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1 Introduction

Effective field theories (EFTs) are being used to describe the effects of new heavy particles

at low energy in terms of operators of dimension higher than four. A well acknowledged

advantage of this approach is its generality. The only model dependence resides in the light

degrees of freedom out of which the EFT is built. (The symmetries of the EFT are in prin-

ciple also debatable, but by now the group of gauge symmetries SU(3)c × SU(2)L ×U(1)Y
is well established.) Among other aspects, this choice depends crucially on the nature of

neutrinos. If neutrinos are Majorana, the simplest assumption is that the infrared (IR) com-

prises only the Standard Model (SM) fields. The resulting EFT, known as SMEFT [1, 2],

has been extensively studied in the recent years; see ref. [3] for a fresh review. If neutri-

nos are Dirac, the low-energy sector has to be extended with right-handed (RH) singlet
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fermions. The corresponding EFT is referred to as νSMEFT [4, 5]. It has also been ap-

plied to the case in which the new RH neutrinos are themselves Majorana, as predicted in

numerous models. (See ref. [6] for an EFT for non-relativistic Majorana neutrinos.) With

the same spirit, other EFTs have considered also new scalars in the IR; see e.g. refs. [7–9].

A common feature of all these EFTs is that they predict new processes that are com-

pletely absent in the renormalisable SM. Many of these processes have not been studied

yet experimentally. These include, among others, rare decays of the top quark such as

t → `+`−j [10, 11], t → bbj [11, 12] or the non-resonant t → b`+ + Emiss
T [13] as well as

rare decays of the Higgs boson including h → `+`− + 4j [14], h → γ(γ) + Emiss
T [15]. (In

ref. [16] the constraints on the νSMEFT operators arising from low-energy experiments

have been derived.) However, this bottom-up approach is not without drawbacks. Most

importantly, operators other than those triggering the signals of interest are generally also

present (with correlated coefficients) in concrete ultraviolet (UV) models; some of them

being very constrained. Likewise, it is hard to prioritise one search over others.

It is therefore desirable that searches motivated by pure EFT inspection are also sup-

ported by realistic UV models.1 This exercise requires matching UV models to the EFT,

generally at one loop (at which several of the most interesting and/or dangerous operators

appear often). In the usual diagrammatic approach, this process consists of computing tens

of one-light-particle-irreducible off-shell amplitudes in both the UV and the EFT. This is a

very demanding task that in turn requires knowledge of a full off-shell basis of EFT opera-

tors (only those linked by algebraic identities and integration by parts being removed) and

their relations by equations of motion. If low energy (E � v, with v ∼ 246 GeV being the

Higgs vacuum expectation value) observables are to be computed, then the corresponding

EFT in the electroweak (EW) symmetry broken phase must be also known, as well as its

matching to the aforementioned operators. Renormalisation group evolution (RGE) of the

Wilson coefficients in both EFTs might be also needed.

While several of these points have been already addressed in the SMEFT,2 very little

is known about the νSMEFT beyond a full (on-shell) basis of up to dimension-seven oper-

ators [4, 5, 23, 24]. Moreover, while new techniques [25–30] and tools [31–34] for one-loop

matching are also being developed, a severe obstacle for progress in this respect is precisely

the lack of explicit one-loop matching computations to which compare to in the litera-

ture [34]. (To the best of our knowledge, partial examples of one-loop matching have been

only provided for the SM extended with a real scalar singlet [30, 35, 36], with a charged

scalar singlet [37], with some colourless EW multiplets for very particular parameters [25]

and with a vector-like quark singlet [31].)

1We are well aware that “realistic” is an arguable concept. Here we adopt the notion that a “realistic”

UV model should involve less free parameters than the EFT (which in turn restricts the number of new

independent heavy fields), and that there should not be large cancellations between different couplings of

similar size.
2The first complete set of dimension-six operators was obtained in ref. [1]. Several of them were shown

to be related by equations of motion in ref. [2]. The corresponding EFT below the EW symmetry breaking

(EWSB) scale, known as LEFT, was worked out in ref. [17]; the tree-level matching of the SMEFT onto the

LEFT was also provided in the same article. This computation has been recently performed at one loop in

ref. [18]. Finally, the RGE of the SMEFT and LEFT operators was presented in refs. [19–21] and ref. [22],

respectively.
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In light of the discussion above, in this paper we consider a simple UV model whose

EFT description is the νSMEFT, for which we provide a full off-shell basis and relations

between different operators by equations of motion; see section 2. In section 3 we perform

the actual one-loop matching using the diagrammatic approach. We provide mathematical

tools used and details of loop computations in appendix A and in appendices B and C,

respectively. In section 4 we study the phenomenology of the resulting EFT (with operators

with correlated Wilson coefficients, as they depend on only a very small number of UV

couplings), both in the Majorana and in the Dirac cases, and highlight the importance of

performing new Higgs searches at the LHC. To this aim, we also rely on a full on-shell

basis of the EFT below the EW scale and its matching onto the νSMEFT, as well as on

partial RGE, all of which we provide in appendix D.

2 Model and effective description

We consider the SM extended with a light RH fermionic singlet N , as well as two heavy

vector-like fermions XE ∼ (1,2)1/2, XN ∼ (1,1)1 and a heavy singly-charged scalar

ϕ ∼ (1,1)−1. The numbers within parentheses and the subindex indicate the representa-

tions of (SU(3)c, SU(2)L) and the hypercharge Y , respectively. Relatively heavy vector-like

fermions and/or charged scalars and (one or more) sterile neutrinos are present in a number

of models motivated either phenomenologically (e.g. by the persistent discrepancy between

the measured value of the muon anomalous magnetic moment and the corresponding SM

prediction [38–40]) or theoretically (e.g. in models assuming left-right symmetry [41–43],

grand unification [44] or compositeness [45, 46] — in this latter case vector-like fermions

are strictly required by the partial compositeness paradigm [47].)

We assume CP and baryon number, while lepton number and lepton flavour conserva-

tion are only broken by the small (potentially vanishing) N mass; N is assumed to couple

only to the electron (or to the muon; this choice does not alter our phenomenological re-

sults). Moreover, we assume that the heavy fields are odd under a Z2 symmetry under

which all SM fields as well as N are even.

We denote by e, u, d the RH leptons and quarks; and by L,Q the left-handed counter-

parts. We name the gluon and the EW gauge bosons by G and W,B, respectively. Let us

call the Higgs doublet by H = [G+, (h + iG0)/
√

2] and H̃ = iσ2H
∗, with σI , I = 1, 2, 3,

being the Pauli matrices. The Lagrangian of this model reads:

L = LSM+N + Lheavy , (2.1)

with

LSM+N = −1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

+ (DµH)† (DµH) + µ2HH
†H − 1

2
λH

(
H†H

)2
+ i
(
Q /DQ+ u /Du+ d /Dd+ L /DL+ e /De+N /DN

)
−
[

1

2
mNN cN +QYdHd+QYuH̃u+ LYeHe+ LYNH̃N + h.c.

]
, (2.2)
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and

Lheavy = XE

(
i /D −MXE

)
XE +XN

(
i /D −MXN

)
XN

+ (Dµϕ)∗ (Dµϕ)−M2
ϕϕ
∗ϕ− λϕϕ (ϕ∗ϕ)2 − λϕH (ϕ∗ϕ)

(
H†H

)
+
[
gXXEH̃XN + gLXEϕ

∗L+ gNXNϕ
∗N + h.c.

]
. (2.3)

Our conventions for the covariant derivative of a colour singlet field φ and for the EW field

strength tensors are

Dµφ =
(
∂µ − igT IW I

µ − ig′Y Bµ
)
φ , (2.4)

W I
µν = ∂µW

I
ν − ∂νW I

µ + gεIJKW J
µW

K
ν , Bµν = ∂µBν − ∂νBµ , (2.5)

where TI = σI/2 are the SU(2) generators.

