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1 Introduction

Recently, a new type of deformation of two-dimensional quantum field theories, dubbed

T T̄ deformation, received a lot of attention. This arises by deforming a quantum field

theory with a bilinear composite operator built as the determinant of the stress-energy

tensor [1–3], leading to an irrelevant deformation. Nevertheless, the T T̄ operator is free

of short-distance divergences and hence proves to be a well-defined composite local opera-

tor [1, 2]. Remarkably, the seminal works [2, 3] have shown that: for any two-dimensional

quantum field theory the spectrum of the T T̄ -deformed theory can be expressed in terms

of the undeformed one in a simple way; if the undeformed theory is integrable so is the

T T̄ -deformed one. For these reasons, the T T̄ deformation has recently been shown to play

an important role in many different areas of research and has stirred up excitements in

various subjects of high-energy theoretical physics.1

The T T̄ deformation is the simplest member in a more general family of deforma-

tions [2]. Another simple member of this family is the JT̄ /T J̄ deformation [5], which is

constructed out of the stress-energy tensor and a U(1) current. This deformation explic-

itly breaks Lorentz invariance, but it still enjoys several virtues of the T T̄ deformation.2

For example, the JT̄ /T J̄ composite operators are also well-defined at the quantum level,

and they preserve the solvability enjoyed by the T T̄ deformation. Various aspects of the

JT̄ /T J̄ deformations have been studied so far, including holography [7, 8], path integral

formulation [9, 10], modular invariance [11], correlation functions [12], and their role in

string theory [13, 14]. See also [6, 15–23] for further results.

In this paper, we are going to discuss supersymmetry in the context of JT̄ and T J̄

deformations. The strategy parallels with the analysis of supersymmetric T T̄ deformations

that was recently discussed in a series of papers [24–28].3 There, for theories possessing

N = (0, 1), (1, 1), (0, 2) and (2, 2) supersymmetry, it was shown how to induce manifestly

supersymmetric deformations in terms of primary operators, which are constructed out

of bilinears of the supercurrent multiplets (the supersymmetric counterparts of the stress-

energy tensor). Remarkably, the manifestly supersymmetric deformations prove to be the

same as the ordinary T T̄ deformations, up to total derivatives and equations of motion.

This result then implies that the ordinary T T̄ deformation preserves supersymmetry and

indicates, for example, how to study the T T̄ -flow of a Lagrangian in a manifestly super-

symmetric way.

1We do not aim at reviewing here the large bulk of recent research on this subject and we simply refer

to [4] for a recent, though not necessarily comprehensive, overview and list of references.
2The JT̄ /T J̄ deformation also shares some seeming pathologies with T T̄ deformation, such as the

complex spectra in some regime. A clear understanding of those unusual properties is still not settled in

the literature and would shed new light on QFTs. To better understand those issues, it might be beneficial

to consider the combination of T T̄ and JT̄ /T J̄ deformations, which is also integrable, see e.g. [6].
3See [29] for an alternative geometric method to calculate the T T̄ -deformed action of an arbitrary

(supersymmetric or non-supersymmetric) theory. When applied to the pure bosonic or fermionic theory,

this method is especially powerful compared to the direct method in [3, 30]. But it is interesting to see

whether one can make supersymmetry manifest in this formalism.
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As we are going to show in our paper, all these results can be generalized to the JT̄

and T J̄ case in a similar way. As the starting point, one needs to find the supersymmetric

counterparts of the stress-energy tensor and U(1) currents. Although the former has been

studied extensively, the latter, especially its conservation equation, has scattered results

across the literature. Here we are going to provide a systematic construction of the flavor

current multiplets and their conservation equations with N = (0, 1), (1, 1) and (0, 2) su-

persymmetries. This is done by considering the vector multiplets, coupling them to flavor

currents, and inspecting their gauge invariances which yield the conservation laws of the

flavor current multiplets. See appendix A for details.

In the case of N = (0, 1), (1, 1) and (0, 2) supersymmetry, by using the stress-tensor

multiplets and flavor current multiplets, we extend the analysis of [24–26] and construct

various supersymmetric primary operators out of their bilinears which induce the mani-

festly supersymmetric JT̄ /T J̄ deformations. Of particular interest are the cases of chiral

supersymmetries, N = (0, 1) and N = (0, 2), where the supersymmetric extensions of JT̄

and T J̄ are structurally different. Like the T T̄ case, a fundamental result is that the de-

scendants of the JT̄ /T J̄ primary operators coincide, on-shell and up to total derivatives,

with the conventional JT̄ /T J̄ operators. A central aspect of our paper is to elaborate on

these results and understand in detail the properties of the JT̄ /T J̄ operators.

An interesting observation arising from these analyses is that all the T T̄ , JT̄ and T J̄

primary operators appear to fit into the following general pattern:

O = AB − sXY . (1.1)

Here s is a constant number and A, B, X and Y are superfields satisfying the following

constraints

LA = RY, LX = RB , (1.2)

where L, R are differential operators constructed out of the superspace covariant deriva-

tives. These generalize the Smirnov-Zamolodchikov type composite operators which corre-

sponds to L = ∂−−, R = ∂++, s = 1 [2]. The operator (1.1) is invariant under improvement

transformation with certain assumptions as we show in appendix B. Furthermore, since

the original Smirnov-Zamolodchikov composite operators were shown to be well-defined

at the quantum level [2], we believe that the quantum well-definedness also holds for our

generalized Smirnov-Zamolodchikov type composite operators (1.1) with appropriate s. In-

deed, the well-definedness of our pattern is justified in all the cases considered so far. For

N = (0, 1), (1, 1) and (0, 2) supersymmetric T T̄ primary operator, the well-definedness was

already elaborated in [24–26]. And for the JT̄ /T J̄ super-primary operators in this paper,

they will also be shown to be well-defined in appendix B.

Note that, exactly as in the T T̄ case, the equivalence of the manifestly supersymmetric

and the original JT̄ /T J̄ deformations ensures that, as far as the analysis of the spectrum

goes, nothing changes compared to the results of [5]; for this reason we avoid to reiterate

the analysis of this problem here. However, the construction of explicit JT̄ /T J̄-flows for

actions and their supersymmetry is largely sensible to the type of deformation we use. We

will show this feature by constructing some JT̄ /T J̄-deformed Lagrangians explicitly. In
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particular, we focus on the chiral JT̄ /T J̄ deformations with J being a chiral U(1) current,

which was argued in [5] to be the condition of solvability.4 We thus present in our paper

several examples of chiral JT̄ and T J̄ deformations of free actions with N = (0, 1) and

N = (0, 2) supersymmetry.

The paper is organized as follows. In section 2, we set up the notations and review

the stress-tensor multiplets with N = (0, 1), (1, 1) and (0, 2) supersymmetry. In section 3,

we present the conservation equations for flavor current multiplets which are derived in

appendix A. In section 4, we construct the primary operators for JT̄ /T J̄ deformations and

show that their descendants coincide with the conventional JT̄ /T J̄ operator. In section 5,

we discuss some examples of JT̄ /T J̄-deformed free theories. In section 6, we conclude

and discuss possible future directions. For the reader’s convenience, we relegate to two

appendices main technical analyses which, however, we believe represent an important part

of our results. In appendix A, we derive in a systematic way the conservation equations

for the flavor current multiplets with N = (0, 1), (1, 1) and (0, 2) supersymmetry. In

appendix B, we elaborate on our observation that all the T T̄ , JT̄ and T J̄ deformations

fit into the general pattern (1.1) which goes beyond the Smirnov-Zamolodchikov type of

operators. In appendix B, we also discuss the well-definedness of the JT̄ and T J̄ primary

operators with N = (0, 1), (1, 1) and (0, 2) supersymmetry.

2 Stress-tensor multiplets

In this and the next section, we will introduce the stress-tensor multiplets5 and flavor

current multiplets with various amount of supersymmetries. These conserved current mul-

tiplets are the building blocks to construct supersymmetric JT̄ /T J̄ operators.

This section is first devoted to reviewing the stress-tensor multiplet of two-dimensional

relativistic quantum field theories. After that, since JT̄ /T J̄ deformations break Lorentz in-

variance, we will also present the non-relativistic extensions of the stress-tensor multiplets.

This section is also aiming to set up the conventions for the whole paper.

2.1 N = (0, 1)

We begin with two-dimensional quantum field theories possessing N = (0, 1) supersymme-

try. The flat 2D N = (0, 1) superspace is parametrized by

ζM = (σ++, σ−−, ϑ+) , (2.1)

with σ±± being the bosonic light-cone coordinates and ϑ+ a real Grassmann coordinate.

The spinor covariant derivatives and supercharges are given by

D+ =
∂

∂ϑ+
− iϑ+∂++ , Q+ = i

∂

∂ϑ+
− ϑ+∂++ , (2.2)

4However, see also the very recent paper [10] that solves the spectrum of general JTa deformations by

using a path integral approach.
5They are also commonly called supercurrent multiplets. But in order to avoid confusion with flavor

current multiplets, that are also supersymmetric current multiplets and that will be introduced in the next

section, we will simply call the supercurrent multiplet as stress-tensor multiplet.
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and obey the anti-commutation relations

{D+,D+} = −2i∂++ , {Q+,Q+} = −2i∂++ , {Q+,D+} = 0 . (2.3)

Given an N = (0, 1) superfield F(ζ) = F(σ, ϑ+) its supersymmetry transformation is

δQF(ζ) := −iε−Q+F(ζ) , (2.4)

where ε− is the constant supersymmetry transformation parameter. If F (σ) is the operator

defined as the ϑ = 0 component of the superfield F(ζ), F (σ) := F(σ, ϑ+)|ϑ=0, then its

supersymmetry transformation is such that

δQF (σ) = −iε−
[
Q+, F (σ)

}
= −iε−Q+F(σ, ϑ+)

∣∣∣
ϑ=0

= ε−D+F(σ, ϑ+)
∣∣∣
ϑ=0

. (2.5)

In our paper we will indicate with Q+ the supersymmetry generator acting on a component

operator while Q+ is the linear superspace differential operator acting on superfields.

For 2D N = (0, 1) supersymmetric and Lorentz invariant theories, the stress-tensor

multiplet is described by three superfields T−−−−,J+++, and J− satisfying the conservation

equations:

D+T−−−− = i∂−−J− , (2.6a)

∂−−J+++ = −∂++J− . (2.6b)

See [24, 25] for derivations of these conservation equations (either through the Noether pro-

cedure or by requiring the superdiffeomorphism invariance when coupling to supergravity).

In the superconformal case it holds J−(ζ) = 0.

To describe the stress-tensor multiplet it is convenient to also define the following two

descendant superfields

T++++ := D+J+++ , T := D+J− . (2.7)

They satisfy

D+T++++ = −i∂++J+++ , D+T = −i∂++J− , (2.8)

and the conservation equations

∂++T−−−− = −∂−−T , (2.9a)

∂−−T++++ = −∂++T . (2.9b)

The lowest ϑ = 0 components of T++++, T−−−− and T describe the components of the

symmetric stress-energy tensor in light-cone coordinates

T−−−−(σ) = T−−−−(ζ)|ϑ=0 , T++++(σ) = T++++(ζ)|ϑ=0 , Θ(σ) = T (ζ)|ϑ=0 , (2.10)

while the lowest components of J+++(ζ) and J−(ζ) define the supersymmetry currents

J+++(σ) = J+++(ζ)|ϑ=0 , J−(σ) = J−(ζ)|ϑ=0 . (2.11)

– 5 –
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In components, the superfields of the stress-tensor multiplet have the following expansion

J+++(ζ) = J+++(σ) + ϑ+T++++(σ) , (2.12a)

J−(ζ) = J−(σ) + ϑ+Θ(σ) , (2.12b)

T−−−−(ζ) = T−−−−(σ) + iϑ+∂−−J−(σ) . (2.12c)

Due to (2.6a)–(2.9b), the operators T±±±±, Θ, J+++ and J− satisfy the conservation

equations

{Q+, J+++} = iT++++ , {Q+, J−} = iΘ , (2.13a)

[Q+, T++++] = ∂++J+++ , [Q+, T−−−−] = −∂−−J− , [Q+,Θ] = ∂++J− , (2.13b)

∂−−J+++ = −∂++J− , ∂++T−−−− = −∂−−T , ∂−−T++++ = −∂++T . (2.13c)

2.2 N = (1, 1)

Let us now turn to N = (1, 1) supersymmetry. The N = (1, 1) Minkowski superspace is

parametrized by the coordinates ζM = (σ++, σ−−, ϑ+, ϑ−). The covariant derivatives and

supercharges are defined as

D± =
∂

∂ϑ±
− iϑ±∂±± , Q± = i

∂

∂ϑ±
− ϑ±∂±± , (2.14)

and the anti-commutators read

{D±,D±} = −2i∂±± , {Q±,Q±} = −2i∂±± , (2.15a)

{D+,D−} = {D±,Q±} = {Q+,Q−} = 0 . (2.15b)

The definition of the N = (1, 1) supersymmetry transformations of an N = (1, 1) su-

perfield and its lowest component, and accordingly the definition of the generators Q±
acting on component operators, is a straightforward extension of the N = (0, 1) case,

see eqs. (2.4)–(2.5), where supersymmetry transformations are parametrized by ε± in the

N = (1, 1) case.

