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1 Introduction

Historically, distributions played a big role in axiomatic approaches to quantum field theory

(QFT), via Wightman axioms [1] or Osterwalder-Schrader axioms [2, 3]. In particular, the

language of tempered distributions allows clean treatment of correlation functions singular-

ities at x2 = 0 in a UV-complete QFT, where x2 may be Euclidean or Lorentzian distance.

In recent years, a new axiomatic approach — the conformal bootstrap — has emerged

in the study of conformal field theories (CFTs) in dimension d > 2, i.e. quantum field

theories invariant under the action of conformal group (see review [4]). This approach is

both rigorous and calculable. On the numerical side, it has allowed precise determinations
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of many experimentally measurable quantities, such as the critical exponents of the 3d

Ising [5–9], O(N) [9–12] and other critical points. On the analytic side, it also led to many

insights into the structure of operator spectrum of general CFTs, in particular concerning

how operators organize themselves in infinite families (Regge trajectories) [13–15]. Numer-

ical bootstrap studies typically take place deep in the Euclidean region, staying away from

the contact term singularities of correlation functions at short distances. In this regime,

the rules of the game are well-understood and comprise the Euclidean bootstrap axioms.

On the other hand, analytical bootstrap studies often boldly go into the Lorentzian

space, probe light-cone or other types of singularities. In this regime the most common

set of assumptions for correlation functions are the Wightman axioms [1], but it has never

been shown how these assumptions follow from the well-understood Euclidean bootstrap

axioms. To achieve this is the goal of this series of papers. The uniting theme of this work

will be tempered distributions, hence the title.

In this first paper of the series we will study convergence of the conformal block de-

composition. As is well known, it converges in the sense of functions inside the unit

disk |ρ|, |ρ| < 1 for the radial variable. We will show that it converges in the sense of

distributions also on the boundary of this unit disk. This is done using Vladimirov’s theo-

rem [16]—a key result in the theory of functions of several complex variables that we will

carefully introduce.

Vladimirov’s theorem provides the answer to the following question: if we have a

function g(ρ) that is holomorphic in the open unit disc |ρ| < 1, what can we say about its

values for |ρ| = 1? If g(ρ) were bounded, then the limit limr→1 g(reiθ) would be guaranteed

to exist for almost every θ and give rise to a bounded function g(eiθ). However, the functions

of cross-ratios that we encounter in conformal field theory are not bounded and instead

can blow up near the boundary. Crucially though, it is easy to show (as we do in this

paper) that they blow up only as power laws (1−r)−K . In this case, Vladimirov’s theorem

guarantees that the limit limr→1 g(reiθ) exists in the space of distributions in the variable

θ. We will explain that this conclusion holds both for the correlation function itself as

well as for the individual terms in the conformal block expansion, which will allow us to

prove convergence of conformal block expansion in the space of distributions. A simple yet

illustrative example of distributional convergence is the sum

+∞∑
n=−∞

einθ = 2πδ(θ), (1.1)

where θ ∈ (−π, π] is the coordinate on the unit circle. This sum doesn’t converge in the

usual sense because every term is of absolute value 1, but it does converge after being

smeared with a smooth test function f(θ). We will study a more realistic toy example in

section 3.1.

Our results can be interpreted as introducing a new class of functionals which satisfy

the swapping property [17] when applied to the crossing equation. This point of view might

be helpful for readers with interest in analytic functional bootstrap [18–25]. Specifically, we

show that integration (appropriately defined) of the crossing equation with a test function
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over the boundary of the crossing region1 can be exchanged with the sum over conformal

blocks. We prove this result for infinitely smooth test functions, and argue that it likely

can be strengthened to enlarge the class of test functions sufficiently so that our new class

of functionals will include all functionals currently known to satisfy the swapping property.

In our second paper [26], CFT Wightman four-point functions in Lorentzian space

will be shown to be tempered distributions, thus establishing Wightman axioms. In the

third paper [27], we will study analytic continuations of CFT correlation functions to

the Lorentzian cylinder (also known as the boundary of the AdS space). Our goal is to

establish everything from Euclidean bootstrap axioms, without any extra assumptions.

When the time comes, we will explain that the existing classic results in the literature, like

the Osterwalder-Schrader theorem [2, 3] or the construction of Lüscher and Mack [28], all

require additional assumptions. So our conclusions cannot be recovered from the classic

papers. Fortunately, we found a different way of reasoning which recovers all the results

commonly assumed to be true, for the most important in applications case of four-point

functions.2 The good news is that our alternative arguments are really easy, and the main

idea can really be summarized in one sentence: “Look for a powerlaw bound.” This should

be contrasted with the classic papers which are quite intricate.

