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1 Introduction

New physics beyond the Standard Model (SM) can be characterized in a model independent

and systematic fashion within the Effective Field Theories (EFTs) framework, in which the

(renormalizable) tree-level SM action is supplemented with the terms (k ≥ 5)

S
[k]
0 =

∫
d4x

∑
i

c
[k]
i O

[k]
i , (1.1)

where O
[k]
i are k-dimensional operators whose dimension dictates the suppression of the

corresponding coefficients c
[k]
i in terms of powers of a high-energy scale Λ. The resulting

Standard Model Effective Field Theory (SMEFT) action

S0 ≡
∫

d4xLSM︸ ︷︷ ︸∑4
k=2 S

[k]
0

+
∑
k≥5

S
[k]
0 , (1.2)

is not renormalizable in the usual (power counting) sense; it is, nevertheless, renormalizable

in the modern sense [1], as all the divergences can be cancelled through the renormalization

of the (infinite) number of terms in the bare action while respecting the symmetries of

the theory.

When addressing operator mixing in such theories on-shell calculations are sufficient.

Indeed while it has been known since a long time that there is ultraviolet (UV) mixing

between gauge invariant and gauge variant (unphysical) operators (also known as ‘alien’

operators [2]), it has also been shown that such mixing can be made to vanish by a suit-

able choice of the basis in the space of local operators [3–6]; additionally, alien operators

have been shown to be cohomologically trivial and therefore have vanishing on-shell cor-

relators [3] (for a review see also [7]). This fact is at the basis of recent computations in

the literature [8–11] as it implies that for certain purposes, e.g., when evaluating anoma-

lous dimensions and/or S-matrix elements, one can consider only on-shell inequivalent

operators [12].

A separate issue, however, is the evaluation of the β-functions of the theory. For this

purpose one needs to extend the approach adopted in the power-counting renormalizable

case [13–15] to EFTs; in particular, one must work out a procedure to fix the generalized

field redefinitions (GFRs) that do arise in these models. Here ‘generalized’ means that,

at variance with the power-counting renormalizable case, these redefinitions are not linear

in the quantum fields (in fact, not even polynomial already at one-loop order, as we will

show). The matching of the couplings order by order in the loop expansion, once the GFRs’

effects are taken into account, is the next technical step required to match the model with

its UV completions while respecting the locality of the low energy theory also at higher loop

orders, since it allows to unequivocally fix the correct counter-terms needed to subtract

overlapping divergences with local counter-terms.

To attain these goals, in [16] it has been developed a general theory for the recursive

subtraction of off-shell UV divergences order by order in the loop expansion applicable to
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EFTs displaying a spontaneously broken symmetry phase. This is achieved by solving the

Slavnov-Taylor (ST) identity to all-orders, which allows in turn to disentangle the gauge-

invariant contributions to the off-shell one-particle irreducible (1PI) amplitudes from those

associated with the gauge fixing and field redefinitions, which, in a general EFT, can be

(and indeed are) non polynomial (and cannot obviously be accessed staying on-shell). Next,

in [17] this algebraic technique has been applied to study the Abelian Higgs-Kibble (HK)

model in the presence of the dimension 6 operator (g/Λ)φ†φ(Dµφ)†Dµφ, which, giving rise

to an infinite number of one-loop divergent diagrams, maximally violates power counting.

In particular, the complete renormalization of all the radiatively generated dimension 6

operators has been carried out together with the determination of the full g-dependence of

the β-function coefficients.

Before moving on to consider the full dimension 6 SMEFT [18], there is just one

aspect that has been left out in the study of its Abelian sibling: namely, the analysis of the

full off-shell renormalization when all inequivalent parity-preserving dimension 6 operators

(classified according to [12]) are added to the power counting renormalizable action. And

this constitutes precisely the subject of the present paper.

From the point of view of the EFT renormalization programme of [1], what we achieve

here is to fully evaluate all the terms appearing in the renormalized action S at one loop

(in the relevant sector of dimension ≤ 6), expressed as

S0 = S + ~∆1 + · · · . (1.3)

At zero antifields, ∆1 collects one-loop gauge-invariant counterterms. The renormalized

action has the same form as the original bare action S0; in particular, it can be expanded on

a basis of gauge-invariant operators (in the zero antifield sector). However, these countert-

erms are not enough to renormalize the theory: one must also take into account the effects

of GFRs, that are implemented according to a canonical transformation with respect to

the Batalin-Vilkovisky (BV) bracket associated with the gauge symmetry of the model [1].

The transformed bare action S′0 takes then the form

S′0 = S + ~ [∆1 + (F1, S)] + · · · , (1.4)

where F1 is the one loop term in the loop expansion F (t) = ~tF1 + · · · of the generator of

the canonical transformation responsible for the field-antifield redefinition: Φ → Φ′(Φ,Φ∗),

Φ∗ → Φ∗
′
(Φ,Φ∗) on S′0[Φ′,Φ

′∗] = S0[Φ,Φ∗]. Being canonical, this transformation pre-

serves the fundamental BV brackets (Φ
′i,Φ

′∗
j ) = δij , (Φ

′i,Φ
′j) = (Φ

′∗
i ,Φ

′∗
j ) = 0, and is

obtained by solving the differential equation Ṡ0(t) = (F (t), S0(t)) with the boundary con-

dition S0(0) = S0, see [1]. Such canonical transformation generalizes the usual linear wave

function renormalizations of the power-counting renormalizable cases. It plays a crucial

and ubiquitous role in the SMEFT renormalization program, as we will show.

The paper is organized as follows. In section 2 we set up our notation and, in order to

make the work self-contained we briefly review the most salient features of the X-formalism.

Then, in sections 3 and 4 the parameterization of the one-loop UV divergences both in the

X- and the target (original) theory is presented and the mapping between the two theory’s
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formulations derived. GFRs are studied and their form explicitly obtained in section 5,

whereas the renormalization of dimension 6 gauge invariant operators in the X-theory is

explicitly carried out in section 6. Finally, in section 8 we describe the one-loop mixing

matrix in the original theory and compare our results with the literature. Conclusions are

presented in section 9. A number of technical issues are discussed in a set of appendices

presented at the end of the paper: functional identities of the X-theory and the propagators

in appendices A, B and C; the list of gauge invariant operators in appendix D; and, finally,

the on-shell operator reduction relations in appendix E.

2 Notations and conventions

In the X-formalism approach of [16, 17, 20], the tree-level vertex functional takes the form

Γ(0) =

∫
d4x

[
− 1

4
FµνFµν + (Dµφ)†(Dµφ)− M2 −m2

2
X2

2 −
m2

2v2

(
φ†φ− v2

2

)2

− c̄(� +m2)c+
1

v
(X1 +X2)(� +m2)

(
φ†φ− v2

2
− vX2

)
+
z

2
∂µX2∂µX2 +

g1v

Λ2
X2(Dµφ)†(Dµφ) +

g2v

Λ2
X2F

2
µν +

g3v
3

6Λ2
X3

2

+ T1(Dµφ)†(Dµφ) + UF 2
µν +RX2

2

+
ξb2

2
− b
(
∂A+ ξevχ

)
+ ω̄

(
�ω + ξe2v(σ + v)ω

)
+ c̄∗

(
φ†φ− v2

2
− vX2

)
+ σ∗(−eωχ) + χ∗eω(σ + v)

]
. (2.1)

In the expression above, the first line represents the action of the Abelian HK model

in the X-formalism, where the usual scalar field φ ≡ 1√
2
(φ0 + iχ) = 1√

2
(σ + v + iχ)

with v the vacuum expectation value (vev) is supplemented with a singlet field X2, that

provides a gauge-invariant parametrization of the physical scalar mode. Notice also that

we defined φ0 = σ + v with σ having a zero vev. The field X1 plays instead the role

of a Lagrange multiplier: when going on-shell with this field one recovers the constraint1

X2 ∼ 1
v (φ†φ−v2/2), which once inserted back into the first line of eq. (2.1), cancels the m2-

term leaving the usual Higgs quartic potential with coefficient ∼M2/2v2. Hence, Green’s

functions in the target theory2 have to be m2-independent, a fact that provides a very

strong check of the computations, due to the ubiquitous presence of m2 both in Feynman

amplitudes as well as invariants.

1Going on-shell with X1 yields the condition

(� +m2)

(
φ†φ− v2

2
− vX2

)
= 0,

so that the most general solution is X2 = 1
v

(
φ†φ − v2

2

)
+ η, η being a scalar field of mass m. However, in

perturbation theory the correlators of the mode η with any gauge-invariant operators vanish [16], so that

one can safely set η = 0.
2We define as ‘target’ theory the original theory defined in terms of conventional fields.
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The X1,2-system comes together with a constraint BRST symmetry, ensuring that

the number of physical degrees of freedom in the scalar sector remains unchanged in the

X-formalism with respect to the standard formulation relying only on the field φ [19, 20].