Field theories that are N = (1, 1) supersymmetric and Lorentz invariant possess two

pairs of superfields, (J+++(ζ),J−(ζ)) and (J−−−(ζ),J+(ζ)), which describe the stress-

tensor multiplet. The conservation equations are encoded in the following equations

(see [24, 25] for recent derivations)6

D+J−−− = D−J− , D−J+++ = D+J+ , D+J− = D−J+ := T . (2.16)

We define the following descendant superfields

T±±±± := D±J±±± , Z±± := D±J± . (2.17)

Such definitions, together with eq. (2.16), imply

D±T±±±± = −i∂±±J±±± , D∓T±±±± = i∂±±J± , D±T = −i∂±±J∓ , (2.18a)

D±Z±± = −i∂±±J± , D∓Z±± = i∂±±J∓ , (2.18b)

∂∓∓J±±± = −∂±±J∓ , ∂±±T∓∓∓∓ = −∂∓∓T , ∂−−Z++ = −∂++Z−− . (2.18c)

6In the supergravity approach [25], it holds J±(ζ) = ∓iD±J (ζ).
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It is clear that J±±± and J± belong to a stress-tensor multiplet where J± play the

role of the supertrace. In fact, if the matter system is superconformal then it holds J± =

0. The ϑ± = 0 components of J±±±(ζ) and J±(ζ) define the supersymmetry currents

J±±±(σ) := J±±±(ζ)|ϑ±=0 and J±(σ) := J±(ζ)|ϑ±=0, respectively. The lowest component

of Z±±, Z±±(σ) := Z±±(ζ)|ϑ±=0, define a central charge current. The components of the

symmetric stress-energy tensor in light-cone coordinates can be defined as

T±±±±(σ) := T±±±±|ϑ±=0 = D±J±±±|ϑ±=0 , (2.19a)

Θ(σ) := T |ϑ±=0 = D+J−|ϑ±=0 = D−J+|ϑ±=0 . (2.19b)

The expansion in components of J±±± and J± read

J±±±(ζ) = J±±±(σ) + ϑ±T±±±±(σ) + ϑ∓Z±±(σ)± iϑ+ϑ− ∂±±J±(σ) , (2.20a)

J±(ζ) = J±(σ) + ϑ±Z±±(σ) + ϑ∓Θ(σ)± iϑ+ϑ−∂±±J∓(σ) . (2.20b)

It is straightforward to prove that the operators T±±±±, Θ, Z±±, J±±± and J± satisfy the

conservation equations

{Q±, J±±±} = iT±±±± , {Q±, J∓} = iΘ , [Q±, T±±±±] = ∂±±J±±± , (2.21a)

{Q±, J±} = {Q∓, J±±±} = iZ±± , [Q∓, T±±±±] = −∂±±J± , (2.21b)

[Q±,Θ] = −[Q∓Z±±] = ∂±±J∓ , [Q±, Z±±] = ∂±±J± , (2.21c)

∂∓∓J±±± = −∂±±J∓ , ∂∓∓T±±±± = −∂±±T , ∂−−Z++ = −∂++Z−− . (2.21d)

2.3 N = (0, 2)

Finally, we discuss the case of N = (0, 2) supersymmetry. Its Minkowski superspace is

parametrized by ζM = (σ++, σ−−, ϑ+, ϑ̄+) with ϑ+ now a complex Grassmann coordinate

and ϑ̄+ = (ϑ+).

The covariant derivatives and supercharges are defined as (for later convenience in

deriving the flavor current multiplet, we follow the notation in [31])

D+ =
∂

∂ϑ+
+ iϑ̄+∂++ , D̄+ =

∂

∂ϑ̄+
+ iϑ+∂++ , (2.22a)

Q+ = i
∂

∂ϑ+
+ ϑ̄+∂++, Q̄+ = i

∂

∂ϑ̄+
+ ϑ+∂++ , (2.22b)

satisfying the following (anti-)commutation relations

D2
+ = D̄2

+ = 0 , {D+, D̄+} = 2i∂++ , [D+, ∂±±] = [D̄+, ∂±±] = 0 , (2.23)

with equivalent relations satisfied by Q+, Q̄+ and ∂±±.

For a Lorentz and N = (0, 2) supersymmetric theory the general stress-tensor mul-

tiplet, or supercurrent “S-multiplet”, was studied in [32]. In terms of our notation, the

– 7 –
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S-multiplet is determined by the following differential constraints7

∂−−S++ = D+W− + D̄+W̄− , (2.24a)

D̄+T−−−− = ∂−−W− , (2.24b)

D+T−−−− = −∂−−W̄− , (2.24c)

D̄+W− = D+W̄− = 0 . (2.24d)

In our notation, the component expansions of the superfields S++, T−−−− and W− solving

the previous constraints are given by

T−−−−(ζ) = T−−−−(σ) +
1

2
ϑ+∂−−S+−−(σ)− 1

2
ϑ̄+∂−−S̄+−−(σ)

−1

2
ϑ+ϑ̄+∂2

−−j++(σ) , (2.25a)

S++(ζ) = j++(σ) + iϑ+S+++(σ) + iϑ̄+S̄+++(σ) + 2ϑ+ϑ̄+T++++(σ) , (2.25b)

W−(ζ) = −1

2
S̄+−−(σ)− iϑ+

[
Θ(σ) +

i

2
∂−−j++(σ)

]
− i

2
ϑ+ϑ̄+∂++S̄+−−(σ) . (2.25c)

The operators T±±±± and Θ are the light-cone components of the symmetric stress-tensor

while S+±± and its conjugate S̄+±± are the N = (0, 2) supersymmetry currents. They

satisfy the conservation equation

∂∓∓T±±±± = −∂±±Θ , ∂++S+−− = −∂−−S+++ . (2.26)

Note that, by using (2.24)–(2.25), as for the N = (0, 1) and N = (1, 1) cases, it is straight-

forward to compute the action of the Q+ and Q̄+ generators on the component fields of

the S-multiplet.8

We also define the descendant superfields

T++++ :=
1

4
[D̄+,D+]S++ , T :=

i

2

(
D+W− − D̄+W̄−

)
, (2.27)

whose lowest components are T++++ and Θ.

One can then check that it holds:

D+

(
∂−−S++ − 2iT

)
= 0 , D̄+

(
∂−−S++ + 2iT

)
= 0 , (2.28)

and

[D̄+,D+]T = ∂++∂−−S++ . (2.29)

The S-multiplet is in general reducible [32]. For instance, for N = (0, 2) supersymmet-

ric theories admitting a conserved U(1)R R-symmetry, the S-multiplet can be improved to

7Note that for simplicity we set to zero the S-multiplet space-filling brane charge appearing in the

constraint D̄+W− = C since it is linked to supersymmetry breaking [32, 33].
8Here for a superfield F(ζ) with lowest component F (σ) = F(ζ)|ϑ=0, the supersymmetry transformations

act on F (σ) as δQF (σ) = −i
[
ε−Q+ + ε̄−Q̄+, F (σ)

}
= δQF|ϑ=0 with δQF(ζ) := −i

(
ε−Q+ + ε̄−Q̄+

)
F(ζ).

– 8 –
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the so-called R-multiplet. In this case, the superfield currents W−(ζ) and W̄−(ζ) are the

descendants of a real superfield R−−(ζ)

W− =
i

2
D̄+R−− , W̄− =

i

2
D+R−− . (2.30)

Then, once we redefine S++(ζ) ≡ R++(ζ) for the R-multiplet, the conservation equa-

tions (2.24) turn into

∂−−R++ = −∂++R−− , (2.31a)

D̄+

(
T−−−− −

i

2
∂−−R−−

)
= D+

(
T−−−− +

i

2
∂−−R−−

)
= 0 . (2.31b)

The conserved vector R-symmetry current is then given by the component operators

j++(σ) = R++(ζ)|ϑ=0 and j−−(σ) = R−−(ζ)|ϑ=0 such that

∂−−j++ = −∂++j−− . (2.32)

See [32] for more detail and [26] for a recent derivation by using N = (0, 2) supergravity.

For the R-multiplet, note that following useful relation, which derive from (2.31), also hold

T =
1

4
[D̄+,D+]R−− , [D̄+,D+]T−−−− = ∂++∂−−R−− . (2.33)

To conclude, note that if the field theory is N = (0, 2) superconformal then it holds

W− = W̄− = 0 and the S-multiplet is accordingly further simplified.

2.4 Caveat on the non-Lorentz-invariant case

In the previous subsections, we have reviewed the stress-tensor multiplets of relativistic

quantum field theories possessing various types of supersymmetries. However, since T J̄ and

JT̄ deformations break Lorentz invariance, the deformed theory is not Lorentz invariant

any longer. For this reason, in this subsection we are going to extend the description of

the stress-tensor multiplets to non-Lorentz-invariant supersymmetric field theories.

Given a supersymmetric theory, since translational and supersymmetry invariance are

always preserved, according to the Noether theorem, the stress-energy tensor and super-

charges are always well-defined and conserved. However, if Lorentz invariance is missing,

the stress-energy tensor is no longer symmetric — in light-cone coordinates the two off-

diagonal components of the stress-energy tensor

Θ(σ) = T++−−(σ) , Θ̃(σ) := T−−++(σ) , (2.34)

are independent Θ(σ) 6= Θ̃(σ). Translation invariance implies the conservation equations

for the pairs of currents (T++++, Θ) and (T−−−−, Θ̃) separately

∂−−T++++ = −∂++Θ , ∂++T−−−− = −∂−−Θ̃ . (2.35)

If Θ or Θ̃ are zero then the field theory possesses a chiral SL(2,R) symmetry, which enhances

to a chiral Virasoro algebra. Despite these differences, it is straightforward to extend the

analysis of the supersymmetric stress-tensor multiplets. In fact, as we are now going to

describe, up to appropriately distinguishing T++−− and T−−++, we can effectively use the

results of the relativistic field theories.
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Non-Lorentz-invariant N = (0, 1). When there are Lorentz anomalies, the supercur-

rents were discussed, for example, in [34]. The conservation equations corresponding to

different symmetries are given by:

1. Translation invariance:

D+T−−−− = i∂−−J̃− , (2.36a)

∂−−J+++ = −∂++J− . (2.36b)

2. Dilatation invariance:

J̃− + J− = 0 . (2.37)

3. Lorentz invariance:

J̃− − J− = 0 . (2.38)

Hence, if we require Lorentz invariance, we obtain exactly the conservation equations

we discussed before for relativistic quantum field theory.

To consider the deformation of non-Lorentz invariant field theory, we can only use

the first two equations (2.36a) and (2.36b) and remain with an independent set of super-

field currents given by (T−−−−(ζ), J+++(ζ), J−(ζ), J̃−(ζ)). In this case, the stress-energy

tensor is not symmetric:

Θ ≡ T |ϑ=0 6= T̃ |ϑ=0 ≡ Θ̃ , (2.39)

with T = D+J−, T̃ = D+J̃−.

Non-Lorentz-invariant N = (1, 1). Similarly, in the N = (1, 1) case, the conservation

equations corresponding to different symmetries are given by:

1. Translation invariance:

D+J−−− = −∂−−J̃ , (2.40a)

D−J+++ = −∂++J . (2.40b)

2. Dilatation invariance:

J̃ + J = 0 . (2.41)

3. Lorentz invariance:

J̃ − J = 0 . (2.42)

For Lorentz invariant theory, we thus have J̃ −J = 0, and (2.40a), (2.40b) reduce to (2.16)

with J± = ∓iD±J . While in our non-Lorentz invariant field theories, we should use (2.40a)

and (2.40b) while keeping (J̃−(ζ) 6= J−(ζ)) J̃ 6= J .
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Non-Lorentz-invariant N = (0, 2). To accommodate the fact that for non-Lorentz

invariant theories the stress-energy tensor is not necessarily symmetric, it turns out that

the (0, 2) S-multiplet constraints (2.24) should be modified as follows

∂−−S++ = D+W− + D̄+W̄− , (2.43a)

D̄+T−−−− = ∂−−W̃− , (2.43b)

D+T−−−− = −∂−−
¯̃W− , (2.43c)

D̄+W− = D+W̄− = D̄+W̃− = D+
¯̃W− = 0 , (2.43d)

with

W− = −iϑ+
(

Θ +
i

2
∂−−j++

)
+ · · · , W̄− = iϑ̄+

(
Θ− i

2
∂−−j++

)
+ · · · , (2.44a)

W̃− = −iϑ+
(

Θ̃ +
i

2
∂−−j++

)
+ · · · , ¯̃W− = iϑ̄+

(
Θ̃− i

2
∂−−j++

)
+ · · · . (2.44b)

For the multiplet, the dots above, and all other superfields, are the same as the ones

in (2.25). The (0, 2)R-multiplet for a non-Lorentz invariant theory can similarly be derived

in a straightforward way from the Lorentz invariant case and we leave to the reader the

details for its derivation.

It is crucial to emphasize that these modifications for non-Lorentz-invariant theories

are actually not needed for our T J̄/JT̄ -deformations. In fact, as we will see later in our

analysis, these composite operators always involve only one off-diagonal component, either

Θ or Θ̃.9

Since this difference proves to be irrelevant for our analysis, we will “pretend” to be

working in relativistic theories, namely we will just use the normal conservation equations

described in the last subsections without using the tildes when we refer to J̃−, J̃ or W̃−.

3 Flavour current multiplets

To construct the supersymmetric T J̄/JT̄ primary operators, we also need to derive the

supercurrent multiplet for a gauge/flavour symmetry. For simplicity, we will restrict to the

Abelian case with U(1) symmetry.

The flavor current multiplet can be found in a standard fashion as follows. For a

given amount of supersymmetry, we first need to find the gauge multiplet as well as their

gauge transformations rules, then we couple the gauge multiplet to the corresponding flavor

current multiplet. To linearized order, the gauge invariance of gauge-current couplings gives

rise to the conservation equations of the flavor current multiplets. We defer the details of

the derivations to appendix A and here present only the final results for the conservation

equations.

