

Now use that β
(4)
4,−1 = −Q(Q−2)

3Q−4 from (5.11b), together with MAp−1(2) = p
Q and MAp−1(4) =

3p
Q2 from (4.8). Hence

Ãabab(W4,−1) = − 2p

Q(Q− 1)(Q− 4)
Aabab(W4,−1) , (6.8)

and the same for Ãabba.

Next, we have

Ãaabb(W4,−1) = Aaabb(W4,−1)

p−1∑
a=1 odd

A
(a)
aabb

Aaabb
(W4,−1)

= Aaabb(W4,−1)

p−1∑
a=1 odd

γ
(a)
4,−1

=
p

Q
Aaabb(W4,−1) ,

(6.9)
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where we used that γ
(a)
4,−1 = Qa

Q1
from (5.14d), together with the identity

p−1∑
a=1 odd

(qa + q−a)2 = p , (6.10)

valid when p is even, as we have supposed in (2.16).

We therefore see that (6.4) becomes

Ã(W4,−1) =
p

2
Aaaaa(W4,−1) +

p

Q
Aaabb(W4,−1)− 2p

Q(Q− 1)(Q− 4)
(Aabba +Aabab) (W4,−1)

= pAaaaa(W4,−1)

(
1

2
+
α4,−1

Q
− 2

Q(Q− 1)(Q− 4)
α4,−1

)
,

(6.11)

where in the last line we have used (5.5) and (5.7). Recall that α4,−1 = (Q−1)(Q−4)
2 and

α4,−1 = 2−Q
2 . We arrive at(

1

2
+
α4,−1

Q
− 2

Q(Q− 1)(Q− 4)
α4,−1

)
= 0. (6.12)

We have thus established that the amplitude of eigenvalues coming from W4,−1 all vanish

in the four-point function (6.3).

In fact, since the s-channel of the four-point function (6.3) involves only diagonal fields

in the type A minimal models, the amplitudes of eigenvalues from all modules Wj,z2 should

vanish in (6.3) since they correspond to non-diagonal fields in the continuum limit, leaving

only the diagonal fields from W0,q2a . We therefore expect, from the vanishing of the Wj,z2

contributions, to have the following relation:

p

2
+ αj,z2

p−1∑
a=1 odd

γ
(a)
j,z2 + ᾱj,z2

∑j
k=2 even β

(k)
j,z2M

Ap−1(k)∑j
k=2 even β

(k)
j,z2

= 0. (6.13)

While this can be checked numerically forW0,−1,W2,1 andW4,1 using the α, ᾱ, β and γ we

provided in the previous section, we do not have, for the moment, closed-form expressions

for all the coefficients involved. Note that here W2,1 and W4,1 appear as submodules of

some other modules when q is the relevant root of unity, so one might have feared that the

overall cancellation of its contributions might involve also some of the coefficients of these

other modules — this is, however, not the case.

6.2 The case of D1+p
2

We next consider amplitudes in the D1+ p
2

case. Let us study the case of W2,1, for example.

Recall from (4.28a) that

〈φp/2φp/2φp̄/2φp̄/2〉 = Paaaa + P̃
D1+

p
2

aabb . (6.14)

Because of (4.21) the amplitude in the first term does not depend on the modification of

the weights M , so we have

Ã(W2,1) = Aaaaa(W2,1) + Ãaabb(W2,1), (6.15)
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and

Ãaabb(W2,1) = Aaaaa(W2,1)
Aaabb(W2,1)

Aaaaa(W2,1)

p−1∑
a=1 odd

(−1)
a−1

2
A

(a)
aabb(W2,1)

Aaabb(W2,1)

= Aaaaa(W2,1)

(
α2,1

p−1∑
a=1 odd

(−1)
a−1

2 γ
(a)
2,1

)
,

(6.16)

where we have used (4.16) (from which the (−1)
a−1

2 occurs) and (5.13). Recall α2,1 = 1
1−Q ,

and γ
(a)
2,1 is given in (5.14), so we have

Ã(W2,1) = Aaaaa(W2,1)

(
1 +

Q2 −Q
Q(1−Q)

p−1∑
a=1 odd

(−1)
a−1

2
Qa

Q2 −Qa

)
= 0 , (6.17)

which can be checked to vanish using Mathematica.

In general, from the identification of (4.18), the s-channel spectrum of (6.14) involves

only diagonal fields as argued in [4] and therefore we should have the following identity for

modules Wj,z2 :

1 + αj,z2

p−1∑
a=1 odd

(−1)
a−1

2 γ
(a)
j,z2 = 0. (6.18)

This can be checked to be true for W0,−1, W4,−1, W4,1 using (5.6) and (5.14).

Finally let us look atW4,i. Its amplitude in 〈φp/2φp̄/2φp/2φp̄/2〉 comes entirely from the

term P̃
D1+

p
2

abab , since by (5.3) Paaaa has no contribution from W4,i. By the result analogous

to (6.7) we then have

Ãabab(W4,i) = Aabab(W4,i)
M

D1+
p
2 (2) + β

(4)
4,iM

D1+
p
2 (4)

1 + β
(4)
4,i

. (6.19)

Inserting now β
(4)
4,i from (5.11) we find

M
D1+

p
2 (4)

M
D1+

p
2 (2)

=
3Q− 10

Q2 − 4Q+ 2
= − 1

β
(4)
4,i

, (6.20)

so indeed (6.19) vanishes exactly.

7 Comparison with the results of [1, 3–6]

We now wish to return to the thread left behind in section 2.4, namely the comparison

between our approach and the one advocated in [1, 3–6]. One of the principal ideas pro-

moted originally in [1, 3] is to obtain the geometrical correlation functions in the generic

Q-state Potts model by suitable analytic continuations from correlations in the type D

minimal models. It has been argued in subsequent work [2, 4, 5] that such procedure is

inaccurate and could at best provide an approximate description of the Potts geometrical

correlations. Here we have provided an explanation of this issue, in particular why the
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geometrical correlation functions in the Potts model cannot be obtained this way, by ex-

plicitly reformulating the correlation functions of minimal models (i.e., their RSOS lattice

realizations) to give them a geometric interpretation, and then directly comparing with the

geometric correlations in the Potts model. We have seen in sections 5 and 6 that many of

the ATL representations Wj,z2 which were found in [2] to provide contributions to the s-

channel spectrum of the Potts geometrical correlations have, in fact, zero net amplitude in

the RSOS models and therefore in the continuum limit disappear from the minimal models

spectra. Moreover, since the discussion so far have been formulated in a way that depends

only on Q, the results apply to the spectrum first proposed in [1], which is an analytic

continuation of the spectrum of minimal models obtained by taking the limit (2.19):

M(p, q) : p, q →∞, q

p− q
→ x, (7.1)

where x is a finite number and the central charge (2.15) becomes (2.11). In this section we

aim at further elucidating the nature of this limit, via the RSOS models of type D, for the

purpose of making a direct comparison with results in [1, 3–6].

