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1 Introduction

This article sets out from the connection between three important aspects of modern theo-

retical physics: topological solitons and the theory of fluctuations around them, Goldstone’s

theorem and the philosophy of effective field theory.

The semi-classical quantization of topological solitons has established itself as a stan-

dard procedure, not only due to its clear, intuitive comprehensibility, but also because of

its great successes in the description of real physical systems. Topological solitons can

be found in many fields of modern physics, from the effective description of baryons over

string theory to solid state and condensed matter physics as well as in cosmology [1]–[9].
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As all solitons break symmetries of their underlying theories, the spectra of fluctuations

around them contain non-trivial zero modes associated to these broken symmetries. Over

the last decades, several approaches to handle these modes have been developed [10]–[15].

While physical results do not depend on the chosen approach, each of them is associated

with an own perspective and has the potential to simplify certain computations.

One way to understand these modes is Goldstone’s theorem. This theorem, which links

spontaneously broken symmetries to massless excitations, is one of the most consequential

and universal results of the second half of the 20th century. Its applications reach from the

foundations of pion physics to solid state physics, shaping the low energy dynamics of the

systems it is applicable to.

These Goldstone modes dominate the low-energy behavior of the theories they arise

from. They therefore play a central role in the effective theories describing the theories

from which they arise at energies lower than the masses of these theories’ excitations. One

of the main motivations behind the investigation and construction of such effective field

theories is that they often provide a drastically simpler picture of the systems they are

used to describe, thereby pointing at otherwise hidden aspects of their underlying theories.

A particularly important example for such a setup in the context of topological solitons

is the Skyrme model, which can be understood as an effective theory of QCD in terms of

its Goldstone modes in the form of pions. In this theory, bayrons manifest themselves as

topological solitons, so-called Skyrmions, and many of their most important properties can

be obtained already on the classical level [1].

1.1 Motivation & overview

Moduli fields play an essential role in all discussions of solitons. Their most appealing prop-

erty is thereby that their dynamics is independent of most of the details of the underlying

theory, including but not restricted to the precise shape of the soliton, the types of fields

involved in its formation, the interactions between them and even the theory’s topological

properties. On this level, the information about all these aspects is fully contained in the

moduli space metric. In other words, knowing the number of moduli, all that is necessary

to obtain a full description of the system’s low energy dynamics is a small number of real

parameters.

This universality breaks down as soon as non-zero modes become involved, as the

theory of the non-zero modes strongly depends on the type of involved fields as well as on

their interactions. This article presents an approach capable of preserving the universality

of the description in terms of moduli fields, while also including a subsector of the dynamics

associated with the non-zero modes. This approach is valid for all energies allowed by the

underlying theory, as long as the considered configurations are localized sufficiently close

around the soliton’s center.

The presented procedure is based on the introduction of so-called warp fields, which

can be obtained by promoting a sufficient number of the theory’s moduli fields to functions

on all of spacetime. Just as the moduli fields, their main feature lies in their universality,

as the general structure of their theory is almost entirely insensitive to any peculiarities of

the underlying theory. All the information regarding these enters only via a finite number
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of background functions, taking the role of a generalized moduli space metric. All of this

is in particular valid for the full, non-linear theory.

The crucial step performed in this article is the extension of moduli fields to functions

on all of spacetime. In the context of collective coordinates, this can be broken down to the

promotion of collective coordinates to fields. As this is an unusual approach, this article sets

out from a simple example, demonstrating the physical meaning of this process, afterwards

carefully and rigorously filling this notion with meaning. To avoid the complications of

higher-dimensional models and the presence of different fields, all of this is first done in

full detail for the case of a (1 + 1)-dimensional system.

Section 2 provides an extensive discussion of the properties of the theory obtained

in the way described above. As the warp fields are obtained from the theory’s Goldstone

modes, the essential features characteristic for such fields can be generalized such that they

are also shared by the warp fields. One of these properties is the localization around the

soliton’s center, which is discussed in sections 2.4 and 2.5.

The most remarkable of these properties is highlighted in section 2.7 for the (1 + 1)-

dimensional case. It is well-known that gauging the symmetry whose breaking induces a

Goldstone field leads to the latter being eaten up by the gauge boson corresponding to

the symmetry. Due to the warp field’s connection with the translational Goldstone field,

it can be absorbed into the spacetime’s metric, a procedure within which the warp field is

replaced as a degree of freedom by a scalar field appearing during the construction.

The idea of warp fields is not limited to classical field theories, but can also be lifted

to the quantum level. For completeness, the quantum theory of the warp field in (1 + 1)

dimensions is presented in the appendix.

The (1 + 1)-dimensional case is however far from generic, as it naturally avoids the

greatest difficulty of this approach. Its major restraint results from the pivotal connection

between the warp fields and the system’s spatial dimensions. The construction given in

section 2 can only be applied without additional efforts if the number of the system’s

real degrees of freedom is equal to the number of translational symmetries broken by the

soliton. Section 3.2 is dedicated to the construction of the Lagrangian of any such theory

in terms of warp fields starting from the moduli space, and presents relations between the

appearing background functions and physical properties of the underlying theory. This

general discussion is illustrated on the example of the Skyrme model in 3 + 1 dimensions

in section 3.3, which is discussed in great detail.

The Skyrme model serves as a suitable example for this setting as the number of its

independent, real degrees of freedom happens to match the number of spatial dimensions.

It is further particularly interesting as it contains terms of higher orders in derivatives of its

fields, allowing to showcase a common generalization of the results obtained in the previous

subsection.

For a generic theory however, this matching does not necessarily have to hold. It is

argued in section 3.4 that supplementing the warp fields with additional fields constructed

from additional zero modes allows to extend the previous constructions to a much wider

range of theories. One such example is the abelian Higgs model in 2 + 1 dimensions,

for which such a construction is given in full detail in section 3.5. The solitons of this
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system break two translational symmetries, while containing three degrees of freedom.

This mismatch can however be accounted for by including the system’s third massless

mode, which is linked to the system’s U(1)-symmetry.

1.2 Incitement: local interactions

To get a better intuition regarding the physical meaning of the warp field, consider the

example of a (1+1)-dimensional soliton together with its collective coordinate, Φs(x−z(t)).

While the collective coordinate is only a function of time, the corresponding fluctuation

extends over all of spacetime, decaying as Φ′s. It is therefore predominantly localized in the

same spatial region as the soliton itself. Assume further that this soliton is interacting with

some external, localized source, consisting of zero as well as non-zero mode contributions.

Such an interaction changes the equation of motion of z(t), therefore changing ż(t). As

z(t) is only a function of time, but the fluctuation induced by it extends over all of space,

the information about the excitation seems to spread instantaneously, violating causality.

However, there is in fact no problem here. For the external source to be localized, it has

to be a superposition of the zero as well as the non-zero modes, so that such an interaction

would excite all the involved modes. The resulting excitation can therefore without any

problems be localized within the region of the interaction. Afterwards, it can be expected

that the excitation spreads out with some finite velocity smaller than 1. This would imply

that immediately after the interaction begins, the soliton only moves in the neighborhood

in which the interaction is taking place. This excitation then starts spreading with some

finite velocity, causing larger and larger parts of the soliton to move. As different regions

of the soliton are moving with different velocities, the soliton is warped during this process.

This can be formalized by replacing the collective coordinate by a local object,

z(t)→ µ−1
m ϕ(t, x), (1.1)

which is defined with an additional factor of µm to obtain a dimensionless quantity. This

object will from now on be referred to as warp field.

The velocity of the motion in x-direction in some point x0 is then given by µ−1
m ϕ̇(t, x0).

This velocity can be expected to consist of two contributions: first, a global velocity v, which

is the result of the dynamics of the collective coordinate. Second, a local velocity, which is

fully determined by the dynamics associated with the non-zero modes.

An alternative perspective on such a configuration is based on the soliton’s width. It is

well known that providing any soliton-like configuration with a sufficient amount of energy

will cause a (space)-time dependent perturbation of its thickness [17], which will eventually

decay into separate particles. The warp fields can be understood as an attempt to describe

this phenomenon in a compact manner.