This model features a number of interesting properties. (i) Because of the Z2 symme-

try, if the heavy particles are integrated out, no effective operators arise at tree level. (Note

also that this symmetry turns the neutral component of XE into a dark matter candidate,

provided some mechanism at a higher scale — which does not modify the results below —

is invoked to avoid direct detection constraints; we do not elaborate on this aspect of the

phenomenology though.) (ii) Because of this, it can be very easily shown that in the IR

only tree-level amplitudes are to be computed while matching at one loop.3 (Actually, it

can be shown that no loops need to be computed in the EFT even if tree level operators

are present, but the proof is more elaborated; see ref. [48].) (iii) For the very same reason,

UV corrections to light field propagators can be neglected [31]. (iv) Likewise, for all prac-

tical purposes in the process of matching, any heavy renormalised mass M (evaluated at a

scale µ equal to the physical mass) can be identified with the physical mass itself. Finally,

for mN 6= 0, this model features also the decay N → νγ. Any other model fulfilling the

aforementioned properties necessarily involves a larger number of degrees of freedom.

At energies E < M ≡ min {MXE ,MXN ,Mϕ}, this model can be described by a local

EFT built upon the SM fields and N , also known as νSMEFT. To leading order in the

expansion in E/M , it is given by LSM+N (with IR parameters) and a set of dimension-six

operators:

LEFT = LIRSM+N +
1

Λ2

∑
i

αiOi , (2.6)

with αi being dimensionless couplings. A basis of the operators Oi,4 obtained with the

3Indeed, any one-loop amplitude in the UV and in the EFT would readMUV ∼ gUV/(4π)2 andMEFT ∼
αEFT[1 + gEFT/(4π)2], respectively. Matching MUV =MEFT implies therefore

αEFT ∼
gUV

(4π)2

[
1− gEFT

(4π)2

]
=

gUV

(4π)2
+O

{
1

(4π)4

}
.

The last term in the right-hand side of the equation is formally of the same order as two-loop corrections

and hence negligible.
4We are not showing explicitly the CP counterparts of these operators, because we assume CP conser-

vation. However, they include: iBµν(Nγµ∂νN) (the one without i, for both the normal field strength and

for the dual, is redundant), iONB , iONW (dipole operators with the dual are redundant), iO1,2,3,4
LN , iOLNH ,

iOHN (iO2
NN is redundant) and iOHNe. Note that ∂νB̃µν(NγµN) vanishes due to the Bianchi identity.

On the four-fermion side, we would have iOduNe, iOLNLe, iOLNQd, iOLdQN and iOQuNL.
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0−Higgs 1−Higgs 2−Higgs

O1
DN = N∂2/∂N ONB = LσµνNH̃Bµν , ONW = LσµνNσIH̃W

I
µν OHN = NγµN(H†iDµH)

O2
DN = iB̃µν(Nγµ∂νN) O1

LN = LND2H̃ , O2
LN = L∂µND

µH̃ O2
NN = Ni/∂N(H†H)

O3
DN = ∂νBµν(NγµN) O3

LN = iLσµν∂µNDνH̃ , O4
LN = L(∂2N)H̃ OHNe = Nγµe(H̃†iDµH)

3−Higgs: OLNH = LH̃N(H†H)

Table 1. Relevant bosonic operators. The h.c. is implied when needed. For example, O1
DN =

N∂2 /∂N + h.c.; therefore all Wilson coefficients are real.

R
R

R
R

ONN = (NγµN)(NγµN)

OeN = (eγµe)(Nγ
µN) OuN = (uγµu)(NγµN)

OdN = (dγµd)(NγµN) OduNe = (dγµu)(Nγµe)

LLRR OLN = (LγµL)(NγµN) OQN = (QγµQ)(NγµN)

L
R

L
R OLNLe = (LN)ε(Le) OLNQd = (LN)ε(Qd)

OLdQN = (Ld)ε(QN)

LRRL OQuNL = (Qu)(NL)

Table 2. Relevant four-fermion operators.

help of BasisGen [49] (see ref. [50] for a similar code), is given in tables 1 and 2. When

evaluated on shell, the operators in grey can be removed from the action by suitable field

redefinitions which, up to dimension-eight effects, can be implemented by using the equa-

tions of motion [51–53]. (Redundancies due to algebraic or Fierz identities or integration

by parts have been removed.) Neglecting the small mN and the Yukawa couplings, the

relevant equations of motion of LSM+N read:

i/∂N = 0 , (2.7)

i /DL = 0 , (2.8)

(D2H̃)i = µ2HH̃
i − λH(H†H)H̃ i , (2.9)

∂νBνµ = −g
′

2
(iH†DµH + h.c.)− g′Y ffγµf , (2.10)

where f runs over all SM +N fermions. (The top Yukawa coupling is not negligible;

however, its only impact would be the generation of four-fermion operators involving top

quarks and N , for which there are no sensible searches.) As a consequence, the following
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relations hold on shell for the operators in grey:

O1
DN = 0 , (2.11)

O2
DN = −O3

DN , (2.12)

O3
DN =

g′

2
OHN + g′Y fOfN , (2.13)

O1
LN =

(
µ2HLH̃N + h.c.

)
− λHOLNH , (2.14)

O2
LN = −O3

LN , (2.15)

O3
LN =

(
µ2H
2
LH̃N + h.c.

)
− λH

2
OLNH +

g′

8
ONB −

g

8
ONW , (2.16)

O4
LN = 0 , (2.17)

O2
NN = 0 . (2.18)

As a final remark, let us note that, in light of these equations, effective operators involving

N do not generate any purely SMEFT operators upon using the equations of motion.

3 Matching

Hereafter, we assume for simplicity MXE = MXN = Mϕ = M . Also, we focus on the

regime gX ∼ gL ∼ λϕH � gN , and gN > 1 (but . 4π to stay in the perturbative regime).

This way, the mass and loop suppression in operators involving N is compensated by the

large gN . On the other hand, purely SMEFT operators can be neglected.

Our process of matching consists of equating one-light-particle-irreducible amplitudes

computed in both the UV and the EFT at a scale µ = M in MS with space-time dimension

d = 4 − 2ε. Following the discussion above, we only compute those amplitudes involving

N . Let us also note that, by virtue of eq. (2.11), the amplitude involving just two N fields,

to which only this operator contributes, does not need to be computed. Likewise, due to

the absence of heavy particle couplings to e in the UV Lagrangian, it can be trivially seen

that αHNe = 0.

The operators O2
DN and O3

DN can be matched by computing the amplitude given by

the diagrams5 (a) and (b) in figure 1. We use the momentum of the incoming N and

the momentum of the B, pN and pB, respectively. In MS we drop terms proportional to

(1/ε + log 4π − γ), where γ is the Euler-Mascheroni constant. The amplitudes in the UV

and in the EFT to order O(p2) read:

iMUV =
ig′g2N

96π2M2
u(pN − pB)PL

[
γµ
(
p2B − pBpN + /pB/pN

)
− pµB/pB − p

µ
B/pN + pµN/pB

]
u(pN )ε∗µ(pB) , (3.1)

iMEFT =
i

Λ2
u(pN − pB)PL

[
γµ
(
α3
DNp

2
B − 2α2

DNpBpN + 2α2
DN/pB/pN

)
− α3

DNp
µ
B/pB − 2α2

DNp
µ
B/pN + 2α2

DNp
µ
N/pB

]
u(pN )ε∗µ(pB) . (3.2)

5All Feynman diagrams in this article are produced with the Tik Z-Feynman package [54].
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B

B

h

pN

N XN XN

k

ϕ

N

pB pN

N

k

ϕ ϕ

XN N

pB

pν

ν XE XN

k

ϕ

pN

N

(a) (b) (c)

Figure 1. (a) and (b) Diagrams for the amplitude 〈NNB〉 in the UV, to which O2
DN and O3

DN

contribute in the IR. (c) Diagram for the amplitude 〈νNh〉 in the UV, to which O1
LN , O2

LN , O3
LN

and O4
LN contribute in the IR.

h γ h γ h

γ

pν

ν

k

ϕ

XE XN XN

pN

N

ph pγ pν

ν

k

ϕ

XE XE XN

pN

N

ph pγ
pν

ν

k

ϕ ϕ

XE XN

pN

N

ph

pγ
(a) (b) (c)

Figure 2. Diagrams for the amplitude 〈νNhγ〉 in the UV, to which ONB and ONW contribute

in the IR.

We provide all details about the computation of this and the forthcoming UV amplitudes

in appendix B.