9Though it will not play a role in our discussion, note that the difference between Θ and Θ̃ might instead

be relevant for other types of composite operators, for example the T T̄ -operator in non-Lorentz invariant

field theories discussed in [35].
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3.1 N = (0, 1)

For quantum field theories with N = (0, 1) supersymmetry, as derived in appendix A.1,

the flavor current multiplet of an Abelian symmetry consists of two superfields G−−(ζ) and

G+(ζ) satisfying the following constraint:

D+G−− = i∂−−G+ . (3.1)

If we define

G++ := D+G+ , (3.2)

then we have

D+G++ = −i∂++G+ , (3.3)

and

∂++G−− = −∂−−G++ . (3.4)

In components, the current multiplet is given by

G−−(ζ) = G−−(σ) + iϑ+∂−−g+(σ) , G+(ζ) = g+(σ) + ϑ+G++(σ) , (3.5)

whose components G±±(σ) satisfy the conservation equation for a vector current

∂++G−− + ∂−−G++ = 0 . (3.6)

3.2 N = (1, 1)

As shown in appendix A.2, the flavor current multiplet consists of two superfields G−(ζ)

and G+(ζ) satisfying the following constraint:

D+G− −D−G+ = 0 . (3.7)

Acting with D+D− on both sides of the previous equation gives

∂++G−− + ∂−−G++ = 0 , (3.8)

where we have defined the following descendant superfields

G++ = D+G+ , G−− = D−G− . (3.9)

The flavor current multiplet can be expressed in terms of component fields as:

G+(ζ) = g+(σ) + ϑ+G++(σ) + ϑ−p(σ) + iϑ+ϑ−∂++g−(σ) , (3.10a)

G−(ζ) = g−(σ) + ϑ−G−−(σ) + ϑ+p(σ) + iϑ−ϑ+∂−−g+(σ) , (3.10b)

where G±±(σ) are the components of a vector current field

∂++G−− + ∂−−G++ = 0 . (3.11)
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3.3 N = (0, 2)

Finally, the flavor current multiplet for N = (0, 2) supersymmetric theories is derived in the

appendix A.3. It contains two real superfields G(ζ) and G−−(ζ) satisfying the constraints:

D̄+(G−− − i∂−−G) = 0 , D+(G−− + i∂−−G) = 0 . (3.12)

These two equations are conjugate to each other.

If we define the following descendant superfield

G++ = −1

2
[D+, D̄+]G , (3.13)

then we have the conservation equation

∂++G−− + ∂−−G++ = 0 , (3.14)

together with

[D+, D̄+]G−− = −2∂++∂−−G . (3.15)

The flavor current multiplet is then described by the following decomposition in com-

ponent fields

G(ζ) = g(σ) + iϑ+p+(σ) + iϑ̄+p̄+(σ) + ϑ+ϑ̄+G++(σ) , (3.16a)

G−−(ζ) = G−−(σ) + ϑ+∂−−p+(σ)− ϑ̄+∂−−p̄+(σ) + ϑ+ϑ̄+∂−−∂++g(σ) , (3.16b)

where

∂++G−− + ∂−−G++ = 0 , (3.17)

which is just the lowest component projection of (3.14), and indicates, once more, that

G±±(σ) are the components of a vector current field.

4 Supersymmetric JT̄ and T J̄ primary operators

Let us first recall that, in light-cone notation, the standard T J̄ and JT̄ composite operators

are defined as [5]

OT J̄−−(σ) := T−−−−(σ)G++(σ)−Θ(σ)G−−(σ) , (4.1a)

OJT̄++(σ) := T++++(σ)G−−(σ)−Θ(σ)G++(σ) . (4.1b)

These two operators may be quite different in theories that are not parity invariant. This

will indeed be the case for theories with chiral supersymmetry, such as N = (0, 1) and

N = (0, 2), that we are going to consider in our paper.

As already emphasized, T J̄ and JT̄ deformations break Lorentz invariance. This im-

plies that the stress-energy tensor is not symmetric anymore, T++−− 6= T−−++. Hence, the

component Θ in the above two equations has two different meanings: in (4.1a), Θ = T++−−,

while in (4.1b), Θ = T−−++ where the latter was defined as Θ̃ in (2.34). As already men-

tioned before, since T++−−, T−−++ never appear simultaneously, in the following analysis

– 13 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
0

we can forget about tildes. We only need to make sure that the correct Θ is used and

satisfies the appropriate conservation equations.

In this section, we will show that the OT J̄−− and OJT̄++ operators preserve supersymmetry

in complete analogy with the T T̄ case of [24–26]. More precisely, we will make use of the

stress-tensor multiplets and flavor current multiplets introduced in the previous section to

construct supersymmetric primary JT̄ and T J̄ operators and show that the OT J̄−− and OJT̄++

operators are supersymmetric descendants of the primary ones (up to total derivatives and

equations of motion). Note that in the appendix B.2 we discuss well-definedness properties

of all the supersymmetric primary operators given in our paper. Interestingly, as already

indicated in the introduction and elaborated in more detail in appendix B, it turns out

that all the primary operators fit into a general pattern which extends the original analysis

of [2] and the supersymmetric extensions of [24–26].

4.1 N = (0, 1)

In section 2.1 and section 3.1, we have presented the structure of theN = (0, 1) stress-tensor

multiplet and the N = (0, 1) flavor current multiplet as well as their conservation equations.

With these ingredients, we can immediately construct two different bilinear superfields that

work as supersymmetric primary operators for T J̄ and JT̄ in (4.1a). They are

OJT̄+ (ζ) := J+++(ζ)G−−(ζ)− J−(ζ)G++(ζ) , (4.2a)

OT J̄−−−(ζ) := T−−−−(ζ)G+(ζ)− J−(ζ)G−−(ζ) . (4.2b)

From these, it is in fact possible to construct the manifestly supersymmetric operators

described by the following descendants

OJT̄++(σ) =

∫
dϑ+OJT̄+ (ζ) , (4.3a)

and

OT J̄−−(σ) =

∫
dϑ+OT J̄−−−(ζ) . (4.3b)

These, up to conservation equations and total derivatives, prove to be equivalent to the OT J̄−−
and OJT̄++ operators. As explained in more details for the T T̄ case in [25], this equivalence

defines precisely how T J̄ and JT̄ deformations preserve N = (0, 1) supersymmetry. Similar

results will hold for the N = (1, 1) and N = (0, 2) cases.

Let us start with the JT̄ primary operator (4.2a). One can straightforwardly compute

its descendant and obtain the following result

D+OJT̄+ = T++++G−− − T G++ + i
(
∂−−J+++ + ∂++J−

)
G+ + J−

(
D+G++ + i∂++G+

)
−J+++

(
D+G−− − i∂−−G+

)
− i∂−−

(
J+++G+

)
− i∂++

(
J−G+

)
. (4.4)

It is easy to recognize that the quantities in the first three brackets are exactly the conser-

vation equations of the stress-tensor and flavor current multiplets while the last two terms

are just total derivatives that do not contribute once one integrates over the σ±± bosonic

coordinates. On the other hand, the lowest ϑ+ = 0 component of the first two terms
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in (4.4) are precisely the JT̄ operator, OJT̄++(σ). Therefore, up to total derivatives and

equations of motion, the descendant of the primary operator (4.2a) is exactly the standard

T J̄ operator in (4.1a):

OJT̄++(σ) = D+OJT̄+ (ζ)|ϑ+=0+total derivatives = OJT̄++(σ)+EoMs+total derivatives . (4.5)

Here “EoMs” means those quantities which vanish once the equations of motion, or more

precisely the conservation equations, are used.

For the T J̄ case one can similarly compute

D+OT J̄−−− = T−−−−G++ − T G−− +
(
D+T−−−− − i∂−−J−

)
G+ + T−−−−

(
D+G+ − G++

)
+J−

(
D+G−− − i∂−−G+

)
+ i∂−−

(
J−G+

)
. (4.6)

Again, the quantities in the first three brackets are exactly the conservation equations, thus

vanish on-shell. Therefore, exactly as in the JT̄ case, it holds

OT J̄−−(σ) = OT J̄−−(σ) + EoMs + total derivatives . (4.7)

Remember that Smirnov and Zamolodchikov, by extending the analysis by Zamolod-

chikov for T T̄ deformations [1], have proven that, given any pairs of currents (As, Bs+2)

and (A′s′ , B
′
s′−2) satisfying the conservation equations

∂++As = −∂−−Bs+2 , ∂−−A
′
s′ = −∂++B

′
s′−2 , (4.8)

where s and s′ label the spins of the operators, then the following bilinear operators

OSZ
s+s′(σ) := As(σ)A′s′(σ)−Bs+2(σ)Bs′−2(σ) , (4.9)

can be proven to be free of short distance singularities and well defined by a point split-

ting procedure [2]. Both OJT̄++(σ) and OT J̄−−(σ) are Smirnov-Zamolodchikov operators. Note

that the structure of OT̄ J+ (ζ) (4.2a) is the one of a Smirnov-Zamolodchikov type of operator

given in (4.9). This implies that, exactly as the N = (0, 1) T T̄ primary operator intro-

duced in [24, 25], OT̄ J+ (ζ), despite being a composite irrelevant operator, is free of short

distance singularities and well defined by a point splitting procedure as for the analysis

in [2]. Interestingly, the OT J̄−−−(ζ) is not of Smirnov-Zamolodchikov type. Despite that, as

described in appendix B.2, one can show that OT J̄−−−(ζ) is also well defined, in complete

analogy to the analysis of [26] where the N = (0, 2) T T̄ operator was shown to be well

defined even though not being of Smirnov-Zamolodchikov type.10

4.2 N = (1, 1)

From the stress-tensor multiplet and flavor current multiplet in subsections 2.2 and 3.2, we

can construct the following primary operator

OJT̄++(ζ) = J+++(ζ)G−(ζ) + J+(ζ)G+(ζ) . (4.10)

10See also [27] for the N = (2, 2) case which is also described by a T T̄ primary operator that is not of

Smirnov-Zamolodchikov type.
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By using conservation equations, a straightforward calculation gives

D−D+O++ = T++++G−− − T G++ + total derivatives + EoMs . (4.11)

In complete analogy to the N = (0, 1) case of the previous subsection, this result im-

plies that the JT̄ operator is equivalent to the descendant of the operator OJT̄++, up to

conservation equations and total derivatives:

OJT̄++(σ) =

∫
dϑ−dϑ+OJT̄++(ζ) + EoMs + total derivatives . (4.12)

For the T J̄ case we can construct the following primary operator

OT J̄−−(ζ) = J−−−(ζ)G+(ζ) + J−(ζ)G−(ζ) . (4.13)

In complete analogy to all the other cases considered so far, one can prove the equivalence

of its descendant operator with the OT J̄−−(σ):

OT J̄−−(σ) =

∫
dϑ−dϑ+OT J̄−−(ζ) + EoMs + total derivatives . (4.14)

Note that, since N = (1, 1) supersymmetry is left-right symmetric, the two T J̄ and

JT̄ primary operators above are simply related through a parity transformation which

exchanges the left and right moving sectors.

To conclude this subsection, note also that in the (1, 1) case both these operators are

not of Smirnov-Zamolodchikov type. Despite that, as described in appendix B.2, it is once

more possible to use the arguments originally presented in [26] and show that T J̄ and JT̄

primary operators are both well defined.

4.3 N = (0, 2)

Finally we can turn to discuss the T J̄/JT̄ supersymmetric primary operators in N = (0, 2)

theories that are constructed as bilinears of the stress-tensor multiplet and flavor current

multiplet given in subsection 2.3 and 3.3. The well-definedness of various operators is

analyzed in appendix B.2.

• N = (0, 2) JT̄ . For the JT̄ case, we can naturally construct the following primary

operator

OJT̄ (ζ) = S++(ζ)G−−(ζ)− 2G(ζ)T (ζ) . (4.15)

It is easy to check that it holds

1

4
[D̄+,D+]OJT̄ (ζ) = T++++(ζ)G−−(ζ)− T (ζ)G++(ζ) + EoMs + total derivatives , (4.16)

which implies

OJT̄++(σ) =
1

2

∫
dϑ̄+dϑ+OJT̄ (ζ) + EoMs + total derivatives , (4.17)

as expected.
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By remembering from eq. (2.27) that T := i
2

(
D+W− − D̄+W̄−

)
, it is clear that, up

to terms that are D+ and/or D̄+ acting on a superfield, the second term in (4.15) can be

written in different equivalent ways while preserving the main result (4.17). In fact, for

N = (0, 2) theories with an R-symmetry there is a very natural variant definition of the

supersymmetric primary operator in terms of the R-multiplet superfields R±±. This is

given by the following operator

OJT̄R (ζ) = R++(ζ)G−−(ζ)−R−−(ζ)G++(ζ) , (4.18)

which is such that OJT̄R (ζ) = OJT̄ (ζ)+D+(· · · )+D̄+(· · · ) and clearly also satisfies eq. (4.17).

Note that OJT̄R (ζ) in (4.18) is of Smirnov-Zamolodchikov type.

• N = (0, 2) T J̄ . For simplicity, in the T J̄ case let us start directly from an N = (0, 2)

supersymmetric theory possessing an R-symmetry. After that, we will extend the R-

multiplet results to the general case in which the stress-tensor multiplet is an S-multiplet.

Assuming the existence of an R-multiplet, we can construct the following supersym-

metric primary operator

OT J̄−−−−(ζ) = T−−−−(ζ)G(ζ)− 1

2
R−−(ζ)G−−(ζ) . (4.19)

In analogy to the other supersymmetric primary operators considered so far, a straightfor-

ward calculation leads to the following result

1

2
[D̄+,D+]O−−−− = T−−−−G++ − T G−− + EoM + total derivatives , (4.20)

which implies

OT J̄−−(σ) =

∫
dϑ̄+dϑ+OT J̄−−−−(ζ) + EoMs + total derivatives , (4.21)

as expected.

In the absence of a conserved R-symmetry in the stress-tensor multiplet, one can

not construct the T J̄ supersymmetric primary operator as a unique D-term whose full

superspace integral leads to OT J̄−−. The reason is simply that there might not exist in the

S-multiplet the R−− operator such that W− = i
2D̄+R−− and W− = i

2D̄+R−−, eq. (2.30).