1.3 Notation and conventions

For simplicity, let the potential generating the soliton in the (1 + 1)-dimensional case be

symmetric, V (Φ) = V (−Φ), with two distinct vacua ±ν. Further, assume that the soliton
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carries a topological charge 1, for which it is always possible to find a coordinate frame in

which Φs = Φs(x). This allows for the following representation:

Φs(x) = νσ(µmx) (1.2)

Here, ν corresponds to the dimensionless vacua of the theory as mentioned above, and

the factor µm ∝ mΦ describes the localization of the soliton. σ encodes the profile of the

soliton, and is in general restricted by |σ(µmx)| < 1. σ′ denotes the derivative of σ with

respect to its dimensionless argument. The same is true for partial derivatives acting on

solitons in higher dimensions. A general fluctuation of this background will be denoted by

δΦ, Φ(t, x) = Φs(x) + δΦ(t, x). A fluctuation generated by non-zero modes only will be

denoted by φ, so that Φ(t, x) = Φs(x− z(t)) + φ(t, x).

Throughout this article, two different perspectives are explored: one, in which the

dynamical degrees of freedom are given by φ and the collective coordinate, and one, in

which this role is taken by the warp field ϕ. In the first case, the classical dynamics takes

place on the phase space of φ, denoted by P. The quantum theory unfolds on the Fock

space the field operators act on, F. When using ϕ as degree of freedom, the corresponding

phase/Fock space is denoted P/F .

The linearized equation of motion for φ is in general of the form(
∂2
t +K2

)
φ = 0, (1.3)

where the operator K2 contains only derivatives with respect to the position x as well as

functions of x. The eigenfunctions of this operator will be denoted by {fk}k, so that φ

can be expanded as φ =
∫∑
ka
†
ke
iωktf∗k + c.c., with some complex coefficients {ak}k. The

symbol
∫∑

is meant as sum over the discrete part of the spectrum and integration over

the continuous part, if need be containing some normalization factors depending on the

normalization of the eigenfunctions or momentum eigenstates in the quantum theory.

2 Classical theory of the warp field in 1+1 dimensions

2.1 Foundations of the classical theory

The action of the warp field can be obtained by inserting the warped soliton into the action

of the scalar field. Doing so, one finds

S =

∫
d2x

1

2
ν2
(
σ′(µmx− ϕ)

)2(
ϕ̇2 − (ϕ′)2 − µ2

m + 2µmϕ
′)−

− V
(
νσ(µmx− ϕ)

)
.

(2.1)

Introducing the dimensionless coordinates ξ = µmx − ϕ, Bogomolnyi’s equation implies

that
√

2V (ξ) = µmνσ
′(ξ). Thus, the potential can be eliminated from (2.1), which can

then be brought to the form

S =

∫
d2x

1

2
ν2
(
σ′(ξ)

)2
∂µϕ∂

µϕ+

+ ν2
(
σ′(ξ)

)2(− µ2
m + µmϕ

′). (2.2)
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Consider now the terms in the second line. The spatial integral can be rewritten as∫
dx ν2

(
σ′(ξ)

)2(− µ2
m + µmϕ

′) = −µm
∫

dx
dξ

dx
ν2
(
σ′(ξ)

)2
=

= −
∫

dξ µmν
2
(
σ′(ξ)

)2
= −Msol = L[Φs]

(2.3)

Thus, the action of the warped soliton can be brought to the simple form

S = S[Φs] +

∫
d2x

1

2
ν2
(
σ′(ξ)

)2
∂µϕ∂

µϕ, (2.4)

which is valid in full non-linearity.

This action can be simplified even further by absorbing the soliton density into the

spatial measure,1 so that

S[ϕ] =
1

2

∫
d2ςϕ(x)∂µϕ∂

µϕ, where

d2ςϕ(x) = ν2
(
σ′(µmx− ϕ)

)2
dxdt.

(2.5)

Therefore, the action takes the same form as the one of a usual massless scalar field,

weighted with the function ρ(x, ϕ(t, x)) = ν2
(
σ′(ξ)

)2
. In other words, this approach allows

— within the boundaries of its applicability, which will be specified in section 2.4 — to treat

all the theory’s interactions by a non-trivial replacement of the spatial integration measure.

In order to allow for a standard perturbative treatment of this theory, one would have

to expand the term
(
σ′(µmx−ϕ)

)2
as a series in ϕ. This leads to a kinetic term as well as

an infinite number of interaction terms,

L0 =
1

2
ν2
(
σ′(µmx)

)2
∂µϕ∂

µϕ,

L(n)
int =

(−1)n

2 · n!
ν2
((
σ′(µmx)

)2)(n)
ϕn∂µϕ∂

µϕ.

(2.6)

Here, the power (n) refers to the nth derivative with respect to the dimensionless argument

µmx. Note that, similar as for a Goldstone field, each of these terms disappears in the limit

∂ϕ→ 0, which is to be expected due to the warp fields relation to the collective coordinate.

This Lagrangian gives rise to the equation of motion,

�ϕ =
σ′′(ξ)

σ′(ξ)

(
∂µϕ∂

µϕ+ 2µmϕ
′), (2.7)

and determines the canonical momentum $,

$(t, x) = ν2
(
σ′(ξ)

)2
ϕ̇(t, x) = ρ(x, ϕ(t, x))ϕ̇(t, x). (2.8)

The phase space on which the dynamics of the warp field takes place, spanned by ϕ and

$, will in the following be denoted by P.

1Note that while this observation is not necessary for the understanding of the classical theory, it is

crucial for the construction of the quantum theory.
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Another important feature of the theory is its energy-momentum tensor, which can be

found to be

Tµν = ν2
(
σ′(ξ)

)2(
∂µϕ∂νϕ− δµν

1

2
∂αϕ∂αϕ

)
=

= ρ(x, ϕ(t, x))

(
∂µϕ∂νϕ− δµν

1

2
∂αϕ∂αϕ

)
.

(2.9)

Note that this expression is again just the usual expression for a massless scalar field

multiplied by the weight factor.

2.2 Linearized theory

In order to avoid the technical difficulties arising from the infinite number of interaction

terms and prepare for the canonical quantization of this system, it is expedient to focus on

the linearized theory. This is a good approximation if ϕ satisfies the inequality

|ϕ(t, x)| �
∣∣∣∣n!

(
σ′(µmx)

)2(
(σ′(µmx))2

)(n)

∣∣∣∣1/n ∀n ∈ N, (2.10)

which can be obtained from the above action. In the case of the Φ4-theory, the right hand

side of this equation is bounded from below by 1
4 , in the Sine-Gordon model by 1

2 .

In this approximation the action and equation of motion reduce to

S[ϕ] =

∫
d2x

1

2
ν2
(
σ′(µmx)

)2
∂µϕ∂

µϕ,(
∂2
t +K2

)
ϕ = 0, where

K2 := −∂2
x − 2µm

σ′′

σ′
(µmx)∂x .

(2.11)

The first step towards solving this equation is to investigate the operator K2. While it isn’t

hermitian with respect to the measure dx, it is with respect to the due to the linearization ϕ-

independent measure dς := ν2
(
σ′(µmx)

)2
dx. Introducing the notation ρ(x) ≡ ρ(x, 0), this

can be brought to the compact form dς := ρ(x)dx. Hence, the eigenfunctions of K2 form a

complete basis, which can be orthonormalized with respect to dς. These eigenfunctions will

be denoted by {gk}k, the corresponding eigenvalues by λk. It follows by a straightforward

computation that these eigenfunctions are given by gk(x) = fk(x)
νσ′(µmx) = ρ−1/2(x) · fk(x),

with λk = ω2
k. The functions {fk}k denote here the eigenfunctions of the analogue of

the operator K2 appearing in the φ-theory, as defined in section 1.3. In terms of these

eigenfunctions a general solution of (2.11) is of the form

ϕ(t, x) =

∫∑
k 6=0α

∗
ke
iωktg∗k(x) + αke

−iωktgk(x) + µmv(t− t0) + µmζ, (2.12)

with some real integration constants v and ζ of mass dimension 0 and −1 respectively.

The sum/integral runs over all the non-zero modes, while the constant ζ represents the

zero mode. The term linear in t is part of the kernel of ∂2
t as well as of K2, and describes
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a motion of the soliton with constant velocity. As ϕ isn’t canonically normalized, the

additional factor of ρ(x) = ν2(σ′)2(µmx) causes the contribution arising from these last

two terms to yield a finite contribution to the action as well as all observables.

