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1 Introduction

Recent interest in the Higgs-gluon form factor is stimulated primarily by studies on the
precision of cross section predictions for various hadron-collider processes involving an
intermediate Higgs boson [1]. Indeed, the amplitude gg — H contributes to both single-
and double-Higgs production with subsequent Higgs decay to a pair of fermions or off-
shell gauge bosons. In consequence, applications require the knowledge of the form factor
for arbitrary virtualities, and the uncertainty induced by the standard use of the infinite
top-quark mass limit plays a non-negligible role.

In pure QCD, the evaluation of the form factor is complicated by the fact that the
process is loop induced. Nevertheless, exact two-loop results for arbitrary quark masses
have been available since refs. [2-5]. Improvement over the current accuracy of cross
section predictions requires the knowledge of the form factor at three-loop order. This is
quite a challenging problem that has been first attacked with the help of the large-mass
expansion in the top-quark mass [6, 7]. A large-mass expansion has even been derived
at four-loop order [8]. Further progress at three-loops has been recently achieved using
Padé approximants [9] exploiting partial knowledge of the form factor’s behaviour around
threshold [10]. While a complete result for the form factor at this order remains elusive,
an exact result in terms of harmonic polylogarithms has been obtained for contributions
involving a massless-quark loop [11]. The diagrams contributing to the latter calculation
are depicted in figure 1. The same diagrams also contribute with two massive quark loops.



Figure 1. Complete set of Feynman diagrams with two fermion loops contributing to the Higgs-
gluon form factor at three-loop order. The fermion loop connected to the Higgs-boson line cor-
responds to a massive quark. The quark of the second fermion loop may be either massive or
massless.

In the present publication, we present an exact result for the form factor in QCD with a
single massive quark. In particular, we compute the diagrams of figure 1 with both quark
loops with the same flavour, as well as the complete set of diagrams with only one massive-
quark loop. A result in QCD with several massive quarks would still require a calculation
of the diagrams figure 1 with massive quarks of different flavour.

Our results are certainly necessary to answer the question whether Padé approximants
are indeed sufficient phenomenologically as claimed in ref. [9]. Independently, the knowl-
edge of exact quark mass dependence of the form factor opens the possibility of including
b-quark mass effects exactly.

The paper is organised as follows. In the next section, we introduce our conventions
and define finite remainders of the form factor after infrared renormalisation. We use this
opportunity to provide explicit formulae for the scale dependence of the form factor as
well. We subsequently describe the methodology that has allowed us to obtain not only a



high precision numerical result but also high-order expansions around the three physical
singularities: infinite quark mass (large-mass expansion), intermediate-quark production
threshold (threshold expansion) and vanishing quark mass (high-energy expansion). Fi-
nally, we present our results and compare them to previous work, in particular, the Padé
approximants of ref. [9]. This main text is closed with conclusions and outlook. The three
expansions are reproduced in separate appendices. The last appendix presents the contents
of the supplementary material that contains our results in electronic form.

2 Finite remainders

Consider the amplitude for the fusion of two gluons of momenta p; 2, helicities A\; 2 and
adjoint-representation colors ai 2, followed by the production of one, possibly off-shell,
Higgs boson:

—iMg(p1, M, a1) + g(p2, A2, a2) — H] =

oo o

109192 [(61 -p2) (€2 -p1) — (€1 €2) (p2 'pl)] v

Here, v is the Higgs-doublet Vacuum Expectation Value. The coupling of a single quark
field, @, of mass M # 0 to the Higgs-boson field, H, is given by the tree-level Lagrangian
term —MQQH /v. Finally, the gluon polarisation vectors are normalised as follows:

EiEE(pi,)\i), Ei'piZO, ei-ef:—l, i:1,2. (2.2)

The Form Factor C is expanded in the strong coupling constant, ag, and the number of
massless quark flavors, n;:

2 n
c=cO 4 Zem <%) cCB+0(ad), cmM=>"cthn. (2.3)
k=0

™

The strong coupling is defined in the MS scheme with massive-quark decoupling. Its de-
pendence on the renormalisation scale y is given by the SG-function for n; massless quarks,
Qs = ag"’)(u). Contributions (™™ £ 0, n > 0 are only due to coupling constant renormal-
isation. The massive-quark mass, M, is defined in the on-shell scheme implying the same
for the Yukawa coupling. The dimensionless form-factor expansion coefficients depend on

two variables only:

cmk) = cnk) (5, L,), (2.4)
s ) >
zzm+10+, Luzln<—8fi0+> ) sz(p1+p2)2. (2.5)

The leading contribution is:
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In the limit M — oo: 1

Hence, the amplitude eq. (2.1) may be obtained at M — oo from the Higgs-Effective-

CO0z =0] (2.7)

Theory tree-level Lagrangian:
H
E(O) — A -
HET = 127 v

where G7,, is the standard QCD field-strength tensor, Lqocp = —-1/4 GG M + Latter-
Beyond leading order, the form factor is infrared divergent after renormalisation. The