In the case of D1+ p
2

models, the multiplicity M
D1+

p
2 (k) in (4.23) is well defined in

the limit (7.1) — as witnessed by its rewriting (4.24) as polynomials in Q — and we

will denote it as MD∞(k). The diagrammatic expansions of Paaaa, P̃
D1+

p
2

abab , P̃
D1+

p
2

abba in

the s-channel (5.2a) are also well defined. By taking the corresponding limit of (4.28a)

and (4.28c) it follows that

Lim
p→∞
〈φp/2φp̄/2φp̄/2φp/2〉 ∝ Paaaa + P̃D∞abba , (7.2a)

Lim
p→∞
〈φp/2φp̄/2φp/2φp̄/2〉 ∝ Paaaa + P̃D∞abab , (7.2b)

where on the right-hand side, the pseudo-probabilities are defined by using (4.23) and (4.27)

with multiplicity MD∞ . They depend only on Q, so we have in (7.2) two quantities

that ressemble similar combinations in the Potts model. There is however an important

difference with the Potts model: while the probabilities (and thus their combinations)

in the Potts model are expected to be smooth functions of Q, the combinations in (7.2)

have infinitely many poles at the values of Q given by (4.26) which originate from the

multiplicities MD∞(k). Due to (4.20), we will in the following make the identifications

Lim
p→∞
〈φp/2φp̄/2φp̄/2φp/2〉 ↔ 〈V DV NV NV D〉 , (7.3a)

Lim
p→∞
〈φp/2φp̄/2φp/2φp̄/2〉 ↔ 〈V DV NV DV N 〉 , (7.3b)

where the right-hand side now represent the four-point functions after taking the limit (7.1),

so as to extend (4.20) to generic central charges. We see then that the poles (4.26) in (7.2)

obtained from direct lattice calculations exactly recover the poles (2.20) and (2.21) from

the CFT analysis in [4]. As was already argued in [2], on the basis of examples, the richer

s-channel spectrum (5.3) for the Potts model has indeed the effect of cancelling these poles.

Now recall the conjecture (2.22) inferred from Monte-Carlo simulations in [5]. To be

more specific, it was observed there that the four-point functions were given approximately
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by the combination of Potts probabilities

conjecture in [5]:

Lim
p→∞
〈φp/2φp̄/2φp̄/2φp/2〉 ≈

1

2

(
Paaaa +

2

Q− 2
Pabba

)
, (7.4a)

Lim
p→∞
〈φp/2φp̄/2φp/2φp̄/2〉 ≈

1

2

(
Paaaa +

2

Q− 2
Pabab

)
(7.4b)

and that these become exact at Q = 0, 3, 4. In particular, near Q = 2, the authors of [5]

conjectured:

eqs. (3.34), (3.36) in [5]:

Lim
p→∞
〈φp/2φp̄/2φp̄/2φp/2〉

Q→2
=

1

Q− 2
Pabba +O(1) , (7.5a)

Lim
p→∞
〈φp/2φp̄/2φp/2φp̄/2〉

Q→2
=

1

Q− 2
Pabab +O(1) , (7.5b)

We now fix the coefficients in (7.2) to be 1
2 — same as (7.4) — for the purpose of comparing

our results with their claims.

For Q = 3 we have

T2m

(√
3

2

)
= cos

(mπ
3

)
(7.6)

in (4.24), and using the identity

l∑
m=−l

(
2l

l + m

)
cos−1

(mπ
3

)
= 2× 3l (7.7)

the multipliticy (4.23) becomes independent of k:

MD4(k) = 2 =
2

Q− 2
. (7.8)

Therefore, for Q = 3, (7.2) reduces to (7.4) exactly. Meanwhile, for Q = 4, we have

T2m(1) = 1, so that (4.23) becomes simply:

MD∞(k = 2l) =
1

4l

l∑
m=−l

(
2l

l + m

)
= 1 =

2

Q− 2
, (7.9)

and again one identifies (7.2) with (7.4).

The situation with Q→ 0 is more subtle, since the Potts model partition function (2.2)

itself vanishes in this case. As discussed in [2], one should renormalize the partition function

by a factor of Q to redefine it as the number of spanning trees. In the Q→ 0 limit, extra

clusters disappear by the factors of Q they carry, and therefore the only configuration
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contributing to Paaaa is a single spanning tree. The only configurations contributing to

Pabab and Pabba are thus diagrams with k = 2. Therefore, (7.2) is written explicitly as

Lim
p→∞
〈φp/2φp̄/2φp̄/2φp/2〉

Q→0
=

1

2

(
Paaaa +

2

Q− 2

∑
Dabba

WPotts(k = 2)

)
, (7.10a)

Lim
p→∞
〈φp/2φp̄/2φp/2φp̄/2〉

Q→0
=

1

2

(
Paaaa +

2

Q− 2

∑
Dabab

WPotts(k = 2)

)
, (7.10b)

which agrees with (7.4).

Near Q = 2, we see from (4.25), (4.27) and (7.2) that we have, for instance:

Lim
p→∞

〈φp/2φp̄/2φp/2φp̄/2〉
Q→2
=

1

Q−2

1

ZPotts

(∑
Dabab

WPotts(k = 2)+2
∑
Dabab

WPotts(k = 4)+. . .

)
+O(1) .

(7.11)

On the other hand, (7.5) reduces to:

diagrammatic expansion of eqs. (3.34), (3.36) in [5]:

Lim
p→∞

〈φp/2φp̄/2φp/2φp̄/2〉
Q→2
=

1

Q−2

1

ZPotts

(∑
Dabab

WPotts(k = 2)+
∑
Dabab

WPotts(k = 4)+. . .

)
+O(1).

(7.12)

The difference is

1

Q− 2

1

ZPotts

∑
Dabab

WPotts(k = 4) + . . .

+O(1), (7.13)

still of order 1
Q−2 , but this is dominated by configurations with k ≥ 4, whose probabilities

are small and are numerically challenging to properly sample.

Let us now turn to the third combination (4.28b), which reads

Lim
p→∞
〈φp/2φp/2φp̄/2φp̄/2〉 ∝ Paaaa + P̃D∞aabb . (7.14)

While this four-point function is related to (7.2) by crossing, here we focus on the s-channel

which now involves a large number of non-contractible loops separating the basic clusters

in the diagrammatic expansion of P̃aabb, as depicted in figure 9. From (6.18), we have

seen that only diagonal fields — i.e., the modules W0,q2a — remain in the s-channel of this

four-point function. It was claimed in [4] that in the limit (7.1), the spectrum becomes

continuous. Here, in terms of the ATL representations, we can formally write

p−1⊕
a=1

W0,q2a '
∫ π

0
W0,e2iθ dθ , (7.15)

where the sum is replaced by an integral over a compact variable θ for generic x:

θ =
aπ

x+ 1
. (7.16)
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Figure 9. There are a large number of non-contractible loops surrounding the basic clusters when

the distance separating them is large. Here we show this picture for s-channel of P̃aabb.

Geometrically, this corresponds to integrating over non-contractible loop weights

nz = z + z−1, z = eiθ. (7.17)

The same picture also applies for the four-point functions

Lim
p→∞
〈φp/2φp/2φp/2φp/2〉 = Lim

p→∞
〈φp̄/2φp̄/2φp̄/2φp̄/2〉 ∝

p

2
Paaaa+ P̃A∞abab+ P̃A∞aabb+ P̃A∞abba , (7.18)

where all three channels give rise to the geometric picture of figure 9, with the s, t and

u-channels corresponding respectively to the diagrammatic expansions of P̃aabb, P̃abba and

P̃abab. In the CFT, one obtains continuous spectra in all three channels. See [42] for a

related discussion.

8 Conclusions

To conclude, we have first provided a graphical formulation of correlation functions in

RSOS minimal models that involves quantities which are similar but different from those

in the Potts model. This formulation has allowed us to analyse in detail how the complex

spectrum conjectured in [2] for the Potts model does, indeed, reduce to the much simpler

RSOS spectrum when probabilities are replaced by “pseudo-probabilities”. This reduction

involves a series of beautiful “facts” (and numbers), which we do not fully understand for

the moment.

Using the geometrical formulation of correlation functions in RSOS minimal models,

we have then been able to explain what the conjecture in [1] actually describes, why the

“special combinations of probabilities” considered by these authors emerge, and to quantify

how their results differ from the true Potts model result.