The operators O1
LN , O2

LN , O3
LN and O4

LN , as well as YN in the IR, can be matched by

computing the amplitude represented by the diagram (c) in figure 1. We take pν and pN
as independent momenta. To order O(p2) we have:

iMUV =
igNgXgL

96
√

2π2M2
u(pN )PL

[
6M2

(
1− log

µ2

M2

)
− p2ν − p2N + pνpN + /pN/pν

]
u(pν) ,

(3.3)

iMEFT =
i√
2Λ2

u(pN )PL

[
− YNΛ2 − α1

LNp
2
ν +

(
α2
LN − α1

LN − α4
LN

)
p2N

+
(
2α1

LN − α2
LN + α3

LN

)
pνpN − α3

LN/pN/pν

]
u(pν) . (3.4)

The other two operators involving a single Higgs field are ONB and ONW . They can be

matched by computing the amplitude represented by the diagrams in figure 2. Taking pγ ,

ph and pN as independent momenta, the results in the UV and in the EFT up to order

– 7 –
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W h h h

h h

pe

e

k

ϕ

XE XE XN

pN

N

pW ph pN

N

k

ϕ

XN XE XN

pN ′

N

ph ph′ pN

N

k

ϕ ϕ

XN

pN ′

N

(a) (b) (c)

Figure 3. (a) Diagram for the amplitude 〈eNWh〉 in the UV, to which O1
LN , O2

LN , O3
LN and

ONW contribute in the IR. (b) and (c) Diagrams for the amplitude 〈NNhh〉 in the UV, to which

O2
NN contributes in the IR. (Note that, despite not explicitly shown, diagram (b) but with the two

Higgses exchanged is also present.)

O(p) read:

iMUV =
igLgXgNe

96
√

2π2M2
u(pN )PL

[
γµ/pγ − p

µ
γ

]
u(pν)ε∗µ(pγ) , (3.5)

iMEFT =

√
2i

Λ2
(cWαNB + sWαNW )u(pN )PL

[
γµ/pγ − p

µ
γ

]
u(pν)ε∗µ(pγ) . (3.6)

Here cW ≡ cos θW and sW ≡ sin θW , with θW being the weak mixing angle. (Let us

emphasise that in our convention, W 3
µ = cWZµ + sWAµ, Bµ = cWAµ − sWZµ.) This

amplitude was also computed previously in ref. [15] (see appendix therein). Still, one more

amplitude needs to be computed in order to completely fix the Wilson coefficients of the

one-Higgs operators. We choose that represented by the diagram (a) in figure 3. Taking

ph, pW and pN as independent momenta, we have to order O(p):

iMUV =
igNgXgLg

192π2M2
u(pN )PL

[
pµN − 2pµh − p

µ
W − γ

µ
/pN

]
u(pe)ε

∗
µ(pW ) , (3.7)

iMEFT =
ig

2Λ2
u(pN )PL

[
−
(
α2
LN + α3

LN

)
pµN − 2α1

LNp
µ
h −

(
4
αNW
g

+ α1
LN

)
pµW

+ α3
LNγ

µ
/pN + 4

αNW
g

γµ/pW

]
u(pe)ε

∗
µ(pW ) . (3.8)

The operator O2
NN can be matched by computing the amplitude represented by the

diagrams (b) and (c) in figure 3, while the operator OHN by computing the diagram (a)

in figure 4. (It might seem that OHN also contributes to the former amplitude; however,

only its CP counterpart iOHN , which we do not need to consider, does it.) The first one

reads, to order O(p):

iMUV = −
ig2NλϕH
96π2M2

u(pN ′)PL

[
/pN + /pN ′

]
u(pN ) , (3.9)

iMEFT =
i

Λ2
α2
NNu(pN ′)PL

[
/pN + /pN ′

]
u(pN ) . (3.10)

– 8 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
9

h W 3 h h h h h

h h

pN

N

k

ϕ

XN XE XE XN

pN ′

N

pW 3 pν

ν

k

ϕ

XE XN XE XN

pN

N

pν

ν

k

ϕ ϕ

XE XN

pN

N

(a) (b) (c)

Figure 4. (a) Diagram for the amplitude 〈NNW 3hh〉 in the UV, to which the operator OHN
contributes in the IR. (b) and (c) Diagrams for the amplitude 〈νNhhh〉 in the UV, to which OLNH
contributes in the IR. (Note that, despite not explicitly shown, all these diagrams but with the

corresponding Higgs legs exchanged are also present.)

In the UV and EFT to zero momentum, the second aforementioned amplitude reads:

iMUV =
igg2Ng

2
X

96π2M2
u(pN ′)PLγ

µu(pN )ε∗µ(pW 3) , (3.11)

iMEFT = − iαHNg
Λ2

u(pN ′)PLγ
µu(pN )ε∗µ(pW 3) . (3.12)

The operator OLNH can be matched by computing the amplitude depicted by the dia-

grams (b) and (c) in figure 4. To zero momentum, the amplitudes in the UV and in the

EFT are given by [15]:

iMUV =
igNgXgL

32
√

2π2M2

(
λϕH − g2X

)
u(pN )PLu(pν) , (3.13)

iMEFT =
3iαLNH√

2Λ2
u(pN )PLu(pν) . (3.14)

On the side of four-fermion operators, the only such non-vanishing interactions (before

using the equations of motion) are ONN and OLN . They can be matched by computing

the amplitudes depicted by the diagrams (a) and (b) in figure 5, respectively. The UV and

EFT expressions for each amplitude to zero momentum read, respectively:

iMUV = −
ig4N

96π2M2
[u(p3)γ

µPRu(p1)] [u(p4)γµPRu(p2)] , (3.15)

iMEFT =
4iαNN

Λ2
[u(p3)γ

µPRu(p1)] [u(p4)γµPRu(p2)] , (3.16)

and

iMUV = −
ig2Ng

2
L

192π2M2
[u(pν′)γ

µPLu(pν)] [u(pN ′)γµPRu(pN )] , (3.17)

iMEFT =
iαLN

Λ2
[u(pν′)γ

µPLu(pν)] [u(pN ′)γµPRu(pN )] . (3.18)

By equating all UV amplitudes to their IR counterparts, we end up with 23 equations

(including αHNe = 0) for 15 unknowns; the redundancies reflect the gauge symmetries.6

6Note, for example, that the contributions of O1
LN to the amplitudes 〈νNh〉 and 〈eNWh〉 are correlated,

because both the O(p2) Higgs piece as well as the WH interaction come from D2H̃. Thus, when matching

e.g. the p2ν part of eqs. (3.3) and (3.4) one gets α1
LN = (gNgXgL)/(96π2) × (Λ/M)2; exactly the same as

matching the pµh piece of eqs. (3.7) and (3.8).
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p1

N XN

XN

p3

N

p2

N

p4

N

k pν

ν XE

XN

pν′

ν

pN

N

pN ′

N

k
ϕ ϕ ϕ ϕ

(a) (b)

Figure 5. (a) Diagram for the amplitude 〈NNNN〉 in the UV, to which ONN contributes in the

IR. (Note that, despite not explicitly shown, this diagram but with the two outgoing Ns exchanged

also exists.) (b) Diagram for the amplitude 〈ννNN〉 in the UV, to which OLN contributes in the IR.

Neglecting the running from the scale µ = M to µ = v, the following identities hold off

shell at the EW scale (other Wilson coefficients vanish):

Y IR
N = Y UV

N − gLgXgN
16π2

, (3.19)

α2
DN

Λ2
=

eg2N
192π2cWM2

, (3.20)
α3
DN

Λ2
=

eg2N
96π2cWM2

, (3.21)

αNB
Λ2

=
egLgXgN

192π2cWM2
, (3.22)

α1
LN

Λ2
=
gLgXgN
96π2M2

, (3.23)

α3
LN

Λ2
= − gLgXgN

96π2M2
, (3.24)

αHN
Λ2

= −
g2Xg

2
N

96π2M2
, (3.25)

α2
NN

Λ2
= −

λϕHg
2
N

96π2M2
, (3.26)

αLNH
Λ2

=
gLgXgN
96π2M2

(λϕH − g2X) , (3.27)

αNN
Λ2

= −
g4N

384π2M2
, (3.28)

αLN
Λ2

= −
g2Lg

2
N

192π2M2
, (3.29)

where e =
√

4πα, and α ≈ 1/137 stands for the electromagnetic fine-structure constant.