GG (2.8)

results presented in this publication correspond to Conventional Dimensional Regularisa-
tion with space-time dimension d = 4 — 2e¢. The infrared divergences may be factorised
yielding the Finite Remainder, Cr, of the form factor:

cir=1IcC, (2.9)

where the two-loop I-operator of Catani [12] (see ref. [13] for the specific case of the Higgs-
gluon form factor) is given by:
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with the first two coefficients of the QCD S-function:
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In general, C}n’n) # 0, n > 0. However:
2
i =0 =0, VL, =0] = ZcO. (2.13)

Just as the form factor itself, the I-operator, eq. (2.10), is independent of the scale u (up
to two-loop order of course). In consequence:

dlnC; dlnl  dlnC

= = 2.14
dlnp dln,u—’_dln,u ( )




The dependence of the finite remainder on the scale logarithm, L,, is thus given by the
B-function only:!

1 1 bo
¢ =i L, =0+ 7¢O L,
b by + b2L (2.15)

A different finite remainder, Cz, is obtained if the factorisation of infrared divergences is
performed in the MS scheme [14]. Define:

c,=2771cC, (2.16)
with:
dlnZ—1!
The solution at two-loops is:
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Since the dependence on the highest-power of n; in eq. (2.3) is only due to the pure poles in
the minimal ultraviolet renormalisation constant Z,,, it must be cancelled by the, equally
minimal, constant Z. Thus:

e =, (2.21)
The scale dependence of Cz, on the other hand, is non-trivial:

dinCz dlnz=! dInC _

= = 2.22
dlnp dlnp +d1n,u ( )

The conversion between the two infrared schemes is achieved with the help of:
Cz=I2)"¢y. (2.23)

!Notice that the I-operator of ref. [11] (see eq. (3.7b) of that publication) is missing a scale-dependent
factor in the Hy-term (compare to eq. (4.38) of ref. [13]). With this difference, the I-operator of ref. [11] is not
scale invariant and C§2) contains an additional contribution to the single scale-logarithm term, H/4 C<0)Lu.



Explicitly:
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For instance, this result allows to obtain egs. (2.13) and the scale dependence of C; after
using egs. (2.15).

Finally, let us note that our results can be used to obtain the three-loop form factor
before factorisation of the infrared divergences with the help of the two-loop result provided
to O(e?) in ref. [15].

3 Technicalities

The three-loop diagrams corresponding to the amplitude eq. (2.1) have been reduced to
a set of (master) integrals, M;(z,€), via Integration-By-Parts identities [16] with the help
of a C++ implementation [17] of the Laporta algorithm [18]. The same reduction has
also been exploited to construct a system of first-order homogeneous linear differential
equations [19, 20]:

dM (2,6) ZA” Z,€) Z,€), (3.1)

where the coefficients A;;(z, €) are ratlonal functions in z and e. Truncated e-expansions
have been subsequently substituted to represent the master integrals. A large-mass expan-
sion (see below) of each M; has been used to determine the lowest power of €, n,, with
non-vanishing coefficient, while the amplitude and the differential equations have been used
to determine the highest power of €, 7;, necessary to obtain the amplitude at (’)(60). Let
the coefficients of the truncated e-expansions be denoted with Iy (z):

n;—n;

Mi(z,e)= Y et I (2), (3.2)

where k; have been chosen to avoid overlap of the k-indices of the expansion coefficients I,
of different master integrals. The coefficients I} satisfy a system of first-order homogeneous
linear differential equations derived from egs. (3.1):

dI’“ Z Bz (3.3)
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Figure 2. Contours for the numerical solution of the differential equations for the master integrals.
The points on the abscissa correspond to singularities of the differential equations. Every time a
contour reaches the real axis, the interval between singularities is explored in both directions.

where the coefficients By;(z) are rational functions in z. Instead of seeking an analytic
solution of egs. (3.3), we have solved the system numerically as proposed originally in
ref. [21] and first applied to a physical problem in ref. [22]. To this end, we have used the
Boost [23] library odeint. In particular, we have chosen the Bulirsch-Stoer algorithm,
bulirsch_stoer_dense_out. In order to keep the numerical precision of the results under
control, we have used the BOOST library multiprecision with a gmp/mpc backend. The
floating point containers were requested to represent 100 decimal digits. A local error of
10740 has been requested from the differential equation solution.

The numerical solution of egs. (3.3) requires a boundary value for each Ij. In order to
obtain these, we have used a high-order large-mass expansion, see e.g. [24], around z = 0.

2 in #z, since the nearest singularity of

The expansion must have unit radius of convergence
the master integrals is at z = 1. The expansion has been obtained using diagrammatic
methods for the first few coefficients. It has been subsequently extended with the help of
the differential equations. As boundary point, we have chosen z = 1/4(1 + i), well within
the radius of convergence. Because of the presence of singularities in the coefficients By,
we have used evolution contours shown in figure 2. An additional solution has also been
obtained starting from z = 1/4(0.7 4 0.77) in order to control the error of the final result.