We will, in our next paper [15], use this analysis to finally discuss the solution of the

bootstrap for the Potts model itself. We obviously also plan to come back to our “facts”

(exposed in sections 5.2–5.4), which hint at rich and largely unknown algebraic structures

lurking beneath the problem of correlation functions on the lattice. It is hard not to

speculate, in particular, that all the coefficients αj,z2 , ᾱj,z2 , β
(k)
j,z2 and γ

(a)
j,z2 should have

a natural algebraic meaning, and — especially since they can be expressed as relatively

simple rational functions of Q — could be calculated from first principles, using maybe

quantum-group [39] or SQ representation theory [43–45]. This, however, remains to be seen.

– 35 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
6

Acknowledgments

This work was supported by the ERC Advanced Grant NuQFT. We thank J. Belletête,

A. Gainutdinov, I. Kostov, M. Kruczenski, V. Pasquier, N. Robertson, T.S. Tavares and

especially S. Ribault for many stimulating discussions. We are also grateful to S. Ribault

for careful reading the manuscript and valuable comments.

A Proof of the partition function identity17

The Potts model on a connected plane graph G = (V,E, F ) (with vertices V , edges E and

faces F ) is defined by the Fortuin-Kasteleyn representation

ZG(Q,v) =
∑
A⊆E

Qκ(A)
∏
e∈A

ve , (A.1)

where κ(A) denotes the number of connected components in the subgraph (V,A).18

The related RSOS model is defined on the connected plane quadrangulation Γ =

(V, E ,F), where V = V ∪V ∗ and each face f = 〈i1i2i3i4〉 ∈ F has i1, i3 ∈ V and i2, i4 ∈ V ∗

with diagonals i1i3 ∈ E and i2i4 ∈ E∗. It takes values in another finite graph H = (X,E)

with adjacency matrix A = (Aσ,σ′)σ,σ′∈X . In the main text we focus on the case where H

is a Dynkin diagram D of type A or D, while here in the appendix we consider the generic

formulation. The RSOS partition function reads

ZRSOS
Γ =

∑
σ : V→X

 ∏
(ij)∈E

Aσ(i)σ(j)

W (σ) , (A.2)

where the sum runs over all maps σ : V → X but the adjacency matrix restricts them to

be graph homomorphisms (neighbours map to neighbours).

The weight function W is a product of local contributions from vertices and faces:

W (σ) =

(∏
i∈V

Wi(σi)

)(∏
F∈F

WF (σF )

)
, (A.3)

where σi ≡ σ(i), and σF denotes the collection of variables σi for sites i lying on the

boundary of the face F . Let S = (Sσ)σ∈X be an eigenvector of A such that the entries

are all nonzero, with λ the corresponding eigenvalue. Require the vertex weights to be

given by

Wi(σi) = Sσi (A.4)

and the face weights by

WF (σi1 , σi2 , σi3 , σi4) = ae S
−1
σi1
δ(σi1 , σi3) + be S

−1
σi2
δ(σi2 , σi4) . (A.5)

17This appendix is adapted from an unpublished work by A.D. Sokal and one of the authors [20].
18Here we consider the formulation in its most general form. Setting ve = v, ∀e ∈ A reduces to (2.2).
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In the following, we shall also need topological identity

κ(A) = |V | − |A| + c(A) (A.6)

where c(A) is the cyclomatic number (i.e., number of linearly independent cycles) of the

graph (V,A). Having defined our models, we now state the relation between them:

Potts-RSOS equivalence for the partition function

ZRSOS
Γ (a,b) =

(∑
σ∈X

S2
σ

)
λ−|V |

(∏
e∈E

be

)
ZG(λ2, λa/b) . (A.7)

Proof. Insert (A.4)/(A.5) into (A.3) and expand out the product over faces F of Γ, which

are in one-to-one correspondence with edges e ∈ E. Each term in this expansion can be

associated to a subset A ⊆ E and the complementary subset A∗ as follows:

• If the term contains the factor ae, then e ∈ A and hence e∗ /∈ A∗.

• If the term contains the factor be, then e /∈ A and hence e∗ ∈ A∗.

This gives a formulation of the partition function in terms of cluster configurations. On

each connected component (cluster) C of the graph (V ∪ V ∗, A ∪A∗), the σ value must be

constant (let us call it simply σC). Such a configuration then gets a weight( ∏
i∈V ∪V ∗

Sσi

)(∏
e∈A

ae

)( ∏
e∗∈A∗

be

) ∏
components C

S−|edges(C)|
σC

 (A.8a)

=

(∏
e∈A

ae

)( ∏
e∗∈A∗

be

) ∏
components C

S|vertices(C)|−|edges(C)|
σC

 (A.8b)

=

(∏
e∈A

ae

)( ∏
e∗∈A∗

be

) ∏
components C

S1−c(C)
σC

 , (A.8c)

where the last equality used (A.6) with k(C) = 1 per component, and c(C) here denotes

the cyclomatic number of the chosen component C.
Now form the graph T = (V,E) whose vertices are the connected components C of

(V ∪ V ∗, A ∪A∗) and which puts an edge between C1 and C2 whenever at least one vertex

of C1 is adjacent in Γ to at least one vertex of C2. One observes that T is a tree, and that

a component C of cyclomatic number c is adjacent in T to exactly c+ 1 other components

(namely its exterior and c cycles on the interior). Therefore, S
1−c(C)
σC = S

2−dT(C)
σC where

dT(C) is the degree of C in T. An example of a tree T associated to a cluster configuration

is shown in figure 10.

To proceed we need the following lemma:

Lemma A.1. Let T = (V, ~E) be a rooted tree whose edges are directed towards the root

vertex ρ ∈ V. For each i ∈ V, let din(i) (resp. dout(i)) denote the in-degree (resp. out-

degree) of i in T. (Thus, dout(i) = 1 for all i 6= ρ, and dout(ρ) = 0.) Let M be a matrix
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•
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Figure 10. The tree T associated to a cluster configuration on the sphere. Each vertex in the tree

corresponds to a cluster, each edge corresponds to a loop separating two clusters.

indexed by a finite set X, and let S be an eigenvector of M with eigenvalue λ. Then, for

each σ̃ ∈ X, we have

∑
σ : V→ X

σρ = σ̃

 ∏
(ij)∈~E

Mσj ,σi

(∏
i∈V

Sdout(i)−din(i)
σi

)
= λ|V|−1 . (A.9)

Proof. The proof of (A.9) is by induction on the cardinality of V. If |V| = 1 (i.e., T consists

of the root vertex and no edges), then (A.9) is trivial. If |V| > 1, then T contains at least

one leaf vertex i 6= ρ, for which dout(i) = 1 and din(i) = 0. Letting j be the parent of i we

can perform the sum over σi using MS = λS, yielding λSσj . This extra factor of Sσj is

exactly what we need to apply the inductive hypothesis to the tree T \ i, in which j has

in-degree one lower than it does in T.

In particular, if M is a symmetric matrix, as is the case for our adjacency matrix, we

can ignore the orientations of the edges. We then have

∑
σ : V→ X

σρ = σ̃

 ∏
(ij)∈E

Mσi,σj

(∏
i∈V

S2−d(i)
σi

)
= S2

σ̃λ
|V|−1 (A.10)

where d(i) is the total degree of the vertex i; the result is independent of the choice of the

root vertex ρ. This result follows immediately from lemma A.1, since dout(i) = 1 for all

i 6= ρ and dout(ρ) = 0.

We now resume the proof of the main result (A.7). Using (A.10) to sum over RSOS

configurations satisfying σρ = σ̃ we obtain

S2
σ̃ λ

κ(A)+κ(A∗)−1

(∏
e∈A

ae

)( ∏
e∗∈A∗

be

)
. (A.11)

But by (A.6) we have

κ(A) + κ(A∗)− 1 = κ(A) + c(A) = 2κ(A) + |A| − |V | , (A.12)

which proves (A.7) by summing over σ̃ ∈ X.
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B RSOS N -point functions

In this appendix we shall focus on the equivalence between the RSOS model and the loop

model defined on the medial graphM(G) = Γ∗, i.e. the dual of the plane quandrangulation.