The expansion (2.12) comes with an important subtlety. As the mass of the soliton is

finite, σ′(µmx)→ 0 for |x| → ∞, so that also gk →∞ in this limit. It is important to notice

that this does not necessarily imply that the same holds for ϕ, as it is possible to choose the

coefficients {αk} such that ϕ → 0 for |x| → ∞. This observation is a necessary condition

for the linearized theory to apply, as otherwise the condition (2.10) would be violated.

This unusual asymptotic behavior of the mode functions will turn out to be of crucial

importance for the quantum theory. The restriction (2.10) also affects the term linear in t.

Denoting the lower bound of its right hand side by b, it can be shown that the contribution

of this term is agreement with (2.10) if

|v| � b

µm|T |
, (2.13)

where T denotes the considered time interval, which is assumed to be centered around t0.

Higher orders can be obtained from standard perturbation theory, using v as perturbation

parameter. Starting from ϕ(1) = µmvt, the resulting perturbative series converges to

ϕ(t, x) = µm
(
x− γ(x− vt)

)
, (2.14)

which reproduces the motion of the soliton for relativistic velocities,

Φs(x− ϕ(t, x)) = Φs(γ(x− vt)). (2.15)

2.3 Embedding into the full linearized theory

It remains to discuss which parts of the full theory’s dynamics can actually be described

in terms of the warp field. As the zero mode of ϕ can be identified with the collective

coordinate, this section will only focus on the non-zero modes. On the linearized level,

introducing the warp field corresponds to the simple field redefinition

φ(t, x)→ −νσ′(µmx)ϕ(t, x). (2.16)

In order to relate expressions of the ϕ-theory to ones of the φ-theory, it is expedient to

extend this relation to a map between the phase spaces of the two theories. This map shall

be denoted by r, and is given by

r : P → P(
ϕ(x), $(x)

)
7→
(
rφ[ϕ](x), rπ[$](x)

)
≡

≡
(
− ρ1/2(x) · ϕ(x),−ρ−1/2(x) ·$(x)

)
.

(2.17)

This map is an embedding of the ϕ-phase space into the φ-phase space with two important

properties. It maps the mode functions {gk}k onto their pendants {fk}k, leaving the

eigenvalue with respect to their respective kinetic operator invariant. And thus, due to

its linearity, the image of any solution of the linearized equation of motion for ϕ is again
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a solution of the linearized equations of motion for φ. This implies in particular that

the time evolutions of both theories are equivalent within the constraints imposed by the

applicability of the linearized theories.

These constraints on the applicability of the linearized theories translate to a restriction

on the configurations which can be described in terms of the warp field. The inverse

of (2.16) is given by

ϕ(t, x) = −ν−1
(
σ′(µmx)

)−1 · φ(t, x). (2.18)

However, in order for the linearized theory of ϕ to apply, the condition (2.10) has to be

satisfied. This is only possible if φ is bounded by |φ| < bνσ′(µmx), i.e. if it localized

around the soliton’s center. Inversely, on the linear level, the warp fields are only capable

of describing such configurations.

2.4 Nonlinear embedding & applicability of the theory

The arguments of the last subsection can be generalized to the full, nonlinear theory. The

identification of the warp field’s zero mode with the collective coordinate naturally extends

to the nonlinear level, so that it remains to lift the map between the non-zero modes to

the nonlinear theory. This can be done by considering the map R, defined by

R : P → P(
ϕ(x), $(x)

)
7→
(
Rφ(ϕ)(x), Rπ(ϕ,$)(x)

)
,

(2.19)

where

Rφ(ϕ)(x) ≡ νσ(µmx− ϕ(x))− νσ(µmx),

Rπ(ϕ,$)(x) ≡ −ρ−1/2(x, ϕ) ·$(x).
(2.20)

This map, which assigns to every warp field configuration the fluctuation induced by it, is

an embedding of the full phase space of the warp field, P, into the one of general fluctuations

around the soliton, P. As it is clear that the equations of motion of a general fluctuation

must also apply for the ones induced by the warp field, this embedding maps any solution

of the ϕ-theory onto one of the φ-theory.

This map further reveals that the mode functions of ϕ are no longer equivalent to the

ones of φ on the non-linear level. Instead, a plane wave in the φ-picture corresponds to a

superposition of ϕ-waves and vice versa.

The inverse of this embedding can now be used to obtain a condition which config-

urations need to satisfy in order to be describable in terms of a warp field. The inverse

of (2.19) is given by

R−1 : P ⊃ D
(
R−1

)
→ P(

φ(x), π(x)
)
7→
(
R−1
ϕ (φ)(x), R−1

$ (φ, π)(x)
)
,

(2.21)

with

R−1
ϕ (φ)(x) ≡ −

∞∑
n=1

(
σ−1

)(n)
(z)

νnn!

∣∣∣∣
z=σ(µmx)

φn(t, x),

R−1
$ (φ, π)(x) ≡ −ρ1/2

(
x,R−1

ϕ (φ)
)
· π(x).

(2.22)
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Following the arguments above, given a fluctuation in D(R−1), this map allows to identify

the warp field configuration causing said fluctuation. The important question is now which

kind of fluctuations form D(R−1), i.e. which part of the phase space is covered by the

theory of warp fields. This domain is constrained by the convergence of the series (2.22)

or, equivalently, the invertibility of equation (2.20). From the latter one it is straightforward

to derive a condition for φ, ∣∣∣∣φ(t, x)

ν
+ σ(µmx)

∣∣∣∣ < 1. (2.23)

Recall that, for the sake of simplicity, the soliton is centered around x = 0, i.e. the contribu-

tions of the zero modes are being ignored. The left hand side being equal to 1 corresponds

to the case ϕ = ±∞.

Hence, D(R−1) is given by

D(R−1) = {(φ(x), π(x)) ∈ P||φ(x)/ν + σ(µmx)| < 1}. (2.24)

As φ is in general time-dependent, it is possible that a certain configuration satisfies (2.23)

within some time interval T , but ceases to do so for t 6∈ T . A physical interpretation of

this property is given in the next subsection.

Given a fixed time interval T = [ti, tf ], one can define DT (R−1) as the set of configu-

rations which remain within D(R−1) during T ,

DT (R−1) = {(φ(x), π(x)) ∈ D(R−1)|(φ(x), π(x)) = (φ(ti, x), π(ti, x))

⇒ (φ(t, x), π(t, x)) ∈ D(R−1)∀t ∈ T}.
(2.25)

Thus, within some fixed time interval T , all configurations which at t = ti are an element

of DT (R−1) can be described in terms of warp fields.

The fact that only configurations localized around the soliton’s center can be described

in terms of warp fields is best understood from the construction of the warp field as an

extension of the domain of the Goldstone field. The latter one is a result of the breaking of

the translational symmetry. This symmetry is approximately restored in regions sufficiently

far away from the center of the soliton, as the value of the field converges towards some

constant value ±ν. It can therefore be expected that the physical significance of the warp

field is biggest near the soliton’s center, and vanishes sufficiently far away.

2.5 Incompleteness of the field space

The embedding of the theory of the warp field into the full theory of fluctuations has shown

that it is possible for configurations to evolve into and out of the sector describable in terms

of the warp field. In other words, the dynamical theory of the warp field is classically

incomplete. While there exist situations in which such an incompleteness can be cured in

the quantum theory (see [26]), this is not the case here. It is rather a necessary consequence

of the fact that the warp field describes only a subset of the full theory. To understand the

physical significance of this property, consider some localized wave package, propagating

through the soliton in such a way that it is an element of DT for some interval T (figure 1).
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x

Figure 1. The soliton together with the wave package before, while and after passing through the

soliton (solid line), compared with the unperturbed soliton (dotted line).

Following the standard interpretation of the wave package as a particle, this process can be

understood as said particle propagating through the soliton, being deformed while doing so

and potentially picking up some phase shift. The notion of the warp field corresponds to an

alternative perspective: while the fluctuation is localized in the same interval as the soliton,

it can equivalently be understood as a warping of the latter. Thus, this process can be

described as a wave package hitting the soliton and being continuously absorbed, causing

the soliton to warp, a process described by the warp field. After the interval T has passed,

the soliton returns to an unexcited state by continuously emitting another wave package.

This is in agreement with the picture developed in the previous sections: DT is the

set of configurations which can equivalently be understood as a warping of the soliton

within the time interval T , and the warp field is nothing but an effective description for

the dynamics of such configurations during T .