More precisely, the vertex functional (2.1) is invariant under the following BRST symmetry:

sX1 = vc; sφ = sX2 = sc = 0; sc̄ = φ†φ− v2

2
− vX2. (2.2)

The associated ghost and antighost fields c, c̄ are free. The constraint BRST differential s

anticommutes with the (usual) gauge group BRST symmetry of the classical action after

the gauge-fixing introduced in the fifth line of eq. (2.1):

sAµ = ∂µω; sω = 0; sω̄ = b; sb = 0; sφ = ieωφ. (2.3)

Here ω (ω̄) is the U(1) ghost (antighost); the latter field is paired into a BRST doublet

with the Lagrange multiplier field b, enforcing the usual Rξ gauge-fixing condition

Fξ = ∂A+ ξevχ, (2.4)

with ξ the gauge fixing parameter.

The two BRST symmetries can both be lifted to the corresponding ST identities at the

quantum level, provided one introduces a suitable set of so-called antifields, i.e., external

sources coupled to the relevant BRST transformations that are non-linear in the quantized

fields. The antifield couplings are displayed in the last line of eq. (2.1); the ST identities

are instead summarized in appendix A.

The third line of eq. (2.1) contains the dimension 6 parity preserving subset of the

gauge-invariant operators described in [12], modulo for the fact that we use the zero ex-

pectation value combination φ†φ − v2

2 ∼ vX2 instead of φ†φ. We thus see that the clas-

sical power-counting renormalizable action is supplemented in the X-formalism by the

X2-dependent operators3

O
[6]
1 =

∫
d4x F 2

µν

(
φ†φ− v2

2

)
∼
∫

d4x vX2F
2
µν , (2.5a)

O
[6]
2 =

∫
d4x

(
φ†φ− v2

2

)3

∼
∫

d4x v3X3
2 , (2.5b)

O
[6]
3 =

∫
d4x

(
φ†φ− v2

2

)
�

(
φ†φ− v2

2

)
∼
∫

d4x v2X2�X2, (2.5c)

O
[6]
4 =

∫
d4x

(
φ†φ− v2

2

)
(Dµφ)†Dµφ ∼

∫
d4x vX2(Dµφ)†Dµφ. (2.5d)

Notice that the operator O
[6]
3 is special in the sense that it does not give rise in the X-theory

to new interaction vertices: rather it modifies the propagator of the X2-field by rescaling

the p2-term [20] (the full set of propagators of the model is summarized in appendix C).

Notice also that in comparison with the conventions of [16, 17] we have rescaled the higher

3In the spirit of [12] we drop operators that are on-shell equivalent, i.e., that differ by terms vanishing

once the classical equations of motion are imposed.
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dimensional coupling constants by a factor v/Λ in order to obtain, when mapping back to

the target theory, the standard 1/Λ2 pre-factor for dimension 6 operators.

To maintain a detailed comparison with [1], we provide in the following some techni-

cal details.

The relevant BV bracket is the one associated with the gauge symmetry, the constraint

BRST symmetry invariance being exhausted in the X1-equation, as shown in appendix A,

see eqs. (A.4) and (A.6). Next, as the gauge group is Abelian: there is no ghost antifield,

since sω = 0; the BRST transformation of the gauge field is linear in the quantized fields

and thus there is no need to introduce the gauge antifield A∗µ for controlling quantum cor-

rections4 (although algebraically one is allowed to). Also, in the Rξ-gauge that we employ,

there is no need to introduce the antifield ω̄∗, coupled to the Nakanishi-Lautrup field b = sω̄:

in fact, see appendix B, the b-equation (B.1) and the antighost equation (B.2) imply that

at the quantum level there is no dependence on the field b and moreover that the antighost

dependence can be reabsorbed by the antifield redefinition (B.4). On the other hand, in the

formulation of [1], where one introduces both ω̄∗ and A∗µ, the antighost-dependent sector of

the action is recovered from the antifield couplings
∫

d4x (A∗µsA
µ + χ∗sχ) via a canonical

transformation with fermionic generator F =
∫

d4xFξω̄ (that incidentally exactly yields

the antifield redefinition in eq. (B.4)). Thus, the dimension ≤ 6 sector of S0 is

6∑
k=1

S
[k]
0

∣∣∣
A∗µ=ω̄∗=0

≡ Γ(0)
∣∣∣
b=ω̄=0

. (2.6)

At one loop order further operators will be radiatively generated starting from Γ(0).

Those operators can be however expressed in the target theory as gauge invariant poly-

nomials in the field φ, its (symmetrized) covariant derivatives, the field strength and its

ordinary derivatives. This set of variables is particularly suited in order to obtain the

coefficients of the one loop invariants controlling the UV divergences of the theory [7].

Additionally, some of these operators will be on-shell equivalent; the reduction to on-shell

independent operators is carried out in some detail in appendix E.

Returning to eq. (2.1), we notice that the terms in the third line of eq. (2.1) respect

both BRST symmetries and thus they do not violate either the X1-equation (A.6) or the

ST identity (A.1). Finally, in the fourth row we have added the external sources T1, R, U

required to define the X2-equation at the quantum level in the presence of additional non

power-counting renormalizable interactions, see eq. (A.7).

3 One-loop UV divergences

In this section we will work out the parameterization of the one-loop UV divergences in

the X-theory for all the operators giving rise to contributions to dimension 6 operators in

the target theory.

4This latter fact can be easily understood since the coupling∫
d4x A∗µsA

µ =

∫
d4x A∗µ∂

µω

does not generate any interaction vertex involving A∗µ, due to the aforementioned linearity of the BRST

transformation of Aµ in the quantum fields.
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In what follows subscripts denote functional differentiation with respect to fields and

external sources. Thus, amplitudes will be denoted as, e.g., Γ
(1)
χχ, meaning

Γ(1)
χχ ≡

δ2Γ(1)

δχ(−p)δχ(p)

∣∣∣∣∣
p=0

. (3.1)

A bar denotes the UV divergent part of the corresponding amplitude in the Laurent ex-

pansion around ε = 4 −D, with D the space-time dimension. Dimensional regularization

is always implied, with amplitudes evaluated by means of the packages FeynArts and

FormCalc [21, 22]. As already remarked, all amplitudes will be evaluated in the Feynman

(ξ = 1) and Landau (ξ = 0) gauge; this will allow to explicitly check the gauge cancellations

in gauge invariant operators and in particular, as we will see, the crucial role of the GFRs

in ensuring the gauge independence of ostensibly gauge invariant quantities.

Consider now the UV divergent contributions to one-loop amplitudes. They form a

local functional (in the sense of formal power series) denoted by Γ
(1)

. Since Γ
(1)

belongs

to the kernel of the linearized ST operator S0 defined in eq. (A.3), i.e.,

S0(Γ
(1)

) = 0, (3.2)

the nilpotency of S0 ensures that Γ
(1)

is the sum of a gauge-invariant functional I
(1)

and

a cohomologically trivial contribution S0(Y
(1)

):

Γ
(1)

= I
(1)
gi + S0(Y

(1)
), (3.3)

with GFRs described by the cohomologically trivial term S0(Y
(1)

). Eq. (3.3) bears in fact

a close resemblance with eq. (1.4), as, for the model at hand, we find the identifications

∆1 = − I
(1)
gi

∣∣∣
b=ω̄=0

; (F1, S) = −S0(Y
(1)

). (3.4)

Ultimately, we are interested in the UV divergences of dimension 6 gauge invariant

operators in the target theory. To identify the invariants in the X-theory contributing

to these operators the mapping function from the X- to the target theory is needed. As

explained in [16, 17] this amounts to solving the X1,2-equations in the X-theory via the

replacements in eq. (A.8) and then going on-shell with X1,2. At the one loop level it is

sufficient to impose the classical equations of motions for X1,2. The X1-equation gives

X2 =
1

v

(
φ†φ− v2

2

)
, (3.5)

whereas the classical X2-equation of motion yields (at zero external sources)

(� +m2)(X1 +X2) = −(M2 −m2)X2 − z�X2 +
g1v

Λ2
(Dµφ)†Dµφ+

g2v

Λ2
F 2
µν +

g3v
3

2Λ2
X2

2 .

(3.6)
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By inserting eqs. (3.5) and (3.6) into the solutions of the X1,2-equations (A.9a) we obtain

the explicit form of the mapping for the HK model:

c̄∗ → − (M2 −m2)

v2

(
φ†φ− v2

2

)
− z

v2
�

(
φ†φ− v2

2

)
+
g1

Λ2
(Dµφ)†Dµφ+

g2

Λ2
F 2
µν

+
g3

2Λ2

(
φ†φ− v2

2

)2

, (3.7a)

T1 →
g1

Λ2

(
φ†φ− v2

2

)
; U→ g2

Λ2

(
φ†φ− v2

2

)
; R→ g3v

2

2Λ2

(
φ†φ− v2

2

)
. (3.7b)

4 Dimension six operators coefficients

For computing the UV coefficients of dimension 6 gauge-invariant operators in the target

theory, we need to consider, see appendix D:

1. Operators which only depend on the external sources and contribute to dimension 6

operators in the target theory again due to the mapping in eq. (3.7). They are listed

in eq. (D.1), and their UV coefficients denoted by ϑi’s;

2. Mixed field-external sources gauge-invariant operators contributing to dimension 6

operators in the target theory under the mapping in eq. (3.7); these are listed in

eq. (D.2j), and their UV coefficients by θi’s;

3. Dimension 6 field-dependent gauge-invariant operators that do not involve external

sources; these are listed in eq. (D.3) and their UV coefficients denoted by λi’s.