The loops are shown in figure 10 together with the tree T = (V,E), which shall play an

important role in the following. In terms of loops and trees, the essential part of the

result (A.7) is that

• The expansion of the local weights in the RSOS model followed by the summation

over heights, subject to the constraints imposed by the adjacency matrix A, leads to

a corresponding formulation in terms of clusters on G, or equivalently to a completely

packed loop model on M(G).

• Each loop gets a weight λ equal to the eigenvalue of the chosen eigenvector S of the

adjacency matrix A. These weights are due to the recurrence relation on the tree T

that serves to eliminate it starting from the leaves.

• There is an extra factor
∑

σ∈X S
2
σ coming from the summation over the root vertex.

Henceforth we choose to normalize all eigenvectors of A, so that this factor is 1.

We label the different eigenvectors and eigenvalues of A as Sσ(r) and λ(r), with r =

1, 2, . . . , dimA. Below, we shall also refer to the S(r) as states, calling S ≡ S(rid) the

identity state.19 A is real and symmetric, so the matrix O formed by its normalized

eigenvectors is orthogonal. Both the rows and columns of O provide an orthonormal basis

of RdimA: ∑
σ

Sσ(r1)S
σ
(r2) = δr1,r2 (B.1)

and ∑
r

Sσ1

(r)S
σ2

(r) = δσ1,σ2 . (B.2)

The definition of order parameters from the normalized eigenvectors extends that of [16,

17] (in which S(rid) is the Perron-Frobenius vector) to any rid such that Sσ := Sσ(rid) 6= 0:

φr(i) =
Sσi(r)

Sσi
. (B.3)

We mark N vertices i ∈ V by a label ri ∈ {1, 2, . . . , dimA}. The corresponding N -point

correlation functions are given by insertions of φri(i), which amounts to replacing the vertex

weights Sσi of (A.4) by Sσi(ri)
at each marked vertex. The corresponding weights in the loop

model will depend on how the marked vertices are situated in the tree T. In particular, in

the edge subset expansion, it will be possible for a given vertex in V to be marked several

times, if the corresponding marked vertices in V are situated in the same cluster.

In the section B.1 below we shall revisit the inductive argument on T, first for the

partition function, and then generalising it to all N -point correlation functions in the

RSOS model with N ≤ 3. We shall then describe the case of N > 3 from a slightly

different perspective in section B.2.

19In the RSOS lattice formulation of minimal models M(p, q), we have rid = p− q (see section 3).
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B.1 Explicit computation on T up to N = 3

A common feature of the proofs in this section is that we have the liberty to chose the

root of T = (V,E) at any vertex in V. Certain calculations can be done in different ways,

depending on the choice of the root, but the result will of course be independent of that

choice. This independence is guaranteed by certain identities that we shall establish along

the way.

Partition function. Chose any ρ ∈ V as the root of T. To sum out a leaf i ∈ V, let j

denote its (unique) parent. The leaf has degree di = 1, and let dj denote the degree of the

parent vertex before the summation. The inductive argument made in lemma A.1 then

hinges on the eigenvalue identity for the adjacency matrix A∑
σi

Aσj ,σiSσiS
2−dj
σj = λS

2−(dj−1)
σj , (B.4)

where dj − 1 is now the degree of j after the leaf has been summed out. This produces

a weight λ per loop. After summing out inductively all the leaves, only the root vertex ρ

will remain. Since dρ = 0 the corresponding sum produces∑
σρ

S2
σρ = 1 , (B.5)

where we have used the normalisation of the eigenvectors.

One-point function. Take the marked point i1 := ρ ∈ V as the root of T, and let r1

denote the corresponding label of S(r1). The argument for the leaves can be taken over

from the computation of the partition function, producing again a factor λ|V|. At the root

we get an extra factor ∑
σρ

S2
σρφr1(i1) =

∑
σρ

SσρS
σρ
(r1) = δr1,rid , (B.6)

where we have used the definition (B.3) of the order parameters, followed by the orthogo-

nality (B.1) of the eigenvectors. (Recall S ≡ S(rid).)

Two-point function. With more than one point, the regrouping of marked vertices in

V into connected components in (V ∪V ∗, A∪A∗) will induce a set partition of the marked

vertices. Specifically, with N = 2 marked vertices, we shall denote by {12} the situation in

which the two marked vertices i1, i2 ∈ V correspond to the same vertex of the tree T, and

by {1}{2} the situation in which they correspond to two distinct vertices. In either case,

the corresponding labels of the eigenvectors are denoted r1 and r2.

We first treat the case of the partition {12}. We take the marked points to be at the

root, a choice that we write for short as ρ = {12}. As before we get a factor λ|V| from the

summation over the leaves, while at the root we obtain∑
σρ

S2
σρφr1(i1)φr2(i2) =

∑
σρ

S
σρ
(r1)S

σρ
(r2) = δr1,r2 . (B.7)
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In the case of the partition {1}{2} we take i2 := ρ ∈ V to be the root of T. The other

marked point i1 corresponds to a different vertex in V. Since T is a tree, there is a unique

path P from i1 to i2. We denote by ` the number of edges in P. All the vertices not in P

can be summed out using (B.4), giving rise to a total factor of λ|V|−|P|. Once this has been

done, we must sum over the vertices remaining in P. We start by summing over i1. Let j

denote its parent in T, of degree dj . We get that (B.4) must be replaced by∑
σi1

Aσj ,σi1Sσi1S
2−dj
σj φr1(i1) =

∑
σ1

Aσj ,σ1S
σ1

(r1)S
2−dj
σj

= λ(r1)

(
S
σj
(r1)/Sσj

)
S

2−(dj−1)
σj

= λ(r1)φr1(j)S
2−(dj−1)
σj . (B.8)

This has the effect of producing a factor λ(r1) corresponding to the summed-out vertex

i ∈ P, and moving the marked weight to the parent vertex j. Therefore the inductive

argument can be continued until we have reduced P to the root vertex ρ = i2, and summing

over this provides the same factor (B.7) as before. In total we obtain

λ|V|−`λ`(r1)δr1,r2 . (B.9)

We could divide by the partition function Z to write the correlation function as(
λ(r1)

λ

)`
δr1,r2 ; (B.10)

however, in what follows we prefer to keep the correlation functions un-normalised as

in (B.9).

The result in (B.9) can be summarised by saying that any loop that separates the two

marked vertices i1, i2 ∈ V has its weight modified from λ to λ(r1). In addition there is a

factor δr1,r2 , so it is equivalent to say that the weight is modified to λ(r2). This equivalence

agrees naturally with the possibility to turn a loop inside out on the Riemann sphere. We

also notice that the case of the partition {12} emerges as a particular case of the {1}{2}
computation; it suffices to set ` = 0 in (B.9). This is a general observation that will carry

over to appropriate N -point functions with N > 2.

Three-point functions. We begin by considering the case of the partition {123}. Take

the root ρ = {123}. We get the factor λ|V| as usual, meaning the all loop weights are

unchanged. At the root we obtain the factor∑
σρ

S
σρ
(r1)S

σρ
(r2)S

σρ
(r3)S

−1
σρ =: Cr1,r2,r3 . (B.11)

By definition the structure constant Cr1,r2,r3 is symmetric in all three indices. Note also

that (B.11) correctly contains the two-point function as a special case, since

Cr1,r2,rid =
∑
σρ

S
σρ
(r1)S

σρ
(r2) = δr1,r2 , (B.12)

where we have used (B.1).
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Next consider the partition {12}{3}. The easiest way to compute this correlation

function is to take ρ = {12} and i = {3}. We strip off the leaves of T as usual, ending

up with the path graph P with ` edges and extremities i and r. To perform the sum over

σi, we can take over the inductive argument (B.8) from the computation of the two-point

function to get a factor λ`(r3) by undoing P. Finally at the root we get Cr1,r2,r3 by the same

calculation as above.