Having high-precision values of the master integrals allows to obtain expansions around
arbitrary points, even around singularities. In the course of the present work, we have
obtained threshold and high-energy expansions. They are necessary to evaluate the three-
loop coefficient of the form factor in the vicinity of z = 1 and 1/z = 0 respectively. In
general, expansions of [; are of power-log type, since an expansion in € of the master

integrals has already been performed:
[e'e) my
I (2(y)) = Z Z Crim y' Ny (3.4)
I=l;, m=my

where [, m;., My, € Z, and y = /1 — z for the threshold expansion, while y = 1/z for the
high-energy expansion. In practice, the expansions are truncated at an affordable order

2Strictly speaking, this is a power-log expansion with singularity at z = 0. The convergence considera-
tions apply to the coefficients of the logarithms, In™ z, which are analytic in z.



considering the available computing ressources. For each I, only one ¢i = cgpy, for some [
and m, is necessary to make the solution of egs. (3.3) unique. Since egs. (3.3) are linear,
there is:

Ii(2(y) = ZFkl(y) cl == cp = Z (F Y, L(2(y)) - (3.5)
1

l

In order to obtain ¢y, and thus also Fy;(y), we have used an efficient C++ software that
was originally developed for ref. [25]. Upon choosing a suitable y point where the threshold
or the high-energy expansion has excellent convergence, we were able to obtain ¢; with high
precision.

4 Results

Since the scale logarithms of the three-loop coeflicient of the finite remainder are entirely
determined from the analytically known lower order results, see eqgs. (2.15), we only present
our findings at L, = 0.

We first note that our result for C}Q’l) agrees perfectly with ref. [11]. Remains to
compare with the Padé approximants of ref. [9] for C®. A comparison for the case of
five massless quarks is presented in figure 4. We observe that the uncertainty estimates of
the approximants are reliable over most of the range of z. Slightly larger deviations are
observed for the n; = 0 case as demonstrated in figure 5. An improvement of the Padé
approximants has recently appeared in the proceedings [26]. The respective plots are also
shown in figures 4 and 5. Clearly, the agreement with the exact result is worse for n; =5
and better for n; = 0.

In order to understand the phenomenological relevance of the difference between the
exact result and its Padé approximation for n; = 0, we consider the quantity:

20 (6] ) 0]
(20) = | (=2 lmrace
AT = (w) ‘C(o)‘Q (4.1)

as a proxy for the error induced on the partonic cross section. We acknowledge the limita-
tions of A29) in this respect due to the size of the real-radiation corrections to the cross
section at higher orders. We expect that the actual effect is about 1/2 of AZO) | at least
for a top-quark loop. For simplicity, we fix the value of the strong coupling at as; = 0.1.
A9 g plotted in figure 3. Assuming an off-shell Higgs-boson with a partonic center-of-
mass energy, /s, of up to 1 TeV produced through a top-quark loop, there is AZ0 < 1%,
Hence, the Padé approximant provides an excellent approximation for top-quark loops. On
the other hand, in the case of the production of an on-shell Higgs boson through a b-quark
loop, A9 ~ 10%. Furthermore, the difference grows rapidly with the Higgs-boson off-
shellness, /s. Hence, the approximation is rather poor for b-quark loops. In the same

(2,0)

figure, we also show A using the improved Padé approximant of ref. [26]. We note that
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Figure 3. Relative difference, eq. (4.1), between the Padé approximation of the three-loop coeffi-
cient of the finite remainder C}Q) from refs. [9] (left panel) and [26] (right panel) and the exact result
at ny =0, L, = 0. z = 8 corresponds to a /s = 1TeV Higgs boson produced through a top-quark
loop, whereas z =~ 156 corresponds to an on-shell Higgs boson produced through a b-quark loop.
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Figure 4. Comparison of the three-loop coefficient of the finite remainder, eq. (2.9), at n; = 5,
L, = 0 (five massless quarks, renormalisation scale u? = —s), with the default Padé approximation,
[6, 1], constructed in ref. [9] (left panel) and improved to [7,1] in ref. [26] (right panel), as function
of z = s/4M? with /s the center-of-mass energy of the Higgs boson and M the mass of the single
massive quark. The bands correspond to the uncertainty of the Padé approximations as estimated
in refs. [9] and [26]. The lower plot shows the absolute difference between the approximation and
the exact result. Also shown is the large-mass expansion (LME) of the three-loop coefficient of the
finite remainder truncated at (9(22),(’)(,24) and O(zloo).

the approximation is now better for b-quarks. Nevertheless, A9 > 10% for an off-shell
Higgs boson of 400 GeV.

Our exact result is a sample of C§2) values at nearly 200.000 z points. We have also
determined the large-mass, threshold and high-energy expansions of C§2) (see section 3).
These three expansions cover most of the range of z values within their convergence radii.
In the supplemental material (see appendix D) to the present publication, we provide the

large-mass expansion up to O(zwo) with exact coefficients, the threshold expansion up to
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Figure 5. Same as figure 4 but with n; = 0.