The existence of such configurations is no surprise. In the context of a domain wall, the

warp field can be understood as a perturbation in its thickness. However, it is well-known

that such perturbations can decay into scalar particles [17]. The notion of the warp field

now allows to give a clear characterization of this decay as the configuration reaching the

boundary of the phase space of the warp field theory P, i.e. ϕ becoming divergent in some

point x0, which corresponds to σ(µmx0 − ϕ(t, x0)) = ±1, i.e. Φ(x0) = ±ν.

2.6 Warp fields in different regimes

The region in which the contribution of the warp field to the full dynamical theory is of

relevance depends strongly on the localization of the soliton, and therefore indirectly also

on the parameters of the underlying theory. In the simple setting discussed in this article,

these parameters are the asymptotic values the soliton converges towards, the coupling

constant and the mass of the scalar field. In general only two out of these three parameters

are independent. Taking as an example the case of the Φ4-theory, these coefficients are

connected by the relation mΦ ∝ ν
√
λ.
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As the chosen parametrization does not explicitly depend on the coupling constant λ,

it is most convenient to choose the vacua ±ν and the mass of the field mΦ as independent

parameters. It is also important to recall that the warp field ϕ is obtained from the

collective coordinate, i.e. the Goldstone field, not only by extending its domain, but also

by multiplying it with a factor of µm ∝ mΦ, so that ϕ ∝ mΦ.

Consider first the case mΦ → 0, implying that also µm → 0. In this limit, the soliton

is widely outstretched, while ϕ→ 0. This is in agreement with the origin of the warp field

in the breaking of translational symmetry in the presence of the soliton. As the soliton

spreads out in this limit, the same is true for the region in which the symmetry is locally

broken. However, at the same time the soliton flattens out, so that the symmetry breaking

becomes less distinct. Note that, given a fixed value of ν, this limit is equivalent to the

one of a weak interaction.

In the limit mΦ → ∞, when also µm → ∞, the opposite can be observed. With

the soliton becoming increasingly localized, the region affected by the warp field shrinks

until the latter one is fully confined to the soliton, which can with increasing precision be

approximated as a point particle. Therefore, in the limit of a heavy field or, equivalently,

a strong interaction with fixed ν, the warp field becomes identical with the collective

coordinate. This can also be observed from (2.23). In the limit of a soliton which is fully

localized to a point, (2.23) can only be solved by φ = 0, i.e. the non-zero mode contributions

to the warp field have to disappear. This also resolves the issue that taking this limit seems

to imply ϕ→∞. As the non-zero mode contributions disappear in this limit, only the terms

representing the collective coordinate remain. Their prefactor µm factorizes out inside the

argument of the soliton, and outside integrates with the weight factor to the soliton’s mass.

The explicit ν-dependence is easily understood: as the energy density of the soliton

scales as ν2, the same is true for all physical effects caused by the warp field.

2.7 Geometric perspective

In the presence of gravity, the translational Goldstone fields are eaten up by the metric,

as they can be understood as the action of some diffeomorphism on the soliton [25]. As

this letter statement is also true for the warp field, it seems only natural that it can also

be absorbed in a similar way.

To see that this is indeed the case, consider the coordinates(
ξ0(t, x), ξ1(t, x)

)
=
(
t, x− µ−1

m ϕ(t, x)
)
.

In terms of these coordinates, the action of the soliton can be rewritten as

S[Φ] =

∫
d2ξ
√
−gϕ

(
1

2
gµνϕ (ξ)∂µΦs(ξ)∂νΦs(ξ)− V (Φs(ξ(t, x))

)
, (2.26)

where the effective metric is given by

gϕµν(ξ) = ηαβ
∂xα

∂ξµ
(ξ)

∂xβ

∂ξν
(ξ), (2.27)

whose determinant is as usual denoted by gϕ.
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In this new action, all the ϕs are combined into gϕµν . Hence, it is reasonable to ask

whether this can be taken one step further, describing the dynamics completely by gϕµν .

Formally this corresponds to promoting gϕµν to a field, which will be denoted by gµν to

point out that it is no longer considered a function of ϕ. When doing so, the information

about its structure (2.27) has to be implemented via a Lagrange multiplicator Λ. In 1+1

dimensions, (2.27) is equivalent to R = 0, where R is the usual Ricci scalar [28]. Hence,

the dynamics of the warp field is fully encoded in the action

S[Φs, g] =

∫
d2ξ
√
−g(LS + ΛR) , (2.28)

where Ls denotes the action of the soliton on the spacetime with metric g. The term

multiplied by the Lagrange multiplier is nothing but the Einstein-Hilbert action, formally

providing a kinetic term for the metric. This action gives rise to the equation of motion

for gµν ,

Tµν =2(ΛGµν −∇ν∂µΛ + gµν�gΛ) , (2.29)

where Tµν denotes the energy momentum tensor of the scalar field, Tµν = δ
√
−gLs
δgµν

. Equa-

tion (2.29) together with the constraint R = 0 fully determines the dynamics of the theory,

parametrized by gµν and Λ. The constraint implies in particular that the kinetic term

for gµν , Gµν , is identical to zero, so that the metric is no propagating degree of freedom.

Instead, this role is taken by the Lagrange multiplier Λ.

More precisely, Λ acts as a dynamical degree of freedom sourced by the soliton’s energy

density. This can be seen by inserting the energy-momentum tensor of the scalar field

into (2.29) and contracting both sides with gµν , yielding

�gΛ = trg(T ) = V (Φs(ξ)) =
1

2
εs(ξ). (2.30)

Just as in the ϕ-theory, the soliton enters only via its energy density.

This equation corresponds to the action

S̃ =

∫
d2ξ
√
−g

(
1

2
∂µΛ(ξ)∂µΛ(ξ) + Λ(ξ)εs(ξ)

)
. (2.31)

This action — which is of an even simpler form as (2.4) — describes the full dynamics of

the warp field sector for which (2.27) is non-degenerate.

3 Warp fields in higher dimensions

3.1 General aspects

In the (1 + 1)-dimensional case, the warp field gives rise to the full dynamics of the fluc-

tuation φ near the soliton’s center, a feature based on the coincidence that the number of

fields matches the number of broken translational symmetries. This is in general not the
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case, as for a generic theory, the number of fields necessary to form a soliton-like configu-

ration is in no way related to the number of spatial dimensions.2 It is nevertheless in any

case possible to equip a given theory with warp fields by simply promoting the collective

coordinates corresponding to the soliton’s position to fields. The crucial question is then

whether or not the theory of these warp fields covers a subsector of the dynamics of all

fields of the underlying theory. If this is the case, their theory will be called sufficient,

otherwise insufficient.

To formalize this distinction, let {ϕa}a denote a set of warp fields. Let further denote

{φi}i a set of real fields parametrizing the fluctuations around the soliton giving rise to

these warp fields. The theory of these warp fields is sufficient, if there exists some invertible

function R respecting the equations of motion of both {ϕa}a and {φi}i s.t.

φi(t, x) = Ri[ϕ](t, x). (3.1)

Considering only the linearized theories, this corresponds to the existence of some invertible

matrix Ris s.t.

φi(t, x) = Ria(x)ϕa(t, x). (3.2)

The case of a sufficient theory of warp fields is straightforward and discussed in great detail

in section 3.2. It is then illustrated using the important example of the Skyrme model in

section 3.3.

In the case of an insufficient theory, some additional effort is necessary. Any attempt

to use such a theory to describe the dynamics of the full theory is spoiled by the insufficient

number of independent fields. Recall that the construction of the theory of warp fields sets

out from the soliton’s moduli space. The crucial step towards an extension of an insufficient

theory of warp fields lies now in the observation that for most higher-dimensional theo-

ries, there exist zero modes besides the ones corresponding to spatial translations. These

additional zero modes represent e.g. (gauge-)rotations, and as they are massless they are

readily available in the same regime as the collective coordinates. Thus, they serve as

natural candidates to provide the missing degrees of freedom. A theory of warp fields,

for which it is possible to compensate for the missing degrees of freedom by taking into

account additional zero modes will be called extendable.

This is discussed in section 3.4, and demonstrated on the example of the abelian Higgs

model in 2 + 1 dimensions in section 3.5.