The present paper is organized as follows. In section 2 we discuss the motivation

for our work from the point of view of computing Euclidean and Lorentzian correlation

functions. In section 3 we consider the simplified case of one cross-ratio, starting with

a toy example of power series. We also use this simplified setting to discuss possible

applications of our results to analytic functional bootstrap (section 3.6) and to proper

definition of discontinuities (section 3.7). In section 4 we consider the case of two cross-

ratios in scalar correlators in general number of dimensions. We comment on applications

and generalization to spinning correlators. In section 4.6 we discuss an application in

the context of a single-variable dispersion relation recently proposed by Bissi, Dey and

Hansen [29]. We conclude in section 5.

2 Conformal block expansion

In this section we will state our basic problem, and the main idea how to solve it. Let us

consider the conformal block expansion of a four-point function of identical scalar operators

(we will consider more general four-point functions later)

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x2
12)∆φ(x2

34)∆φ
g(u, v), (2.1)

where, as usual

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.2)

1By crossing region we mean the region in cross-ratio space where both s- and t-channel conformal

block expansions converge. In the standard z-cross ratio it is given by C minus the cuts along [1,+∞) and

(−∞, 0].
2It’s an interesting open problem how to extend our arguments to higher point functions.
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We will mostly be working with the radial coordinates ρ, ρ [30, 31] defined as

ρ =
z

(1 +
√

1− z)2
, ρ =

z

(1 +
√

1− z)2
, (2.3)

where z, z are determined by

zz = u, (1− z)(1− z) = v. (2.4)

We will abuse the notation a bit by writing g(u, v), g(z, z), or g(ρ, ρ) depending on which

set of cross-ratios we want to use.

The function g(ρ, ρ) can be expanded in conformal blocks in φ(x1)×φ(x2) OPE channel

as follows,

g(ρ, ρ) =
∑
∆,J

p∆,Jg∆,J(ρ, ρ), (2.5)

where p∆,J > 0 are the OPE coefficients squared, and g∆,J(ρ, ρ) are the conformal blocks.

This expansion is known to be absolutely convergent in the region |ρ| < 1, |ρ| < 1, which

we will denote by C in what follows.

We will only use the global conformal invariance SO(d+1, 1). Under these assumptions,

the region C is the largest region of convergence of the conformal block decomposition of

a general CFT four-point function (we are not aware of any results to the contrary). In

2d CFT, using Virasoro, the region of convergence can be extended further in terms of

Al. Zamolodchikov’s uniformizing q variable, being given by |q|, |q| < 1 which is a strictly

larger region than C [31, 32]. So our results should be best possible in d > 2 but not in d = 2.

Above we focused on the 12 OPE channel (s-channel) but the same discussion can be

made for the t-channel 23 and u-channel 13, whose convergence is characterized by the

conditions |ρt|, |ρt| < 1 and |ρu|, |ρu| < 1.

Let us briefly describe what the region C corresponds to in the physical space of xi. In

Euclidean signature, this region includes all configurations when the four points xi do not

lie on a circle, which is the generic case. If xi do lie on a circle, the cross-ratios belong to C
if x1 and x2 are next to each other on the circle. If the points instead fall on the circle in

the ordering x1, x3, x2, x4 (read in some direction), then we find |ρ| = |ρ| = 1. Therefore,

only a measure zero set of Euclidean configurations does not belong to C and is instead

on its boundary ∂C. For these configurations the s-channel expansion does not converge.

However, it does converge for t- and u-channels, and so the value of the Euclidean four-point

function can be determined from the OPE for any configuration of the four points.

Our basic problem is to make sense of the four-point function (2.1) in Lorentzian

signature. In order to talk about a Lorentzian four-point function, we need to specify

which operator ordering we are interested in. We will only consider here the Wightman

functions, i.e. we fix operator ordering:

W (x1, x2, x3, x4) = 〈0|φ(x1)φ(x2)φ(x3)φ(x4)|0〉 . (2.6)
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Figure 1. Regge kinematics.

However, we wish to consider all possible time and causal ordering of the points xi.
3 Once

we have fixed the operator ordering, the Lorentzian four-point function can be obtained

from the Euclidean one by an appropriate analytic continuation. While in Euclidean we

always have ρ = ρ∗, this property is generally lost after the analytic continuation. Further-

more, there are open regions in the Lorentzian configuration space of xi where |ρ| and/or

|ρ| end up > 1 after the analytic continuation. Then the corresponding conformal block

expansion (2.5) diverges and thus cannot be used to determine the correlator.