O((1 — 2)*°) with numerical coefficients and the high-energy expansion up to O(1/z%) with
numerical coefficients. The order at which the high-energy expansion has been truncated
has been determined by the requirement that the numerical expansion coefficients have at
least ten correct digits as determined in a conservative comparison of results obtained with
two different starting points for the numerical solution of egs. (3.3) and y values eq. (3.5).
The agreement of the truncated expansions with the exact result is demonstrated in figure 6.
The domain of physical z values may be compactified with the following mapping;:

() = 12 é

pR) =1 re0). (4.2)

:1_p7

The exact result for C}Q’O) is approximated to better than 10~ relative to |C(*)| as follows:

0<p<1/6 — large-mass expansion, appendix A and figure 5;
1/6 < p<1/4 — threshold expansion, appendix B and figure 7;
1/4 < p<3/4 — interpolation of a sample of numerical values, tables 1 and 2;
3/4<p<1 — high-energy expansion, appendix C and figure 8.

5 Conclusions and outlook

With the results presented in this work, the Higgs-gluon form factor is known exactly at
three loops in QCD with a single massive quark. This is sufficient for applications to
Higgs-boson hadroproduction in the five-flavour scheme, where the massive quark is the
top. In this case, we have confirmed that an approach based on Padé approximants [9]
is sufficient to obtain sub-percent precision for physical observables. On the other hand,
our result removes any uncertainties on the value of the form factor present in ref. [9].
Once b-quark loops are considered at non-vanishing b-quark mass, our result becomes
indispensable, since Padé approximants potentially induce errors on physical predictions

in the ten-precent range.

~10 -



p C}Q’O) ) C}Q,O)
1/4 30.88057646 + 25.98752971 1 3/8 0.5489407632 + 28.08768382 %
51/200 | 29.16117325 + 27.193263994 | 19/50 | —0.1268390632 + 27.6738637
13/50 | 27.46093382 + 28.2107665614 | 77/200 | —0.7713324763 + 27.25087704
53/200 | 25.78986495 + 29.06161664 7 | 39/100 | —1.385714578 + 26.82008886 ¢
27/100 | 24.15526667 + 29.764567334 | 79/200 | —1.971122667 + 26.38273798
11/40 | 22.56238753 + 30.33601069 4 2/5 —2.528655721 + 25.93994889 ¢
7/25 | 21.01490693 4 30.790343034 | 81/200 | —3.05937427 4 25.49274254 i
57/200 | 19.51529601 + 31.140257914 | 41/100 | —3.56430059 + 25.04204591 ¢
29/100 | 18.06509163 + 31.396985154 | 83/200 | —4.044419136 + 24.58870072 %
59/200 | 16.6651066 + 31.5704884 i 21/50 | —4.500677174 + 24.13347121 4
3/10 | 15.31559266 + 31.669630344 | 17/40 | —4.933985559 + 23.677051214
61/200 | 14.01636758 + 31.702312014 | 43/100 | —5.345219629 + 23.22007047 ¢
31/100 | 12.76691514 + 31.675591254 | 87/200 | —5.735220182 + 22.76310042+
63/200 | 11.566464 + 31.59578403 4 11/25 | —6.104794506 + 22.30665937 i
8/25 10.4140502 + 31.46855168¢ | 89/200 | —6.454717455 + 21.85121724 4
13/40 | 9.308566879 + 31.298976244 | 9/20 —6.785732545 + 21.39719977 ¢
33/100 | 8.248803784 + 31.09162597 | 91/200 | —7.098553057 + 20.94499247 i
67/200 | 7.233478837 + 30.85061204¢ | 23/50 | —7.393863147 + 20.49494408 i
17/50 | 6.261263221 + 30.579639114 | 93/200 | —7.672318937 + 20.04736981 ¢
69/200 | 5.330801353 + 30.282048361¢ | 47/100 | —7.934549597 4+ 19.60255421 ¢
7/20 4.44072674 + 29.960856294 | 19/40 | —8.181158403 + 19.16075384 4
71/200 | 3.589674492 + 29.6187886214 | 12/25 | —8.412723764 + 18.72219971¢
9/25 2.776291163 + 29.25831024 | 97/200 | —8.629800232 + 18.28709941 4
73/200 | 1.999242412 + 28.881651644 | 49/100 | —8.832919461 + 17.85563919 ¢
37/100 | 1.257218899 + 28.490832814 | 99/200 | —9.022591138 + 17.427985751

Table 1. Numerical values of the three-loop coefficient of the finite remainder C}z) at ng
L,=0,for1/4<p=z/(4+2)<1/2.