Finally, upon using the equations of motion, eqs. (2.11)–(2.18), the following relations hold

on shell (other Wilson coefficients vanish):

Y IR
N = Y UV

N − gLgXgN
16π2

(
1+

m2
h

24M2

)
, (3.30)

αNB
Λ2

=
egLgXgN

256π2cWM2
, (3.31)

αNW
Λ2

=
egLgXgN

768π2sWM2
, (3.32)

αHN
Λ2

=
g2N (e2 − 4c2W g

2
X)

384π2c2WM
2

, (3.33)
αLNH

Λ2
= − gLgXgN

192π2M2

[
m2
h

v2
+ 2(g2X−λϕH)

]
, (3.34)

αLN
Λ2

= −
g2N (e2 + 2c2W g

2
L)

384π2c2WM
2

, (3.35)
αeN
Λ2

= −
e2g2N

192π2c2WM
2
, (3.36)

αNN
Λ2

= −
g4N

384π2M2
, (3.37)

αQN
Λ2

=
e2g2N

1152π2c2WM
2
, (3.38)

αuN
Λ2

=
e2g2N

288π2c2WM
2
, (3.39)

αdN
Λ2

= −
e2g2N

576π2c2WM
2
. (3.40)
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For convenience, let us also define ONA = cWONB + sWONW and ONZ = cWONW −
sWONB. For the coefficients of these operators we obtain:

αNA
Λ2

=
egLgXgN
192π2M2

,
αNZ
Λ2

=
egLgXgN (1− 4s2W )

768π2sW cWM2
. (3.41)

Finally, let us emphasise that the coupling constants of renormalisable operators in the

EFT can also be written in terms of the UV couplings; gIR = gUV + g′UV/(16π2). However,

one can always reabsorb the one-loop corrections by redefining gUV → gUV − g′UV/(16π2).

This redefinition would propagate to all α couplings, but the impact would be formally of

two-loop order. Still, for the sake of completeness, we have computed all renormalisable

EFT terms in appendix C.

4 Sterile neutrino phenomenology

In the process of matching we have neglected mN . The only effect of mN 6= 0 would appear

in the dimension-five operator N cNH†H suppressed not only by the loop factor but also

by mN/M , namely by ∼ 10−3 if mN ∼ 1 GeV and M ∼ 1 TeV. (The operator N cσµνNBµν
vanishes in this case because N is Majorana.) However, mN 6= 0 has a huge impact on

the phenomenology of N , because it allows the latter to decay into νγ. The corresponding

decay width must be computed after EWSB, namely in the νLEFT, obtained first by

matching the νSMEFT at the EW scale and after running down to ∼ mN . The full list

of νLEFT operators involving N is given in table 3 in appendix D. The operator that

triggers the decay of N is ONγ . For completeness, though, we provide tree-level matching

of all νSMEFT operators to all νLEFT ones in eqs. (D.1)–(D.24). The one-loop running

of all νLEFT operators generated in our setup, including ONγ , is also given in the same

appendix. Altogether, we have:

Γ(N → νγ) ≈
m3
Nα

2
Nγ(v)

2πv2

(
1− 5e2

9π2
log

v

mN

)2

. (4.1)

For simplicity, let us fix Y UV
N such that Y IR

N = αLNHv
2/(2Λ2); see eq. (3.30). This way,

the mixing between N and ν vanishes strictly. (Note that the sole important effect of this

mixing would be inducing a Majorana neutrino dipole moment for ν; this vanishes however

in our case due to lepton flavour conservation [15].)

Different experiments constrain the parameter space under study. The relevant ob-

servables can be all computed directly in the νSMEFT. (In quoting the following bounds

we have set Λ = 1 TeV.) We have first B(Z → ννγγ). Experimentally it is bounded to be

< 3.1×10−6 [55]. In our context this branching ratio is given by (note that for mN ∼ 1 GeV,

B(N → νγ) ≈ 1 [56]):

B(Z → ννγγ) ≈ B(Z → NN) ≈ 1

ΓSM
Z

m3
Zv

2

24πΛ4
α2
HN

≈ 2.7× 10−10g4N
(
0.029− g2X

)2 TeV4

M4
, (4.2)
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with ΓSM
Z ≈ 2.5 GeV. This bound implies in turn a limit on αHN < 0.11, which is ultimately

the most stringent constrain on (M, gN ). Other subleading constraints include: (i) B(Z →
ννγ), experimentally bounded to be < 3.2×10−6 [57], which implies αNZ < 0.081; (ii) the

measurement of the total W boson width, Γtotal
W = 2.085± 0.042 GeV, which however does

not constrain αHNe more than a theoretical perturbativity bound implying αHNe < 4π;

(iii) the bound on αNA < 0.88 [15] as obtained from LHC searches for events with one

photon and missing energy [58]. (Bounds on αNA obtained from the study of differential

Drell-Yan distributions at the LHC, mediated by both neutral and charged currents, using

Contur [59] are weaker [15].) The bound on αNA can be improved to αNA < 0.36 by

searches for h → γγ + Emiss
T , as proposed in ref. [15]. This value, however, still leads to a

very weak constrain on (M, gN ).

Four-fermion interactions could be bounded at the LHC in searches for pp→ `γ+Emiss
T .

However, we are not aware of any such search; a preliminary phenomenological study has

been provided in ref. [60]. Interestingly though, it has been shown that searches for Higgs

decaying to a single photon and missing energy could test B(h → νN) > 1.2 × 10−4 [15].

Noticing that

B(h→ νN) ≈ 1

ΓSM
h

mhv
4

16πΛ4
α2
LNH

≈ 2.5× 10−6 (gLgNgX)2 (0.13 + g2X − λϕH)2
TeV4

M4
, (4.3)

with ΓSM
h ≈ 4 MeV, the corresponding limit on αLNH reads αLNH < 7.3× 10−3. We show

in figure 6 that, when translated to the plane (M, gN ), this signal overcomes often the

constraint from αHN .

If lepton number is exactly conserved, i.e. in particular, mN = 0, N is just the RH

component of the SM neutrino, which would be Dirac. In this case, the very stringent

bounds on the neutrino dipole moment [61] can be only satisfied if gX ≈ 0 (or gL ≈ 0).

Accordingly, only the operator OHN and the four-fermions OLN , OeN , OQN , OuN and

OdN as well as ONN could survive, see eqs. (3.30)–(3.40). The former enhances the Z

decay into invisible, but the corresponding limit on (M, gN ) is very weak. Likewise, the

bounds on the four-fermion operators involving quarks and charged leptons are of order

α/Λ2 . 1 TeV−2 [13], and therefore they are not stringent in this setup in which all

operators arise at loop level, and hence the effective scale Λ is rather Λ ∼ 4πM .

Finally, we are not aware of any significant bound on ONN . As things stand, this

scenario is very much unconstrained in light of current data, even for M ∼ few hundreds

GeV. (In this respect, let us also emphasise that direct LHC searches for singly charged

scalars and vector-like leptons, which are present in our UV model, do not constrain this

range of masses [62–65].)

In the lepton number conserving case, if instead of a single N we have three copies (in

which case all neutrinos would be Dirac), with a priori flavour-generic couplings, the off-

diagonal dipole operators would induce decays of the SM neutrinos, νj → νiγ. For massless
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Figure 6. Constraints in the plane (M, gN ) derived from the bounds on the EFT coefficients

summarised in the text. In the region above the blue line, N with mN = 1 GeV decays within

4 cm. The actual bound on αHN from Z → ννγγ and the prospective bound on αLNH from the

h → γ + Emiss
T analysis proposed in ref. [15] have been translated to the constraints in the plane

(M, gN ) assuming gX = 1 and λϕH = −1, 0 and 0.5 (left) as well as λϕH = −1 and gX = 0.5 and

1 (right).

neutrino in the final state and neglecting running, the corresponding decay width reads

Γ(νj → νiγ) =
m3
jv

2

8πΛ4
α2
NA =

m3
jv

2

8πM4

(egLgXgN
192π2

)2
, (4.4)

where mj is the mass of νj . The lower limit on the neutrino lifetime is τ & 1020 s [55, 66].