Clearly, all the associated UV coefficients λi, θi and ϑi will be ξ-independent. In order

to fix them, we need to evaluate a certain number of Feynman amplitudes and derive the

projections of these operators on the relevant 1-PI Green’s functions. However, and as

already noticed, UV divergences of the latter cannot be parameterized in terms of the λi’s,

θi’s and ϑi’s coefficients alone, since one needs to take into account contributions from

GFRs. Indeed, the latter prove essential in order to ensure gauge independence of the UV

coefficients of gauge invariant operators, as we will soon explicitly show.

5 Generalized field redefinitions

The first and most difficult step for carrying out the off-shell renormalization program is

to work out the GFRs controlled by S0(Y
(1)

). One needs to take them into account appro-

priately, otherwise the renormalization of gauge invariant operators is affected by spurious

contributions arising from the incorrect subtraction of UV divergences to be removed by

GFRs. In particular GFRs play a crucial role in ensuring the gauge independence of the

UV coefficients of gauge invariant operators, as we will explicitly show.

In the Algebraic Renormalization approach we adopt, GFRs can be written in terms

of two classes of invariants as

S0

∫
d4x

[
P (Φ; ζ)(σ∗σ + χ∗χ) +Q(Φ; ζ)(σ∗(σ + v) + χ∗χ)

]
, (5.1)

– 7 –
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with P and Q some local functionals5 depending on the fields (collectively denoted by Φ)

and the external sources (collectively denoted by ζ) and S0 the linearized ST operator in

eq. (A.3). For convenience, we refer to these terms as P - and Q-invariants.

In order to get a better insight on the parameterization in eq. (5.1) let us first consider

the case where P and Q are constant. Since one has that

S0

∫
d4x (σ∗σ + χ∗χ) =

∫
d4x

[
σ
δΓ(0)

δσ
+ χ

δΓ(0)

δχ
+ σ∗eχω − χ∗e(v + σ)ω

]
⊃ −

∫
d4x evχ∗ω, (5.2)

the P -invariant is fixed in this case by the amplitude Γ
(1)
ωχ∗ . Similarly, if P depends on

the fields and the gauge invariant sources c̄∗, R, T1, U , the P -invariant can be fixed by

looking at antifield-dependent 1-PI amplitudes. Indeed, since the antighost equation (B.2)

entails that the dependence on the antighost at loops higher than one only happens via

the combination χ̃∗ in eq. (B.4), we do not need to consider antighost amplitudes and

antifield-dependent ones are sufficient.

The Q-invariant is trickier. Let us first notice that it does not project on χ∗, σ∗

antifield-dependent monomials:

S0

∫
d4x (σ∗(σ + v) + χ∗χ) =

∫
d4x

[
(σ + v)

δΓ(0)

δσ
+ χ

δΓ(0)

δχ
+ σ∗eχω − χ∗e(v + σ)ω

]
⊃
∫

d4x v2c̄∗ −
∫

d4x vm2σ. (5.3)

However, eq. (5.3) clearly shows that it yields a contribution to c̄∗ (and the σ-tadpole).

To understand the Q-invariant role in the renormalization of the theory, we remark

that it depends only on the combination φ0; therefore it is useful to rewrite the counting

operator in terms of φ, φ†, i.e.,

S0

∫
d4x (σ∗(σ + v) + χ∗χ) = S0

∫
d4x

(
φ
δΓ(0)

δφ
+ φ†

δΓ(0)

δφ†

)
. (5.4)

Next, observe that we are only interested in the case when the right-hand side (r.h.s.)

is evaluated at X1,2 = 0;6 an explicit computation shows that the r.h.s. is indeed

gauge-invariant (remember that we need to use the antifield χ̃∗, as a consequence of the

antighost equation):

S0

∫
d4x

(
φ
δΓ(0)

δφ
+ φ†

δΓ(0)

δφ†

)
=

∫
d4x

[
− 2φ†D2φ− 2m2

v2

(
φ†φ− v2

2

)
φ†φ

− ∂µT1(φ†Dµφ+ h.c.)− T1(φ†D2φ+ h.c.) + 2c̄∗φ†φ

]
.

(5.5)

5We remind the reader that in EFTs field redefinitions are, in general, non-linear in the quantized fields.
6X1,2-amplitudes being fixed in a purely algebraic way by eq. (A.8).
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Notice in particular that the dependence on σ∗, χ∗ has disappeared; as a consequence this

invariant contains a combination of gauge-invariant operators that vanish on-shell. Let

us now consider what happens in the power-counting renormalizable case (T1 = 0 and

z = gi = 0). Imposing the mapping in eq. (3.7) on the r.h.s. of eq. (5.5) we obtain:7

S0

∫
d4x

(
φ
δΓ(0)

δφ
+ φ†

δΓ(0)

δφ†

)
= −

∫
d4x

[
2φ†D2φ+

2M2

v2

(
φ†φ− v2

2

)2

−M2

(
φ†φ− v2

2

)]
. (5.6)

On the other hand, the gauge-invariant operators of the renormalizable Abelian HK model

with dimension ≤ 4 are∫
d4xF 2

µν ;

∫
d4x (Dµφ)†Dµφ;

∫
d4x

(
φ†φ− v2

2

)
;

∫
d4x

(
φ†φ− v2

2

)2

, (5.7)

whereas the number of physical parameters is 3, which are usually chosen to be: the

gauge coupling e associated with the coefficient of the field strength squared; the mass of

the vector meson MA, which is related to the renormalization of the vev via the tadpole

invariant; and, finally, the mass of the physical scalar M , which appears with the quartic

potential invariant. The scalar kinetic covariant term is related instead to the wave function

renormalization of the two-point Higgs field and as such cannot have physical effects. If

we denote by Z1/2 the coefficient of the corresponding invariant (5.6), the combination in

the r.h.s. of that equation is exactly the one related to the wave function renormalization

φ→ (1 + Z1/2)φ.

Motivated by these remarks, we choose to express all Q-invariants in the X-theory of

the form ∫
d4x Q(Φ; ζ)φ†D2φ, (5.8)

with Q(Φ; ζ) gauge-invariant, as a linear combination of gauge invariant operators and

cohomologically trivial invariants of the form

S0

∫
d4xQ(Φ; ζ)(σ∗(σ + v) + χ∗χ). (5.9)

This provides a consistent definition of the independent gauge invariant operators gener-

alizing the corresponding set of independent physical parameters discussed in the power-

counting renormalizable case.

We also notice that in the Landau gauge (ξ = 0) ghosts are free and the theory enjoys

an exact global invariance

δφ = ieαφ; δφ† = −ieαφ† (5.10)

with α a constant parameter. As a consequence of this rigid U(1) invariance the only

allowed cohomologically trivial invariants in the Landau gauge are those of the Q-type;

7Observe that as announced the m2-dependence has disappeared.
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P -invariants do not arise. We will verify this property in the explicit computations that

follow. On the other hand, notice that in a general gauge, Q need not be gauge-invariant

and both P and Q-type invariants are required, due to the fact that the vev renormalizes

differently than the fields, as is well known in the literature [23].

We now list the monomials in the expansion of P,Q contributing to the projections

needed to fix the coefficients of the dimension 6 operators in eqs. (D.1), (D.2j) and (D.3).

Using the notation

Z1 ≡ (σ∗σ + χ∗χ); Z2 ≡ (σ∗(σ + v) + χ∗χ), (5.11)

we obtain

Y
(1)

= S0

∫
d4x

[(
ρ0 + ρ1σ + ρ2σ

2 + ρ3χ
2 + ρ0TT1

)
Z1

+
(
ρ̃0 + ρ̃1σ + ρ̃2σ

2 + ρ̃3χ
2 + ρ̃4σχ

2

+ ρ̃0TT1 + ρ̃0TTT
2
1 + ρ̃1TT1σ + ρ̃3TT1χ

2
)
Z2

]
. (5.12)

The different coefficients can be then evaluated by projection onto the relevant Feynman

amplitudes; their values are then

ρ0 =
(1− δξ;0)

8π2v2

M2
A

1 + z

1

ε
; ρ1 = −

(1− δξ;0)

4π2v3

zM2
A

(1 + z)2
, (5.13a)

ρ2 =
(1− δξ;0)

8π2v4

z(3z − 1)M2
A

(1 + z)3

1

ε
; ρ3 = −

(1− δξ;0)

8π2v4

zM2
A

(1 + z)2

1

ε
, (5.13b)

ρ0T = −
(1− δξ;0)

8π2v2

M2
A

(1 + z)2

1

ε
; ρ̃0 =

(1− δξ;1)

16π2v2
M2
A, (5.13c)

ρ̃1 = −
(1− δξ;1)

8π2v3

zM2
A

1 + z
; ρ̃2 =

(1− δξ;1)

8π2v4

z(z − 1)M2
A

(1 + z)2
, (5.13d)

ρ̃3 =
(−1)δξ;0

16π2v4

zM2
A

1 + z
; ρ̃4 = −(−1)δξ;0

z[3z + (−1)δξ;0 ]

16π2v5(1 + z)2

M2
A

ε
, (5.13e)

ρ̃0T = −
(1− δξ;1)

8π2v2

M2
A

ε
; ρ̃0TT =

(1− δξ;1)

8π2v2

M2
A

ε
, (5.13f)

ρ̃1T =
(1− δξ;0)

8π2v3

z(2 + z)M2
A

(1 + z)2

1

ε
; ρ̃3T = 0. (5.13g)

Notice that in Landau gauge Y
(1)

reduces to

Y
(1)
∣∣∣
ξ=0

=S0

∫
d4x

M2
A

32π2v2

1

ε

[
2− 4T1 + 4T 2

1

− 4

v2

z

1 + z

(
φ†φ− v2

2

)
+

2

v4

z(3z − 1)

(1 + z)2

(
φ†φ− v2

2

)2]
Z2, (5.14)

i.e., the polynomial Q is gauge-invariant, as expected; moreover, as anticipated, all ρ’s

coefficients vanish in this gauge.
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5.1 GFRs in the target theory

It is instructive to obtain the explicit form of the GFRs in the target theory at linear order

in the higher dimensional couplings. For that purpose we need to apply the mapping in

eq. (3.7) to Y
(1)

retaining only the terms linear in the gi’s and z.