One such well known case is the Regge regime [33–35], when x1, x4 and x2, x3 pairs

are timelike separated, while all other intervals are spacelike (see figure 1). One may be

tempted to use the 13 OPE for this Lorentzian correlator, because this channel is the most

symmetric with respect to the origin, and also because one may be interested in the limit

x2
13 → 0. However, although this channel converges when points x1 and x3 stay close

to the origin, it starts diverging when they cross the lightcones of x2 and x4 and move

into the Regge regime, because the corresponding ρu variable become larger than 1.4 In

this particular case, one can switch to the 23 OPE for which |ρt|, |ρt| < 1 is less than 1,

and so this channel converges. However, this is not always possible: there exist kinematic

configurations when no channel converges (appendix A).

In this series of works we will propose a different way to solve this problem, and

recover the Wightman function in all kinematic configurations. In our construction the

key role will be played by the 12 OPE-channel. We call it the “vacuum channel”, because

it involves the two leftmost operators in the Wightman ordering (2.6), i.e. the ones acting

on the vacuum. While the vacuum channel OPE does not always converge, it almost

converges for all possible configurations. What this means is that |ρ| 6 1 and |ρ| 6 1 for

all values of xi. This crucial fact will be shown in [26]. It is only true for the vacuum

OPE channel, but would not be true for the 23 or 13 channels, for which sometimes |ρ|
and/or |ρ| will be strictly greater than 1. In particular, as we show in appendix A, there

exist configurations for which both 23 and 13 channels diverge with |ρ|, |ρ| > 1, while for

12 channel |ρ| = |ρ| = 1.

3Other often considered Lorentzian correlators (retarded, advanced, time-ordered) can be obtained by

multiplying Wightman functions with appropriate factors enforcing the needed ordering. The Wightman

functions being distributions, and the time-ordering factors being singular, this procedure introduces extra

singularities and requires care in a rigorous treatment.
4Conformal Regge theory [33–35] provides a way to resum the expansion (2.5) in the limit ρu → 0,

ρu → ∞ with ρuρu fixed. We will not consider such resummations in this paper since they rely on

analytically-continued OPE data that we have little control over.

– 5 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
7

In other words, all possible Lorentzian configurations belong to the closure C. One can

ask how large are the regions in configuration space of xi which belong in ∂C but not in C.
In Euclidean, we have seen that these configurations were measure zero, but in Lorentzian

this is no longer true: extended regions with non-empty interior have |ρ| = 1, |ρ| = 1. So,

a fraction of configurations are in ∂C and not in C.
If the conformal block expansion converged in C and not C, we would be able to use

it to compute any Lorentzian correlator in any configuration of the points xi. Of course,

this is not the case, and the conformal block expansion converges in the usual sense only

in C. However, our goal in this paper will be to extend the notion of convergence so that

it will become valid in C. Specifically, we will show that the expansion (2.5) converges

in the sense (to be clarified below) of distributions on the boundary ∂C in the cross-ratio

space. In the forthcoming work [26, 27] we will extend this result to convergence in the

sense of distributions in the physical space of xi, either in Minkowski space, or on the

Lorentzian cylinder.

One may be wondering what is special about the vacuum channel compared to other

OPE channels. Intuitively, the distinguishing feature of vacuum channel is that we can

understand it as inserting a complete set of states in the Wightman four-point function.

Since Wightman four-point functions are distributions, we cannot generally expect this

sum to make sense in terms of functions, but only in terms of distributions. Mack [36]

understood the vacuum channel OPE expansion in distributional sense in position space.

Mack’s reasoning is rather nontrivial, and it crucially relies on assuming from the start

that Wightman axioms hold in Lorentzian signature — an assumption that we are here

not willing to accept. Although our results in cross-ratio space are inspired by Mack’s

considerations in position space, they do not follow from his results, since we rely on a

different and simpler set of assumptions, natural from the modern bootstrap perspective.

Also, we are only using rather elementary methods. Position space will be discussed in [26].

3 One-dimensional case

First, let us simplify the problem by considering the one-dimensional case where there is a

single cross-ratio. The conformal block expansion takes the form

g(ρ) =
∑
∆

p∆g∆(ρ), (3.1)

where the conformal blocks are given by5

g∆(ρ) = (4ρ)∆
2F1(1/2,∆; ∆ + 1/2; ρ2). (3.2)

Furthermore, the sum is over ∆ > 0 and p∆ > 0. This expansion converges, in the usual

sense, in the interior of the unit disk |ρ| < 1, and our goal is to understand whether it can

be made convergent, in some generalized sense, on the boundary |ρ| = 1.