Assuming mj ≈ 0.1 eV and O(1) couplings, we obtain M & 0.3 TeV, and up to
√

4π times

more stringent constraint if gN is significantly larger than 1, as we have been assuming in

this work. Still, as in the previous case, this bound can be avoided if e.g. gX � 1.

5 Conclusions

In this paper, we have considered a very simple extension of the SM involving a light RH

neutrino N (which can be well the RH part of any of the SM neutrinos if they are Dirac,

or a new Majorana neutrino), two heavy fermionic fields and one heavy scalar field, all of

them colourless. In the IR, this theory can be described by the νSMEFT. We have shown

that, if N is Majorana, new Higgs decays not yet studied experimentally at the LHC can

test this model better than other studies already performed at low-energy facilities; most

importantly, searches for Z → ννγγ.

We note that, although this observation is relatively straightforward in the generic

EFT, because constrained operators can be set to zero independently of those triggering

the signal of interest, this is highly non-trivial in the EFT obtained in this model, in which

all Wilson coefficients depend on solely four arbitrary couplings. The fact that the signal
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of interest is not in conflict with the present constraints in such a simple UV completion

of the νSMEFT, strengthens the motivation for novel searches in the Higgs sector.

We have provided a complete calculation of one-loop matching in the diagrammatic

approach, obtained upon computing the same one-light-particle-irreducible off-shell am-

plitudes in the UV and in the IR. This complements the very few examples of one-loop

matching in the literature, and it is expected that our results will allow faster progress

in the automation of tools in this respect [31, 32]. As a byproduct of this work, we have

also obtained a complete (off-shell) basis in the νSMEFT, the tree-level matching of the

νSMEFT onto the low-energy version (in which the top quark, the Higgs and the W and

Z bosons are integrated out), that we dubbed νLEFT; as well as some one-loop anoma-

lous dimensions in the latter EFT. We leave the computation of the full RGE anomalous

dimension matrix in the νLEFT and in the νSMEFT for future work.
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A Mathematical tools

We have used the following master integrals:∫
ddk

(2π)d
1

(k2 −M2)n
=

(−1)ni

(4π)d/2
Γ(n− d/2)

Γ(n)

1

M2n−d = An , (A.1)

∫
ddk

(2π)d
kµkν

(k2 −M2)n
=

1

2

(−1)n−1i

(4π)d/2
Γ(n− d/2− 1)

Γ(n)

1

M2n−d−2︸ ︷︷ ︸
Bn

gµν , (A.2)

∫
ddk

(2π)d
kµkνkρkσ

(k2 −M2)n
=

Cn︷ ︸︸ ︷
1

4

(−1)ni

(4π)d/2
Γ(n− d/2− 2)

Γ(n)

1

M2n−d−4

× (gµνgρσ + gµρgνσ + gµσgνρ) . (A.3)

Here d is the space-time dimension. For expansion in an external momentum p we have:

1

(k + p)2 −M2
=

1

k2 −M2

[
1− 2kp+ p2

k2 −M2
+

4(kp)2

(k2 −M2)2

]
+O(p3) . (A.4)

Finally, we have also made use of the following algebraic identities:

εµσρνp1ρp2νγσγ5 = i
(
γµ/p2/p1 + pµ1/p2 − p

µ
2/p1 − γ

µp1p2

)
, (A.5)

[Dµ, Dν ] = −ig′Y Bµν − igT IW I
µν . (A.6)
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B Details of computation of the UV amplitudes

B.1 Amplitude for one B and no Higgs bosons

This amplitude in the UV is given by the diagrams (a) and (b) in figure 1. We have:

iMa
UV =− g′g2Nu(pN − pB)PL

{
µ4−d

∫
ddk

(2π)d
1

D3
(/pN − /pB + /k +M)γµ(/pN + /k +M)

×
[
1− 2(pN − pB)k + (pN − pB)2

D
+

4[k(pN − pB)]2

D2

]
×
[
1−

2pNk + p2N
D

+
4(kpN )2

D2

]}
PRu(pN )ε∗µ(pB)

=− g′g2Nu(pN − pB)PL

{
[µ2ε(2ε− 2)B3 +M2A3]γ

µ

+
[
12B4 −A3 − 48C5 − 2M2A4 + 12M2B5

]
γµp2N

+
[
4B4 − 16C5 −M2A4 + 4M2B5

]
γµp2B

+
[
48C5 − 8B4 + 2M2A4 − 12M2B5

]
γµpBpN + [A3 − 4B4] γ

µ
/pB/pN

+ [2A3 − 16B4 + 48C5] p
µ
N/pN + [16C5 − 4B4] p

µ
B/pB

+ [12B4 − 2A3 − 24C5] p
µ
B/pN + [4B4 − 24C5] p

µ
N/pB

}
u(pN )ε∗µ(pB)

=
ig′g2N

192π2M2
u(pN − pB)PL

{
γµ
(

6M2 log
µ2

M2
+ p2N + 3p2B − 3pBpN + 2/pB/pN

)
+ 2pµN/pN − 2pµB/pB − 3pµB/pN + pµN/pB

}
u(pN )ε∗µ(pB) . (B.1)

Here and in what follows D ≡ k2 −M2. The second diagram leads to

iMb
UV =− g′g2Nu(pN − pB)PL

{
µ4−d

∫
ddk

(2π)d
1

D3
(/k + /pN +M)(2kµ + pµB)

×
[
1−

2pNk + p2N
D

+
4(kpN )2

D2

]
×
[
1−

2pBk + p2B
D

+
4(kpB)2

D2

]}
PRu(pN )ε∗µ(pB)

=− g′g2Nu(pN − pB)PL

{
2µ2εB3γ

µ + [8C5 − 2B4] γ
µp2N + [8C5 − 2B4] γ

µp2B

+ 8C5γ
µpBpN + [16C5 − 4B4] p

µ
N/pN + [16C5 − 2B4] p

µ
B/pB

+ [A3 − 6B4 + 8C5] p
µ
B/pN + 8C5p

µ
N/pB

}
u(pN )ε∗µ(pB)

=
ig′g2N

192π2M2
u(pN − pB)PL

{
γµ
(
−6M2 log

µ2

M2
− p2N − p2B + pBpN

)
− 2pµN/pN + pµB/pN + pµN/pB

}
u(pN )ε∗µ(pB) . (B.2)
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Adding the two pieces together:

iMUV = iMa
UV + iMb

UV

=
ig′g2N

96π2M2
u(pN − pB)PL

{
γµ
(
p2B − pBpN + /pB/pN

)
− pµB/pB − p

µ
B/pN + pµN/pB

}
u(pN )ε∗µ(pB) . (B.3)

B.2 Amplitude for one Higgs and no gauge bosons

This UV amplitude is represented by the diagram (c) in figure 1. We have:

iMUV =− gNgXgL√
2

u(pN )PL

{
µ4−d

∫
ddk

(2π)d
1

D3

(
/pN + /k +M

)(
/pν + /k +M

)
×
[
1−

2kpN + p2N
D

+
4(kpN )2

D2

]
×
[
1− 2kpν + p2ν

D
+

4(kpν)2

D2

]}
PLu(pν)

=− gNgXgL√
2

u(pN )PL

{
µ2ε(4− 2ε)B3 +M2A3

−
[
6 (B4 − 4C5) +M2 (A4 − 4B5)

] (
p2ν + p2N

)
+ 4

(
6C5 +M2B5

)
pνpN + (A3 − 4B4) /pN/pν

}
u(pν)

=
igNgXgL

96
√

2π2M2
u(pN )PL

{
6M2

(
1− log

µ2

M2

)
− p2ν − p2N + pνpN + /pN/pν

}
u(pν) .