In such a case, OT J̄−−−− of eq. (4.19) will not exist and consequently eq. (4.21) will not

hold. Nevertheless, for a general N = (0, 2) supersymmetric theory it is still possible to

show that OT J̄−−(σ) arises as a linear combination of a full superspace integral and a chiral

half superspace integral.11 This extends eq. (4.21) and proves again that T J̄ deformations

preserve supersymmetry. Let us turn to the precise description of this case.

First, note that the constraints defining the N = (0, 2) flavor current multiplet,

eq. (3.12), tell us that the superfields

H−− := G−− − i∂−−G , H̄−− = G−− + i∂−−G , (4.22)

11Note that the same happens with T T̄ deformations for general N = (2, 2) supersymmetric models

described by an S-multiplet [27] where the T T̄ operator is related to a linear combination of full and chiral

superspace integrals.
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are chiral and anti-chiral, respectively: D̄+H−− = 0, D+H̄−− = 0. Moreover, they satisfy

the following relations

D+H−− = −2i∂−−D+G , D̄+H̄−− = 2i∂−−D̄+G . (4.23)

By using H−− and H̄−− together with the superfields of the S-multiplet, we can define the

following T J̄ superfield

OT J̄−− =
1

2
[D̄+,D+]

(
T−−−−G

)
− i

2
D+

(
W−H−−

)
+

i

2
D̄+

(
W̄−H̄−−

)
. (4.24)

This can be easily shown to be

OT J̄−− = T−−−−G++ − T G−− + EoM + total derivatives , (4.25)

whose lowest ϑ = 0 component is just the standard T J̄-operator

OT J̄−− =

∫
dϑ̄+dϑ+T−−−−G −

i

2

(∫
dϑ+W−H−− −

∫
dϑ̄+W̄−H̄−−

)
+EoM + total derivatives , (4.26)

as expected.

5 Examples of supersymmetric JT̄ /T J̄ deformations

In this section, we will present some explicit examples of supersymmetric JT̄ /T J̄ defor-

mations. As argued in [5], JT̄ /T J̄ is solvable when the U(1) current is chirally conserved.

With the aim of extending the results of [5], in this section we will only focus on su-

persymmetric examples arising from chiral JT̄ /T J̄ deformations. Our analysis will be

purely classical here but we will manage to construct explicit JT̄ /T J̄ flows for some simple

supersymmetric example.

In both the N = (0, 1) and N = (0, 2) cases, we will present two models induced by JT̄

and T J̄ deformations, respectively. The chiral JT̄ /T J̄ deformations in N = (1, 1) theories

seem to resist illustrations in simple examples. We will comment more on these cases in

the conclusion.

5.1 N = (0, 1) JT̄

Here we are going to present the simplest example of JT̄ deformation with N = (0, 1)

supersymmetry. It consists of a left-moving complex fermion which has the U(1) symmetry,

and a right-moving supersymmetric sector which consists of a real scalar and a real fermion.
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5.1.1 Component form

Inspired by the non-supersymmetric example in [5], we propose that the following action

satisfies a JT̄ flow.

Sα =

∫
d2σLα =

∫
d2σ

(
LL + LR + αLdef

)
, (5.1a)

LL =
i

2
χ̄−∂++χ− , (5.1b)

LR =
1

2
∂++φ∂−−φ+

i

2
ψ+∂−−ψ+ , (5.1c)

Ldef = −χ̄−χ−
(
∂++φ∂++φ+ iψ+∂++ψ+

)
. (5.1d)

where χ− is a complex fermion, while ψ+ = ψ̄+ and φ = φ̄ are a real fermion and a real

scalar, respectively.

The left-moving complex fermion possess the following U(1) symmetry

χ− → eiρχ− , χ̄− → e−iρχ̄− . (5.2)

According to Noether’s theorem, this gives rise to the following U(1) current

G−− = χ̄−χ− , (5.3)

which we will shortly show to be chiral.

The T++++ component of the stress-energy tensor for the action (5.1a) can be easily

computed and turns out to be12

T++++ = −∂++φ∂++φ− iψ+∂++ψ+ . (5.4)

In particular, note that Ldef does not contribute to this component.

Note that the equation of motion of the complex fermion χ− is

∂++χ− = −2αiχ−

(
∂++φ∂++φ+ iψ+∂++ψ+

)
= 2αiχ−T++++ . (5.5)

Together with its complex conjugate, a short but instructive calculation which uses (5.5)

shows that it holds

∂++G−− = 0 . (5.6)

Therefore, the U(1) current is chirally conserved and G++ = 0, which is expected from the

symmetry (5.2) where there is even no notion of G++.

Finally, we easily notice that the deformation part of the Lagrangian (5.1a) satisfies

(remember that G++ = 0)

∂Lα
∂α

= Ldef = T++++G−− = OJT̄ . (5.7)

12Our conventions for the stress-energy tensor is Tab = ηac
∂L

∂∂cϕ
∂bϕ− ηabL where in light-cone notations

the Minkowski metric is η±±,±± = −2, η±±,±± = − 1
2
, η±±,∓∓ = η±±,∓∓ = 0.
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This shows that the action we proposed in eq. (5.1a) arises from a JT̄ deformation as

expected. Since the U(1) current is chirally conserved, the deformation is thus a chiral JT̄

deformation.

So far we have not discussed whether the model described by (5.1a) is supersymmetric,

though from our general discussion we expect this to be the case. To prove this statement

explicitly we turn to describing the same model in N = (0, 1) superspace.

5.1.2 Superfield form

We start by introducing the following superfields

Φ = φ− iϑ+ψ+ , (5.8)

and

Υ− = χ− − iϑ+B , Ῡ− = χ̄− + iϑ+B̄ , (5.9)

that embed the component fields φ, ψ+, χ− and χ̄− into appropriate supermultiplets.

A natural manifestly supersymmetric extension of the action (5.1a) is

Sα =

∫
d2σdϑ+

(
i

2
D+Φ∂−−Φ +

1

2
Ῡ−D+Υ− − iαῩ−Υ−D+Φ∂++Φ

)
. (5.10)

To show the equivalence with (5.1a), we reduce (5.10) to components and obtain

Sα =

∫
d2σ

[
1

2
∂++φ∂−−φ+

i

2
ψ+∂−−ψ+ +

i

2
χ̄−∂++χ− +

1

2
BB̄

−iα(χ−B̄ + χ̄−B)ψ+∂++φ− αχ̄−χ−
(
∂++φ∂++φ+ iψ+∂++ψ+

)]
. (5.11)

Note that the previous action is identical to (5.1a) except for all the terms involving the

complex auxiliary fields B and B̄. It is simple to show that these terms are identically zero

once we integrate out B and B̄. In fact, these can be solved in terms of the physical fields

by using their algebraic equation of motion:

B = 2iαχ−ψ+∂++φ , B̄ = 2iαχ̄−ψ+∂++φ . (5.12)

By substituting this result back into (5.11), one can see that the auxiliary fields B and

B̄ have no contribution due to the fermionic property ψ2
+ = 0. Thus the manifestly

supersymmetric action (5.10)–(5.11) is equivalent to the JT̄ deformed action (5.1a). The

above construction also tells us that the action (5.1a) is supersymmetric.

To see the supersymmetry more explicitly, we can work out the supersymmetry trans-

formation rules. The off-shell N = (0, 1) supersymmetry transformation of an arbitrary

superfield F was given in (2.4) and we repeat them here for the reader’s convenience:

δF = −iε−Q+F = −iε−

(
i
∂

∂ϑ+
− ϑ+∂++

)
F . (5.13)
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By using this rule for Φ, eq. (5.8), and Υ−, eq. (5.9), one can derive the off-shell super-

symmetry transformations of their component fields

δχ− = −iε−B , δχ̄− = iε−B̄ , δφ = −iε−ψ+ , δψ+ = ε−∂++φ . (5.14)

One can check explicitly that (5.11) is invariant under the previous transformations. Note

also that the equations of motion for B and B̄ given by (5.12) are also consistent with

these supersymmetry transformations. In fact, one can also verify that (5.1a) is invariant

under (5.14) on-shell, meaning when (5.12) are satisfied. In particular, one can check

that in this case δ(χ̄−χ−) = 0 which guarantees that no higher-order terms in α would

be generated in the on-shell transformation rules. We can then conclude that the model

described by the action (5.1a), which we have previously shown to be a standard JT̄

deformation, is supersymmetric as expected.

Let us look back at the manifestly off-shell supersymmetric action (5.10) and show that

it is a manifestly supersymmetric deformation associated to the operator (4.2a). First, we

rewrite the action (5.10) as

Sα =

∫
d2σdϑ+Aα , Aα =

(
i

2
D+Φ∂−−Φ +

1

2
Ῡ−D+Υ− − iαῩ−Υ−D+Φ∂++Φ

)
. (5.15)

We can derive the stress-tensor multiplet for example by using the Noether procedure

of [24]. We obtain

J+++ = −i
δAα
δ∂−−Φ

∂++Φ = −iD+Φ∂++Φ . (5.16)

Then it is easy to see that the superspace Lagrangian Aα satisfies the supersymmetric JT̄

flow equation
∂Aα
∂α

= J+++G−− = OJT̄+ , (5.17)

where

G−− = Ῡ−Υ− = χ̄−χ− + iϑ+(χ̄−B + χ−B̄) , (5.18)

and G++ = 0 in the supersymmetric primary operator OJT̄+ of eq. (4.2a). Let us in fact

verify at the superspace level that G−− is chirally conserved. By using the superspace

equations of motion for the superfields Υ− and Ῡ− which read

D+Υ− = 2iαΥ−D+Φ∂++Φ , D+Ῡ− = −2iαῩ−D+Φ∂++Φ , (5.19)

it is a straightforward calculation to prove the following result

D+G−− = D+Ῡ− ·Υ− −D+Υ− · Ῡ− = −2iα(ῩΥ− + ΥῩ−)D+Φ∂++Φ = 0 . (5.20)

Note that the conservation equation (5.20) is expected considering that the action (5.15)

is invariant under the following symmetry

Υ− → eiρΥ− , Ῡ− → e−iρῩ− . (5.21)
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Actually, the super flavor current (5.18) can also be constructed directly by promot-

ing (5.21) to a gauge symmetry and then covariantizing13 the action (5.15). Comparing

the linearized action with (A.12) gives (5.18) and G+ = 0.

To summarize, we have shown that the superspace action (5.15) arises from a JT̄

deformation with N = (0, 1) supersymmetry, and satisfies the manifestly supersymmetric

JT̄ flow equation (5.17) driven by the supersymmetric primary operator OJT̄+ of eq. (4.2a).

5.2 N = (0, 1) T J̄

In this subsection, we are going to present an N = (0, 1) supersymmetric model which

arises from the chiral T J̄ deformation. This is going to be a supersymmetric generalization

of the model first presented by Guica in [5]. We start by reconstructing this model in the

case without supersymmetry and then turn to its N = (0, 1) supersymmetric extension.

5.2.1 A bosonic T J̄ model from a new perspective

In [5], Guica worked out the T J̄-deformation of a free scalar field action. The U(1) current

is associated with the shift symmetry of the real free massless scalar field. Here we would

like to rederive this model from a slightly different point of view which will be used in

constructing the supersymmetric extension.

We can make the following educated guess for the action of the T J̄-deformed real free

massless scalar field

Sλ =

∫
d2σ Lλ =

∫
d2σ ∂++φ∂−−φF (λ∂−−φ) . (5.22)

Here F (x) is an arbitrary analytic function such that F (0) = 1, which ensures that the

undeformed action, S0, is the one of a free massless scalar field. The T−−−− component of

the stress-energy tensor of the action (5.22) proves to be

T−−−− = −2(∂−−φ)2F . (5.23)

We want to impose the action (5.22) to have a conserved chiral current G++, which is

∂−−G++ = 0, and to be a T J̄ flow, namely:

∂λLλ = G++T−−−− . (5.24)

As already mentioned, the reason to consider a chiral T J̄-deformation is that this is the

case for which the quantum spectrum of the model is still solvable [5]. The T J̄ flow

equation (5.24) together with (5.23) can be used to determine the U(1) current

G++ = − F
′

2F
∂++φ . (5.25)

The previous result is consistent only when we assume G++ to be chirally conserved on-

shell, which turns into the following constraint

∂−−G++ = ∂−−

(
− F ′

2F
∂++φ

)
= 0 . (5.26)

13More specifically, by using the covariant derivative ∇A in (A.1) in place of DA.

– 22 –



J
H
E
P
0
5
(
2
0
2
0
)
1
4
0

Using the equation of motion for the action (5.22), the above conservation equation leads

to the following differential equation for the function F (x):

F ′ + 1
2xF

′′

F + xF ′
=
F ′′

F ′
− F ′

F
, x = λ∂−−φ . (5.27)

Solving this equation, one gets

F =
c2

x+ c1
, or F =

c

x2
. (5.28)

Once we impose the boundary condition F (0) = 1, the second solution is discarded and

the most general solution turns out to be:

F (x) =
c

x+ c
. (5.29)

By plugging this result into (5.25), the chiral current is then given by

G++ = − F
′

2F
∂++φ =

1

2

1

c+ λ∂−−φ
∂++φ . (5.30)

In the undeformed limit λ = 0, it holds G++ = 1
2c∂++φ. Therefore, the seemingly extra

parameter c just corresponds to the normalization of the current which we have not specified

yet and has no physical meaning. To be consistent with [5], we choose the normalization

c = −4, hence the function F (x) is

F (x) =
1

1− 1
4x

. (5.31)

To conclude, we have shown that the action (5.22) with F given by (5.31) describes a

chiral T J̄ flow, eq. (5.24), with chiral current given by (5.25).

5.2.2 A T J̄ deformed model with N = (0, 1) supersymmetry

Now we would like to extend the analysis of the previous subsection to the supersymmetric

case and find the T J̄-deformation of a free N = (0, 1) scalar multiplet action. The natural

manifestly off-shell supersymmetric extension of (5.22) is given by the following ansatz

Sλ = i

∫
d2σdϑ+ D+Φ∂−−ΦF (λ∂−−Φ) , (5.32)

where the real scalar superfield Φ(ζ) is the same as (5.8) and the analytic function F (x) is

such that F (0) = 1 but otherwise arbitrary. Similarly to the N = (0, 1) JT̄ deformation,

we will first analyze the previous ansatz in components and then directly in superspace.