We can redo this computation the other way around by taking the root ρ = {3} and

i = {12}. We shall use the following lemma:

Lemma B.1. Let A be a real and symmetric matrix, S(r) (with r = 1, 2, . . . , dimA) its nor-

malized eigenvectors with corresponding eigenvalues λ(r), and S a distinguished eigenvector

whose entries are all non-zero. For Cr1,r2,r3 as defined by (B.11) we have∑
σi

Aσj ,σiS
σi
(r1)S

σi
(r2)S

−1
σi =

∑
r

λ(r)Cr1,r2,rS
σj
(r) . (B.13)

Proof. Since the eigenvectors S(r̃) form a basis of RdimA, this identity can be proven by

showing the left-hand and right-hand sides have the same projections on each of these

vectors. First consider the left-hand side:∑
σj

S
σj
(r̃)[l.h.s.] = λ(r̃)

∑
σi

Sσi(r̃)S
σi
(r1)S

σi
(r2)S

−1
σi = λ(r̃)Cr1,r2,r̃ , (B.14)

where the first equality uses the symmetry of A. Similarly, the projection of the right-hand

side reads:∑
σj

S
σj
(r̃)[r.h.s.] =

∑
r

λ(r)Cr1,r2,r
∑
σj

S
σj
(r)S

σj
(r̃) =

∑
r

λ(r)Cr1,r2,rδr,r̃ = λ(r̃)Cr1,r2,r̃ , (B.15)

proving (B.13).

Lemma B.1 is exactly what is needed in the inductive proof in order to replace the

marking {12} from vertex i by a marking (r) of the parent vertex j. At the same time

we obtain a sum over all r, a structure constant Cr1,r2,r, and a factor λ(r). This can be

physically interpreted as the fusion of the two states S(r1) and S(r2) into the superposition

of all intermediate channels S(r), as will be discussed further in section B.2.

Undoing successive vertices of P we get more factors of λ(r), and at the root we end

up with ∑
r

λ`(r)Cr1,r2,r
∑
σρ

S
σρ
(r)S

σρ
(r3) =

∑
r

λ`(r)Cr1,r2,rδr,r3 = λ`(r3)Cr1,r2,r3 , (B.16)

which is the same result as obtained by the first, easy computation. We shall need

lemma B.1 further below.

We finally consider the partition {1}{2}{3}. The three marked points can be positioned

in various ways on the tree T. Once all unmarked leaves have been undone (giving rise to
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factors of λ), all arrangements are special cases of the situation where T has been reduced

to a three-star graph S`1,`2,`3

× ×

×

i0
r1 r3

r2

`1 `3

`2

(B.17)

with marked points {1}, {2} and {3} positioned at each extremity of the branches which

have respective lengths `1, `2 and `3 as indicated in (B.17). The three branches meat at

a central vertex i0 that we take as the root, ρ := i0. In this configuration, it is simple

to undo the branches, giving rise to a factor λ`1(r1)λ
`2
(r2)λ

`3
(r3). At the end, we sum over the

root, which reduces to the computation (B.11) done for the {123} partition, and leads to

a contribution Cr1,r2,r3 .

We see that all cases of three-point functions are special cases of the S`1,`2,`3 arrange-

ment, provided we allow some or all of the branch lengths to be zero. The general result

for the three-point function can be summarised as

λ`1(r1)λ
`2
(r2)λ

`3
(r3)Cr1,r2,r3 . (B.18)

In other words, apart from the structure constant, there is a factor λ(rj) for each loop that

separates point j ∈ {1, 2, 3} from the other two points. Each loop that surrounds none

or all of the points meanwhile gets the usual weight λ. This is very similar to the setup

in [10] for the non-unitary loop model with generic loop weights. We note once again that

for any given loop on the Riemann sphere, we may freely choose which of the two regions

separated by the loop to consider as the inside.

B.2 Higher N-point functions and Feynman rules for the trees

To consider general N -point functions it is convenient to shift perspective, making links

with the formulation in [19] in terms of “Feynman rules” for the relevant trees. To obtain

these rules, let us consider weight of a single cluster in the cluster expansion of the partition

function. One important feature of the arguments below can be summarized as follows: as

seen in (A.8), any cluster C comes with a weight that depends on its cyclomatic number

c(C) as WC = S1−c(C). An n-vertex — i.e., a vertex i ∈ T with di = n — corresponds to a

cluster that is adjacent to n other clusters: the cluster surrounding it and c(C) = n−1 cycles

on the interior. We shall call the latter circuits in the following. When considering the

tree corresponding to a given cluster configuration, we can decompose an n-vertex (n > 3)

into S2−n = S−1 × S−1 × . . . × S−1, where each of the (n − 2) factor S−1 corresponds to

a 3-vertex. We will represent this decomposition with “symbolic loops”, as shown below.

Such loops are also used to handle other situations, such as when several marked points

are in the same cluster. After taking care of these details, any tree for any value of N will

be computed from the Feynman rules stated in list 1, which generalize those in figure 5

of [19] to the case with marked points where order parameters S(r)/S are inserted.
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Position space:

• each edge corresponds to a propaga-

tor Aσ,σ′

• each 1-vertex (leaf) gives

1. Sσ(rid) if it has no marked points

2. Sσ(r) if it has one marked point

corresponding to the state S(r)

3. if there are several marked

points we first fuse the states,

see sections B.2.1, B.2.2

• each 2-vertex gives 1

• each 3-vertex gives S−1
σ

• we sum over any internal lines

• any marked point that is not on a

leaf will get fused into the tree, see

sections B.2.1, B.2.2

Momentum space:

• each edge carries a label r′ and cor-

responds to a propagator λ(r′)

• each 1-vertex (leaf) gives

1. δr′,rid if it has no marked points

2. δr′,r if it has one marked point

corresponding to the state S(r)

3. if there are several marked

points we first fuse the states,

see sections B.2.1, B.2.2

• each 2-vertex gives δr,r′

• each 3-vertex gives Cr1,r2,r3

• we sum over any internal lines

• any marked point that is not on a

leaf will get fused into the tree, see

sections B.2.1, B.2.2

List 1. Feynman rules for RSOS models.