(B.4)

B.3 Amplitude for one Higgs and one photon

The relevant UV diagrams are depicted in figure 2. We have:

iMa+b
UV =

gLgXgNe√
2

u(pN )PL

∫
d4k

(2π)4
1

D4

(
/pN + /k +M

)[
1− 2kpN

D

]
×

{
γµ
(
/pγ + /pN + /k +M

)[
1− 2k(pγ + pN )

D

]

+
(
/ph + /pN + /k +M

)
γµ
[
1− 2k(ph + pN )

D

]}

×
(
/ph + /pγ + /pN + /k +M

)[
1− 2k(ph + pγ + pN )

D

]
× PLu(pν)ε∗µ(pγ)
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=
gLgXgNe√

2
u(pN )PL

{
2
[
2B4 − 12C5 +M2 (A4 − 10B5)

]
pµh

+ 4
[
B4 − 12C5 − 4M2B5

]
pµγ

+ 6
[
2B4 − 12C5 +M2 (A4 − 6B5)

]
pµN

+
[
2B4 − 12C5 +M2 (A4 + 2B5)

]
γµ/ph

+
[
2B4 + 12C5 +M2 (3A4 − 2B5)

]
γµ/pγ

}
u(pν)ε∗µ(pγ)

=
igLgXgNe

96
√

2π2M2
u(pN )PL

{
− pµh − p

µ
γ + γµ/ph + γµ/pγ

}
u(pν)ε∗µ(pγ) , (B.5)

and

iMc
UV =

gLgXgNe√
2

u(pN )PL

{∫
d4k

(2π)4
1

D4

(
/pγ + /pN + /k +M

)(
/ph + /pγ + /pN + /k +M

)
×
(
pµγ + 2kµ

) [
1− 2k(pγ + pN )

D

] [
1− 2k(ph + pγ + pN )

D

]
×
[
1− 2kpγ

D

]}
PLu(pν)ε∗µ(pγ)

=
gLgXgNe√

2
u(pN )PL

{
− 2

[
12C5 + 2M2B5

]
pµh + 2B4γ

µ
/ph

+
[
8 (B4 − 9C5) +M2 (A4 − 12B5)

]
pµγ

+ 4
[
B4 − 12C5 − 2M2B5

]
pµN

}
u(pν)ε∗µ(pγ)

=
igLgXgNe

96
√

2π2M2
u(pN )PL

{
pµh − γ

µ
/ph

}
u(pν)ε∗µ(pγ) . (B.6)

Adding eqs. (B.5) and (B.6) together, we get:

iMUV = iMa+b
UV + iMc

UV =
igLgXgNe

96
√

2π2M2
u(pN )PL

{
γµ/pγ − p

µ
γ

}
u(pν)ε∗µ(pγ) . (B.7)

B.4 Amplitude for one Higgs and one W

This amplitude in the UV is depicted by the diagram (a) in figure 3. We have:

iMUV =
gNgXgLg

2
u(pN )PL

{∫
d4k

(2π)4
1

D4

(
/pN + /k +M

)(
/ph + /pN + /k +M

)
γµ

×
(
/pW + /ph + /pN + /k +M

)[
1− 2kpN

D

]
×
[
1− 2k(ph + pN )

D

] [
1− 2k(pW + ph + pN )

D

]}
× PLu(pe)ε

∗
µ(pW )
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=
gNgXgLg

2
u(pN )PL

{
4M2 (A4 − 6B5) p

µ
N +

[
4B4 + 2M2 (A4 − 8B5)

]
pµh

− 8M2B5p
µ
W +

[
6 (B4 − 6C5)−M2 (A4 − 6B5)

]
γµ/pN

+ 4
(
B4 − 6C5 +M2B5

)
γµ/ph

+
[
4 (B4 − 3C5) +M2 (A4 + 2B5)

]
γµ/pW

}
u(pe)ε

∗
µ(pW )

=
igNgXgLg

192π2M2
u(pN )PL

{
pµN − 2pµh − p

µ
W − γ

µ
/pN

}
u(pe)ε

∗
µ(pW ) . (B.8)

B.5 Amplitude for two Higgses and no gauge bosons

This UV amplitude is given by the diagrams (b) and (c) in figure 3. Taking into account

possible permutations of ph and ph′ , we have:

iMb
UV =

g2Ng
2
X

2
u(pN ′)PL

∫
d4k

(2π)4
1

D4

(
/pN ′ + /k +M

)[
1− 2kpN ′

D

]
×

{(
/pN − /ph + /k +M

)[
1− 2kpN

D
+

2kph
D

]

+
(
/pN − /ph′ + /k +M

)[
1− 2kpN

D
+

2kph′

D

]}

×
(
/pN + /k +M

)[
1− 2kpN

D

]
PRu(pN )

=
g2Ng

2
X

2
u(pN ′)PL

{
2
[
2B4 − 24C5 + 2M2A4 − 12M2B5

]
/pN

+
[
2B4 + 12C5 −M2A4 + 6M2B5

]
/ph

+
[
2B4 + 12C5 −M2A4 + 6M2B5

]
/ph′

+ 2
[
4B4 − 12C5 +M2A4 − 6M2B5

]
/pN ′

}
u(pN )

=
ig2Ng

2
X

96π2M2
u(pN ′)PL

{
/pN − /ph − /ph′ − /pN ′

}
u(pN ) = 0 , (B.9)

by virtue of the momentum conservation. Thus, we get:

iMUV = iMc
UV = g2NλϕHu(pN ′)PL

{∫
d4k

(2π)4
1

D3

(
/pN + /k +M

)
×
[
1− 2kpN

D

] [
1− 2k(pN − pN ′)

D

]}
PRu(pN )

= g2NλϕHu(pN ′)PL

{
[A3 − 4B4] /pN + 2B4/pN ′

}
u(pN )

=−
ig2NλϕH
96π2M2

u(pN ′)PL

{
/pN + /pN ′

}
u(pN ) . (B.10)
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B.6 Amplitude for two Higgses and one W 3

The relevant diagram in the UV is the diagram (a) in figure 4. We have:

iMUV = −
gg2Ng

2
X

2
u(pN ′)PL

∫
d4k

(2π)4
1

D5
(/k +M)

2
γµ (/k +M)

2
PRu(pN )ε∗µ(pW 3)

= −
gg2Ng

2
X

2
u(pN ′)PL

(
24C5 +M4A5

)
γµu(pN )ε∗µ(pW 3)

=
igg2Ng

2
X

96π2M2
u(pN ′)PLγ

µu(pN )ε∗µ(pW 3) . (B.11)

B.7 Amplitude for three Higgses and no gauge bosons

This UV amplitude is represented by the diagrams (b) and (c) in figure 4. We have:

iMb
UV = −

3gNg
3
XgL√
2

u(pN )PL

∫
d4k

(2π)4
1

D5
(/k +M)

4
PLu(pν)

= −
3gNg

3
XgL√
2

u(pN )PL
(
24C5 + 24M2B5 +M4A5

)
u(pν)

= −
igNg

3
XgL

32
√

2π2M2
u(pN )PLu(pν) , (B.12)

iMc
UV = −

3λϕHgNgXgL√
2

u(pN )PL

∫
d4k

(2π)4
1

D4
(/k +M)

2
PLu(pν)

= −
3λϕHgNgXgL√

2
u(pN )PL

(
4B4 +M2A4

)
u(pν)

=
iλϕHgNgXgL

32
√

2π2M2
u(pN )PLu(pν) . (B.13)

Finally,

iMUV = iMb
UV + iMc

UV =
igNgXgL

32
√

2π2M2

(
λϕH − g2X

)
u(pN )PLu(pν) . (B.14)

B.8 Amplitude for four N fermions

This UV amplitude is depicted by the diagram (a) in figure 5 (note that there is a second

diagram with opposite sign due to the exchange of identical fermions). We have:

iMUV = g4N

∫
d4k

(2π)4
1

D4

{
[u(p3)PL (/k +M)PRu(p1)] [u(p4)PL (/k +M)PRu(p2)]

− [u(p4) (/k +M)u(p1)] [u(p3) (/k +M)PRu(p2)]

}
= g4NB4

{
[u(p3)γ

µPRu(p1)] [u(p4)γµPRu(p2)]

− [u(p4)γ
µPRu(p1)][u(p3)γµPRu(p2)]

}
= 2g4NB4 [u(p3)γ

µPRu(p1)] [u(p4)γµPRu(p2)]

=−
ig4N

96π2M2
[u(p3)γ

µPRu(p1)] [u(p4)γµPRu(p2)] . (B.15)

In the penultimate step, we have rearranged the spinors using a Fierz identity.
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ph

h

XN

k

XE

h

ph

h

XE

k

XN

h

ph

h h

k

ϕ(a) (b) (c)

Figure 7. Diagrams contributing to the Higgs self-energy in the UV.