For the presentation of our results, we have used two different infrared-renormalisation

schemes. On the other hand, we have chosen to renormalise the Yukawa coupling in the

on-shell scheme. Fortunately, a translation to any other scheme, e.g. MS, can be easily

- 11 -



) c(20 ) c(20
1/2 —9.199303854 4 17.00428794 1 5/8 —10.49655344 4 7.904442944 1
101/200 | —9.363525841 + 16.584678334 | 63/100 | —10.45672407 + 7.602825895 7
51/100 | —9.515705879 + 16.169275024¢ | 127/200 | —10.41175312 + 7.305965242 i
103/200 | —9.656274528 + 15.758182834 | 16/25 | —10.36179862 + 7.013842682 1
13/25 | —9.785644947 4+ 15.351494314 | 129/200 | —10.30701259 + 6.726439296 i
21/40 | —9.904213631 + 14.949290714 | 13/20 | —10.24754124 + 6.443735699 i
53/100 | —10.01236111 + 14.55164295¢ | 131/200 | —10.1835252 + 6.165712192¢
107/200 | —10.11045262 + 14.158612464 | 33/50 | —10.11509978 + 5.892348901 ¢
27/50 | —10.19883876 + 13.770252014 | 133/200 | —10.04239511 + 5.623625905 i
109/200 | —10.2778561 + 13.38660649¢ | 67/100 | —9.965536402 + 5.359523369 i
11/20 | —10.34782779 4+ 13.00771356¢ | 27/40 —9.88464409 + 5.100021655 ¢
111/200 | —10.40906411 + 12.63360429¢ | 17/25 —9.79983404 + 4.845101447 ¢
14/25 —10.46186303 + 12.2643038¢ | 137/200 | —9.711217707 + 4.594743853
113/200 | —10.5065107 + 11.899831764 | 69/100 | —9.618902308 + 4.34893052 1
57/100 | —10.54328201 + 11.54020288 | 139/200 | —9.522990977 + 4.107643733 i
23/40 | —10.57244099 + 11.18542744 1 7/10 —9.423582916 4+ 3.870866519 7
29/50 | —10.59424131 + 10.83551164 ¢ | 141/200 | —9.320773537 + 3.638582749
117/200 | —10.60892672 + 10.490458074 | 71/100 | —9.214654604 + 3.410777238 4
59/100 | —10.61673142 4 10.15026603 7 | 143/200 | —9.105314363 + 3.187435844 i
119/200 | —10.61788051 4+ 9.8149318574 | 18/25 | —8.992837666 + 2.968545567 i
3/5 —10.6125903 + 9.484449303 ¢ 29/40 | —8.877306096 + 2.754094652 i
121/200 | —10.60106877 4+ 9.158809768¢ | 73/100 | —8.758798082 + 2.54407269
61/100 | —10.58351579 + 8.838002595¢ | 147/200 | —8.637389011 + 2.3384707284
123/200 | —10.56012358 + 8.52201532 ¢ 37/50 | —8.513151331 + 2.1372813714
31/50 —10.5310769 + 8.210833902¢ | 149/200 | —8.386154663 + 1.940498901 ¢
5/8 —10.49655344 4 7.904442944 1 3/4 —8.256465888 4 1.748119392 ¢
Table 2. Numerical values of the three-loop coefficient of the finite remainder CEQ) at n; = 0,

L,=0,for1/2<p=z/(4+2) <3/4

achieved thanks to the knowledge of one- and two-loop results in analytic form. This

translation is independent of infrared renormalisation.
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Figure 6. Comparison of the large-mass expansion (LME) truncated at (’)(2100), threshold expan-
sion (THR) truncated at O((1 — 2)?°) and high-energy expansion (HE) truncated at O(1/z%) with

the exact result for the three-loop coefficient of the finite remainder C1(~2) at ng = 0, L, = 0. The
lower panel shows the absolute difference between the expansions and the exact result.

In principle, our calculation can also be used to obtain the form factor for the process
H — ~7, as well as processes involving pseudo-scalars instead of a scalar. We intend to
provide these results in forthcoming publications.

Finally, we stress that a complete knowledge of the form factor at three loops in the
most general case requires the evaluation of diagrams with two different massive quarks.
This can be achieved with numerical methods presented here, for example by fixing the
ratio of the b- and top-quark masses. We leave this problem to future work.

Our results are available in computer readable form, see appendix D.
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A Large-mass expansion

C}ZO) = Z (an,o + an,1 Ls) 2" , L, = In <—i — ’LO+> ,
n=0

Ci*? = 101151523 + 0.3958333333 L + (4.778475062 + 0.6374228395 L, ) =
+ (3.071997564 + 0.3726469724 L, ) 22 + (2.113752253 + 02432786092 L, ) 2*

i (1.549293473 +0.1705037577 Ls) At (1.188613713 4 0.1259718957 Ls) 25

4 (0.9434907022 + 0.09730796586 LS> 24 (0.7698982981
+ 0.07720332487 Ls) 2Tt <0.6413834263 + 0.06309263508 Ls) 28
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O(1/2®) with the exact result for the three-loop coefficient of the finite remainder C 12 at n; =0,
L, = 0. The lower panel shows the absolute difference between the expansions and the exact result

n (0.5441670543 +0.05233299715 LS> 2+ (0.4680660377
1 0.0443515761 Ls> 210 4 (0.4078535762 1 0.0379145141 Ls) sl

4 (0.3588441671 +0.03295598554 L5> 212 4 (0.3187910863
+ 0.02879246954 Ls) 218 4 (0.2852395627 + 0.02549720532 Ls) L1