• Component approach. Once the superfield Φ(ζ) is reduced to its real component

fields φ(σ) and ψ+(σ), see eq. (5.8), and the Grassmann integral is performed, the ac-

tion (5.32) takes the form

Sλ =

∫
d2σ Lλ =

∫
d2σ

{
∂++φ∂−−φF + iψ+∂−−ψ+

(
F + λ∂−−φF

′)} . (5.33)
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The T−−−− component of the stress-energy tensor for the previous model proves to be

T−−−− = −2(∂−−φ)2F . (5.34)

Interestingly, this is exactly the same as the bosonic case (5.23).

As in the pure bosonic case, we want to interpret the action (5.33) as a chiral T J̄-

deformation satisfying

∂λLλ = G++T−−−− . (5.35)

This flow equation enables us to determine the U(1) current to be

G++ = − 1

2F

(
F ′∂++φ+ iλF ′′ψ+∂−−ψ+

)
− i

F ′

F

ψ+∂−−ψ+

∂−−φ
. (5.36)

Consistency of (5.35) requires that G++ is chiral, ∂−−G++ = 0, which we are going to

study next.

The equation of motion for the fermion of the action (5.33) is given by:

0 = 2i∂−−ψ+ · (F + λF ′∂−−φ) + iψ+∂−−(F + λF ′∂−−φ) , (5.37)

which yields

∂−−ψ+ = −ψ+
∂−−(F + xF ′)

2(F + xF ′)
. (5.38)

Multiplying by ψ+, we get the following non-trivial simplification

ψ+∂−−ψ+ = 0 . (5.39)

Interestingly, the previous result implies that G++, eq. (5.36), has no contribution from

the fermion ψ+ once its equation of motion is used. In this case, (5.36) simplifies to

G++ = − F
′

2F
∂++φ , (5.40)

which is precisely the same as the purely bosonic case, eq. (5.25). Note also that by

using (5.39) the fermion terms disappear from the action (5.33). This implies that the

dynamics of the boson φ can be treated independently from the fermion ψ+, once (5.39)

holds. Therefore, for the purpose of imposing that G++ is chiral on-shell, effectively one

can use eq. (5.40) and note that φ has the same equation of motion as for the purely

bosonic action (5.22). This immediately implies that the condition for G++ to be a chiral

current is solved by the same function F as in the non-supersymmetric case, namely (5.29).

This concludes the proof that the supersymmetric action (5.33), and equivalently (5.32),

satisfies the T J̄ flow (5.35) with a chirally conserved current G++ given by (5.36).

• Superfield approach. In the discussions above, we have worked out the T J̄ defor-

mation in terms of component fields. It is natural to expect that (5.32) satisfies a T J̄ flow

equation driven by the superfield operator (4.2b). We show this to be true in the following.

The action (5.32) is given by the superspace integral of the superfield Lagrangian Aλ:

Sλ =

∫
d2σdϑ+ Aλ , Aλ = iD+Φ∂−−ΦF (λ∂−−Φ) . (5.41)
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By using for example the Noether techniques for N = (0, 1) superspace described in [24],

one can compute the T−−−− superfield component of the stress-tensor multiplet:

T−−−− = 2i

[
δA

δD+Φ
∂−−Φ− iD+

(
δA

δ∂++Φ
∂−−Φ

)]
= −2(∂−−Φ)2F (λ∂−−Φ) . (5.42)

Note that its lowest ϑ = 0 component gives the corresponding component of the stress-

energy tensor, T−−−−|ϑ=0 = T−−−−, as expected.

If the action (5.41) arises from a chiral T J̄ deformation, it should satisfy the following

flow equation

∂λAλ = OT J̄−−− = T−−−−G+ , (5.43)

with G−− = 0. Thus, by imposing the previous flow equation for the Lagrangian Aλ
in (5.41) and the expression for T−−−− given by (5.42), the superfield G+ can be solved as

G+ = −iD+Φ
F ′

2F
. (5.44)

For consistency, with G−− = 0, G+ should describe a chiral current multiplet satisfying (3.1)

∂−−G+ = 0 . (5.45)

By imposing this constraint on (5.44) one obtains

∂−−D+ΦFF ′ + λD+Φ∂2
−−Φ(FF ′′ − F ′2) = 0 , (5.46)

which should hold on-shell. The superspace equation of motion for the real scalar superfield

Φ can be easily computed by varying the action (5.41) and is given by

2G′∂−−D+Φ + λD+Φ∂2
−−ΦG′′ = 0 , G(x) = xF (x) , x = λ∂−−Φ . (5.47)

By using this result in (5.46) we can obtain the following equation

− ∂−−D+Φ

λD+Φ∂2
−−Φ

=
G′′

2G′
=
FF ′′ − F ′2

FF ′
. (5.48)

Using G(x) = xF (x), we get

(2F + xF ′)(−2F ′2 + FF ′′)

2FF ′(F + xF ′)
= 0 . (5.49)

One can easily check that this differential equation is equivalent to the one we obtained in

the bosonic case, eq. (5.27). Thus the solution, of the above differential equation is also

given by the bosonic one (5.31). This is consistent with our previous component approach.

To make more clear the connection with the components results given above, we can

further calculate14

G++ = D+G+ = −1

8
∂++ΦF − i

32
λF 2D+Φ∂−−D+Φ , (5.50a)

= −1

8
∂++ΦF , (5.50b)

14Here we used the relation F ′ = 1
4
F 2 which holds for (5.31).
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where in the last equality we used the relation D+Φ∂−−D+Φ = 0 which can be obtained by

multiplying the equation of motion (5.47) with D+Φ. These can be seen to be in agreement

with the components results for G++ given above. In particular, the ϑ = 0 component

projection of G++ on-shell is given by

G++ = G++|ϑ=0 = −1

8
∂++φF , (5.51)

which is in agreement with (5.40). In particular, it follows that ∂−−G++ = 0 on-shell.

5.3 N = (0, 2) JT̄

In this subsection, we are going to generalize the model constructed for the N = (0, 1)

case by complexifying its right-moving sector. The resulting model will possess the left-

moving complex fermion χ− and χ̄−, which generates the U(1) symmetry, and a complex

N = (0, 2) supersymmetric sector which consists of a complex scalar φ and φ̄ together with

a complex right-chirality fermion ψ+ and ψ̄+. A natural generalization of the action (5.1a)

is the following

Sα =

∫
d2σ

(
LL + LR + αLdef

)
, (5.52a)

LL =
i

2
χ̄−∂++χ− , (5.52b)

LR =
1

2
∂++φ̄∂−−φ−

i

2
ψ̄+∂−−ψ+ , (5.52c)

Ldef = −χ̄−χ−
(
∂++φ̄∂++φ− iψ̄+∂++ψ+

)
. (5.52d)

Let us check that this action describes a JT̄ flow.

As for the N = (0, 1) case, the left-moving complex fermion has U(1) symmetry and

the associated U(1) current is given by

G−− = χ̄−χ− . (5.53)

The T++++ component of the stress-energy tensor proves to be

T++++ = −∂++φ̄∂++φ+
i

2
ψ̄+∂++ψ+ +

i

2
ψ+∂++ψ̄+ , (5.54)

while the equation of motion for the fermion χ− is

∂++χ− = 2αiχ−T++++ . (5.55)

Together with its complex conjugate, this implies that the U(1) flavor current G−− is chiral

∂++G−− = 0 , (5.56)

and that our action (5.52) arises from a chiral JT̄ deformation:

∂Lα
∂α

= Ldef = T++++G−− . (5.57)
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However, it remains to show that the action is N = (0, 2) supersymmetric. For this we

turn to superspace.

The fields φ and ψ+ are going to describe a chiral N = (0, 2) multiplet while their

complex conjugate fits in an anti-chiral one. We can introduce the chiral and anti-chiral

N = (0, 2) complex scalar superfields

Φ = φ+ i
√

2ϑ+ψ+ + iϑ+ϑ̄+∂++φ , Φ̄ = φ̄+ i
√

2ϑ̄+ψ̄+ − iϑ+ϑ̄+∂++φ̄ , (5.58)

satisfying the constraints

D̄+Φ = D+Φ̄ = 0 . (5.59)

We also introduce the N = (0, 2) complex Fermi-multiplet through the following superfields

Υ− = χ− + ϑ+F + iϑ+ϑ̄+∂++χ− , Ῡ− = χ̄− + ϑ̄+F̄− iϑ+ϑ̄+∂++χ̄− . (5.60)

These are also chiral and anti-chiral respectively

D̄+Υ− = D+Ῡ− = 0 . (5.61)

Note that the extra complex fields F and F̄ are necessary to close N = (0, 2) supersymmetry

off-shell and will play the role of auxiliary fields, analogously to the N = (0, 1) case. The

natural ansatz for the JT̄ -deformed action in superspace is then given by

Lα =
1

4

∫
dϑ̄+dϑ+Ῡ−Υ−+

i

4

∫
dϑ̄+dϑ+Φ̄∂−−Φ− α

4

∫
dϑ̄+dϑ+Ῡ−Υ−D+ΦD̄+Φ̄ . (5.62)

We can compute the equation of motion of the chiral Fermi superfields that gives

D+Υ− = 2iαΥ−D+Φ∂++Φ̄ , D̄+Ῡ− = −2iαῩ−D̄+Φ̄∂++Φ . (5.63)

The action (5.62) is invariant under the following symmetry:

Υ− → eiΛΥ−, Ῡ− → e−iΛ̄Ῡ− , (5.64)

with D+Λ̄ = D̄+Λ = 0. Promoting this symmetry to a gauge symmetry, we can couple the

Fermi multiplet to a real gauge prepotential superfield V exactly in the same way as the

well known 4D case: Ῡ−e
V Υ−. By expanding the resulting gauged action to leading order

in V and comparing to (A.50), one can get the flavor current superfields

G−− = Ῡ−Υ−

(
1− αD+ΦD̄+Φ̄

)
, G = 0 . (5.65)

Noether theorem guarantees that G−− is a conserved chiral current. Indeed, using the

equation of motion (5.63), one can verify that it holds

D+G−− = −Ῡ−D+Υ−

(
1− αD+ΦD̄+Φ̄

)
+ 2iαῩ−Υ−D+Φ∂++Φ̄ = 0 . (5.66)

The stress-tensor multiplet can also be straightforwardly computed. In particular, the S++

superfield can be shown to be

S++ =
1

2
D̄+Φ̄D+Φ . (5.67)
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With this, one can compute T++++ = 1
4 [D̄+,D+]S++ and find that its lowest component

gives (5.54).

The supersymmetric chiral JT̄ primary operator, see eq. (4.15) with G ≡ 0, is thus

given by

OJT̄ = S++G−− =
1

2
D̄+Φ̄D+Φ · Ῡ−Υ−

(
1 + αD+ΦD̄+Φ̄

)
=

1

2
D̄+Φ̄D+ΦῩ−Υ− , (5.68)

which is independent of deformation parameter α. It is then obvious that the action (5.62)

satisfies the following chiral supersymmetric JT̄ flow equation

∂Aα
∂α

= −1

4
Ῡ−Υ−D+ΦD̄+Φ̄ =

1

2
S++G−− =

1

2
OJT̄ . (5.69)

Therefore, (5.62) is indeed a manifestly off-shell N = (0, 2) supersymmetric JT̄ deformed

action.

To analyze in more detail the action (5.62) and check its relation with (5.52), we would

like to expand the superspace action in components. We find that (5.62) after integrating

the Grassmann variables gives

Lα =
1

2
∂++φ̄∂−−φ−

i

2
ψ̄+∂−−ψ+ +

i

4
χ̄−∂++χ− +

i

4
χ−∂++χ̄− −

1

4
FF̄

−α
4

[
4χ−χ̄−

(
− ∂++φ̄∂++φ+

i

2
ψ̄+∂++ψ+ +

i

2
ψ+∂++ψ̄+

)
−2ψ̄+ψ+

(
− iχ−∂++χ̄− − iχ̄−∂++χ− + FF̄

)
−2
√

2χ̄−ψ̄+∂++φF− 2
√

2ψ+χ−∂++φ̄F̄

]
. (5.70)

We stress that the previous Lagrangian leads to an action which is N = (0, 2) supersym-

metric off-shell. Solving the auxiliary field equations of motion gives

F̄ = 2
√

2αχ̄−ψ̄+∂++φ , F = 2
√

2αψ+χ−∂++φ̄ . (5.71)

By using this result the action turns into

Sα =

∫
d2σ

[
1

2
∂++φ̄∂−−φ−

i

2
ψ̄+∂−−ψ+ +

i

4

(
χ̄−∂++χ− + χ−∂++χ̄−

)(
1− 2αψ̄+ψ+

)
−αχ̄−χ−

(
∂++φ̄∂++φ−

i

2
ψ̄+∂++ψ+ −

i

2
ψ+∂++ψ̄+

)
−2α2χ−χ̄−ψ̄+ψ+∂++φ̄∂++φ

]
. (5.72)

Compared to the original component action (5.52), we see that there are two extra pieces:

one is the α2 term, and the other one multiplies the kinetic term of the left fermions. As

we will see, these extra terms can be redefined away.
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Note that the flavor supercurrent is given by (5.65) and its lowest component gives the

conventional flavour current

G−− = χ̄−χ−(1− 2αψ̄+ψ+) . (5.73)

Following our previous superfield approach, this current is a chiral conserved current

∂++G−− = 0.