B.9 Amplitude for two N fermions and two neutrinos

This amplitude in the UV is given by the diagram (b) in figure 5. We have:

iMUV = g2Ng
2
L

∫
d4k

(2π)4
1

D4
[u(pν′)PR (/k +M)PLu(pν)] [u(pN ′)PL (/k +M)PRu(pN )]

= g2Ng
2
LB4 [u(pν′)γ

µPLu(pν)] [u(pN ′)γµPRu(pN )]

= −
ig2Ng

2
L

192π2M2
[u(pν′)γ

µPLu(pν)] [u(pN ′)γµPRu(pN )] . (B.16)

C Matching of renormalisable terms

Corrections to the Higgs propagator. The diagrams (a) and (b) in figure 7 lead to

the following contribution to the Higgs self-energy:

−i
(
M2

UV

)a+b
= −g2Xµ4−d

∫
ddk

(2π)d
1

D2

{
tr
[(
/k + /ph +M

)
(/k +M)

]
×
[
1−

2kph + p2h
D

+
4(kph)2

D2

]}

= −4g2Xµ
2ε

{
(4− 2ε)B2 +M2A2

+
[
(6− 2ε) (4C4 −B3) +M2 (4B4 −A3)

]
p2h

}
= −

ig2X
12π2

{
3

(
1 + 3 log

µ2

M2

)
M2 +

(
1− 3 log

µ2

M2

)
p2h

}
, (C.1)

The diagram (c) in figure 7 gives

−i
(
M2

UV

)c
= λϕHµ

4−d
∫

ddk

(2π)d
1

D
= λϕHµ

2εA1 =
iλϕH
16π2

(
1 + log

µ2

M2

)
M2 . (C.2)
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pN

N XN

k

ϕ

N

pν

ν XE

k

ϕ

ν

(a) (b)

Figure 8. Diagrams contributing to the N and ν self-energies in the UV.

Finally, their sum yields

−iM2
UV = −i

(
M2

UV

)a+b − i (M2
UV

)c
= − i

48π2
[
3
(
4g2X − λϕH

)
M2 + 4g2Xp

2
h

]
− i

16π2
[(

12g2X − λϕH
)
M2 − 4g2Xp

2
h

]
log

µ2

M2
.

(C.3)

Corrections to the fermion propagators. For the contribution to the self-energy of

N depicted by the diagram (a) in figure 8, we find

−iΣUV = g2NPLµ
4−d

∫
ddk

(2π)d
1

D2
(/k + /pN +M)

[
1− 2kpN

D

]
PR

= g2Nµ
2ε (A2 − 2B3)PL/pN =

ig2N
32π2

log
µ2

M2
PL/pN . (C.4)

A similar contribution to the neutrino self-energy represented by the diagram (b) in figure 8

reads

−iΣUV = g2LPRµ
4−d

∫
ddk

(2π)d
1

D2
(/k + /pν +M)

[
1− 2kpν

D

]
PL

= g2Lµ
2ε (A2 − 2B3)PR/pν =

ig2L
32π2

log
µ2

M2
PR/pν . (C.5)

Corrections to the gauge boson propagators. There are four diagrams contributing

to the self-energy of Bµ, see figure 9. The diagram (a) gives

i
(
Πµν

UV

)a
= g′2µ4−d

∫
ddk

(2π)d
1

D2

(
2kµ + pµB

)
(2kν + pνB)

[
1−

2kpB + p2B
D

+
4(kpB)2

D2

]
= g′2µ2ε

[
4B2g

µν + (16C4 − 4B3) p
2
Bg

µν + (A2 − 8B3 + 32C4) p
µ
Bp

ν
B

]
=

ig′2

48π2

[
6M2

(
1 + log

µ2

M2

)
gµν − log

µ2

M2

(
p2Bg

µν − pµBp
ν
B

)]
. (C.6)

The diagram (b) yields

i
(
Πµν

UV

)b
= −2g′2gµνµ4−d

∫
ddk

(2π)d
1

D

= −2g′2gµνµ2εA1 = − ig
′2

8π2
M2

(
1 + log

µ2

M2

)
gµν . (C.7)
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pB

B

ϕ

k

ϕ

B

pB

B B

pB

B

XN

k

XN

B

pB

B

XE

k

XE

B

pW 3

W 3

XE

k

XE

W 3

k

ϕ(a) (b) (c)

(d) (e)

Figure 9. Diagrams contributing to the B and W 3 self-energies in the UV.

Further, for the diagram (c) we find

i
(
Πµν

UV

)c
= −g′2µ4−d

∫
ddk

(2π)d

{
1

D2
tr
[
γν
(
/k + /pB +M

)
γµ (/k +M)

]
×
[
1−

2kpB + p2B
D

+
4(kpB)2

D2

]}

= −4g′2µ2ε
{[

M2A2 + (2ε− 2)B2

]
gµν + [16C4 − 4B3] p

µ
Bp

ν
B

+
[
(4− 2ε) (B3 − 4C4)−M2 (A3 − 4B4)

]
p2Bg

µν

}
= − ig′2

12π2
log

µ2

M2

(
p2Bg

µν − pµBp
ν
B

)
. (C.8)

Finally, the diagram (d) leads to the same result divided by 4 because of YXE = 1/2 and

multiplied by 2 because both X+
E and X0

E contribute. Summing all contributions we obtain

iΠµν
UV = −7ig′2

48π2
log

µ2

M2

(
p2Bg

µν − pµBp
ν
B

)
. (C.9)

Computation of the diagram (e) in figure 9 providing a contribution to the W 3
µ self-

energy is almost the same as that in eq. (C.8). As a result, we find

iΠµν
UV = − ig2

24π2
log

µ2

M2

(
p2W 3g

µν − pµ
W 3p

ν
W 3

)
. (C.10)
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h h

hh

h

h

h

h
XE

XN

k

XE

XN

ϕ

k

ϕ

(a) (b)

Figure 10. Diagrams contributing to the amplitude 〈hhhh〉 in the UV.

Corrections to the Higgs quartic coupling. The diagram (a) in figure 10 reads

iMa
UV = −12

g4X
4
µ4−d

∫
ddk

(2π)d
tr[(/k +M)4]

D4

= −3g4X
[
M4A4 + 24M2B4 + µ2ε(4− 2ε)(6− 2ε)C4

]
=

2ig4X
π2

(
1− 3

8
log

µ2

M2

)
. (C.11)

The diagram (b) in figure 10 gives

iMb
UV = 3λ2ϕHµ

4−d
∫

ddk

(2π)d
1

D2
= 3λ2ϕHµ

2εA2 =
3iλ2ϕH
16π2

log
µ2

M2
. (C.12)

Finally,

iMUV = iMa
UV + iMb

UV =
2ig4X
π2

+
i

16π2
(
3λ2ϕH − 12g4X

)
log

µ2

M2
. (C.13)

Final remarks. In light of the previous computations, we see that at the matching scale

µ = M , most of the one-loop corrections to renormalisable IR parameters vanish. The only

exceptions are the Higgs mass parameter, kinetic term and quartic coupling. The relevant

part of the IR Lagrangian reads

LIRSM+N ⊃ αIR
H (DµH)† (DµH) +

(
µIRH
)2
H†H − 1

2
λIRH

(
H†H

)2
. (C.14)

(Note that in the UV the Higgs field is canonically normalised and therefore αUV
H = 1.)