B.2.1 Fusion of states

Let us consider a cluster configuration on a sphere where we take N marked vertices, some

of these possibly belonging to the same cluster. We first establish a convenient pictorial

reformulation of some results already seen in the sections above. We have seen that (B.8)

lets us recursively sum out clusters, starting at the leaves and gaining a factor λ(r) any

time we cross a loop. We repeat this equation here for convenience:∑
σ′

Aσ,σ′Sσ
′

(r)S
2−d
σ = λ(r)

(
Sσ(r)/Sσ

)
S2−(d−1)
σ . (B.19)

Within any given cluster of 1 − c̃ circuits, that includes any number m of marked points,

we can use the similar looking but trivial identity

∑
σ′

δσ,σ′
k∏
i=1

(
Sσ
′

(ri)
/Sσ′

)
Sc1σ′

m∏
j=k+1

(
Sσ(rj)/Sσ

)
Sc2σ =

m∏
i=1

(
Sσ(rk)/Sσ

)
S c̃σ (B.20)

to formally split this cluster into two, one inside the other, such that c1+c2 = c̃. Comparing

the two expressions above, we represent the latter pictorially as inserting a “symbolic loop”

where instead of a factor Aσ,σ′ at the boundary, we have a factor δσ,σ′ , and where we do

not get a weight λ(r) when removing the loop. We draw this symbolic loop as a dashed

line to distinguish it from the ordinary cluster boundaries, as in the following example of
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a leaf with one marked point ×:

×

(B.21)

Let us now insert such loops around two marked points sitting in the same cluster with

respective RSOS variables σ′, σ′′ ∈ X:

× × → × × (B.22)

If we consider the surrounding cluster, it contributes a weight of S1−c
σ = S−1

σ due to its two

circuits, while the two symbolic loops will insert a factor of δσ,σ′δσ,σ′′ . With some rewriting

of (B.11) using (B.2) this gives

δσ,σ′δσ,σ′′S
−1
σ =

∑
r

∑
r′

∑
r′′

Cr,r′,r′′S
σ
(r)S

σ′

(r′)S
σ′′

(r′′). (B.23)

We can now express the fusion of the two states S(r1) and S(r2), by which we mean that

each of the marked points in (B.22) carries an additional factor Sσ
′

(r1) or Sσ
′′

(r2), respectively.

Using now (B.1), this simplifies as∑
σ′

∑
σ′′

∑
r

∑
r′

∑
r′′

Cr,r′,r′′S
σ
(r)S

σ′

(r′)S
σ′′

(r′′)S
σ′

(r1)S
σ′′

(r2) =
∑
r

Cr,r1,r2S
σ
(r). (B.24)

That is: any time we have two marked points of labels r1, r2 within the same cluster, we can

replace them by a sum over the possible fusion products. To recover the 3-point function

discussed above we introduce a third marked vertex, with a corresponding
∑

σ S
σ
(r3), which

will take care of the last sum and single out Cr1,r2,r3 as the only surviving term. With

only two marked vertices, we must use Cr1,r2,rid = δr1,r2 , as in (B.12). We then recover the

2-point function. Similarly if two of the vertices are unmarked we use Cr1,rid,rid = δr1,rid to

recover the 1-point function.

When we encounter a marked point that is not on a leaf, we can use a symbolic loop

to treat if as if it were, constructing a 3-vertex and fusing it into the tree. We have seen a

similar idea already in the general three-point result of (B.18), where we could allow branch

lengths to be zero. We note that fusing any state S(r) with the identity state S(rid) will

give back S(r) as the only output. Here is a sample figure (with the loop weights indicated

on the r.h.s.):

×
r1

×
r2

· · · ↔
×
r1

×
r2

· · ·∑
r Cr1,r2,rλ(r)λ(r1)

(B.25)

B.2.2 n-vertices, n > 3

An n-vertex corresponds to a cluster with n − 1 circuits, giving a weight S1−c
σ = S2−n

σ in

position space. With the results established above, the aforementioned idea of factorising
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vertices as S2−n = S−1 × S−1 × . . . × S−1 is made rigorous. Consider for instance n = 4,

as in e.g.:

×

× ×

×
S−2 ↔ ×

× ×

×
S−1

S−1

↔ ×

× ×

×

S−1

S−1
(B.26)

In terms of trees, the above figures correspond to:

r2

r1

r3

r4

↔

r2

r1

r3

r4

↔

r2

r1

r3

r4

(B.27)

In the two trees on the right, (B.24) applies at the new 3-vertices such that we have one

sum
∑

r along the internal line, which we can interpret as an s/t-channel. The result must

be the same, showing the notion of crossing symmetry mentioned in [19].

It is clear that we can follow the same scheme for any vertex with n > 3, as well as

for any case of several marked points sitting in the same cluster. Any states S(r) that are

“close” (by which we that they would sit in the same cluster after taking away any loop

surrounding only one state) can be fused with each other, and crossing symmetry makes

the result independent of in which order we perform the fusion. Having established this

final result, we see that we can write all N -point functions in terms of the Feynman rules

stated before.

B.2.3 Expressions for the N-point functions

For the 4-point function, we can consider a H-shaped tree H`1,`2;`;`3,`4

×

× ×

×r2

r1 r3

r4

`2

`1 `3

`4

`

(B.28)

where upper left, lower left, upper right and lower right vertical branches have respective

lengths `1, `2, `3, `4, while the connecting horizontal branch has length `. Up to factors of

λ(rid) from summing out the loops not separating the marked points, we get the weight 4∏
j=1

λ
`j
(rj)

C(`)
r1,r2,r3,r4 , (B.29)

with

C(`)
r1,r2,r3,r4 :=

∑
r

Cr1,r2,rλ
`
(r)Cr,r3,r4 . (B.30)

– 46 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
6

That is, each loop separating one of the points j ∈ {1, 2, 3, 4} from the other three points

provides a factor λ(rj), whereas the ` loops that separate the fused group {12} from the

other block {34} of the set partition provide a total contribution of C
(`)
r1,r2,r3,r4 . Allowing

for some of the `j and/or ` to be zero, any other type of tree contributing to the 4-point

function leads to a special case of this result. Taking the positions of the marked points

into account we note that there are three possible configurations when all `, `j > 0: the s, t

and u-channel trees.20 The diagram in (B.28) illustrates the s-channel.

When ` = 0, the s, t and u-channels coincide. We therefore have∑
r

Cr1,r2,rCr,r3,r4 =
∑
r

Cr1,r3,rCr,r2,r4 =
∑
r

Cr1,r4,rCr,r2,r3 , (B.31)

a statement referred to as crossing symmetry in [19]. An equivalent statement is that

C
(0)
r1,r2,r3,r4 , defined by (B.30), is symmetric in all its four indices.

Let us briefly remark on higher-point correlation functions. For the 5-point function,

we can consider a tree

×

× ×

×

×

`2

`1 `4

`5

`3
` `′

r2

r1 r4

r5

r3

(B.32)

Let `, `′ be the lengths of the horizontal branches, and let `j , j = 1, . . . , 5 be the lengths

of the vertical branches, as shown. Up to factors of λ(rid) from summing out the loops not

separating the marked points, we get the weight 5∏
j=1

λ
`j
(rj)

C(`,`′)
r1,r2,r3,r4,r5 , (B.33)

with

C(`,`′)
r1,r2,r3,r4,r5 :=

∑
r,r′

Cr1,r2,rλ
`
(r)Cr,r3,r′λ

`′

(r′)Cr′,r4,r5 . (B.34)

As in the cases of N ≤ 4 we recover all possible shapes of trees when we allow some or all

of `, `′, `j to be zero. Taking the positions of the marked points into account we need to

consider 4 × 3 possible configurations; starting from any of the three 4-point trees (s, t or

u-channel), we can let any of the four branches j = 1, . . . , 4 split into two branches j and 5.

The recursive method of finding all N -trees by splitting branches of the (N − 1)-trees

extends to N > 5. As before we consider trees with 3-vertices only, seeing the other trees

as special cases with some branch lengths set to zero. As soon as there are more than two

internal lines, it is important to keep in mind that different trees may be non-isomorphic,

for instance at N = 6:

6' (B.35)

20If we consider ` = 0 to be a separate case, we can compare the resulting four types of trees to the four

diagrams in figure 3.
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For any given tree, the corresponding weight will follow the general pattern seen in (B.9),

(B.18), (B.29), (B.33), encoded in the Feynman rules of list 1.

C Three-point couplings Cr1,r2,r3 in type Ap−1 and type D1+p
2

In this appendix, we give the three-point couplings Cr1,r2,r3 for RSOS models of type A

and D which we used in the main text for studying the cluster expansions of the RSOS

four-point functions. Here we consider generic (p, q) with p−q ≥ 1 and p∧q = 1 associated

with a Dynkin diagram of type A or D with Coxeter number p as in table 1 and use the

formula (B.11), where the special vector corresponding to identity field is Sσ = Sσ(p−q) and

becomes Sσ(1) in the unitary case.