To see the role of this current, we can rewrite the action (5.72) in the following form:

Sα =

∫
d2σ

[
1

2
∂++φ̄∂−−φ−

i

2
ψ̄+∂−−ψ+ +

i

4

(
χ̄−∂++χ− + χ−∂++χ̄−

)(
1− 2αψ̄+ψ+

)
−αχ̄−χ−

(
1− 2αψ̄+ψ+

)(
∂++φ̄∂++φ−

i

2
ψ̄+∂++ψ+ −

i

2
ψ+∂++ψ̄+

)]
. (5.74)

The first line can be thought as the undeformed action where the left-moving fermion still

has a U(1) symmetry. The associated current is exactly given by (5.73). And the second

line is then just the JT̄ deformation with a modified current (5.73).

The action (5.74) can also be obtained from (5.52) through a field redefinition:

χ− → χ−

(
1− αψ̄+ψ+

)
, χ̄− → χ̄−

(
1− αψ̄+ψ+

)
. (5.75)

To conclude, the supersymmetric JT̄ deformation in (5.62), (5.74) and the conventional

JT̄ deformation in (5.52) coincide up to field redefinitions. This implies that these ac-

tions are the same on-shell, as expected from the general equivalence of the manifestly

supersymmetric JT̄ deformation and the one given by the operator OJT̄++, eq. (4.1b).

5.4 N = (0, 2) T J̄

In this subsection we shortly present a model for an N = (0, 2) T J̄ deformation which

extends the bosonic and N = (0, 1) cases presented in section 5.2. To make the presentation

more concise and manifestly supersymmetric, we will work directly in superspace.

We are going to show that the following model

Sλ =

∫
d2σdϑ̄+dϑ+Aλ =

i

4

∫
d2σdϑ̄+dϑ+ Φ̄∂−−ΦF (λ∂−−Φ̄) , (5.76)

is a T J̄ flow and, in particular, a N = (0, 2) extension of the action (5.22).

By considering the variation with respect to the N = (0, 2) chiral superfield Φ, we get

the following equation of motion

∂−−D̄+(Φ̄F ) = 0 . (5.77)

Compared with (3.12), we can naturally identify the following chiral U(1) current15

G = −iγΦ̄F , G−− = 0 , (5.78)

15Note that this current is now complex, so only the first equation in (3.12) is satisfied. We will comment

on it later.
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where γ is an arbitrary normalization constant introduced for convenience. In the unde-

formed limit F = 1, this is indeed the U(1) current associated with the shift symmetry of

the superfield Φ.

It is also straightforward to compute the T−−−− component of the stress-tensor mul-

tiplet which can be shown to be

T−−−− = −∂−−Φ̄∂−−ΦF . (5.79)

By requiring that the Aλ superfield Lagrangian satisfies the chiral T J̄ flow equa-

tion (4.19)
∂Aλ
∂λ

= OT J̄−−−− = T−−−−G , (5.80)

we obtain the following condition for the function F

i

4
Φ̄∂−−Φ∂−−Φ̄F ′ = iγΦ̄∂−−Φ̄∂−−ΦF 2 =⇒ F ′ = 4γF 2 . (5.81)

By imposing F (0) = 1, the solution is16

F (x) =
1

1− 4γx
. (5.82)

Therefore, we have shown that the action Sλ in (5.76) satisfies a chiral T J̄ flow. How-

ever, it is clear that the action is actually a little pathological because it is not real due

the complex chiral current G(ζ) and its descendant G++(σ) := −1
2 [D+, D̄+]G(ζ)|ϑ=0. This

does not change or spoil the basic properties of the T J̄ deformation. However, it would

be interesting and important to see whether this is an intrinsic pathology on T J̄ deforma-

tion in this case or one could modify the action to get a theory arising from a chiral T J̄

deformation with real U(1) current. We leave this for future analysis.

6 Conclusion and outlook

In this paper we have analyzed JT̄ /T J̄-deformations for theories possessing N = (0, 1),

(1, 1) and (0, 2) supersymmetry. We have first discussed the conservation equations of

the stress-tensor multiplets and flavor current multiplets. Based on those multiplets, we

have then constructed the JT̄ /T J̄ supersymmetric primary operators. We have further

shown that their descendants are equivalent to the conventional JT̄ /T J̄ operators up to

conservation equations and total derivatives. Several examples of Lagrangians arising from

the chiral JT̄ /T J̄ deformation of free supersymmetric theories were also presented.

To construct the JT̄ /T J̄ operator, a conserved U(1) current is needed. In this paper we

have been focusing exclusively on a flavor U(1) current that does not belong to the stress-

tensor multiplet. However, in some supersymmetric theories, there is also an R-symmetry

which can give rise to a U(1) R-current. A natural question is: can we construct the JT̄ /T J̄

operators out of the stress-energy tensor and the U(1) R-current? In our N = (0, 2) case,

16One can then choose the normalization γ = 1
16

such that the solution agrees with (5.31).
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the R-multiplet is given in (2.31) and it contains both the stress-energy tensor T++±± and

R-current j±± which enables one to construct the conventional JT̄ /T J̄ operator. However,

a supersymmetric primary built out of the R-multiplet seems to evade the constructions

in this paper. It would be interesting to investigate in detail the underlying reasons of the

failure/success of these R-symmetry deformations and analyze them also in theories with

more supersymmetries, say N = (2, 2). We leave this problem for the future.

In our paper, we have only considered Lagrangians arising from the chiral JT̄ /T J̄

deformations of free theories because these deformed models are simple and argued to be

solvable. Starting from the relativistic free theory, we indeed find several simple theories

arising from chiral JT̄ and T J̄ deformations with N = (0, 1) supersymmetry and a chiral

JT̄ deformation with N = (0, 2) supersymmetry. However, in the N = (1, 1) case, we did

not find a simple realization of chiral JT̄ /T J̄ deformations.17 It would be interesting to

see whether this type of N = (1, 1) chiral JT̄ /T J̄ deformations can be realized in a more

complicated or broad class of theories. For example, since JT̄ /T J̄ deformations break

Lorentz invariance, one can naturally start with a non-Lorentz-invariant but supersym-

metric theory and see whether it admits a chiral JT̄ /T J̄ deformation with some amount

of supersymmetry. In the N = (0, 2) case, as an example, we have presented a chiral T J̄

deformed Lagrangian with complex current. It remains to see how to construct a real chiral

T J̄ deformed theory with N = (0, 2) supersymmetry.

Another question is the symmetry enhancement. As argued in [5, 7], the JT̄ /T J̄

deformation breaks the original two-dimensional conformal group SL(2,R)×SL(2,R) down

to the SL(2,R)×U(1) subgroup as the global symmetry of the deformed theory, but these

symmetries would be enhanced to the infinite-dimensional Virasoro × Virasoro. Now with

supersymmetries, it is natural to expect that the enhancement is given by a super-Virasoro

× super-Virasoro symmetry.18

Last but not least, as shown in appendix B, all the operators associated to T T̄ and

JT̄ /T J̄ deformations fit into a general pattern which generalizes the Smirnov-Zamolod-

chikov type of composite operators. In appendix B, we have also shown that under certain

assumptions, the generalized composite operator is invariant under improvement transfor-

mations. The original Smirnov-Zamolodchikov type composite operators are proved to be

well-defined at the quantum level. For our generalization, this quantum definedness has

also been shown to hold in several examples explicitly. It is thus reasonable to speculate

that our generalized Smirnov-Zamolodchikov composite operators are also well-defined at

the quantum level in general. The proof of this statement and its implications will be an

interesting and important future research problem.

17For example, the JT̄ construction in subsection 5.1 is not obvious because the N = (1, 1) supersymmet-

ric generalization of the left moving sector in (5.1b) requires the embedding of the complex fermion χ− into

a superfield which necessarily introduces also many other fields. For the naive N = (1, 1) supersymmetric

generalization of T J̄ construction in (5.22), the EoMs contain many types of derivatives D±, ∂±± and thus

fails to guarantee the chiral conservation of the U(1) current D+G− = 0 or D−G+ = 0 in a simple way.
18Besides, there is also a chiral U(1)J symmetry generated by the current; this symmetry is now expected

to enhance to super-Kac-Moody.
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A Deriving the conservation laws of flavor current multiplets

In this appendix we derive the various flavor current multiplets described in section 3. The

derivation is conceptually the same for all the types of supersymmetries. As a first step

we describe a supersymmetric abelian vector multiplet and its gauge transformation rules.

Then we couple the gauge multiplet to a corresponding flavor current multiplet and impose

the gauge invariance of such coupling. As a result we obtain the conservation equations of

the supersymmetric flavor current multiplets.

A.1 N = (0, 1)

By looking for example at [36], pages 5-6, we see that an N = (1, 0) abelian vector multiplet

is described by a gauge connection ΓA and gauge covariant derivatives

∇A = DA − iΓA , (A.1)

satisfying the following algebra

{∇+,∇+} = −2i∇++ , (A.2a)

[∇+,∇−−] = iW− , [∇+,∇++] = 0 , (A.2b)

[∇++,∇−−] = −∇+W− . (A.2c)

Here the superfield W−(ζ) is an unconstrained real spinorial field strength. The previous

algebra correctly satisfies the super-Jacobi identities and in fact it is interesting to note

that the form of the commutator [∇++,∇−−] is fixed by the Bianchi identities

[∇++,∇−−] =
i

2
[{∇+,∇+},∇−−] = i{∇+, [∇+,∇−−]}=−{∇+,W−}=−∇+W− . (A.3)

The anti-commutator (A.2a) implies that Γ++ can be solved in terms of Γ+,19

Γ++ = iD+Γ+ , (A.4)

19Note that we are considering an Abelian gauge symmetry, so that the connections (anti-)commute.
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while Γ+ and Γ−− remain independent and unconstrained gauge connections. The N =

(0, 1) superfields (Γ+(ζ), Γ−−(ζ)) then play exactly the same role of unconstrained com-

ponent gauge connection fields, (A++(σ), A−−(σ)), gauging an Abelian symmetry in the

standard two-dimensional Minkowski space-time. The first equation in (A.2b) can be used

to express W−(ζ) in terms of the unconstrained connections

W− = −D+Γ−− + ∂−−Γ+ . (A.5)

All the other constraints associated with the algebra (A.2) are then identically satisfied

once (A.4) and (A.5) are imposed.

Note that the gauge transformations of Γ−− and Γ+ are

δGΓ−− = i∂−−τ , δGΓ+ = iD+τ , (A.6)

with τ(ζ) an unconstrained real gauge superfield parameter. It is easy to see that

δGW− = 0 , (A.7)

so the field strength is gauge invariant as expected.

In components, the multiplet of connections reads

Γ+(ζ) = χ+(σ) + ϑ+A++(σ) , Γ−−(ζ) = iA−−(σ)− ϑ+λ−(σ) , (A.8)

and the field strength is

W−(ζ) = λ−(σ) + ∂−−χ+(σ) + ϑ+
(
∂−−A++(σ)− ∂++A−−(σ)

)
. (A.9)

Then under the gauge transformation (A.6) with τ(ζ) = φ(σ) + ϑ+ψ+(σ), the component

fields transform as

δGχ+ = iψ+ , δGλ− = −i∂−−ψ+ , δGA++ = ∂−−φ , δGA−− = ∂++φ . (A.10)

These transformations obviously leave the components of the field strength (A.9) invariant.

Furthermore, they imply that χ+ is pure gauge and can be set to zero. Then the two

independent components of the field strength multiplet are the gaugino λ(σ) and the field

strength F (σ):

λ−(σ) =W−(ζ)|ϑ=0 , F (σ) = ∇+W−(ζ)|ϑ=0 = ∂−−A++(σ)− ∂++A−−(σ) . (A.11)

Note that F is a pseudo-scalar field that arises from the Hodge dual of the field strength

Fab = ∂[aAb].

Now that we have reviewed the structure of an N = (0, 1) vector multiplet, we can

derive the multiplet of currents for an Abelian symmetry. Consider a U(1) invariant action

S for a matter system. If we couple it to a background U(1) gauge multiplet described by

the independent superfields (Γ+,Γ−−), at first order in the gauge connections it holds

S = −i

∫
d2σ dϑ+

[
G+Γ−− + iG−−Γ+

]
. (A.12)
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Assuming that the equations of motion for the matter multiplets are satisfied, the variation

of the action under arbitrary local U(1) transformations (A.6), after some integrations by

parts, takes the form

δGS = i

∫
d2σ dϑ+ τ

(
∂−−G+ + iD+G−−

)
. (A.13)

Imposing that the action is invariant δGS = 0 then leads to the following supercurrent

conservation equations for a U(1) symmetry:

D+G−− = i∂−−G+ . (A.14)

It is simple to see that the previous conservation equation implies

i∂−−D+G+ = D+D+G−− = −i∂++G−− . (A.15)

Thus by defining

G++ := D+G+ , (A.16)

one gets the conservation equation for a U(1) flavor current

∂++G−− = −∂−−G++ . (A.17)

Note that by construction, due to (A.16), it also holds

D+G++ = −i∂++G+ . (A.18)

In components, the superfields of the U(1) flavor current multiplet are given by

G+(ζ) = g+(σ) + ϑ+G++(σ) , G−−(ζ) = G−−(σ) + iϑ+∂−−g+(σ) . (A.19)

Due to eq. (A.17), G±± satisfy the ordinary vector conservation equation

∂−−G++ + ∂++G−− = 0 . (A.20)

A.2 N = (1, 1)

The Abelian current multiplet with N = (1, 1) supersymmetry can be derived in a similar

fashion as that in the N = (0, 1) case. In practice, we can appropriately combine the

two copies of N = (0, 1) and N = (1, 0) currents that arise from parity transformations

of one to the other. A description of the off-shell vector multiplet for N = (1, 1) can be

found in [37].