4 (0.2571429415 1 0.02264475648 Ls) L (0.2330827097
+ 0.02034099839 LS) 216 4 (0.2125481506 +0.01829860319 L5> 217

+ (0.1946546291 +0.01662316981 Ls) 284 (0.1791494756
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+0.01510884572 Ls> A9 4 (0.165446505 +0.01385124062 LS) 220

+ (0.1534242422 +0.01269623978 LS> 2y (0.1426747173
+0.01172751873 Ls) 222 4 (0.1331457079 +0.0108257358 LS> 223

+ (0.1245416017 4 0.01006326825 LS> 224 4 (0.1168475512

+ 0.009345212464 LS> 2% + (0.1098420694 + 0.008734026363 LS) 226
+ (0.1035305936 +0.00815260668 LS> 27y (0.09774245353

+ 0007654956458 Ls) 28 (0.09249392018 +0.007177321845 LS> 229
+ (0.08765032243 + 0.006766580255 Ls) 2304 (0.08323342197
+0.006369234271 LS) Ay (0.07913478115 +0.006026173094 Ls) 232
+ (0.07537859115 +0.005691941208 Ls) e (0.07187600638
+0.005402388748 Ls) By (0.068651888 +0.005118475844 Ls) 235

+ (0.06563233955 +0.004871797509 LS) 2364 (0.06284189053

+ 0.004628509056 LS> P (0.06021826802 + 0.004416595976 LS) 238
+ (0.0577851 1593 + 0.004206475477 LS) 2394 (0.0554893509

+ 0.004023055687 Ls> A0 (0.05335344447 +0.003840290207 LS) A
+ (0.05133168673 + 0003680449807 LS) A2y (0.04944524976
+0.003520452297 LS> 48 4 (0.04765441847 +0.003380296411 LS> 4
n (0.04597903331 +0.003239407083 LS) 5 (0.04438431 107
+0.003115815786 LS) A6 (0.04288878386 +0.002091085231 LS> AT
+ (0.04146176925 +0.002881535172 Ls) A8 4 (0.04012054547
+0.00277056456 LS) A9y (0.03883787271 +0.002672996802 Ls) 250
+ (0.03762984606 +0.002573818605 Ls) Sy (0.03647214107
+0.002486539456 LS) 252y (0.03537974752 +0.002397527326 Ls> 253
+ (0.03433082942 +0.002319133078 LS> 5y (0.03333935067
+0.002238933009 Ls> 255 4 (0.03238561472 +0.00216825219 Ls) 456

+ (0.0314826373 + 0.002095729392 LS) 257 4 (0.03061257345
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+0.002031778036 LS) 258y (0.0297875648 +0.001965975545 Ls) 259

+ (0.02899137863 +0.001907922209 Ls) 00 4 (0.028235352

+ 0001848028357 Ls> P (0.02750466385 +0.001795166544 LS> 262
+ (0.02680991123 +0.001740489184 LS) P (0.02613751555
+0.001692215416 LS> 04 (0.02549739331 +0.001642161338 LS> 205
n (0.02487706468 +0.001597957601 LS) 266 1 (0.02428582021
+0.001552015981 Ls) A7 (0.02371215609 +0.00151143557 Ls) 468

+ (0.02316478676 +0.001469164564 Ls) 209 4 (0.02263307899

+ 0.001431820595 LS) 270 4 (0.02212521664 + 0.001392836423 Ls) 27
+ (0.02163134597 + 0001358392448 Ls) 22y (0.02115916176
+0.001322360441 Ls) 2y (0.02069951073 +0.001290522743 LS> 274
+ (0.02025963637 +0.001257149966 LS) P (0.01983101697
+0.001227661193 LS> 276 4 (0.01942047911 +0.001196690333 LS) P
+ (0.01902007236 +0.001169324218 Ls) P (0.01863623774
+0.00114052849 Ls> L (0.01826154308 +0.00111508544 Ls) 280

+ (0.01790207242 + 0.001088264332 LS) 28 4 (0.01755086504
+0.001064567732 LS> 82 (0.01721367407 +0.001039543422 LS> 283
+ (0.01688396883 +0.001017436529 LS) P (0.01656719533

+ 0.0009940508608 L5> 2% 4 <0.01625721611 +0.000973394174 LS> 250
n (0.01595919178 +0.000951506008 Ls) L (0.01566734531
+0.0009321751265 LS) 88 (0.0153865718 +0.0009116585178 LS> 239
+ (0.01511142531 +0.00089354188 Ls> 290 4 (0.01484655363
+0.0008742836775 Ls> P (0.01458681559 +0.0008572814757 Ls) 292
+ (0.0143366284 + 0.0008391800862 LS) 29y (0.01409113199
+0.0008232025116 LS> i (0.01385452828 +0.0008061664372 LS) 295

+ (0.01362221703 -+ 0.0007911325696 L5> 298 4 <0.01339819894
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1 0.0007750792236 LS> 7 4 (0.01317811431 + 0.000760915994 Ls> 98
4 (0.01296577557 + 0.0007457706765 Ls) 299 4 (0.01275704613

+0.0007324119688 L, ) 1% + O (1) . (A.2)

The exact expansion coefficients are provided in the supplementary material. We agree
with refs. [6, 7] up to O(z*) and with ref. [9] up to O(2°).