3.2 Sufficient theories

In the case of sufficient theories, the warp fields suffice to capture a subsector of the

dynamics of all the fields involved in the formation of the soliton, and all configurations

localized around the soliton’s center can be fully described in terms of their theory. The

first step towards the construction of their Lagrangian lies in the observation that the warp

fields enter their underlying theory only in the combination

ξi ≡ µmxi − ϕi(t, x) (3.3)

2Except for the restrictions imposed by Derrick’s theorem of course, which are not relevant here.
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inside the argument of the soliton. Let now Φ denote an arbitrary field contributing to the

soliton. Introducing the warp fields transforms this field and its partial derivative as

Φs(µmx)→ Φs(ξ),

∂µΦs(µmx)→ ∂aΦs(ξ)
(
µmδ

a
µ − ϕa,µ

)
,

(3.4)

where ∂a denotes the derivative with respect to the dimensionless variable ξa.

Thus, for a theory containing up to N derivatives of its field content, the most general

Lagrangian in terms of the warp field is of the form

L =g(ξ) +
N∑
n=1

Cµ1...µna1...an (ξ)ξa1,µ1 . . . ξ
an
,µn . (3.5)

All the information about the underlying theory enters only via the coefficients Cµ1...µna1...an (ξ)

as well as the function g. Their contraction with the factors of ξ implies that the coefficients

Cµ1...µna1...an (ξ) are invariant under pairwise exchange of two upper and their corresponding

lower indices, e.g.

Cµ1µ2...µna1a2...an = Cµ2µ1...µna2a1...an . (3.6)

At this point, this action still contains a large number of unknowns, in particular the

number of terms in (3.5). This is where the warp fields’ relation to the collective coordinates

becomes important, as it almost completely determines the theory’s structure.

In the limit ϕ→ 0, (3.5) has to reduce to the Lagrangian of the unperturbed soliton.

In the limit ∇ϕ→ 0, the remaining terms have to reduce to the effective theory in terms of

the collective coordinates. Thus, N is given be the highest order of time derivatives found

in the low-energy theory.

To see how this constrains the theory, consider the most important case of an action

which is quadratic in the collective coordinates’ velocities,

L[z] =
1

2
Mabż

ażb, (3.7)

where Mab is the usual moduli space metric. From here, following the arguments above

leads to a Lagrangian of the form

L[ϕ] = g(ξ) + Cµa (ξ)
(
µmδ

a
µ − ϕa,µ

)
+ Cµνab (ξ)

(
µmδ

a
µ − ϕa,µ

)(
µmδ

b
ν − ϕb,ν

)
=

=
(
g(ξ) + µmC

a
a (ξ) + µ2

mC
ab
ab (ξ)

)
−
(
2µmC

µb
ab (ξ) + Cµa (ξ)

)
ϕa,µ + Cµνab (ξ)ϕa,µϕ

b
,ν .

(3.8)

The limit ϕ → 0 implies that the terms in the first bracket have to coincide with the

soliton’s energy density evaluated at ξ. Their scaling with µm allows to identify them with

the soliton’s energy due to (self-)interactions (g), some kinetic coupling (Caa ), e.g. involving

some gauge field, and the gradient energy (Cabab ),

Egrad = −
∫

d3x µ2
mC

ab
ab (µmx),

Ekc = −
∫

d3x µmC
a
a (µmx),

Eint = −
∫

d3x g(µmx).

(3.9)
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The limit ∇ϕ→ 0 and the absence of a term linear in ż in (3.7) imply that

2µmC
0b
ab(µmx) + C0

a(µmx) = 0, (3.10)

i.e. the term linear in ϕ̇ disappears. Finally, the coefficients of the term quadratic in

derivatives of ϕ have to reduce to the moduli space metric when integrated over space,∫
d3x C00

ab (µmx) =
1

2
Mab. (3.11)

This can be simplified even further if one can safely assume that the derivatives of the

underlying theory’s kinetic term are contracted using the metric ηµν . If this is the case,

Cµνab can be rewritten as ηµνρab, where ρ acts as a density of the moduli space metric,∫
d3x ρab(µmx) =

1

2
Mab. (3.12)

The fact that Cabab corresponds to the soliton’s gradient energy can in this case be translated

to a relation for ρ, ∫
d3x ηabρab(µmx) = −Egrad. (3.13)

This additional assumption also implies immediately that C0b
ab = 0, so that C0

a = 0 due

to (3.10).

Summarizing all the previous arguments, the final Lagrangian is of the form

L[ϕ] =− εs(ξ) + ρab(ξ)ϕ
a
,µϕ

b,µ + κba(ξ)ϕ
a
,b. (3.14)

Given that the theory of a certain soliton’s moduli is quadratic in their derivatives and

assuming that the underlying theory’s kinetic term is constructed using the metric, this

simple structure is universal. It holds in full non-linearity, and the only quantities sensitive

to the details of the underlying theory are the functions ρab, κ
b
a and εs. Decomposing

these functions in terms of the Cs allows to relate them to physical properties of the

underlying soliton.

One of the warp fields’ central features found in 1 + 1 dimensions is the localization

around the soliton’s center. It is easy to see that the same is true in higher dimensions.

The convergence of the integrals (3.9) implies that ρab (or Cµνab , respectively), which takes

the role of the weight function, has to decay at least as |x|−2 for |x| → ∞. Thus, all

the effects arising from a localized weight function can be expected to occur also in this

higher-dimensional setting.

3.3 Warp fields of the Skyrme model as a sufficient theory

The Skyrme model is a particularly instructive example for a sufficient theory due to its

higher derivative terms, which require a modification of the discussion given in the last

subsection. As an effective field theory, this model contains terms of fourth order of the

fields’ derivatives, implying that also terms of up to fourth order in ξa,µ have to be taken

into account. To deduce the dynamics around the Skyrmion in terms of warp fields up
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to some background functions, only two pieces of information are necessary. First, that

there are three independent fields involved, matching the number of spatial dimensions and

thus broken translational symmetries. Second, that the action of the collective coordinates

contains terms of quadratic and quartic order in their time derivatives. Assuming again

that ηµν is the only tensor used to contract the indices of the underlying theory’s partial

derivatives, the most general Lagrangian compatible with the properties of the warp fields

is of the form

L =
1

2
ρab(ξ)∂µϕ

a∂µϕb + (Λ4)abcd(ξ)∂µϕ
a∂µϕb∂νϕ

c∂νϕd − εs(ξ)+

+ (Λ1)ia(ξ)∂iϕ
a + (Λ2)iajb(ξ)∂iϕ

j∂aϕ
b + (Λ3)iabc(ξ)∂µϕ

a∂µϕb∂iϕ
c.

(3.15)

As the Skyrme-model is well-known,3 the coefficients can in this case be determined by a

direct computation.

In 3 + 1 dimensions, the dynamics of the Skyrme model can be described using three

SU(2)-phases representing pion fields,

U(t, x) = exp

(
i

fπ
πa(t, x)τa

)
,

where fπ denotes the pion decay constant and the {τa}a are a set of orthonormal SU(2)-

generators, usually the Pauli matrices. Their leading order Lagrangian including the

soliton-generating interaction term is given by

L =
f2
π

4
tr
(
∂µU∂

µU †
)

+
1

32e2
tr
(
[∂µU, ∂νU

†][∂µU, ∂νU †]
)

(3.16)

The parameter e is the Skyrme constant. This theory gives rise to topological solitons,

so-called Skymrions, which are of the form

Us(r) = exp
(
iF (r)x̂aτa

)
,

where x̂a = xa

r and F (r) is some function minimizing the configuration’s energy. On the

linearized level, the fluctuations around this soliton are elements of the Lie-algebra su(2),

and can thus be expressed in terms of the generators {τa}a as

δU(t, x) = δUa(t, x)iτa. (3.17)

Note that for convenience, the factor of 1
fπ

has been absorbed into δU here. The

transformation from fluctuations to warp fields and back can now be determined explicitly.

Introducing a warp field in the usual way transforms the Skyrmion to first order as

Us(r)→ Us(r) + iτaϕ
j(t, x)µ−1

m

[
x̂ax̂j

(
F (r)

r
− F ′(r)

)
− δaj

F (r)

r

)]
. (3.18)

Comparing this with (3.17) immediately leads to the transformation

δUa(t, x) = µ−1
m Ma

j (x)ϕj(t, x), (3.19)

3See e.g. [2, 29] for a review.