Type A. In Ap−1, the eigenvectors of the adjacency matrix A are

Sσ(r) =

√
2

p
sin

(
rπ

p
σ

)
, r = 1, . . . , p− 1 . (C.1)

We thus obtain the following three-point couplings:

CAp−1
r1,r2,r3 =

(−1)b1+b2+b3 1−(−1)a1+a2+a3

2 , |d1−d2|+1 ≤ d3 ≤ (d1+d2−1), d1+d2+d3 ≤ 2p−1 ,

0, otherwise ,

(C.2)

where ai, bi solve the Diophantine equation

ri + bip = ai(p− q) (C.3)

and di is given by

di =
1 + (−1)bi

2
ai +

1− (−1)bi

2
(p− ai) . (C.4)

Notice that in the unitary case, di = ai = ri and bi = 0, and we recover the well-known

unitary minimal models fusion rules.

Type D. In the case of DN = D1+ p
2

with p ≡ 2 mod 4, the Dynkin diagram has a fork

labeled by N − 1 and N − 1, as shown in table 1. The eigenvectors of A read

Sσ(r) =
2
√
p

cos
(N − 1− σ)rπ

p
, σ 6= N − 1, N − 1 (C.5)

SN−1
(r) = SN−1

(r) =
1
√
p
, for r = 1, 3, . . . , p− 1, odd (C.6)

and the last eigenvector corresponding to r = p̄
2 is

Sσ(p̄/2) =

(
0, . . . , 0,

1√
2
,− 1√

2

)
. (C.7)
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The three-point couplings are

C
D1+

p
2

r1,r2,r3 =

(−1)
a1+a2+a3+1

2 , |d1 − d2|+ 1 ≤ d3 ≤ (d1 + d2 − 1), d1 + d2 + d3 ≤ 2p− 1 ,

0, otherwise

(C.8)

for r 6= p̄/2 and the only non-vanishing C’s involving p̄/2 are C
D1+

p
2

p̄/2,p̄/2,r = 1, for r =

1, . . . , p/2, . . . , p− 1.

D Numerical computation of exact amplitude ratios

D.1 General setup

Our numerical transfer matrix computations of four-point functions take place on a cylinder

of circumference L, as shown in figure 6. The four points are inserted on two different time

slices, with the group consisting of i1 and i2 on the first slice, and the second group of i3
and i4 on another slice, l lattice spacings distant from the first one. In both groups, the

distance between the two points is 2a lattice spacings (or L − 2a when going around the

periodic direction), and we take 2a ≤ L
2 . The distance to the free boundary conditions at

either length of the cylinder is taken sufficiently large in order not to influence the results,

to within the chosen numerical precision.

The relevant probabilities PP of (2.6), for any given partition P = a1, a2, a3, a4, as well

as the transfer matrix eigenvalues Λ0 > Λ1 > · · · > Λi > · · · are then computed to very

high precision (4 000 digits) in order to be able to accurately determine even contributions

to PP which are exponentially small (in l) with respect to the leading term.

For generic values of Q the transfer matrix is diagonalisable — i.e., no non-trivial

Jordan cells appear — and the probabilities take the form

Pa1,a2,a3,a4 =
∑
i

Ai

(
Λi
Λ0

)l
, (D.1)

where the amplitudes Ai = Ai(a, L) can be determined precisely, provided that we have at

our disposal data with as many different values of l as the number of eigenvalues appearing

in the sum. This can be done in practice for L ≤ 7.

Setting up this transfer matrix computation involves dealing with a fairly large number

of technical aspects. These include specifying the affine Temperley-Lieb representations on

which the transfer matrix acts in order to be able to compute the desired probabilities,

how to diagonalise it efficiently to the required precision, how to set up the necessary data

structures and computational schemes, and more. For the basic probabilities PP this has

already been described in much detail in the extensive appendix A of [2], to which the

interested reader is referred. We however do describe below the modifications of the basic

method which are necessary to compute certain refined and modified probabilities required

by the present article.

Since Q is generic, each of the eigenvalues appearing in (D.1) can be assigned to a

definite affine Temperley-Lieb (ATL) module Wj,z2 . Our main conclusions — namely, the
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facts exposed in sections 5.2–5.4 — are that whenever the same ATL module contributes

to two different probabilities PP , the ratios between the corresponding amplitudes are the

same for every eigenvalue within that module. Moreover, the ratios do not depend on the

size L, nor on the separation 2a, provided that both are sufficiently large to accommodate

the representation Wj,z2 — in practice this means that min(2a, L− 2a) ≥ j.
We have verified these statements for many different ratios, different sizes L and 2a,

and many different values of Q, finding them to be exact to hundreds of digits of numerical

precision. But we can go further yet. Conducting the computations for rational values21

of Q = 1
10 ,

2
10 , . . . , our numerical precision is such that we can use Mathematica’s func-

tion Rationalize to establish that the amplitude ratios are, in fact, themselves rational

numbers. We have carefully checked that the same fraction is obtained for any eigenvalue

within a given ATL module — and also for different sizes L — and so we are fully confident

that this method, albeit numerical, does in fact produce exact results.

The resulting amplitude ratios could of course still be complicated functions of Q. But

we find, remarkably, that comparing the same amplitude ratio for a sufficiently large num-

ber of Q-values, it can invariably be produced as the ratio between two integer-coefficient

polynomials in Q. Once this expression has been established — which in some complicated

cases, such as (5.14c), required assembling a dozen of values of Q —, we have double-

checked it by repeating the computations for several more values.

D.2 Modification of the probability Paabb

For the purpose of establishing the facts of type 3 in section 5.4 we need to compute a

modified version of the probability of Paabb, denoted P
(a)
aabb, in which each loop separating

the two “short” clusters has a weight given by (5.12), viz.

na ≡ qa + q−a , (D.2)

different from the weight n =
√
Q = q+q−1 of the usual contractible loops. In the cylinder

geometry (see figure 6) both types of loops may or may not wrap the periodic direction,

but since the model should be considered on the Riemann sphere, the only distinction is

whether the loops separate the two clusters or not.

The ATL modules contributing to P
(a)
aabb are the same as those contributing to Paabb,

except that the quotient module W0,q2 is replaced by non-quotient module W0,q2a . This

is significant for the transfer matrix approach, since in the sector with no through-lines

one now needs to distinguish the contractibility (on the cylinder) of a loop, in order to

determine whether its weight is na or n.

To achieve this, position the four points i1, i2, i3 and i4 as usual on the cylinder

(see figure 11), and let S1, S2 and S3 denote three different seams running respectively

from i1 to i2, from i1 to i3, and from i2 to i4. There are eight topological types of

loops, according to whether they traverse each of the seams an even or an odd number

21In these computations we eschew integer values of Q, since they are not generic (in the sense that the

quantum group parameter q would be a root of unity). It however turns out that the amplitude ratios are

in fact continuous functions of Q, except for the presence of poles, so in most cases taking Q integer would

actually do no harm.
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S2

S3

S1

i1

i2

i3

i4

Figure 11. Cylinder geometry with three seams, S1, S2 and S3, ensuring the correct weighting of

non-contractible loops for the computation of P
(a)
aabb.

of times. Let the triplet of signs ((−1)N1 , (−1)N2 , (−1)N3) be associated with the type of

loop that traverses seam Si a number Ni of times (for i = 1, 2, 3). To compute P
(a)
aabb we

give a weight n to the topologically trivial loops of type (+,+,+), the modified weight

na to separating loops of type (+,−,−), and the weight zero to the remaining six types

of loops.22 Each state acted on by the transfer matrix is endowed with the three binary

variables (−1)Ni , in addition to the usual connectivity information for the Temperley-Lieb

loop representation [2]. Moreover, there is a fourth binary variable that registers whether

at least one loop of type (+,−,−) has been closed; once the lattice has been entirely

built up (i.e., when one reaches the far right boundary of the cylinder) the weight of any

configuration with no loop of type (+,−,−) must be set to zero, since otherwise the Daabb

constraint is not fulfilled.