We remark that the coefficients in eq. (5.13) only depend on z. Moreover, the image

of the source T1 under the mapping is proportional to g1 and hence from the T1 sector

we receive contributions at the linearized level only from amplitudes linear in T1, whose

coefficients need to be evaluated at z = 0. By taking these observations into account, one

easily sees that the GFRs in the target theory at linear order in the gi’s and z couplings

take the following form:(
φ′0
χ′

)
=

{
1 +

M2
A

16π2v2

[
2(1− z)(1− δξ;0) + (1− δξ;1)

− 2

[
(1− δξ;0)

(
g1v

Λ2
+

2z

v

)
+ (1− δξ;1)

(
g1v

Λ2
+
z

v

)]
σ

−
(

2z

v2
+
g1

Λ2

)
σ2 −

(
z

v2
+
g1

Λ2

)
χ2 − z

v3
σχ2 + · · ·

]}
1

ε

(
σ

χ

)
(5.15)

+

{
1 +

M2
A

16π2v2

[
1− δξ;1 − 2(1− δξ;1)

(
z

v
+
g1v

Λ2

)
σ − z

v3
σχ2

− (1− δξ;1)

(
2z

v2
+
g1

Λ2

)
σ2 −

[
(−1)1+δξ;0

z

v2
+ (1− δξ;1)

g1

Λ2

]
χ2 + · · ·

]}
1

ε

(
v

0

)
,

where the dots denote higher dimensional contributions that are not relevant in the one

loop renormalization of the dimension 6 operators under consideration. Notice also that

the contribution proportional to the constant spinor (v, 0)T is associated with the Q-type

invariants.

From eq. (5.15) we see that the GFRs are non-multiplicative already at one loop and

in the linearized approximation.

6 Renormalization of gauge invariant operators

Once the cohomologically trivial sector has been fixed as in eq. (5.12) and (5.13) we can

proceed to project on the one-loop amplitudes required to determine the coefficients of the

invariants (D.1), (D.2j) and (D.3). As the methodology is illustrated in detail in ref. [17],

we report here only the results, which have been explicitly evaluated in both Landau and

Feynman gauge and found to coincide as required.

6.1 Pure external sources invariants

The non zero ϑi coefficients are

ϑ1 = − 1

16π2

M2 + (1 + z)2M2
A

(1 + z)2

1

ε
; ϑ2 =

1

16π2

−M4 + 3(1 + z)3M2
A

(1 + z)3

1

ε
, (6.1a)

ϑ3 =
3M4

A

4π2

1

ε
; ϑ4 = − 1

8π2

M2

(1 + z)2

1

ε
, (6.1b)
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ϑ5 =
1

16π2

2 + 2z + z2

(1 + z)2

1

ε
; ϑ6 =

3

16π2

M4 + (1 + z)4M4
A

(1 + z)4

1

ε
, (6.1c)

ϑ7 =
9M4

A

π2

1

ε
; ϑ8 =

1

4π2(1 + z)2

1

ε
, (6.1d)

ϑ10 =
3

32π2

M2 + (1 + z)3M2
A

(1 + z)3

1

ε
; ϑ11 =

3M2
A

π2

1

ε
, (6.1e)

ϑ13 =
1

8π2

[
M2
A +

M2

(1 + z)3

]
1

ε
; ϑ15 =

1

8π2(1 + z)2

1

ε
, (6.1f)

ϑ16 =
3M4

A

2π2

1

ε
; ϑ17 =

1

4π2

M2
A

(1 + z)3

1

ε
, (6.1g)

ϑ19 =
1

32π2

2 + 2z + z2

(1 + z)2

1

ε
; ϑ22 =

3M2
A

8π2

1

ε
, (6.1h)

ϑ23 =
1

16π2(1 + z)2

1

ε
; ϑ26 = − 3

4π2

M4
A

(1 + z)5

1

ε
, (6.1i)

ϑ27 =
144M4

A

π2

1

ε
; ϑ29 = − 1

8π2

2 + 3z + 3z2 + z3

(1 + z)3

1

ε
, (6.1j)

ϑ32 = − 1

8π2

3M2 + 2(1 + z)4M2
A

(1 + z)4

1

ε
; ϑ36 = − 1

4π2

1

(1 + z)3

1

ε
, (6.1k)

ϑ38 =
3M4

A

2π2

1

ε
; ϑ39 = − 3M2

4π2(1 + z)4

1

ε
, (6.1l)

ϑ40 =
18M4

A

π2

1

ε
; ϑ41 = − 1

2π2

1

(1 + z)3

1

ε
. (6.1m)

6.2 Mixed field-external sources invariants

The non zero θi coefficients are

θ1 = − 1

16π2v2

1

(1 + z)3

[
2(1− z)M2 + 2(1 + z)2M2

A + (2 + 4z + 3z2 + z3)m2
]1

ε
, (6.2a)

θ2 =
1

8π2v2

1

(1 + z)4

{
(z − 2)M4 + 6(1 + z)4M4

A − (1 + z)
[
M2 + (1 + z)3M2

A

]
m2
}1

ε
,

(6.2b)

θ3 =
3M4

A

π2v2

1

ε
, (6.2c)

θ4 = − 1

8π2v2

1

(1 + z)3

[
(1 + z)m2 + 4M2

]1

ε
, (6.2d)

θ5 = − 1

32π2v2

1

(1 + z)2

[
− 4z(1 + z) + 4(1 + z)

g1v
2

Λ2
+ (2 + z)

g2
1v

4

Λ4

]
1

ε
, (6.2e)

θ6 = − 1

32π2v2

1

(1 + z)3

{
2(2 + 4z + 3z2 + z3)m2

− (1 + z)

[
− 4 + 8z2 −

(
8 +

12g1v
2

Λ2

)
z +

3g2
1v

4

Λ4

]
M2
A +

[
4 +

g2
1v

4

Λ4
(3 + z)

]
M2

}
,

(6.2f)

– 12 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
1

θ7 = −
3M2

A

8π2v2

1

(1 + z)

[
− 4z +

g1v
2

Λ4

(
g1v

2 + 4Λ2
)]1

ε
, (6.2g)

θ8 = − g2
1v

2

16π2Λ4

1

(1 + z)2

1

ε
, (6.2h)

θ9 = − g1

16π2Λ2

1

(1 + z)2

1

ε
, (6.2i)

θ10 = − 1

32π2v2

1

(1 + z)3

×
[
− 2(1 + z)3M2

A +

(
2 +

4g1v
2

Λ2

)
M2 + (2 + 4z + 3z2 + z3)m2

]
1

ε
, (6.2j)

θ11 =
3M2

A

4π2v2

1

ε
, (6.2k)

θ12 = − g1

8π2Λ2

1

(1 + z)2

1

ε
, (6.2l)

θ13 =
1

8π2v4

z

(1 + z)4

[
(1 + z)2(5 + z)M2

A + 4(2− z)M2 + 4(1 + z)m2
]1

ε
, (6.2m)

θ14 = − 1

8π2v4

1

(1 + z)5

{
(1 + z)2(2 + 3z + 3z2 + z3)m4 + 4(1 + z)m2

[
(1− 2z)M2

+ (1 + z)2M2
A

]
+ 4
[
− 3(1 + z)5M4

A + (1− 4z + z2)M4
]}1

ε
, (6.2n)

θ15 =
6M4

A

π2v4

1

ε
, (6.2o)

θ16 =
1

2π2v4

1

(1 + z)4

[
2(2z − 1)M2 + (z2 − 1)m2

]1

ε
, (6.2p)

θ17 =
g2

2v
2

8π2Λ4

1

(1 + z)2

1

ε
, (6.2q)

θ18 = − 1

256π2v2Λ4

1

(1 + z)3

{
− 64g2

2v
4M2 + (1 + z)

[
(2 + z)g2

1v
4 + 4g1v

2z(2g2v
2 + Λ2)

+ 4z(8g2
2v

4 + 4g2v
2Λ2 − (1 + z)Λ4

]
M2
A

}1

ε
, (6.2r)

θ19 = − g2
2v

2

2π2Λ4

1

(1 + z)2

[
M2 + 2(1 + z)M2

A

]1

ε
, (6.2s)