– 17 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
3

where

Ma
j (x) = x̂ax̂j

(
F (r)

r
− F ′(r)

)
− F (r)

r
δaj . (3.20)

This map is invertible, and its inverse is given by

(M−1)ja(x) = x̂ax̂j
(

r

F (r)
− 1

F ′(r)

)
− r

F (r)
δja. (3.21)

As F (r)→ 0 for r →∞, M−1 diverges for large r. Similarly as in the (1 + 1)-dimensional

case, this together with the conditions necessary for the validity of the linearized theory

restricts the applicability of the warp fields to configurations which decay sufficiently fast,

i.e. are localized around the Skyrmion’s center, in agreement with the general argument

given in the last subsection.

Now that it is clear that the theory of fluctuations around the Skyrmion can in fact

be formulated in terms of warp fields, it remains to determine the coefficients in (3.15).

Inserting the warped Skyrmion into (3.16), one finds

ρab(ξ) =
f2
π

4
tr
(
∂aUs(ξ)∂bU

†
s (ξ)

)
+

1

32e2
tr
(
[∂aUs(ξ),∂jU

†
s (ξ)][∂bUs(ξ)∂

jU †s (ξ)]+

+[∂jUs(ξ),∂aU
†
s (ξ)][∂jUs(ξ)∂bU

†
s (ξ)]

)
(Λ4)abcd(ξ) =

1

32e2
tr
(
[∂aUs(ξ),∂cU

†
s (ξ)][∂bUs(ξ)∂dU

†
s (ξ)]

)
(Λ1)ba(ξ) =µm

f2
π

4
tr
(
∂(aUs(ξ)∂b)U

†
s (ξ)

)
+

+
µ3
m

32e2
tr
(
[∂(aUs(ξ),∂

jU †s (ξ)][∂b)Us(ξ)∂jU
†
s (ξ)]+

+[∂jUs(ξ),∂(aU
†
s (ξ)][∂jUs(ξ)∂b)U

†
s (ξ)]

)
(Λ2)iajb(ξ) =

µ2
m

16e2
tr
(
[∂jUs(ξ),∂bU

†
s (ξ)][∂iUs(ξ)∂aU

†
s (ξ)]+

+[∂jUs(ξ),∂aU
†
s (ξ)][∂iUs(ξ)∂bU

†
s (ξ)]

)
(Λ3)iabc(ξ) =

µm
16e2

tr
(
[∂aUs(ξ),∂cU

†
s (ξ)][∂bUs(ξ)∂

jU †s (ξ)]+

+[∂cUs(ξ),∂aU
†
s (ξ)][∂jUs(ξ)∂bU

†
s (ξ)]

)

(3.22)

3.4 Extendable theories

For most theories giving rise to solitons, the number of independent fields is larger than

the number of broken translational symmetries, so that the collective coordinates corre-

sponding to these symmetries fail to give rise to a sufficient theory of warp fields. It is

now important to note that the central benefits of constructing the theory of warp fields

from these collective coordinates, namely their universality as well as their relevance for the

low-energy dynamics, are not unique to this particular setup. They are also shared by any

massless excitation, i.e. any zero mode. As the construction of the warp fields already relies

on information gained from this sector, utilizing potentially existing, additional zero modes
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to compensate for the lacking degrees of freedom appears as a natural path to extend the

applicability of the construction of warp fields.

In the following, these additional zero modes will be denoted by {θa}a, and the fields

obtained from them by {ϑa(t, x)}a. As these zero modes usually correspond to (gauge)-

rotations and thus promoting them to fields can be visualized as a twirling of the config-

uration, these fields will be referred to as twirl fields. Introducing them into the action in

the same way as the warp fields modifies the partial derivatives of the fields involved in the

formation of the soliton as

∂µΦs(x)→ ∂aΦs(ξ, ϑ)(µmδ
a
µ − ϕa,µ) + ∂ϑaΦs(ξ, ϑ)ϑa,µ. (3.23)

Recall that the theory of pure warp fields was constructed from a suitable number of ξa,µ’s,

with the highest number being linked to the highest order of derivatives of the collective

coordinates as well as some coefficients, which were functions of ξ and contained the infor-

mation about the underlying theory. In this picture, the dynamics of the twirl fields can be

taken into account by supplementing the Lagrangian with terms containing suitable orders

of ϑa,µ as well as terms mixing them with the ξa,µ’s.

Consider now again the case of a theory whose low-energy theory is only of second

order in time-derivatives. Independent of the field content or the exact form of the soliton,

the most general Lagrangian in terms of both warp and twirl fields is of the form

L[ϕ] = g(ξ) + Cµa (ξ)
(
µmδ

a
µ − ϕa,µ

)
+ Cµνab (ξ)

(
µmδ

a
µ − ϕa,µ

)(
µmδ

b
ν − ϕb,ν

)
+

+Dµν
ab (ξ, ϑ)∂µϑ

a∂νϑ
b +Dµ

a (ξ, ϑ)∂µϑ
a +Mµν

ab (ξ, ϑ)
(
µmδ

a
µ − ϕa,µ

)
∂νϑ

b.
(3.24)

As the twirl fields parametrize a symmetry, they have to disappear from the theory in the

limit ϑa,µ → 0. Thus, the coefficients in the first line of (3.24) have to be independent of ϑ.

The coefficients Dµν
ab can be linked to the low-energy theory’s field space metric in the same

way as Cµνab , and the restriction to second-order terms in the low-energy theory implies that

the terms linear in ϑ̇ vanish. Assuming further that the partial derivatives making up the

kinetic term are contracted via the metric, the general Lagrangian (3.24) can be brought

to its final form,

L[ϕ, ϑ] = −εs(ξ) + κba(ξ)ϕ
a
,b + ρab(ξ)ϕ

a
,µϕ

b,µ+

+ ωab(ξ, ϑ)ϑa,µϑ
b,µ +Kj

a(ξ, ϑ)ϑa,j + Lµνab (ξ, ϑ)ϕa,µϑ
b
,ν .

(3.25)

Just as in the case of a theory constructed from warp fields only, every theory can be

supplemented with twirl fields. The crucial question is now whether or not this procedure

generates enough degrees of freedom to capture the dynamics of all fields involved in the

formation of the soliton. A priori, there is no guarantee that this is the case for any theory.

Nevertheless, this approach strongly extends the applicability of this article’s philosophy.

One example therefore is presented in the next subsection.

3.5 Warp fields of the abelian Higgs model in 2+1 dimensions as an extendable

theory

The abelian Higgs model in 2 + 1 dimensions, which gives rise to the Abrikosov-Nielsen-

Olesen vortex [17, 30], serves as an important example for an extendable theory of warp
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fields, as its discussion can also serve as a showcase on how the challenges arising from

gauge redundancies in the context of warp fields can be tackled.

Using the strategy given in the last subsection, the construction of a theory of warp

and twirl fields around the vortex is straightforward once suitable zero modes have been

identified. It is recapitulated within this section that the vortex provides three zero modes,

while the underlying theory contains three physical degrees of freedom. The main challenge

in the context of gauge theories lies however in the matching of these degrees of freedom.

Due to the theory’s gauge invariance, the number of fields forming the theory of interest

is larger than the number of physical degrees of freedom. This prevents a straightforward

application of the strategy used to relate the theory of warp fields to the full theory used

in the previous settings, as the relation between warp fields and fluctuations is no longer

invertible. A simple solution to this problem would be to eliminate the redundant fields

using a sufficient number of gauge transformations. Unfortunately, on the level of the

Lagrangian, this is not always possible. Take as an example the temporal gauge, which

eliminates A0. Any gauge transformation aimed at eliminating another field would have to

be generated by a gauge function involving these fields, which are in general functions of

time, so that it would be inconsistent with the temporal gauge. This changes however on

the level of the equations of motion, as these can in certain cases be used to eliminate the

time-dependence of the gauge function. This is precisely the case in the example discussed

within this section, and will be used as follows: after a quick overview over the well-known

theory of fluctuations around the vortex, a particularly useful gauge is presented, which

eliminates all redundancies on the level of the equations of motion. This reduces the system

to three independent fields, each of them subject to an independent equation of motion.

Afterwards, the strategy presented in the last subsection is used to construct a theory

of warp and twirl fields around the vortex. This will also result in three independent fields,

whose dynamics is determined by three equations of motion. The fluctuations induced by

these fields span a three-dimensional subspace of the four-dimensional field space of the

(off-shell) fluctuations. This connection between the two theories can then be used to show

that the equations of motions of the fluctuations together with an additional, on-shell gauge

condition imply the ones of the warp fields and vice versa, thereby showing the equivalence

of the two approaches up to the usual limitations arising from the use of warp fields. For

simplicity, all of this is done for the linearized theories only.