B Threshold expansion

o0

05'2’0) = Z (bn,o + bng Lt + bpo LE)

n=0

Li=ln(1-2), t=vV1—2z=-exp(L/2),

(B.1)

C\*0) = 3829655119 — 8.9070147 i — 29.55840851 ¢ + (9.112936321 — 68.1395365
+ (14.16269653 — 28.422420294) L, — 4.523568684 Lf) 2+ ( — 20.55378026
+133.7985485 i — 26.60436928 Lt) 5+ ( — 25.39554578 — 239.3964484 i

+ (14.71881407 — 18.948280194) L; — 8.864366916 L,?) t* + <22.88555562
+311.994478 + (—43.65929113 — 30.41485955 i) L, + (—0.3490658504
+7.402203301 7) L,?) £+ ( — 122.1397994 — 392.2909322 + (6.009726459

+13.26379614 i) L, — 5.516621472 L?) 15 + <140.6543286 + 457.2900946 i

+ (—70.34961079 — 68.497977894) L; 4 (2.520477069 + 19.98594891 1) Lf) t7
- ( — 310.5867852 — 492.0494746 i + (—6.024184876 + 62.80001436 i) L,

+ 7.272523314 L,%) 8+ (359.8673214 + 541.6828656 i + (—116.1605627
—105.7705087 1) L; 4 (10.80021746 + 36.50872414 1) L?) 9+ ( — 610.5588771
— 520.6092531 7 + (—16.89694249 + 126.77301754) L; + 30.31073877 L?) ¢10

- (700.264643 + 549.21841021 + (—185.5662205 — 138.0922834 1) L;

+ (26.001469 + 56.2053409 7) L?) 4 ( — 1036.677064 — 465.6193352 i

+ (—22.72070802 + 203.3453965 i) L; + 64.09089853 Lf) 12 ¢ (1 177.227509
+ 468.5161494 + (—279.6079413 — 163.1047377 1) L, + (49.23219084
+ 78.56007164 1) L?) 13 4 ( — 1600.347449 — 317.3641993 i + (—19.90826165

+291.2249078 1) L; + 108.9603809 Lf) oy (1803.642376 +290.4177751 4

+ (—396.3597986 — 179.328259 ) L; + (81.34424135 + 103.2021919 1) Lf) 1o
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+ ( — 2310.834851 — 67.58556999 i + (—5.061769755 + 389.4423686 i) L,

+ 165.1852917 L?) 10 4 (2591.104007 + 7.032756569 7 + (—530.7745415

— 185.772101214) L; 4 (123.0180749 + 129.8524061 1) L?) 17 4 ( — 3175.897771
+291.0629642 i + (25.07572246 + 497.23763557) L; + 232.9804921 Lf) 18

+ (3550.803491 — 388.7191604 i + (—674.0712248 — 181.7412648 ) L

+ (174.8140502 + 158.2927098 1) Lf) 19 4 ( — 4202.187543 + 765.3035663 i

+ (73.64516718 + 613.99459234) L; + 312.5257534 L?) 20 4 (4694.305121
— 903.3548866 i + (—812.6741315 — 166.7311215 i) L; + (237.2049629
4 188.348174 1) Lf) 2 4 ( — 5395.511981 + 1361.401213 7 + (143.6864402

+ 739.2011425 1) L; 4 403.9753603 Lf) %2 4 (6034.345387 — 1542.973831

+ (—926.6236752 — 140.3655593 1) L; + (310.5975616 + 219.8752962 1) Lf) %
- ( — 6761.017023 + 2085.268299 7 + (238.1485965 + 872.4231173) L;

+ 507.4642605 Lf) 2 4 (7585.760424 — 2313.350376 7 + (—987.3075061
—102.3585515 1) L; 4 (395.3473322 + 252.7542072 1) Lf) % 4 ( — 8303.316472
+ 2942.534197 i + (359.897675 + 1013.286463 1) L; + 623.1122305 L,?) £26

+ (9366.647246 — 3219.995987 i + (—954.2825083 — 52.48916829 ) L,

+ (491.7690072 + 286.8832593 ) Lf) 27+ ( — 10026.58756 + 3938.593854 i

+ (511.7230633 + 1161.464627 ) L; + 751.026828 L?) %8 + (11399.88074
— 4268.202962 + (—770.8622683 + 9.4152873821) L; + (600.1442562
+322.1751524) L?) 29 + ( — 11934.64323 + 5078.643159 i + (696.3429187

+ 1316.669338 1) L; + 891.3055595 Lf) 30 ¢ (13715.1406 — 5463.076486 i

+ (—358.0179892 + 83.491018474) Ly + (720.7274605 + 358.554085 ) Lf) 31
- ( — 14030.98797 + 6367.70559 4 + (916.4089125 + 1478.643714 1) L,
+1044.037518 Lf) 32 (16351.65146 — 6809.558924 i + (394.0297813
+169.8461219 1) Ly 4 (853.750144 + 395.953618 1) Lf) 33 4 ( — 16318.86196
+ 7810.652869 i + (1174.510449 + 1647.1569697) L; + 1209.304654 Lf) 34