θ20 =
g2

2v
2

4π2Λ4

1

(1 + z)2

1

ε
, (6.2t)

θ21 = − 1

4π2v2

z

(1 + z)3

1

ε
, (6.2u)

θ22 =
1

8π2v2

1

(1 + z)5

[
6(1− z)M4 + 6(1 + z)5M4

A + (1 + z)(3M2 + 2(1 + z)4M2
A)m2

]1

ε
,

(6.2v)

θ23 =
36M4

A

π2v2

1

ε
, (6.2w)

θ24 =
1

π2v2

1

(1 + z)3

1

ε
, (6.2x)

– 13 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
1

θ25 =
1

8π2v2

1

(1 + z)4

[
(2− 4z)M2 + 2(1 + z)2M2

A + (2 + 5z + 6z2 + 4z3 + z4)m2
]1

ε
,

(6.2y)

θ27 =
1

4π2v2

(1− z)

(1 + z)3

1

ε
, (6.2z)

θ28 =
6M4

A

π2v2

1

ε
, (6.2aa)

θ29 =
1

4π2v2

1

(1 + z)4

[
2(2− z)M2 + (1 + z)m2

]1

ε
. (6.2ab)

6.3 Gauge invariants depending only on the fields

The non zero λi coefficients are

λ1 =
1

16π2v2

1

(1 + z)3

{
(1 + z)

[
M2+ (1 + z)2M2

A

]
m2 + 2

[
M4+ 3(1 + z)3M4

A

]}1

ε
, (6.3a)

λ2 =
1

32π2v4

1

(1 + z)4

{
4(1− 2z)M4 + 4m2M2

A(1 + z)3 + 12(1 + z)4M4
A

+ 4m2M2(1− z2) + (1 + z)2(2 + 2z + z2)m4
}1

ε
, (6.3b)

λ3 = − 1

16π2v6

z

(1 + z)5

{
8(1− z)M4 + 2(1 + z)2m4

+ (1 + z)
[
4(2− z)M2 + (1 + z)2(5 + z)M2

A

]
m2
}1

ε
, (6.3c)

λ4 = − 1

32π2v2

1

(1 + z)2

×
{

(1 + z)

[
16 + 4z +

3g2
1v

4

Λ4
+ 12

g1v
2

Λ2

]
M2
A +

g1v
2

Λ2

(
4− g1v

2

Λ2

)
M2

}
1

ε
, (6.3d)

λ5 =
g2

1v
2

192π2Λ4

1

(1 + z)

1

ε
, (6.3e)

λ6 =
1

64π2v4

1

(1 + z)3

{[
4z + 4(1− 3z)

g1v
2

Λ2
+ (1 + z)

g2
1v

4

Λ4

]
M2

+ (1 + z)2

(
4z − 12

g1v
2

Λ2
− 3

g2
1v

4

Λ4

)
M2
A + 4(1 + z)

g1v
2

Λ2
m2

}
1

ε
, (6.3f)

λ7 =
1

32π2v4

1

(1 + z)3

{[
4z − 4(1 + z)

g1v
2

Λ2
+ (5 + z)

g2
1v

4

Λ4

]
M2 (6.3g)

+ 3(1 + z)

[
4z(3 + z)− 4(3 + z)

g1v
2

Λ2
− (5 + 3z)

g2
1v

4

Λ4

]
M2
A

+ (1 + z)

[
− 4z(1 + z) + 4(1 + z)

g1v
2

Λ2
+ (2 + z)

g2
1v

4

Λ4

]
m2

}
1

ε
, (6.3h)

λ8 = − 1

192π2v2

1

(1 + z)2

{
48
g2

2v
4

Λ4
M2

+ (1 + z)

[
2 + 48

(
g2v

2

Λ2
+
g2

2v
4

Λ4

)
+ 2g1

v2

Λ2
+ 24g1g2

v4

Λ4
+ g2

1

v4

Λ4

]
M2
A

}
1

ε
, (6.3i)

λ9 = − g2
2v

2

6π2Λ4

1

(1 + z)

1

ε
, (6.3j)
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λ10 =
1

128π2v2Λ2

1

(1 + z)3

{
− 64

g2
2v

2

Λ2
M2 + (1 + z)

[
g3

1

v4

Λ4
− 4

g2
1v

2

Λ2

− 8(2 + z)g1g2
v2

Λ2
− 16(2 + z)

(
2g2

2

v2

Λ2
+ g2

)]
M2
A − 16(1 + z)

g2
2v

2

Λ2
m2

}
1

ε
. (6.3k)

7 Mapping to the target theory

The UV coefficients in the target theory λ̃i can be obtained by: applying the mapping

in eq. (3.7) to the invariants in eqs. (D.1) and (D.2j); combining the projections with the

operators in (D.3); and, finally, using the results (6.1), (6.2) and (6.3). Notice that for these

coefficients all m2-dependent contributions must cancel out; we have checked this explicitly.

The coefficients so obtained represents the complete one-loop renormalizations of the

corresponding operators; in particular, no linearized approximation in the higher dimen-

sional couplings gi’s has been made so far. However, as the resulting general expressions

are rather lengthy, we report below the non zero coefficients λ̃i at linear order in the

gi couplings:

λ̃1 ∼ −
1

16π2v2

[
8zM4

A + (M4 − 3M4
A)
g1v

2

Λ2
− 12M4

A

g2v
2

Λ2
+M2g3

v4

Λ2

]
1

ε
, (7.1a)

λ̃2 ∼ −
1

32π2v4

[(
4M2M2

A + 42M4
)
z + 4

(
3M4 +M2M2

A − 6M4
A

)g1v
2

Λ2

− 96
g2v

2

Λ2
M4
A +

(
11M2 +M2

A

)g3v
4

Λ2

]
1

ε
, (7.1b)

λ̃3 ∼ −
1

16π2v6

[
zM2(18M2 + 5M2

A) + 2(5M4 + 2M2M2
A − 6M4

A)
g1v

2

Λ2

− 48M4
A

g2v
2

Λ2
+ (8M2 +M2

A)
g3v

4

Λ2

]
1

ε
, (7.1c)

λ̃4 ∼
1

16π2v2

[
6zM2

A − (3M2 + 7M2
A)
g1v

2

Λ2

]
1

ε
, (7.1d)

λ̃6 ∼
1

16π2v4

[
z(5M2 + 3M2

A)− 2M2
A

g1v
2

Λ2
+ 12M2

A

g2v
2

Λ2

]
1

ε
, (7.1e)

λ̃7 ∼
1

8π2v4
(4M2 + 11M2

A)

(
z − g1v

2

Λ2

)
1

ε
, (7.1f)

λ̃8 ∼ −
1

96π2v2

[
6
g2v

2

Λ2
(M2 + 5M2

A) +M2
A

(
− z +

g1v
2

Λ2

)]
1

ε
, (7.1g)

λ̃10 ∼ −
1

8π2v4

g2v
2

Λ2
(2M2 +M2

A)
1

ε
. (7.1h)

We hasten to emphasize that GFRs do contribute also at the linearized level, as has been

discussed in detail in section 5.1. Failure to take their contributions into account would

lead to an erroneous determination of the coefficients in eq. (7.1).

The gi’s, z contributions to the β functions

βi = (4π)2 d

d log µ
λ̃i (7.2)
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can then be easily determined from eq. (7.1), leading to:

β1 ⊃ −
1

v2

[
8zM4

A + (M4 − 3M4
A)
g1v

2

Λ2
− 12M4

A

g2v
2

Λ2
+M2g3

v4

Λ2

]
, (7.3a)

β2 ⊃ −
1

v4

[(
4M2M2

A + 42M4
)
z + 4

(
3M4 +M2M2

A − 6M4
A

)g1v
2

Λ2

− 96
g2v

2

Λ2
M4
A +

(
11M2 +M2

A

)g3v
4

Λ2

]
, (7.3b)

β3 ⊃ −
3

v6

[
zM2(18M2 + 5M2

A) + 2(5M4 + 2M2M2
A − 6M4

A)
g1v

2

Λ2

− 48M4
A

g2v
2

Λ2
+ (8M2 +M2

A)
g3v

4

Λ2

]
, (7.3c)

β4 ⊃
1

v2

[
6zM2

A − (3M2 + 7M2
A)
g1v

2

Λ2

]
, (7.3d)

β6 ∼
2

v4

[
z(5M2 + 3M2

A)− 2M2
A

g1v
2

Λ2
+ 12M2

A

g2v
2

Λ2

]
, (7.3e)

β7 ⊃
4

v4
(4M2 + 11M2

A)

(
z − g1v

2

Λ2

)
, (7.3f)

β8 ⊃ −
1

6v2

[
6
g2v

2

Λ2
(M2 + 5M2

A) +M2
A

(
− z +

g1v
2

Λ2

)]
, (7.3g)

β10 ∼ −
4

v4

g2v
2

Λ2
(2M2 +M2

A). (7.3h)

8 One-loop mixing matrices

We are now in a position to compare our results with those in the literature [24, 25]. By

inspecting eq. (7.1) we obtain the mixing matrix represented in table 1. We find agreement

with the results of [24, 25] with the exception of the mixing of φ4D2 operators with F 2φ2.