The first step of this discussion is to recall the central properties of the ANO vortex.

Due to the static nature of the soliton underlying the following discussion, it is convenient to

work in the temporal gauge, A0 = 0, which can be imposed on the level of the Lagrangian.

This reduces the number of real, independent fields to four, two of which are given by the

spatial components of the gauge field Ai. The other two are contained within the complex

scalar field, and can be made manifest via the parametrization

Φ(t, x) =
1√
2
ρ(t, x)eiqλ(t,x), (3.26)

where q denotes the U(1)-charge appearing in the covariant derivative, Dµ = ∂µ + iqAµ.
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In terms of these fields and the gauge-invariant quantity Ji = Ai+∂iλ, the Lagrangian

is given by

L =
1

2
∂µρ∂

µρ+
q2ρ2

2
λ̇2 +

1

2
ȦiȦi −

1

4
FijFij −

q2ρ2

2
JiJi − V (ρ), (3.27)

where V denotes a potential whose vacua are given by ρ = ±ν. In these conventions, the

vortex solution of winding number 1 is of the form

ρs = νσ(r), λs =
α

q
, Asi = −∂iαs

(
1− f(r)

)
=

1

q
εij
xj
r

(
1− f(r)

)
, (3.28)

where α denotes the spatial angle [17, 30]. Denoting the fluctuations around ρs, λs and Asi
by r, l and ai respectively, the leading order Lagrangian of these fields can be obtained by

a straightforward computation:

L(2) =
1

2
∂µr∂

µr− q
2

2
Jsi J

s
i r

2− 1

2
V ′′(ρs)r

2 +
q2ρ2

s

2
l̇2 +

1

2
ȧiȧi−

1

4
fijfij−2q2Jsi ρsjir−

q2ρ2
s

2
jiji,

(3.29)

where fij = ∂iaj−∂jai. This Lagrangian corresponds to the following equations of motion:

�r = −
(
q2Jsi J

s
i + V ′′(ρs)

)
r − 2q2Jsi ρsji,

l̈ = ρ−2
s ∂i

(
ρ2
sji + 2ρsJ

s
i r
)
,

äi = ∂mfmi − 2q2Jsi ρsr − q2ρ2
sji.

(3.30)

The system further underlies the constraint

∂iȦi = −q2ρ2λ̇, (3.31)

which can be obtained either from the equation of motion for A0, or alternatively from

the constraint that its canonical momentum vanishes for all times [31]. Consider now the

gauge function

γ = − 1

∆

(
∂iAi −G[ρ, α]

)
, (3.32)

where G is the solution of the differential equation Ġ = −q2ρ2λ̇. The constraint (or the

equation of motion for A0 respectively) (3.31) now implies that γ̇ = 0, so that the gauge

transformation generated by this function is consistent with the already imposed temporal

gauge. Performing the gauge transformation generated by this function, Ai → Ai + ∂iγ

and λ→ λ− γ leads to the identity

∂iAi = G. (3.33)

When considering fluctuations around the vortex, (3.33) translates to the relation

∂iai = −q2ρ2
sl. (3.34)

This identity now allows to completely eliminate l, making the system’s three degrees of

freedom manifest. This gauge also reduces the number of independent equations of motion:
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using (3.34), it is easy to see that the equation of motion for l can be obtained from the

one for ai by acting with ∂i on both sides of the latter one.

The next step of this discussion is to set up the description in terms of warp and twirl

fields. It is easy to see from (3.27) that there exists a third non-trivial zero mode in the

presence of the vortex, corresponding to a shift of λ by an arbitrary constant, i.e. a shift

of the scalar field’s U(1)-phase. This zero mode can be promoted to a twirl field, thereby

providing the missing third degree of freedom. This choice is particularly useful, as this

field coincides with the field l, so that its full dynamics is captured in the warp field picture.

Following the arguments of the last subsection, the theory of the warp fields together

with the twirl field can be described by a Lagrangian of the form (3.24). As the underlying

theory is known, the missing coefficients can be determined by an explicit computation,

yielding

Cµνab (ξ) =
1

2
ηµν
(
∂aρs∂bρs +

q2ρ2
s

2
∂aλs∂bλs + ∂aA

s
i∂bA

s
i

)
+

1

2
∂aA

µ
s∂bA

ν
s ,

Dµν
a (ξ) =

q2ρ2
s

2
ηµν , Cµa (ξ) = q2ρ2

sA
µ
s∂aλs, Dµ(ξ) = q2ρ2

sA
µ
s , g(ξ) =

q2ρ2
s

2
AsiA

s
i ,

(3.35)

where all functions on the right hand side have to be understood as functions of ξ.

Up to this point, this theory is conceptually very similar to the example discussed in

section 3.3. The main difference lies now in the way it is related to the full theory. On the

linearized level, the fluctuations induced by the warp and twirl fields are given by

rϕ =− ∂aρsϕa,
lϕ =− ∂aλsϕa + ϑ, and

aϕi =− ∂aAsiϕa.
(3.36)

Here, the label ϕ implies that the quantities on the left hand side have to be understood

as functions of {ϕa}a and ϑ. These relations can now be used to show the equivalence of

the two theories, in the sense that the equations of motions of the fluctuations can be used

to obtain the ones of the warp and twirl fields and vice versa.

The first part of this proof is rather straightforward. Using (3.36), the equations of

motion for the warp fields can be written as

ρ2
s l̈
ϕ = ∂i

(
ρ2
sj
ϕ
i + 2ρsJ

s
i r
ϕ
)

(3.37)

∂aρs
(
�rϕ + q2Jsi J

s
i r + 2q2Jsi ρsj

ϕ
i + V ′′(ρs)r

ϕ
)

= ∂aA
s
i

(
∂mfmi − 2q2Jsi ρsr − q2ρ2

sji − äi
)

(3.38)

Comparing these with (3.30), it is easy to see that these equations are a linear combination

of the equations of motion of the full theory. Thus, a given configuration of fluctuations

satisfying its equations of motion implies that the warp fields inducing said fluctuations

are also solutions of the equations obtained from their theory.

The equations (3.38) and (3.37) are also essential in the derivation of the equations

of motion of the full theory from the ones of the warp and twirl fields. First of all, the
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equation for ϑ immediately yields the equation for l. Multiplying (3.38) with the factor

εamx̂m and making use of the explicit form of the vortex (3.28), one obtains the equation

x̂i
(
äi − ∂mfmi + 2q2Jsi ρsr + q2ρ2

sji
)

= 0. (3.39)

In two spatial dimensions, this implies that

äi − ∂mfmi + 2q2Jsi ρsr + q2ρ2
sji = Γεimx̂m, (3.40)

with some arbitrary function Γ.

A similar equation can be obtained for r. Multiplying both sides of (3.38) x̂a allows

to handle the factor ∂aρs on the left side of the equation. Further eliminating the ai-terms

on the right hand side using (3.40), one obtains the following equation for r:

�rϕ + q2Jsi J
s
i r + 2q2Jsi ρsj

ϕ
i + V ′′(ρs)r

ϕ = Γ · 1− f + rf ′

qr2νσ′(r)
. (3.41)

Up to the terms proportional to Γ, these last two equations coincide precisely with the

equations of motion for ai and r in the full theory. This new factor Γ can now be elimi-

nated using the gauge condition (3.34), which has been imposed on the field space of the

fluctuations. Recall that (3.34) implies that the divergence of the equation for ai is reduced

to the equation for l. In a similar way, the left hand side of the equation for aϕi is reduced

to the left-hand side of the equation for lϕ, i.e. the equation of motion for ϑ. As the latter

one is independent of Γ, this leads to a constraint on Γ,

∂iΓεimx̂m = 0. (3.42)

In two spatial dimensions, this means that Γ = Γ(r), which implies that Γ cannot contain

the fluctuations ai, r and l, as these are in general also functions of the angular coordinate.

Thus, the right hand side of the equation for r as well as for ai is of 0th order in the

fluctuation, which would correspond to a term linear in the fluctuations in the full theories

underlying Lagrangian. As the fluctuations are perturbations around a solution of the

equation of motion, such a term is forbidden by the equations of motion of the vortex.

Thus, in this gauge, Γ = 0, and the equations of motion of the full theory are reproduced.