- (19361.90922 — 8312.448766 i + (1637.383024 + 268.5667181 i) L;

+ (999.4244394 + 434.3150324 1) L?) 5 + ( — 18801.27633 + 9412.2214 i
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+ (1473.178459 + 1822.0003 1) L; + 1387.182774 Lf) 36 4 (22816.76328
—9976.415748 i + (3582.371933 + 379.7215184) L + (1157.945845

+ 473.5860544 1) Lf) 37 + ( — 21481.04193 + 11177.0256 7 4 (1814.888837
+2002.983613 1) Ly + 1577.742354 Lf) 38 4 (26812.35732 — 11806.01319

+ (6519.39523 + 503.3652836 1) L; + (1329.495449 + 513.7198453 1) Lf) 39

- ( — 24360.79309 + 13109.56893 i + (2202.065568 + 2189.9329027) L,
+1781.049193 L2 ) 147 + O(t). (B.2)

We agree with ref. [10] for the coefficients of the first three non-analytic terms:

27> 2 997
T (3+7T2), b271 :;T6(458_157T2)+27Tib2’2 and b272:—%.

bio=—
10 27

(B.3)

We also provide a high precision result for the three-loop coefficient of the form-factor at
threshold:

CPO [z = 1] = bo ~ +38.29655118857344308946576090253939

B4
— 8.907014700051001636660098822811295 % . (B4)

C High-energy expansion

In (—% - i0+) , (C.1)

oo 6
05270) = Z Z Cnk LI; z" ) Ls
n=1 k=0

c20 = (15.93205751 — 15.73631507 Ls — 1.121722806 L? + 0.4035518803 L?
4 0.08901988687 L — 0.001736111111 L5 — 0.0004822530864 LS) 27!
+ (0.06309685356 + 3.546786436 Ls — 0.519984143 L2 — 1.652739942 L?
—0.1240600623 L} — 0.004134114583 L2 4 0.0005738811728 LS) 272
+ (5.754168857 + 7.325854683 L, — 2.98120415 L2 4 0.1651932919 L?
+0.003161112205 L? — 0.005756293403 L3 + 0.000220630787 LS) 273
+ ( —10.66566232 — 10.56571524 L + 10.33923567 L? — 0.313124275 L?
— 0.1681889443 L + 0.01392927758 L? 4 0.0000316478588 Lg) 274
+ ( — 6.785278289 + 88.43750151 L — 40.26616919 L? + 2.072111298 L?
4 0.7341214981 L — 0.04301260489 L° — 0.0003223560475 L‘j) z7°

- (80.70142226 — 421.2250932 L + 175.4294283 L2 — 5.805171716 L?
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— 3.062956746 L + 0.1753725462 L5 + 0.0009707792306 LS) 28

- ( — 486.1362845 + 2151.385984 L, — 853.4135303 L2 + 26.4094276 L2
+ 14.84667539 LY — 0.8733492022 L3 — 0.002646085951 LS) 27

- (2880.610148 — 11795.75065 L 4+ 4569.562554 L2 — 140.0597361 L*

— 78.99328343 L + 4.758979333 L° + 0.008394276654 Lg) 2 ¥+0(27%). (C2)

The value of the coefficient of the term proportional to L/ agrees with refs. [27, 28], while
the coefficient of the term proportional to L3/z has been confirmed in ref. [29].

D Supplemental material

The supplementary material, conforming to WOLFRAM MATHEMATICA format, provides
the following results as second order polynomials in api= ay/m:

CI[z, nl, Lmul — Cy, eq. (2.9);
CZ[z, nl, Lmu]l — Cgz, eq. (2.16);
CItoCZ — conversion between infrared schemes, eq. (2.24).

The approximations used by the function CI[z, nl, Lmu] are directly accessible with the
following functions evaluated at L, = 0:

colz], CiI[z], C2I[z, n1] — C©), C}l) and C§2), egs. (2.3) and (2.9);

C2ILMEn10[z], C2ILMEnli[z] — large-mass expansion of C?’O) (appendix A) and C?’l);
C2ITHRn10[z], C2ITHRnl1[z] — threshold expansion of (352’0) (appendix B) and C?’l);
C2IHEnl0[z], C2IHEnli[z] — high-energy expansion of CEQ’O) (appendix C) and C§2’1);

C2ITABn10[z], C2ITABnlilz] — interpolation of C\** (tables 1 and 2) and C{*").

All functions require a numeric value for z. Finally, the large-mass expansion of C}Q)
evaluated at L, = 0 with exact coefficients and dependence on n; is given by C2ILME.
The results correspond to QCD with Cy =3, Cr =4/3, Tp = 1/2.

Note that we do not use the results of ref. [11] for C?’l) in the supplementary material.
Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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