More specifically, a closer inspection of eq. (7.1) shows that the operator

I7 =

∫
d4x

(
φ†φ− v2

2

)
(Dµφ)†Dµφ, (8.1)

respects the mixing pattern derived in [24, 25], whereas the operator

I6 =

∫
d4x

(
φ†φ− v2

2

)
(φ†D2φ+ h.c.), (8.2)

does not, since it mixes with

I10 =

∫
d4xF 2

µν

(
φ†φ− v2

2

)
. (8.3)

There is an elegant cohomological interpretation of this result. One can find S0-

invariant combinations of gauge invariant operators that do not depend on the antifields,

in very much the same way as in eq. (5.14). Notice that these invariants depend on σ, χ
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F 2φ2 φ4D2 φ6

F 2φ2

φ4D2 ×
φ6

Table 1. One-loop operator mixing matrix in the Abelian HK model. Shaded entries denote a van-

ishing coefficient. The × indicates an entry that should vanish according to the non-renormalization

theorem of [24, 25] but that does not given the coefficients in eq. (7.1).

only via φ and they are generated by Z2 (now to be understood in the target theory). In

particular one finds

S0

∫
d4xZ2 =

∫
d4x

(
φ
δS

δφ
+ φ†

δS

δφ†

)
=

∫
d4x

[
− (D2φ)†φ− φ†D2φ− 2

M2

v2

(
φ†φ− v2

2

)
φ†φ

]
, (8.4)

which is gauge-invariant. Thus any invariant of the form

S0

∫
d4xQ(φ, φ†, Aµ)Z2, (8.5)

is gauge invariant if Q is a gauge-invariant polynomial. Being cohomologically trivial, the

above family of invariants can be added order by order in the loop expansion without

changing the physical observables of the theory. Intuitively the simultaneous variation of

the coefficients of the operators entering in the invariants (8.5) cannot affect the physics

since the variation is proportional to the equations of motion. This is an example of the

aforementioned fact that the mixing between gauge-invariant and alien operators (which

are cohomologically trivial with respect to the linearized ST operator) can be made to

vanish by a suitable basis choice in the space of local operators [2–6].

This means that there is the freedom to replace the invariant I6 with the linear

combination of I2 and I3 in eq. (E.16) up to a cohomologically trivial S0-invariant. This

transformation induces the following shift on the space of the λ̃’s parameters:

λ̃2 → λ̃2 −M2λ̃6; λ̃3 → λ̃3 −
2M2

v2
λ̃6. (8.6)

For this new basis then, the non-renormalization theorem of [24, 25] hold true.

Notice that in the analysis of the mixing of dimension 6 operators carried out in [24, 25],

the on-shellness of the external physical scalar particles has been explicitly assumed. This

meant in particular that (for external particles)

�σ|on−shell ∼M
2σ, (8.7)

This choice, however, makes compulsory the use of a basis for dimension 6 operators in

which D2φ has been eliminated through its equation of motion, since only in this case the

linearized approximation gives back eq. (8.7).
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λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6 λ̃7 λ̃8 λ̃9 λ̃10

z

g1

g2

g3

Table 2. Dependence of the λ̃i’s on the higher dimensional coupling constants. Shaded entries

denote that the dependence of the λ̃i parameter on the corresponding coupling constant vanishes.

A related question is whether in the recursive subtraction procedure one can indeed

limit himself only to the on-shell inequivalent operators chosen at tree-level (in the present

case, in the given dimension 6 layer). The answer is in the negative. Neglecting on-

shell vanishing operators at order n in the loop expansion hampers the subtraction of the

next order UV divergences by local counterterms, thus destroying the consistency of the

procedure. Both the on-shell inequivalent invariants (in the chosen basis) and the S0-exact

operators have to be taken into account beyond the leading order.

In order to study the one-loop amplitudes dependence on the gi’s and z beyond the

single higher-dimensional operator insertion approximation commonly used in the litera-

ture, we have reported in table 2 the dependence of the (shifted) λ̃’s coefficients on the gi’s

and z, based on the full one loop computation carried out in the present paper.

The vanishing entries in table 2 can be partially understood in terms of the underlying

amplitudes decomposition made transparent by the X-formalism. As explained above, the

λ̃’s are a linear combination of the λ’s coefficients multiplying gauge invariant operators

which are independent from external sources of the X-theory, and of the coefficients ϑ, θ’s

associated with invariants involving external sources insertions (the UV behaviour of which

is more constrained than that of the fields). In particular, we find for the relevant operators

in table 2:

λ̃4 = λ4 +
g1ϑ1

Λ2
; λ̃5 = λ5; λ̃8 = λ8 +

g2ϑ1

Λ2
; λ̃9 = λ9. (8.8)

The ϑ1-terms can be neglected: they can only induce a z-dependence and thus do not

contribute to the cancellations in table 2. Hence, the problem is reduced to the determi-

nation of the gi’s dependence of the λ’s coefficients in the X-theory. One immediately sees

that these coefficients cannot depend on g3 since this is a trilinear vertex in X2 that does

not contribute to the 1-PI amplitudes of the starting theory at one loop. Thus, the last

row of table 2 must hold, as the only possible dependence on g3 at one loop arises from the

mapping to the target theory in eq. (3.7) and therefore governed by external amplitudes

involving c̄∗ and/or R external sources, which do not enter in eq. (8.8).

The remaining three forbidden dependences just seem to be an accidental consequence

of the one-loop Feynman diagrams; as a result, cancellation patterns do not seem to lend

themselves to an easy generalization to higher orders.
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9 Conclusions

In the present paper we have completed the investigation of the one-loop off-shell renormal-

ization of the Abelian Higgs-Kibble model supplemented at tree-level with all dimension

6 parity preserving on-shell inequivalent gauge-invariant operators. This was the last step

towards the analysis of the SU(2)×U(1) case.

We have shown that the X-theory formalism provides an effective way to work out

the relevant GFRs, which in turn are found to have an ubiquitous effect on the one-loop

UV coefficients of dimension 6 operators. In fact, since the GFRs are non linear and even

non polynomial in the fields, it is advantageous to employ cohomological tools in order

to disentangle the UV coefficients of the gauge-invariant operators from the spurious (and

gauge-dependent) contributions associated with GFRs.

We have provided a full one-loop computation going beyond the customary linearized

approximation in the higher dimensional couplings. All coefficients have been evaluated

both in Feynman and in Landau gauge and the gauge independence of the UV coefficients

of the gauge invariant operators explicitly checked. As expected, it does not hold unless

the effects of GFRs are properly accounted for.

We find that the pattern of operator mixing cancellations studied in the previous lit-

erature only holds off-shell if an appropriate choice of the on-shell equivalent operators is

made. This can be traced back to the freedom of adding cohomologically trivial combi-

nations of gauge-invariant operators at one loop order, thus selecting a particular basis of

gauge-invariant on-shell inequivalent operators.

Application of the method presented to the SMEFT is currently under investigation.

A Functional identities in the X-theory

A.1 ST identities

The ST identity (also known as the master equation in the BV approach) associated to the

gauge group BRST symmetry reads

S(Γ) =

∫
d4x

[
∂µω

δΓ

δAµ
+

δΓ

δσ∗
δΓ

δσ
+

δΓ

δχ∗
δΓ

δχ
+ b

δΓ

δω̄

]
= 0, (A.1)

or, at order n in the loop expansion,

S(Γ)(n) = S0(Γ(n)) +

n−1∑
j=1

(
δΓ(j)

δσ∗
δΓ(n−j)

δσ
+
δΓ(j)

δχ∗
δΓ(n−j)

δχ

)
= 0, (A.2)

where S0 is the linearized ST operator:

S0(Γ(n)) =

∫
d4x

[
∂µω

δΓ(n)

δAµ
+ eω(σ + v)

δΓ(n)

δχ
− eωχδΓ

(n)

δσ
+ b

δΓ(n)

δω̄

+
δΓ(0)

δσ

δΓ(n)

δσ∗
+
δΓ(0)

δχ

δΓ(n)

δχ∗

]
= sΓ(n) +

∫
d4x

[
δΓ(0)

δσ

δΓ(n)

δσ∗
+
δΓ(0)

δχ

δΓ(n)

δχ∗

]
. (A.3)
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S0 maps the antifields σ∗, χ∗ into the equations of motion of the fields σ, χ, while it acts on

the fields as the BRST operator s. Notice that, as explained before, we do not introduce

an antifield for the gauge field Aµ since in the Abelian case treated here the gauge BRST

transformation is linear.

The ST identity for the constraint BRST symmetry is

SC(Γ) ≡
∫

d4x

[
vc

δΓ

δX1
+
δΓ

δc̄∗
δΓ

δc̄

]
=

∫
d4x

[
vc

δΓ

δX1
− (� +m2)c

δΓ

δc̄∗

]
= 0, (A.4)

where in the latter equality we have used the fact that both the ghost c and the antighost

c̄ are free:

δΓ

δc̄
= −(� +m2)c;

δΓ

δc
= (� +m2)c̄. (A.5)

A.2 X1,2-equations

By using eq. (A.5) one sees that eq. (A.4) reduces to the X1-equation of motion

δΓ

δX1
=

1

v
(� +m2)

δΓ

δc̄∗
. (A.6)

Notice that this equation stays the same irrespectively of the presence of higher-dimensional

gauge invariant operators added to the power-counting renormalizable action.