The superspace Abelian gauge covariant derivatives are given in terms of connections

ΓA(ζ) by

∇A = DA − iΓA , (A.21)

where the flat spinor derivatives are given in (2.14). To describe an irreducible vector

multiplet, the covariant derivatives are constrained to satisfy the following algebra

{∇+,∇+}=−2i∇++ , {∇−,∇−}= −2i∇−− , {∇+,∇−}= −iW , (A.22a)

[∇+,∇−−]=−∇−W , [∇−,∇++]= −∇+W , [∇−,∇−−]= [∇+,∇++] = 0 , (A.22b)

[∇++,∇−−]= −i∇+∇−W . (A.22c)
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We would like to describe the previous algebra completely in terms of independent

connections. By analyzing the first two anti-commutators in (A.22a) we can express the

vector connections Γ±± in terms of the spinor ones Γ± as

Γ++ = iD+Γ+ , Γ−− = iD−Γ− . (A.23)

Moreover, from the third anti-commutator in (A.22a) we obtain the expression of the scalar

superfield strength W(ζ) in terms of the independent connections Γ±(ζ)

W = D+Γ− +D−Γ+ . (A.24)

With these relations holding, it is easy to verify that the rest of the algebra is completely

determined in terms of the unconstrained connection superfields Γ+ and Γ−.

The gauge transformation is given by

δGΓ+ = iD+τ , δGΓ− = iD−τ . (A.25)

It leaves the field strength invariant δGW = 0.

Note that in components, the previous Abelian vector multiplet is reduced in the

following way. The connections are

Γ+(ζ) = χ+(σ) + ϑ+A++(σ) + ϑ−B−+(σ) + iϑ+ϑ−η+(σ) , (A.26a)

Γ−(ζ) = χ−(σ) + ϑ−A−−(σ) + ϑ+B+−(σ) + iθ−θ+η−(σ) . (A.26b)

The field strength W is consequently given by

W(ζ) = B−+(σ) +B+−(σ)− iϑ+
(
η+(σ) + ∂++χ−(σ)

)
− iϑ−

(
η−(σ) + ∂−−χ+(σ)

)
−iϑ+ϑ−

(
∂++A−−(σ)− ∂−−A++(σ)

)
. (A.27)

Under the gauge transformation (A.25) with gauge parameter

τ(ζ) = φ(σ) + iϑ+ψ+(σ) + iϑ−ψ−(σ) + iϑ+ϑ−C(σ) . (A.28)

the connections (A.26) transform as

δGΓ+ = iD+τ = −ψ+ + ϑ+∂++φ− ϑ−C + iϑ+ϑ−∂++ψ− , (A.29a)

δGΓ− = iD−τ = −ψ− + ϑ−∂−−φ+ ϑ+C − iϑ+ϑ−∂−−ψ+ . (A.29b)

One can check that under this gauge transformation, the components of W are indeed

invariant. We can choose a WZ gauge such that χ+ = χ− = 0, then

W = B − iϑ+η+ − iϑ−η− − iϑ+ϑ−F , (A.30)

where

B = B−+ +B+− , F = ∂++A−− − ∂−−A++ . (A.31)

Then the physical degrees of freedoms include two real gaugni η± and one real scalar B as

well as one pseudo-real scalar F [37].
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As before for the N = (0, 1) case, we can couple the vector multiplet to the Abelian

current superfields G±(ζ):

S =

∫
d2σdϑ+dϑ−

(
Γ−G+ − Γ+G−

)
. (A.32)

Under the gauge transformation (A.25), the action transforms as

δGS = −i

∫
d2σdϑ+dϑ− τ

(
D+G− −D−G+

)
. (A.33)

By imposing gauge invariance, we obtain the conservation equation for the U(1) current

D+G− −D−G+ = 0 . (A.34)

We can define the descendant superfields

G++ = D+G+ , G−− = D−G− . (A.35)

Then acting with D+D− on both sides of equation (A.34) yields

∂−−G++ + ∂++G−− = 0 . (A.36)

In components, the U(1) current multiplet reads

G+ = g+ + ϑ+G++ + ϑ−p+ iϑ+ϑ−∂++g− , (A.37a)

G− = g− + ϑ−G−− + ϑ+p− iϑ+ϑ−∂−−g+ . (A.37b)

The lowest component of (A.36) is just the conventional U(1) vector current conservation

equation

∂−−G++ + ∂++G−− = 0 . (A.38)

A.3 N = (0, 2)

In this section, we will first review the gauge multiplet with N = (0, 2) supersymmetry

following [31]. After that, by following the same standard approach used above for the

N = (0, 1) and N = (1, 1) cases, we will derive the current multiplet for N = (0, 2)

supersymmetric theories.

The Abelian vector multiplet can be constructed by introducing the gauge covariant

derivatives:

∇+ = D+ − iΓ+ , ∇̄+ = D̄+ − iΓ̄+ , ∇±± = ∂±± − iΓ±± , (A.39)

where the spinor covariant derivatives were introduced in (2.22). Note also the conjugation

properties D̄+ = −
(
D+

)†
, Γ̄+ = −

(
Γ+

)†
, ∇̄+ = −

(
∇+

)†
.

An irreducible vector multiplet is obtained by imposing the following constraints on

the algebra:20

{∇+,∇+} = {∇̄+, ∇̄+} = [∇+,∇++] = [∇̄+,∇++] = 0 , {∇+, ∇̄+} = 2i∇++ , (A.40a)

[∇+,∇−−] = −iW̄− , [∇̄+,∇−−] = −iW− , [∇++,∇−−] = −iF , (A.40b)

20Note the conjugation properties:
(
F
)†

= F ,
(
W−

)†
= −W̄−. Note also that the field strengths W−

and W̄− should not be confused with the trace currents of the N = (0, 2) stress-tensor multiplet used in

section (2.3).
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where the superfield strengths satisfy the following Bianchi identities

∇+W̄− = ∇̄+W− = 0 , ∇+W− + ∇̄+W̄− = 2iF , (A.41a)

∇+F = ∇++W̄− , ∇̄+F = ∇++W− . (A.41b)

These imply

∇+W− = R+ iF , ∇̄+W̄− = −R+ iF ,
(
R
)†

= R . (A.42)

We are interested in the Abelian gauge theory. It is easy to show that the vanishing

of the first two anti-commutators in (A.40a) gives D+Γ+ = D̄+Γ̄+ = 0. Since it holds

D2
+ = D̄2

+ = 0, we can rewrite the spinor connections in terms of the real unconstrained

prepotential V as

Γ+ = ie−VD+e
V = iD+V , (A.43a)

Γ̄+ = ieV D̄+e
−V = −iD̄+V . (A.43b)

Moreover, the last anti-commutator in (A.40a) expresses the vector connection Γ++ in

terms of the spinor ones:

Γ++ = − i

2
(D+Γ̄+ + D̄+Γ+) . (A.44)

From (A.40b), we can obtain the following expressions for the superfield strengths

W̄− = −∂−−Γ+ +D+Γ−− , (A.45a)

W− = −∂−−Γ̄+ + D̄+Γ−− , (A.45b)

F = ∂++Γ−− − ∂−−Γ++ = ∂++Γ−− +
i

2
∂−−(D+Γ̄+ + D̄+Γ+) , (A.45c)

which satisfy the Bianchi identities (A.41). As a result, the unconstrained gauge fields for

the N = (0, 2) vector multiplet are the real prepotential V and the connection Γ−−.

The gauge transformation of the prepotential V is given by

δGV = i(Λ− Λ̄) , (A.46)

where Λ and Λ̄ are chiral and anti-chiral, respectively:

D+Λ̄ = D̄+Λ = 0 . (A.47)

As a consequence, the connections transform as

δGΓ+ = −D+Λ , (A.48a)

δGΓ̄+ = −D̄+Λ̄ , (A.48b)

δGΓ−− = −∂−−(Λ + Λ̄) , (A.48c)

δGΓ++ = −∂++(Λ + Λ̄) . (A.48d)

It is easy to verify that these gauge transformations leave the field strengths invariant:

δGW− = δGW̄− = δGF = 0 . (A.49)
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By using the N = (0, 2) Abelian vector multiplet described above, we can now derive

the U(1) current multiplet. We proceed by coupling the unconstrained gauge potentials

Γ−− and V to an Abelian current multiplet in the following way

S =

∫
d2σdϑ̄+dϑ+

(
Γ−−G + V G−−

)
, (A.50)

where G−− and G are real superfields. Under a gauge transformation, the previous action

transforms as

δGS =

∫
d2σdϑ̄+dϑ+

(
Λ(∂−−G + iG−−) + Λ̄(∂−−G − iG−−)

)
. (A.51)

Note that Λ is a chiral superfield while Λ̄ is an anti-chiral superfield. Hence, the gauge

invariance leads to the following two conservation equations

D̄+(G−− − i∂−−G) = 0 , D+(G−− + i∂−−G) = 0 , (A.52)

that are conjugate to each other. If we define the descendant superfield

G++ = −1

2
[D+, D̄+]G , (A.53)

then it is straightforward to prove that the following vector conservation eqution

∂++G−− + ∂−−G++ = 0 (A.54)

holds.

In components, the current multiplet is given by

G(ζ) = g(σ) + iϑ+p+(σ) + iϑ̄+p̄+(σ) + ϑ+ϑ̄+G++(σ) , (A.55a)

G−−(ζ) = G−−(σ) + ϑ+∂−−p+(σ)− ϑ̄+∂−−p̄+(σ) + ϑ+ϑ̄+∂−−∂++g(σ) , (A.55b)

where, thanks to (A.54), it holds

∂++G−− + ∂−−G++ = 0 . (A.56)

B Generalized Smirnov-Zamolodchikov type composite operators

As already stressed in the main body of the paper, one of the important properties of the op-

erators inducing the bosonic T J̄ and JT̄ deformations [5] is to be of Smirnov-Zamolodchikov

type [2], see OSZ
s+s′(σ) defined in equation (4.9). As such, despite being composite irrelevant

operators, they prove to be free of short distance singularities and well-defined by a point

splitting procedure, as for the analysis in [2]. In the supersymmetric cases that we have

studied in this paper, the T J̄ and JT̄ operators prove to be supersymmetric descendants of

other operators. In particular, in this section we will restrict to the T J̄ and JT̄ operators

that arise as full superspace integrals of some primary operators. In this case, the defor-

mation operators sit at the bottom of a long supersymmetric multiplet. If supersymmetry

is not broken by quantum effects, the entire multiplet should be well defined by a point
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splitting regularization, not only its bottom component. This is for instance the case for

the supersymmetric T T̄ deformations studied in [24–26]. Another remarkable feature of the

deformation operators is that they are all invariant under improvement transformations of

the (supersymmetric) currents. As we will see, these are features that hold also for the su-

persymmetric T J̄ and JT̄ operators that we have introduced in section 4. The way we will

show this here, is to actually notice that all the supersymmetric T T̄ , T J̄ and JT̄ operators

belong to a class of composite operators that generalizes the Smirnov-Zamolodchikov one.

After describing such a general pattern, we will discuss the well-definedness properties of

the supersymmetric primary operators introduced in this paper which we believe extend

to the general case of the operators defined below by eq. (B.1).

B.1 Generalized Smirnov-Zamolodchikov operators

It turns out that all the supersymmetric T T̄ , T J̄ and JT̄ primary operators studied so far

in the literature fit into the following general pattern:

O(ζ) = A(ζ)B(ζ)− sX (ζ)Y(ζ) . (B.1)

Here L,R are superspace differential operators L,R ∈ {D+,D−, ∂++, ∂−−, ∂++D+, · · · } and

A,B,X ,Y are superfields satisfying conservation equations of the following type

LA = RY , LX = RB . (B.2)

This generalizes the Smirnov-Zamolodchikov type of composite operators which corre-

sponds to the case L = ∂−−,R = ∂++ and s = 1.

To study some of the properties of these operators, we introduce |A| to denote twice

of the spin of A which can be either a superfield or a differential operator. Essentially it is

given by the sum of + and − indices. For example

|D+| = |J+| = 1 , |∂−−| = |G−−| = −2 , · · · etc. (B.3)

This satisfies

|AB| = |A|+ |B| , (−)|A| = (−)−|A| . (B.4)

We would first like to understand the behavior of O under improvement transforma-

tions.21 Suppose L,R are either commuting or anti-commuting22

LR = rRL , r = ±1 . (B.5)

Then we can have the following improvement transformations which leave the con-

straints (B.2) invariant:

A → A′ = A+ RU , Y → Y ′ = Y + rLU , (B.6a)

X → X ′ = X + RV , B → B′ = B + rLV . (B.6b)

21We refer the reader to [24–26] for the improvement transformations of the various stress-tensor multi-

plets. The flavor current multiplets satisfy similar improvement transformations which we have not analyzed

in detail in our paper. For our scopes here, it will suffice to use the abstract description given in this ap-

pendix.
22It should be noted that (B.5) may not be satisfied, for example in the N = (0, 2) JT̄ deformation.
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An explicit calculation shows that under (B.6a), O transforms as

O → O′ = A′B − sXY ′ = O − (−)|R|·|U|U
(
RB − srtLX

)
+ L(· · · ) + R(· · · ) , (B.7)

where

t = (−)|L|
2−|L|·|R|+|B|·|Y| . (B.8)

If srt = 1, then using (B.2) gives

O′ = O + L(· · · ) + R(· · · ) , (B.9)

where L(· · · ),R(· · · ) are superspace total derivatives and have no effect after performing

the superspace integral. Then, the deformation operator is invariant under improvement

transformation. One can similarly check that srt = 1 also ensures the improvement invari-

ance under (B.6b).