This implies now that if extended by a twirl field, the theory of warp fields is capable

of capturing all degrees of freedom of the underlying theory. The construction of this

theory itself is straightforward and its results are in perfect agreement with the arguments

of the last subsection. This description further appears with the interesting feature that it

allows for a redundance-free description of the system’s dynamics. The main complication

arising from this approach is encountered only if one tries to match the theory with the

description in terms of the usual fluctuations. Its origin lies however not in the properties

of the warp fields or the twirl fields respectively, but the underlying theory’s remaining

gauge redundancy.
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4 Conclusion & summary

The concept of the moduli space allows for a compact description of the low-energy dynam-

ics in the presence of a topological soliton. One of the central reasons for its importance

lies thereby in its universality. It can be used to describe the low energy dynamics of any

theory giving rise to a soliton, and all properties of the underlying theory as well as the

soliton are fully encoded in the moduli space metric.

Warp and twirl fields can be understood as an attempt to extend this picture. These

new fields can be used to describe the full dynamics of any theory — including the sector

corresponding to its non-zero modes — giving rise to a soliton nearby the latter one, and

all properties of the underlying theory as well as the soliton are fully encoded in a small

number of background functions. This includes the precise shape of the soliton, the types

of fields involved in its formation etc. Herein lies the power of this approach, as it not

only reveals a structure hidden in a wide range of models for which it provides a compact

description, but also allows for an alternative interpretation of a significant subsector of

these theories.

One aspect of this new perspective is the geometric description presented in section 2.7

as well as the duality transformation that it is based on. While it has a quite simple

interpretation, it also leads to the in this context rather unexpected appearance of the

Einstein-Hilbert action as well as a field sourced by the soliton’s energy-momentum tensor.

The main constructions presented in this article are particularly interesting from the

perspective of effect field theory. By performing a simple modification of the low-energy

theory, extending the domain of some of its degrees of freedom, one obtains a theory

applicable at all energies covered by the underlying theory. The condition of low energy

becomes fully replaced by a constraint on the localization of the configurations of interest.
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A Quantum theory of the warp field

The quantum theory of ϕ is determined by the properties of the operators ϕ̂, $̂ and the

Fock space F they are acting on. Just as in the classical case, it can be embedded into the

φ-theory.

The following discussion is limited to the free theory. The main motivation therefore

lies again in the technical difficulties of the non-linear theory, which are amplified due to

the unusual structure of the Fock space.
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A.1 Linearized theory

The operators representing ϕ and $ can be obtained from (2.12):

ϕ̂(t, x) = µmv̂(t− t0) + µmζ̂ +

∫∑
k α̂
∗
ke
iωktg∗k(x) + α̂ke

−iωktgk(x)

$̂(t, x) = iν2(σ′)2(µmx) ·
(
µmv̂ +

∫∑
k α̂
†
kωke

iωktg∗k(x)− α̂kωke−iωktgk(x)

) (A.1)

These operators satisfy the usual equal time commutation relations,

[ϕ̂(t, x), $̂(t, x′)] = iδ(x− x′) and

[ϕ̂(t, x), ϕ̂(t, x′)] = 0 = [$̂(t, x), $̂(t, x′)].
(A.2)

In terms of the creation/annihilation operators {α(†)
k }k and v̂, ζ̂, these relations can be

expressed as

[α̂k, α̂
†
p] =

{
Ncδ(k − p), for k, p ∈ Ic
Ndδkp, for k, p ∈ Id

,

[ζ̂, v̂] = iM−1
sol ,

(A.3)

where Ic and Id denote the continuous and discrete parts of the spectrum. The normal-

ization constants Nc and Nd are determined by the chosen normalization of the mode

functions and eigenstates. Defining p̂ = Msolv̂, the last relation is equivalent to the com-

mutation relation satisfied by the collective coordinate and its conjugate momentum. A

similar treatment is possible in the φ-theory, as disussed in [10].

The Fock space these operators act on is therefore given by

F =L2(R, dx)⊗Fp, where

Fp =
∞⊕
n=0

Sn
(
L2(R, dς)

)⊗n (A.4)

denotes the Fock space of particle-like excitations and L2(R, dx) corresponds to the col-

lective coordinate. Following the usual naming scheme of particle physics, the particle-like

excitations represented by this Fock space will be named warpions.

The chosen Fock space differs from one of a usual scalar field due to its spatial measure

dς, which is an immediate result of the mode functions {gk(x)}k. To see this, consider the

Fock space creation/annihilation operators A(†), which are related to the α(†)-operators via

A(†)[f ] =

∫∑
k f

kα
(†)
k , (A.5)

where fk denotes the coefficients of f when expanded in the {gk}k-basis. These operators

satisfy the commutation relation

[A[f ],A†[g]] = (f, g)H, (A.6)
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where (f, g)H denotes the scalar product on the one particle Hilbert space H [27]. As

α
(†)
k = A(†)[gk], (A.3) and (A.6) cannot be simultaneously realized on the usual (L2, dx).

But as the mode functions {gk}k are orthonormal with respect to the measure dς, the

desired commutation relations are realized on H = (L2, dς).

These relations can now be used to obtain an expression for the propagator of the warp

field. The non-zero mode contributions can be obtained from the expectation value of the

time-ordered product of the non-zero mode terms within ϕ̂ with respect to the Fp-vacuum.

In terms of the φ-propagator, they can be expressed as

∆nz
ϕ

(
(t, x), (t′, x′)

)
=

∆φ

(
(t, x), (t′, x′)

)(
νσ′(µmx)

)(
νσ′(µmx′)

) . (A.7)

The propagator of the zero mode is in great detail discussed in [10].

A.2 Implications of the probability measure

Similar to the classical theory, the quantum theory of the warp field bears a strong resem-

blance to the theory of a usual scalar field, with the main differences being the appearance

of the weight function ρ(x) = ν2(σ′)2(µmx) and the unusual asymptotic behavior of the

mode functions. The quantum theory however reveals the true relevance of these functions,

namely that they enforce a probability measure which is proportional to the weight func-

tion ρ. This is nothing but a particle physics version of the localization behavior observed

in the classical theory. While warpion-wave functions are supported on all of spacetime,

the associated probability density is localized in the same region as the soliton as it is

weighted with ρ.

Due to the incorporation of ρ in the measure of H this localization is also carried

over to the expectation values of any observable. Let O denote some observable which for

simplicity acts trivially on the L2-space of the zero mode. In terms of the corresponding

one-particle Hilbert space observable Ô, the action of this operator on some Fock space

state |Ψ〉 = |Ψ1(x),Ψ2(x1, x2), . . .〉 is given by

O |Ψ〉 = |(OΨ)1(x), (OΨ)2(x1, x2), . . .〉 , where(
OΨ

)
n
(x1, . . . xn) =

n∑
i=1

Ô(xi)Ψn(x1, . . . xn).
(A.8)

The functional dependence of Ô(xi) is here meant as the action of Ô on the ith argument

of Ψn. Therefore, the expectation value takes the form

〈Ψ| O |Ψ〉 = 〈Ψ1|(OΨ)1〉+ 〈Ψ2|(OΨ)2〉+ · · · =

=

∫
dς(x) Ψ∗1(x)ÔΨ1(x)+

+

∫
dς(x1)

∫
dς(x2)

2∑
i=1

Ψ∗2(x1, x2)Ô(xi)Ψ2(x1, x2) + . . .

(A.9)

The important feature of this expression is now that the contribution of each n-excitation

state comes with n integrals, each corresponding to one of the excitations. As the measure

of integration is given by dς and therefore contains the function ρ, the contribution of each

warpion to any physical observable is again weighted by the density of the soliton.
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A.3 Embedding into the full linearized theory

Just as in the classical case, the zero mode of the warp field can immediately be identified

with the collective coordinate as introduced in [10]. To extend this insight to the non-zero

modes, consider the following map between the one particle Hilbert spaces of the ϕ and

the φ theory:

ι : H → H

Ψ(x) 7→ ρ1/2(x)Ψ(x)
(A.10)

This map is an isometry which respects the structure of the mode expansion, in the sense

that ι(gk) = fk and ak = ιαkι
−1.

Extending this map to the whole Fock space in the canonical way [27], it is clear that

the dynamics on Fp generated by the {α†k}k operators is equivalent to the one on the

corresponding subset of F generated by the {a†k}k operators.
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