The X2-equation is in turn given by

δΓ

δX2
=

1

v
(� +m2)

δΓ

δc̄∗
+
g1v

Λ2

δΓ

δT1
+
g2v

Λ2

δΓ

δU
+
g3v

3

2Λ2

δΓ

δR
− (� +m2)X1

−
[
(1 + z)� +M2

]
X2 − vc̄∗. (A.7)

A.3 Solving the X1,2-equations

At order n, n ≥ 1 in the loop expansion the X1,2-equations reduce to

δΓ(n)

δX1
=

1

v
(� +m2)

δΓ(n)

δc̄∗
, (A.8a)

δΓ(n)

δX2
=

1

v
(� +m2)

δΓ(n)

δc̄∗
+
g1v

Λ2

δΓ(n)

δT1
+
g2v

Λ2

δΓ(n)

δU
+
g3v

3

2Λ2

δΓ(n)

δR
. (A.8b)

By using the chain rule for functional differentiation it is straightforward to see that

eqs. (A.8) entail that Γ(n) only depends on the combinations:

c̄∗ = c̄∗ +
1

v
(� +m2)(X1 +X2); T1 = T1 +

g1v

Λ2
X2,

U = U +
g2v

Λ2
X2; R = R+

g3v
3

2Λ2
X2. (A.9a)

B The b- and the gauge ghost equation

The set of the functional identities holding in the X-formulation of the Abelian HK model

is completed by:

– 20 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
1

• The b-equation:

δΓ

δb
= ξb− ∂A− ξevχ; (B.1)

• The antighost equation:

δΓ

δω̄
= �ω + ξev

δΓ

δχ∗
. (B.2)

At orders n ≥ 1 the b- and the antighost equations imply

δΓ(n)

δb
= 0;

δΓ(n)

δω̄
= ξev

δΓ(n)

δχ∗
, (B.3)

so that at higher orders the vertex functional does not depend on the Nakanishi-Lautrup

field b and the dependence on the antighost is only via the combination

χ̃∗ ≡ χ∗ + ξevω̄. (B.4)

C Propagators

C.1 The X − σ sector

Diagonalization of the quadratic part of the action in this sector is achieved by setting

σ = σ′ +X1 +X2.

Then one has

∆σ′σ′ =
i

p2 −m2
; ∆X1X1 = − i

p2 −m2
; ∆X2X2 =

i

(1 + z)p2 −M2
. (C.1)

Several comments are in order here. At g1, g2, g3 = 0 no higher dimensional interactions

vertices are present. However, the model is still non power-counting renormalizabile, since

the derivative interaction of the X1,2-system ∼ (X1 + X2)�(φ†φ) violates power-counting

renormalizability as a consequence of the fact that the combination X ≡ X1 + X2 has a

propagator falling down as 1/p2 for large p at z 6= 0, as can be seen from eq. (C.1):

∆XX = ∆X1X1 + ∆X2X2 ∼ −
iz

1 + z

1

p2
. (C.2)

On the other hand at z = 0 ∆XX goes as 1/p4 for large momenta and this compensates

the two momenta from the Xφ†φ interaction vertex, giving rise to a power-counting renor-

malizable model (at zero gi’s) [20].
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C.2 The gauge and ghost sector

The diagonalization in the gauge sector is obtained by redefining the Nakanishi-Lautrup

multiplier field

b′ = b− 1

ξ
∂A− evχ. (C.3)

Then, the Aµ-propagator is

∆µν = −i
(

1

p2 −M2
A

Tµν +
1

1
ξp

2 −M2
A

)
; MA = ev, (C.4)

whereas the the Nakanishi-Lautrup, pseudo-Goldstone and ghost propagators are

∆b′b′ = i
1

ξ
; ∆χχ =

i

p2 − ξMA
; ∆ω̄ω =

i

p2 − ξM2
A

. (C.5)

As usual, ξ = 0 corresponds to the Landau gauge, whereas ξ = 1 is the Feynman

gauge.

Finally, the ghost associated to the constraint BRST symmetry is free:

∆c̄c =
−i

p2 −m2
. (C.6)

D List of gauge-invariant operators

D.1 Pure external sources invariants

ϑ1

∫
d4x c̄∗; ϑ2

∫
d4xT1; ϑ3

∫
d4xU ; ϑ4

∫
d4xR, (D.1a)

ϑ5

2

∫
d4x (c̄∗)2;

ϑ6

2

∫
d4xT 2

1 ;
ϑ7

2

∫
d4xU2;

ϑ8

2

∫
d4xR2, (D.1b)

ϑ9

2

∫
d4x c̄∗�c̄∗;

ϑ10

2

∫
d4xT1�T1;

ϑ11

2

∫
d4xU�U ;

ϑ12

2

∫
d4xR�R, (D.1c)

ϑ13

∫
d4x c̄∗T1; ϑ14

∫
d4x c̄∗U ; ϑ15

∫
d4x c̄∗R; ϑ16

∫
d4xT1U, (D.1d)

ϑ17

∫
d4xT1R; ϑ18

∫
d4xUR; ϑ19

∫
d4x c̄∗�T1; ϑ20

∫
d4x c̄∗�U, (D.1e)

ϑ21

∫
d4x c̄∗�R; ϑ22

∫
d4xT1�U ; ϑ23

∫
d4xT1�R; ϑ24

∫
d4xU�R, (D.1f)

ϑ25

6

∫
d4x (c̄∗)3;

ϑ26

6

∫
d4xT 3

1 ;
ϑ27

6

∫
d4xU3;

ϑ28

6

∫
d4xR3, (D.1g)

ϑ29

2

∫
d4x (c̄∗)2T1;

ϑ30

2

∫
d4x (c̄∗)2U ;

ϑ31

2

∫
d4x (c̄∗)2R;

ϑ32

2

∫
d4x c̄∗T 2

1 , (D.1h)

ϑ33

2

∫
d4x c̄∗U2;

ϑ34

2

∫
d4x c̄∗R2; ϑ35

∫
d4x c̄∗T1U ; ϑ36

∫
d4x c̄∗T1R, (D.1i)

ϑ37

∫
d4x c̄∗UR;

ϑ38

2

∫
d4xT 2

1U ;
ϑ39

2

∫
d4xT 2

1R;
ϑ40

2

∫
d4xT1U

2, (D.1j)

ϑ41

2

∫
d4xT1R

2; ϑ42

∫
d4xT1UR;

ϑ43

2

∫
d4xU2R;

ϑ44

2

∫
d4xUR2. (D.1k)
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D.2 Mixed field-external sources invariants

θ1

∫
d4x c̄∗

(
φ†φ− v2

2

)
; θ2

∫
d4xT1

(
φ†φ− v2

2

)
; θ3

∫
d4xU

(
φ†φ− v2

2

)
,

(D.2a)

θ4

∫
d4xR

(
φ†φ− v2

2

)
; θ5

∫
d4x c̄∗(Dµφ)†Dµφ; θ6

∫
d4xT1(Dµφ)†Dµφ,

(D.2b)

θ7

∫
d4xU(Dµφ)†Dµφ; θ8

∫
d4xR(Dµφ)†Dµφ; θ9

∫
d4x c̄∗

(
φ†D2φ+ h.c.

)
,

(D.2c)

θ10

∫
d4xT1

(
φ†D2φ+ h.c.

)
; θ11

∫
d4xU

(
φ†D2φ+ h.c.

)
; θ12

∫
d4xR

(
φ†D2φ+ h.c.

)
,

(D.2d)

θ13

2

∫
d4x c̄∗

(
φ†φ− v2

2

)2

;
θ14

2

∫
d4xT1

(
φ†φ− v2

2

)2

;
θ15

2

∫
d4xU

(
φ†φ− v2

2

)2

,

(D.2e)

θ16

2

∫
d4xR

(
φ†φ− v2

2

)2

; θ17

∫
d4x c̄∗F 2

µν ; θ18

∫
d4xT1F

2
µν , (D.2f)

θ19

∫
d4xUF 2

µν ; θ20

∫
d4xRF 2

µν ;
θ21

2

∫
d4x (c̄∗)2

(
φ†φ− v2

2

)
,

(D.2g)

θ22

2

∫
d4xT 2

1

(
φ†φ− v2

2

)
;

θ23

2

∫
d4xU2

(
φ†φ− v2

2

)
;

θ24

2

∫
d4xR2

(
φ†φ− v2

2

)
,

(D.2h)

θ25

∫
d4x c̄∗T1

(
φ†φ− v2

2

)
; θ26

∫
d4x c̄∗U

(
φ†φ− v2

2

)
; θ27

∫
d4x c̄∗R

(
φ†φ− v2

2

)
,

(D.2i)

θ28

∫
d4xT1U

(
φ†φ− v2

2

)
; θ29

∫
d4xT1R

(
φ†φ− v2

2

)
; θ30

∫
d4xUR

(
φ†φ− v2

2

)
.