For the reader’s convenience, let us now list all the supersymmetric primary operators,

together with the defining current multiplets with N = (0, 1), N = (1, 1) and N = (0, 2)

supersymmetry, that we have either constructed in this paper or that first appeared in

the following references [24–26].23 All the following operators are of the form given by

eq. (B.1):

• (0, 1) T T̄ :

OT T̄− = T−−−−J+++ − T J− , (B.10a)

D+T−−−− = i∂−−J− , (B.10b)

D+T = i∂−−J+++ ; (B.10c)

• (1, 1) T T̄ :

OT T̄ = J−−−J+++ − J+J− , (B.11a)

D+J−−− = D−J− , (B.11b)

D+J+ = D−J+++ ; (B.11c)

• (0, 2) T T̄ :

OT T̄−− = T−−−−S++ − W̄−W−

= T−−−−S++ +
1

2
(W̄− −W−)(W̄− −W−) , (B.12a)

(D+ − D̄+)T−−−− = ∂−−

(
1

2
(W̄− −W−)

)
, (B.12b)

(D+ − D̄+)(W̄− +W−) = ∂−−S++ ; (B.12c)

23We refer the reader to [27] for N = (2, 2) T T̄ deformations that share similar properties.
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• (0, 1) JT̄ :

OJT̄+ = J+++G−− − G++J− , (B.13a)

∂−−J+++ = −∂++J− , (B.13b)

∂−−G++ = −∂++G−− ; (B.13c)

• (0, 1) T J̄ :

OT J̄−−− = T−−−−G+ − G−−J− , (B.14a)

D+T−−−− = i∂−−J− , (B.14b)

D+G−− = i∂−−G+ ; (B.14c)

• (1, 1) JT̄ :

OJT̄++ = J+++G− − G+J+ , (B.15a)

D−J+++ = D+J+ , (B.15b)

D−G+ = D+G− ; (B.15c)

• (1, 1) T J̄ :

OT J̄−− = J−−−G+ − G−J− , (B.16a)

D+J−−− = D−J− , (B.16b)

D+G− = D−G+ ; (B.16c)

• (0, 2) JT̄ :24

OJT̄ = G−−S++ − 2T G , (B.18a)

D+G−− = −i∂−−D+G , (B.18b)

D+(2T ) = −i∂−−D+S++ ; (B.18c)

• (0, 2) T J̄ (in term of the R-multiplet):

OT J̄−−−− = T−−−−G − G−− ·
1

2
R−− , (B.19a)

D+T−−−− = −i∂−−D+

(
1

2
R−−

)
, (B.19b)

D+G−− = −i∂−−D+G . (B.19c)
24Remember also that in the case of an R-multiplet, the N = (0, 2) JT̄ operator is equivalent to

OJT̄
R (ζ) = R++(ζ)G−−(ζ)−R−−(ζ)G++(ζ) , (B.17)

which is of Smirnov-Zamolodchikov type.
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B.2 Well-definedness of the composite operators

Of the nine operators listed above, we already know that three of them, specifically the

operators in eq. (B.10a), (B.11a) and (B.13a) are well-defined (meaning free of short dis-

tance singularities in a point-splitting regularization scheme) since they are of Smirnov-

Zamolodchikov type. Moreover, for the N = (0, 2) T T̄ operator, eq. (B.12a), we have

shown in [26] that well-definedness can be proven by using supersymmetry and point split-

ting arguments completely analogues of the ones used in [1, 2]. It turns out that the

same arguments apply also to the other operators listed in (B.10a)–(B.19a) that are not of

Smirnov-Zamolodchikov’s type. For this reason, we will refer the reader to [1, 2] and [26]

for details and simply indicate what are the sufficient conditions required to infer well-

definedness of the composite operators. We also believe these arguments might work to

prove in general that operators of the form (B.1) satisfying (B.2) are well-defined.

The heart of the arguments given in [26] generalizing [1, 2] was based on the following

steps:

i) Define an appropriate bilocal point-splitted version of the composite O(ζ) = O(σ, ϑ)

operator whose ϑ = 0 component, O(σ) = O(ζ)|ϑ=0, defines the supersymmetric

primary operator. Specifically, for the operators of the type (B.1) listed above within

eqs. (B.10a)–(B.19a) it suffices to consider the bilocal superspace operator given by

O(ζ, ζ ′) = A(ζ)B(ζ ′)− sX (ζ ′)Y(ζ) , (B.20)

and its ϑ = ϑ′ limit

O(σ, σ′;ϑ) =
[
A(σ, ϑ)B(σ′, ϑ′)− sX (σ′, ϑ′)Y(σ, ϑ)

]
|ϑ=ϑ′ . (B.21)

Since divergencies cannot occur in the expansions of the Grassmann ϑ and ϑ′ coordi-

nates, the operator O(σ, σ′;ϑ) is the appropriate point-splitted regulated version of

the composite superspace operator O(ζ).

ii) Prove, by using the superspace covariant derivatives algebra, the conservation equa-

tions (B.2) (and their implications) and “integrations by parts”, that the bilocal

operator satisfies a relation of the following type

∂±±O(ζ, ζ ′) = 0 + EoMs + (∂ + ∂′)[· · · ] + (D +D′)[· · · ] . (B.22)

Here with “EoMs” we again refer to terms that are identically zero once the conser-

vation equations for the current multiplets are used while with the last two terms

in (B.22) we indicate terms that are superspace total derivatives, such as for example

the vector derivatives (∂±±+∂′±±) or, for example, the spinor derivatives (D+ +D′+),

(D− +D′−), etc, acting on bilocal operators.

iii) When we consider the coincident limit ϑ = ϑ′ in the Grassmann coordinates, equa-

tion (B.22) implies

∂±±O(σ, σ′;ϑ) = 0 + EoMs + [P, · · · ] + [Q, · · · ] , (B.23)
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where [P, · · · ] and [Q, · · · ] schematically indicate a translation and supersymmetry

transformation of some bilocal superfield operator. Assuming that the model under

consideration has preserved translation invariance and supersymmetry, by using an

extension of the OPE arguments of [1, 2], one can show that eq. (B.23) implies [26]

O(σ, σ′; θ) = O(ζ) + derivative terms . (B.24)

Here “derivative terms” indicate superspace covariant derivatives acting on local su-

perfield operators while O(ζ) arises from the regular, non-derivative part of the OPE

of O(σ, σ′;ϑ). For this reason, up to total derivatives which for instance do not con-

tribute when the operator is integrated over the full superspace, O(σ, σ′; θ) is free

of short distance singularities in σ → σ′. This concludes the arguments of well-

definedness of [1, 2, 26].

Let us give an example of the calculation that leads to eq. (B.22). The simplest case

is the N = (0, 1) T J̄ for which we define the bilocal operator

OT J̄−−−(ζ, ζ ′) = T−−−−(ζ)G+(ζ ′)− G−−(ζ ′)J−(ζ) . (B.25)

We compute

∂++OT J̄−−−(ζ, ζ ′) = ∂++T−−−−(ζ)G+(ζ ′) + J−(ζ)∂′++G−−(ζ ′)

−(∂++ + ∂′++)
(
J−(ζ)G−−(ζ ′)

)
= iD+D+T−−−−(ζ)G+(ζ ′) + iJ−(ζ)D′+D′+G−−(ζ ′)

−(∂++ + ∂′++)
(
J−(ζ)G−−(ζ ′)

)
= −D+∂−−J−(ζ)G+(ζ ′)− J−(ζ)D′+∂′−−G+(ζ ′)

+iD+

(
D+T−−−−(ζ)− i∂−−J−(ζ)

)
G+(ζ ′)

+iJ−(ζ)D′+
(
D′+G−−(ζ ′)− i∂−−G+(ζ ′)

)
−(∂++ + ∂′++)

(
J−(ζ)G−−(ζ ′)

)
, (B.26)

where we used ∂++ = iD+D+, made some “integration by parts”, and completed terms

that are zero once the conservation equations for the current multiplets are used. If we

“integrate by parts” both the D+ and ∂−− derivatives in the first line of the last equivalence

we obtain

∂++OT J̄−−−(ζ, ζ ′) = J−(ζ)∂′−−D′+G+(ζ ′)− J−(ζ)∂′−−D′+G+(ζ ′)

+iD+

(
D+T−−−−(ζ)− i∂−−J−(ζ)

)
G+(ζ ′)

+iJ−(ζ)D′+
(
D′+G−−(ζ ′)− i∂−−G+(ζ ′)

)
−(∂++ + ∂′++)

(
J−(ζ)G−−(ζ ′)

)
−(∂−− + ∂′−−)

(
D+J−(ζ)G+(ζ ′)

)
+(D+ +D′+)

(
J−(ζ)∂′−−G+(ζ ′)

)
, (B.27)

where the first term is identically zero, the second and third line are zero once used the

conservation equations, while the last three lines are total derivatives. A very similar
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calculation shows that the following result holds

∂−−OT J̄−−−(ζ, ζ ′) = −iT−−−−(ζ)
(
D′+G−−(ζ ′)− i∂′−−G+(ζ ′)

)
−i
(
D+T−−−−(ζ)− i∂−−J−(ζ)

)
G−−(ζ ′)

+(∂−− + ∂′−−)
(
T−−−−(ζ)G+(ζ ′)

)
+i(D+ +D′+)

(
T−−−−(ζ)G−−(ζ ′)

)
, (B.28)

which, again, is zero up to total derivatives and terms that cancel once the conservation

equations are used. These show that the composite bilocal operator OT J̄−−−(ζ, ζ ′) satisfies

eq. (B.22)

∂±±OT J̄−−−(ζ, ζ ′) = 0 + EoMs + (∂ + ∂′)[· · · ] + (D +D′)[· · · ] , (B.29)

and then OT J̄−−−(ζ) is well-defined.

Similar calculations hold for the operators defined by the equations (B.15a) and (B.16a)

in the N = (1, 1) case, while the N = (0, 2) JT̄ operator of eq. (B.18a), in the case of

an R-multiplet does not need any significant analysis since it is equivalent to a Smirnov-

Zamolodchikov type operator, see equation (B.17) (the same is true for the bilocal forms

of the N = (0, 2) JT̄ operators). We leave as an exercise to the reader to prove that (B.22)

holds for (B.15a) and (B.16a).

We are left with the N = (0, 2) T J̄ operator, eq. (B.19a), which assume the existance

of an R-multiplet, and the N = (0, 2) JT̄ operator of eq. (B.18a) for a general S-multiplet.

Let’s focus on the T J̄ case, the general N = (0, 2) JT̄ analysis goes along the same lines.

By doing some straightforward manipulations similar to the ones used above one can prove

the following relation

∂++OT J̄−−−−(ζ, ζ ′) = − i

2
D+

(
D̄+T−−−−(ζ)− i

2
D̄+∂−−R−−(ζ)

)
G(ζ ′)

− i

2
D̄+

(
D+T−−−−(ζ) +

i

2
D+∂−−R−−(ζ)

)
G(ζ ′)

− i

4
R−−(ζ)D′+

(
D̄′+G−−(ζ ′)− iD̄′+∂′−−G(ζ ′)

)
− i

4
R−−(ζ)D̄′+

(
D′+G−−(ζ ′) + iD′+∂′−−G(ζ ′)

)
−1

2
(∂++ + ∂′++)R−−(ζ)G−−(ζ ′)

−1

4
(∂−− + ∂′−−)

(
D+R−−D̄′+G(ζ ′)− D̄+R−−D′+G(ζ ′)

)
+

1

4
(D+ +D′+)

(
∂−−D̄+R−−(ζ)G(ζ ′) +R−−(ζ)∂′−−D̄′+G(ζ ′)

)
−1

4
(D̄+ + D̄′+)

(
R−−(ζ)∂′−−D′+G(ζ ′) + ∂−−D+R−−(ζ)G(ζ ′)

)
, (B.30)

which, as expected, is of the form

∂++OT J̄−−−−(ζ, ζ ′) = 0 + EoMs + (∂ + ∂′)[· · · ] + (D +D′)[· · · ] . (B.31)
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The analysis of ∂−−OT J̄−−−−(ζ, ζ ′) is more intricate since it is clear that ∂−− acting on any

superfields in the current multiplets can not be directly simplified by using the conservation

equations (B.19b). As a way around, we assume that the anti-chirality constraints (and

their complex conjugates) in (B.19b) can be solved on-shell in terms of two local composite

complex superfields P−−−−−(ζ) and P−−−(ζ) as(
T−−−− +

i

2
∂−−R−−

)
= D+P−−−−− , (B.32a)(

G−− + i∂−−G
)

= D+P−−− , (B.32b)

which imply

T−−−− =
1

2

(
D+P−−−−− + D̄+P̄−−−−−

)
, (B.33a)

∂−−R−− = −i
(
D+P−−−−− − D̄+P̄−−−−−

)
, (B.33b)

G−− =
1

2

(
D+P−−− + D̄+P̄−−−

)
, (B.33c)

∂−−G = − i

2

(
D+P−−− − D̄+P̄−−−

)
, (B.33d)

where P̄−−−−− = (P−−−−−) and P̄−−− = (P−−−). By using the decomposition in terms

of the prepotential superfields P−−−−−(ζ) and P−−−(ζ) we can analyse ∂−−OT J̄−−−−(ζ, ζ ′).

A straightforward calculation similar to the previous cases shows that it holds

∂−−OT J̄−−−−(ζ, ζ ′) = (∂−− + ∂′−−)
(
T−−−−(ζ)G(ζ ′)

)
+

i

2
(D+ +D′+)

(
P−−−−−(ζ)D′+P−−−(ζ ′)

)
− i

2
(D̄+ + D̄′+)

(
P̄−−−−−(ζ)D̄′+P̄−−−(ζ ′)

)
, (B.34)

which is an equation of the form

∂−−OT J̄−−−−(ζ, ζ ′) = 0 + EoMs + (∂ + ∂′)[· · · ] + (D +D′)[· · · ] , (B.35)

as expected. This finalizes the analysis of the well-definedness for the N = (0, 2) T J̄

operator. The reader can use the same on-shell resolution of the chirality constraints

to show that the same analysis can be performed with the N = (0, 2) JT̄ operator of

eq. (B.18a) for a general S-multiplet. In fact, the arguments are almost identical considering

the same structures of (B.18) and (B.19).

To conclude this section we stress, once more, that despite we have not yet attempted

to prove that the generalized Smirnov-Zamolodchikov operators defined in eq. (B.1) are

well-defined in general, we expect that a proof will develop along the lines of the cases

analyzed so far.
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