Thus, the matching conditions read:

iαIR
H p

2
h + i

(
µIRH
)2

= ip2h + i
(
µUV
H

)2 − iM2
UV , (C.15)

where −iM2
UV is given in eq. (C.3) and

− 3iλIRH = −3iλUV
H + iMUV , (C.16)

with iMUV from eq. (C.13). At the matching scale µ = M they lead to

αIR
H = 1−

g2X
12π2

,
(
µIRH
)2

=
(
µUV
H

)2
+
λϕH − 4g2X

16π2
M2 , λIRH = λUV

H −
2g4X
3π2

. (C.17)
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Dipole ONγ = νLσ
µνNAµν

R
R

R
R

OV,RRNN = (NγµN)(NγµN)

OV,RReN = (eRγµeR)(NγµN) OV,RRuN = (uRγµuR)(NγµN)

OV,RRdN = (dRγµdR)(NγµN) OV,RRudeN = (uRγµdR)(eRγ
µN)

L
L

R
R

OV,LRνN = (νLγµνL)(NγµN) OV,LReN = (eLγµeL)(NγµN)

OV,LRuN = (uLγµuL)(NγµN) OV,LRdN = (dLγµdL)(NγµN)

OV,LRudeN = (uLγµdL)(eRγ
µN)

L
R

L
R

OS,RRNN = (νLN)(νLN)

OS,RReN = (eLeR)(νLN) OT,RReN = (eLσµνeR)(νLσ
µνN)

OS,RRuN = (uLuR)(νLN) OT,RRuN = (uLσµνuR)(νLσ
µνN)

OS,RRdN = (dLdR)(νLN) OT,RRdN = (dLσµνdR)(νLσ
µνN)

OS,RRudeN = (uLdR)(eLN) OT,RRudeN = (uLσµνdR)(eLσ
µνN)

R
L

L
R OS,LReN = (eReL)(νLN) OS,LRuN = (uRuL)(νLN)

OS,LRdN = (dRdL)(νLN) OS,LRudeN = (uRdL)(eLN)

Table 3. List of νLEFT lepton number conserving operators involving N . The addition of h.c.

is implied when needed. Note that the operators obtained from the non-Hermitian operators in

the table with multiplication by the imaginary unit are also present. The notation follows that of

ref. [17], although we have not tried to minimise the number of operators involving σµν .

D Matching the νSMEFT onto the νLEFT and anomalous dimensions

The full list of lepton number conserving dimension-six operators in the νLEFT involving

N is shown in table 3. (Those not involving N can be found in ref. [17].) The following

relations hold at the EW matching scale (note that we are ignoring family indices):

αNγ
v

=
v√
2Λ2

(αNBcW + αNW sW ) , (D.1)
αV,RRNN

v2
=
αNN
Λ2

, (D.2)

αV,RReN

v2
=
αeN
Λ2
−
g2ZZeRZN

m2
Z

, (D.3)
αV,RRuN

v2
=
αuN
Λ2
−
g2ZZuRZN

m2
Z

, (D.4)

αV,RRdN

v2
=
αdN
Λ2
−
g2ZZdRZN

m2
Z

, (D.5)
αV,RRudeN

v2
=
αduNe

Λ2
, (D.6)

αV,LRνN

v2
=
αLN
Λ2
−
g2ZZνLZN

m2
Z

, (D.7)
αV,LReN

v2
=
αLN
Λ2
−
g2ZZeLZN

m2
Z

, (D.8)

αV,LRuN

v2
=
αQN
Λ2
−
g2ZZuLZN

m2
Z

, (D.9)
αV,LRdN

v2
=
αQN
Λ2
−
g2ZZdLZN

m2
Z

, (D.10)
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αV,LRudeN

v2
= −g

2WN

2m2
W

, (D.11) αS,RRNN = 0 , (D.12)

αS,RReN

v2
=

3αLNLe
2Λ2

, (D.13)
αT,RReN

v2
=
αLNLe

8Λ2
, (D.14)

αS,RRuN = 0 , (D.15) αT,RRuN = 0 , (D.16)

αS,RRdN

v2
=
αLNQd

Λ2
−
αLdQN

2Λ2
, (D.17)

αT,RRdN

v2
= −

αLdQN
8Λ2

, (D.18)

αS,RRudeN

v2
=
αLdQN

2Λ2
−
αLNQd

Λ2
, (D.19)

αT,RRudeN

v2
=
αLdQN

8Λ2
, (D.20)

αS,LReN

v2
=
g2WN

m2
W

, (D.21)
αS,LRuN

v2
=
αQuNL

Λ2
, (D.22)

αS,LRdN = 0 , (D.23)
αS,LRudeN

v2
=
αQuNL

Λ2
. (D.24)

The coupling gZ is defined as gZ = e/(sW cW ). We have also defined ZψSM
= T3 − Qs2W

and ZN = −αHNv2/(2Λ2) as well as WN = αHNev
2/(2Λ2). Note that we can neglect

EFT effects in the non N fermion couplings to the Z and W because they would lead to

dimension-eight contributions.

In our case, the only operators that are generated are the dipole as well as vector type

RR and LR four-fermions with two Ns. They renormalise due to quantum corrections

depicted by the diagrams in figure 11. Using the notation

α̇ ≡ 16π2µ
dα

dµ
, (D.25)

we obtain:

α̇Nγ =
4

3

(
3q2e + 3Ncq

2
d + 2Ncq

2
u

)
e2αNγ , (D.26)

α̇V,RRψN =
4

3
e2qψ

[
Ncqu

(
αV,RRuN + αV,LRuN

)
+Ncqd

(
αV,RRdN + αV,LRdN

)
+ qe

(
αV,RReN + αV,LReN

)]
, (D.27)

α̇V,LRψN =
4

3
e2qψ

[
Ncqu

(
αV,RRuN + αV,LRuN

)
+Ncqd

(
αV,RRdN + αV,LRdN

)
+ qe

(
αV,RReN + αV,LReN

)]
, (D.28)

for ψ = ν,N, e, u, d. The non-vanishing electric charges are qe = −1, qu = 2/3 and

qd = −1/3. This automatically implies that α̇V,RRNN = 0 and α̇V,LRνN = 0; i.e. these operators

do not renormalise.

Finally, lepton number violating operators are also induced within our framework when

mN 6= 0. There are 19 operators violating lepton number by two units and one violating

it by four units. We list them in table 4. (The subset of these operators relevant for
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γ

f f

N N

f f
N N

γ

(a) (b)

Figure 11. (a) Renormalisation of the operator ∂νAµνNγ
µN by four-fermions. It generates other

four-fermions upon using the equations of motion. (b) Self-renormalisation of four-fermions.

L
L

L
L

OV,LLνNc = (νLγµνL)(νLγ
µN c) OV,LLeNc = (eLγµeL)(νLγ

µN c)

OV,LLuNc = (uLγµuL)(νLγ
µN c) OV,LLdNc = (dLγµdL)(νLγ

µN c)

OV,LLudeNc = (uLγµdL)(eLγ
µN c)

R
R

L
L OV,RLeNc = (eRγµeR)(νLγ

µN c) OV,RLuNc = (uRγµuR)(νLγ
µN c)

OV,RLdNc = (dRγµdR)(νLγ
µN c) OV,RLudeNc = (uRγµdR)(eLγ

µN c)

R
L

R
L

OS,LLeNc = (eReL)(NN c) OS,LLuNc = (uRuL)(NN c)

OS,LLdNc = (dRdL)(NN c) OS,LLudeNc = (uRdL)(eRN
c)

OT,LLudeNc = (uRσµνdL)(eRσ
µνN c)

L
R

R
L

OS,RLνcNc = (νLν
c
L)(NN c) OS,RLNNc = (νLN)(NN c)

OS,RLeNc = (eLeR)(NN c) OS,RLuNc = (uLuR)(NN c)

OS,RLdNc = (dLdR)(NN c) OS,RLudeNc = (uLdR)(eRN
c)

Table 4. List of νLEFT lepton number violating operators involving N c. The addition of h.c. is

implied when needed. Note that the operators obtained from the non-Hermitian operators in the

table with multiplication by the imaginary unit are also present.

neutrinoless double beta decay has been recently provided in ref. [67], which also considers

higher dimensional operators, the running down to the QCD scale as well as the matching

onto the chiral perturbation theory.)

If mN is not vanishing, the νSMEFT operators ONW and ONB induce, after EWSB,

lepton number violating operators proportional to mNv/Λ
2 upon using the equation of

motion i/∂N ∼ mNN
c. These are: OV,LLνNc , OV,LLeNc , OV,RLeNc , OV,LLuNc , OV,RLuNc , OV,LLdNc and OV,RLdNc

(Z mediated) as well as OV,LLudeNc and OV,LLeNc (W mediated).
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