(D.2j)

D.3 Gauge invariants depending only on the fields

λ1

∫
d4x

(
φ†φ− v2

2

)
; λ2

∫
d4x

(
φ†φ− v2

2

)2

, (D.3a)

λ3

∫
d4x

(
φ†φ− v2

2

)3

; λ4

∫
d4x (Dµφ)†Dµφ, (D.3b)

λ5

∫
d4x

(
φ†D(µνµν)φ+ h.c.

)
; λ6

∫
d4x

(
φ†φ− v2

2

)
(φ†D2φ+ h.c.), (D.3c)

λ7

∫
d4x

(
φ†φ− v2

2

)
(Dµφ)†Dµφ; λ8

∫
d4xF 2

µν , (D.3d)

λ9

∫
d4x ∂ρFρµ∂σF

σµ; λ10

∫
d4xF 2

µν

(
φ†φ− v2

2

)
, (D.3e)
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where D(µνµν) denotes complete symmetrization over µ, ν:

D(µνµν)φ ≡ [(D2)2 +DµDνDµDν +DµD2Dµ]φ. (D.4)

Notice that in the text we have denoted by Ij the invariant with coefficient λj .

E On-shell reduction of dim. 6 field-dependent gauge invariant operators

We consider in this appendix the on-shell reduction of dimension 6 operators in the target

theory. The relevant classical gauge-invariant action S is obtained from the first four lines

of eq. (2.1) by going on-shell with X1,2.

The corresponding equations of motion for the gauge field and the scalar φ are

δS

δAµ
= ∂ρFρµ + i

[
φ†Dµφ− (Dµφ)†φ

]
, (E.1a)

δS

δφ
= −(D2φ)† − M2

v2

(
φ†φ− v2

2

)
φ†, (E.1b)

δS

δφ†
= −(D2φ)− M2

v2

(
φ†φ− v2

2

)
φ. (E.1c)

Since we will be interested only in the one-loop corrections that are linear in the gi’s and z

we can limit ourselves to the leading order equations of motion in eq. (E.1); also we recall

here the identity

[Dµ, Dν ] = −iFµν . (E.2)

The on-shell independent dimension 6 operators can be chosen to be I3,I7 and I10.

Notice that the operator in the tree-level vertex functional∫
d4x

(
φ†φ− v2

2

)
�

(
φ†φ− v2

2

)
=

∫
d4x

(
φ†φ− v2

2

)[
(D2φ)†φ+ φ†(D2φ) + 2(Dµφ)†Dµφ

]
, (E.3)

can be represented in terms of invariants in the contractible pairs basis as in the r.h.s. of

the above equation. Therefore we just need to reduce all Ii’s invariants in terms of I3,I7

and I10 by using the equations of motion (E.1).

Let us start from I5. This operator contains three terms, namely:∫
d4xφ†D4φ;

∫
d4xφ†DµD2Dµφ;

∫
d4xφ†DµDνDµDνφ. (E.4)

Then one finds that:

• Integration by parts gives:∫
d4xφ†(D2)2φ =

∫
d4x (D2φ)†D2φ ∼

∫
d4x

M4

v4

(
φ†φ− v2

2

)2

φ†φ (E.5)
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where the equations of motion for φ, φ† have been used in the last line. Hence

we obtain∫
d4xφ†(D2)2φ ∼

∫
d4x

{
M4

v4

(
φ†φ− v2

2

)3

+
M4

2v2

(
φ†φ− v2

2

)2}
=
M4

2v2
I2 +

M4

v4
I3. (E.6)

• The second term can be rewritten as follows∫
d4xφ†DµD2Dµφ =

∫
d4xφ†DµDρDµDρφ+

∫
d4xφ†DµDρ[Dρ, Dµ]φ

=

∫
d4xφ†DµDρDµDρφ− i

∫
d4x (DρDµφ)†Fρµφ, (E.7)

where in the last line we have used eq. (E.2) and integrated by parts. Now

−i
∫

d4x (DρDµφ)†Fρµφ = − i
2

∫
d4x ([Dρ, Dµ]φ)†Fρµφ = −1

2

∫
d4xF 2

ρµφ
†φ,

again by using eq. (E.2). Eventually we arrive at the result∫
d4xφ†DµD2Dµφ =

∫
d4xφ†DµDρDµDρφ

− 1

2

∫
d4xF 2

ρµ

(
φ†φ− v2

2

)
− v2

4

∫
d4xF 2

ρµ

=

∫
d4xφ†DµDρDµDρφ−

v2

4
I8 −

1

2
I10. (E.8)

• We are finally left with the decomposition of the last term in eq. (E.4). One has∫
d4xφ†DµDρDµDρφ =

∫
d4x

[
φ†D4φ+ φ†Dµ[Dρ, Dµ]Dρφ

]
=

∫
d4x

[
(D2φ)†D2φ− iFµρ(Dµφ)†Dρφ

]
, (E.9)

where we have used eq. (E.2) and integrated by parts. It is convenient to split the

last term in the above equation as follows

i

∫
d4xFµρ(D

µφ)†Dρφ =
i

2

∫
d4xFµρ

{
(Dµφ)†Dρφ+ (Dµφ)†Dρφ

}
=

∫
d4x

{
− i

2
∂ρFρµ

[
φ†Dµφ− (Dµφ)†φ

]
− i

4
Fµρ

[
φ†[Dµ, Dρ]φ+ ([Dρ, Dµ]φ)†φ

]}
=

∫
d4x

{
− i

2
∂ρFρµ

[
φ†Dµφ− (Dµφ)†φ

]
− 1

2
F 2
µρφ
†φ

}
.

(E.10)

– 25 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
1

By using the Aµ-equation of motion (E.1) the first term in the last line of the above

equation becomes

− i
2

∫
d4x ∂ρFρµ

[
φ†Dµφ− (Dµφ)†φ

]
∼ −1

2

∫
d4x

(
φ†Dµφ− (Dµφ)†φ

)(
φ†Dµφ− (Dµφ)†φ

)
=

∫
d4x

{
φ†φ (Dµφ)†Dµφ−

1

2

[
φ†Dµφ φ

†Dµφ+ h.c.
]}
. (E.11)

Integrating by parts the last term in the last line of the above equation one finds

− 1

2

∫
d4x

[
φ†Dµφ φ

†Dµφ+ h.c.
]

=

∫
d4x

{
2φ†φ(Dµφ)†Dµφ+

1

2
φ†φ

[
φ†D2φ+ (D2φ)†φ

]}
, (E.12)

and thus

− i

2

∫
d4x ∂ρFρµ

[
φ†Dµφ− (Dµφ)†φ

]
∼ −1

2

∫
d4x

(
φ†Dµφ− (Dµφ)†φ

)(
φ†Dµφ− (Dµφ)†φ

)
=

∫
d4x

{
3φ†φ (Dµφ)†Dµφ+

1

2
φ†φ

[
φ†D2φ+ (D2φ)†φ

]}
. (E.13)

Putting everything together we find∫
d4xφ†DµDρDµDρφ

=

∫
d4x

{
(D2φ)†D2φ− 3φ†φ (Dµφ)†Dµφ

− 1

2
φ†φ

[
φ†D2φ+ (D2φ)†φ

]
+

1

2
F 2
µρφ
†φ

}
∼
∫

d4x

{
M2

v2

(
1 +

M2

v2

)(
φ†φ− v2

2

)3

− 3

(
φ†φ− v2

2

)
(Dµφ)†Dµφ

+
1

2
F 2
µρ

(
φ†φ− v2

2

)
− 3v2

2
(Dµφ)†Dµφ+M2

(
1 +

M2

2v2

)(
φ†φ− v2

2

)2

+
1

4
M2v2

(
φ†φ− v2

2

)
+
v2

4
F 2
µρ

}
=

1

4
M2v2I1 +M2

(
1 +

M2

2v2

)
I2 +

M2

v2

(
1 +

M2

v2

)
I3 −

3

2
v2I4

− 3I7 +
v2

4
I8 +

1

2
I10. (E.14)

By using eqs. (E.6), (E.8) and (E.14) we obtain

I5 ∼
1

2
M2v2I1 +M2

(
2 +

3

2

M2

v2

)
I2 +

M2

v2

(
2 +

3M2

v2

)
I3

− 3v2I4 − 6I7 +
1

4
v2I8 +

1

2
I10. (E.15)
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We now move to I6. By using the equations of motion for φ, φ† in eq. (E.1) we find

I6 ∼
∫

d4x

{
− 2

M2

v2

(
φ†φ− v2

2

)3

−M2

(
φ†φ− v2

2

)2}
= −2

M2

v2
I3 −M2I2. (E.16)

Finally we need to consider I9. Use of Aµ-equation of motion yields

I9 ∼ −
∫

d4x
[
φ†Dµφ− (Dµφ)†φ

]2

∼
∫

d4xφ†φ
[
6(Dµφ)†Dµφ+ φ†D2φ+ (D2φ)†φ

]
=

∫
d4x

[(
φ†φ− v2

2

)
+
v2

2

]{
6(Dµφ)†Dµφ− 2

M2

v2

(
φ†φ− v2

2

)2

−M2

(
φ†φ− v2

2

)}
= −M

2v2

2
I1 − 2M2I2 − 2

M2

v2
I3 + 3v2I4 + 6I7. (E.17)
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