In the limit of a very long cylinder — obtained formally by pushing the groups of

points i1, i2 and i3, i4 towards respectively the extreme left and the extreme right of the

cylinder—, it is obvious that any loop of type (+,−,−) is almost surely non-contractible on

the cylinder, meaning that it wraps the periodic direction. It is of course a simple matter

to write a transfer matrix Ta in which all such wrapping loops get a modified weight na:

for this it suffices to disregard the points i1, i2, i3, i4, draw a single seam S all along

the cylinder, and attribute the weight n (resp. na) to loops that traverse S an even (resp.

odd) number of times. What is less obvious, however, is that the probability P
(a)
aabb can be

expressed for a finite cylinder in terms of the eigenvalues of Ta. This is nevertheless what

we observe. In terms of ATL representations, the spectrum of Ta is that of the module

W0,q2a . So indeed, to describe P
(a)
aabb rather than Paabb, we must replace W0,q2 by W0,q2a , as

stated initially.

The amplitude ratios γ
(a)
j,z2 covered by the facts of type 3 (see section 5.4) are more

involved than the remaining ones, since they depend on both Q and a (through the weight

Qa). Just as we took care to keep Q generic — by taking Q = (q + q−1)2 with q not being

a root of unity — we should beware of non-generic values of a. Indeed, for a ≥ 2 integer,

the ATL module Wa,1 is a proper submodule of W0,q2a , and when a ≤ L this may lead to

coincident eigenvalues and hence potentially Jordan cells. However, when a ≤ L is odd,

Wa,1 actually does not contribute to P
(a)
aabb by the general result on the s-channel spectra [2],

and accordingly we find no Jordan cells. Instead, the eigenvalues in Wa,1 ⊂ W0,q2a have in

fact zero amplitude. On the other hand, when a ≤ L is even, we observe rank-two Jordan

22Obviously the same transfer matrix construction, with different choices for the eight weights, can also

compute various modifications of other probabilities Pa1,a2,a3,a4 .
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cells for the eigenvalues in the intersection Wa,1 ∩ W0,q2a . Finally, when a > L there are

neither Jordan cells, nor vanishing amplitudes. This latter case thus exhibits the generic

behaviour, that should also be observed when a is non-integer.

In our numerical work it turns out practical to study first integer values of a. Based on

a sufficient number of generic cases, with a > L, we have established the a-dependence of

the ratios γ
(a)
j,z2 given by the facts of type 3, and subsequently double-checked the expressions

for non-integer a. The final expressions (5.14) have in some cases poles when j = a, but

apart from that they do not exhibit any exceptional behaviour for a integer.

D.3 Refinements of the probabilities Pabab and Pabba

We have also written a transfer matrix in the loop representation that computes a refined

version of the probabilities Pabab and Pabba, denoted P
(p)
abab and P

(p)
abba, in which the two

imposed “long” clusters are separated by exactly 2p loops (with p ≥ 1). All loops, in-

cluding the separating ones, have weight n =
√
Q. We concentrate on the symmetric and

antisymmetric combinations, as in (5.4), namely

P
(p)
S = P

(p)
abab + P

(p)
abba , (D.3a)

P
(p)
A = P

(p)
abab − P

(p)
abba . (D.3b)

The trick for constructing this transfer matrix is to endow each state with an extra

integer variable that counts the number of separating loops having been closed at any stage

in the transfer process. This variable takes values 0, 1, . . . , 2 min(2a, L− 2a).

We find that P
(p)
S and P

(p)
A have non-zero contributions from eigenvalues coming from

the sectors with the number of clusters j′ being even, taking values in the range 2p ≤ j′ ≤
2 min(2a, L − 2a), and having the specified symmetry (S or A). These are precisely the

sectors corresponding to the ATL representations Wj′,z2 with z2 = e2iπk/j′ , and the parity

of k is even (resp. odd) for P
(p)
S (resp. P

(p)
A ).

Consider now an eigenvalue Λi belonging to a definite ATL representation Wj,z2 —

i.e., with j chosen among the possible values j′ — and which contributes to P (p) with

amplitude A
(p)
i , and to P (p+1) with amplitude A

(p+1)
i . Define the ratio

ρ
(p)
j,z2 =

A
(p)
i

A
(p+1)
i

. (D.4)

As indicated by the notation, we find that the ratio is the same for all eigenvalues within

Wj,z2=e2iπk/j and hence only depends on the integer labels j, k. The translation to the

notation used in section 5.3 for the “facts of type 2” is

β
(2)
j,z2 = 1 , β

(4)
j,z2 =

1

ρ
(1)
j,z2

, β
(6)
j,z2 =

1

ρ
(1)
j,z2ρ

(2)
j,z2

. (D.5)

Computations for a sufficient number of rational values of Q, as described in section D.1

has allowed us to obtain full results for the ρ
(p)
j,z2 with j = 4, and partial results with j = 6.

For P
(p)
S we find:

ρ
(1)
4,1 = −2 + 3Q

Q2
, ρ

(1)
4,−1 = − 3Q− 4

Q(Q− 2)
. (D.6)
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and

ρ
(2)
6,1 = −−2− 8Q+ 5Q2

Q2(−2 +Q)
, ρ

(2)

6,e±2iπ/3 = − 2− 52Q+ 86Q2 − 38Q3 + 5Q4

Q(Q− 1)(Q− 3)(Q2 − 4Q+ 1)
. (D.7)

Similarly, for P
(p)
A we find:

ρ
(1)
4,±i = − 3Q− 10

Q2 − 4Q+ 2
(D.8)

and

ρ
(2)

6,e±iπ/3
= −−10− 52Q+ 86Q2 − 38Q3 + 5Q4

Q(1− 16Q+ 20Q2 − 8Q3 +Q4)
, ρ

(2)
6,−1 = − 4− 18Q+ 5Q2

Q(Q2 − 4Q+ 2)
. (D.9)

Notice that if we take 2a < L
2 (with a strict inequality in order to avoid the too

symmetric situation in which the marked points are inserted at opposite positions on the

cylinder), we can only observe such ρ
(p)
j,z2 for which p ≤ j

2 and j < L. For the series ρ
(1)
4,z2 we

have therefore made the computations for L = 5 and 2a = 2, and subsequently verified the

size-independence by double checking for L = 7 and 2a = 3. In this case, the correlation

probabilities pick up contributions where the eigenvalues belong to ATL modules Wj′,z2

with j′ = 2, 4. Those with j = 4, for which we need to compute the amplitudes, are hence

burried beneath those with j′ = 2, so we need to delve rather deep into the transfer matrix

spectrum.

For the series ρ
(2)
6,z2 , the computations were made for L = 7 and 2a = 3. In that case

the participating eigenvalues have j′ = 4, 6, and those with j = 6 are burried below those

with j′ = 4. This is a demanding but still doable computation. However, we have not

been able to obtain the results for ρ
(1)
6,z2 , despite considerable effort (some 30 years of CPU

time was wasted on an unsuccessful attempt). Namely, in this case we have contributions

from j′ = 2, 4, 6 and to “see past” the ' 500 eigenvalues with j′ = 2, 4, in order to access

the amplitudes of those with j = 6 with sufficient numerical precision, turned out to be

impossible, given our numerical methods.
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