5This equation follows from the more familiar one in the z coordinate g∆(z) = z∆
2F1(∆,∆; 2∆; z) by a

hypergeometric identity [31].
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Figure 2. Transformation from the z cut plane to the ρ disk to the τ upper-half plane, see the text.

If we look at (3.1) more closely, we will notice that the conformal blocks (3.2) are not

single-valued in the unit disk of ρ. Therefore, we are really interested in the behavior of

this sum on the universal cover of the unit disk branched at 0, which can be conveniently

parametrized by writing

ρ = eiτ . (3.3)

The expansion (3.1) is then absolutely convergent in the upper-half plane of τ , and we are

interested in its convergence for real τ .

In figure 2 we show the transformation from the z cut plane to the ρ disk to the τ

upper-half plane. The two sides of the cut z ∈ [1,+∞) are mapped on the boundary of

the unit disk |ρ| = 1, and then to the black part (τ ∈ [−π, π]) of the upper-half plane

boundary. The rest of the τ boundary (marked in red) can be accessed in the ρ variable

by first going through the cut ρ ∈ [−1, 0] (dashed) and then approaching |ρ| = 1.

On the black interval τ ∈ [−π, π] (except at τ = 0) the four-point function is actually

analytic, as can be shown using the t-channel expansion. On the rest of the boundary (red

part), the t-channel expansion does not converge and provides no information. Below we

will show, using the s-channel, that the four-point function is a tempered distribution on the

whole boundary. We will also show that the s-channel conformal block expansion converges

in the sense of distributions. When using the s-channel, we have to use distributional

convergence even on the black part of the boundary, although the function itself is analytic

there as explained above.

3.1 A toy problem

In order to gain some intuition, it is useful to consider the following toy problem. Let us

study the power series

1

1− ρ =
∞∑
n=0

ρn. (3.4)

It has the similar feature that it converges absolutely for |ρ| < 1 and that the resulting

function has a power-like singularity at ρ = 1, much like the physical four-point func-

tions do.

In terms of τ variable we find the sum

∞∑
n=0

einτ , (3.5)
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which clearly does not converge for any real τ . We claim that it does converge as a

tempered distribution.6 For example, let us compute its real part using the standard

formulas of Fourier analysis

Re
∞∑
n=0

einτ =
1

2

∞∑
n=−∞

einτ +
1

2
=

1

2
+ π

∞∑
k=−∞

δ(τ − 2πk). (3.6)

It is a bit harder to compute the imaginary part, but we can run the following simple

argument for the full sum (3.5). Let f(τ) be a Schwartz test function, i.e. a smooth7

function which, together with its derivatives, decays at infinity faster than any power.

In order to show that (3.5) converges as a tempered distribution, we need to show, by

definition, that the partial sums∫
dτf(τ)

N∑
n=0

einτ =
N∑
n=0

∫
dτf(τ)einτ =

N∑
n=0

f̃(n) (3.7)

converge to a finite limit as N →∞. Here, f̃(n) is the Fourier transform of f . Since f(τ)

is a Schwartz test function, so is f̃(n) (where n is understood as a real parameter) and thus

f̃(n) decays faster than any power of n as n→∞. This implies that the partial sums (3.7)

indeed converge. Strictly speaking, we also need to show that the limit is continuous with

respect to f in an appropriate topology. We will delay this question until later. Here the

important message is that even though (3.5) does not converge in the usual sense, it starts

to converge after being smeared with a nice test function.

So far we have learned two things. First, the sum (3.5) converges in distributional

sense for real τ . Second, the value of this sum is a genuine distribution, since we computed

its real part and it is a sum of δ-functions. Now, we also know that in the upper-half plane

of τ the sum converges to

g(τ) =
1

1− ρ =
1

1− eiτ . (3.8)

This suggests that on the real line g(τ) should have a limit that is the tempered distribution

computed by (3.5). So we can conjecture that, for real τ ,

∞∑
n=0

einτ = lim
ε→+0

g(τ + iε) ≡ lim
ε→+0

1

1− e−ε+iτ , (3.9)

where everything is understood in the sense of tempered distributions.

How can we guarantee that the limit in the right-hand side exists? In the sense of

functions, it clearly exists for τ 6= 2πk and is given by g(τ). However, g(τ) for real τ is not

obviously a distribution, since it involves non-integrable singularities near τ = 2πk that

we need to regulate. Specifically, we need to prove that for any Schwartz function f(τ)

the limit

lim
ε→+0

∫
dτg(τ + iε)f(τ) (3.10)

6A tempered distribution is a distribution that can be paired with Schwartz test functions (see below).
7In this paper “smooth” means C∞ and the two terms are used interchangeably.
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Figure 3. A numerical check of the existence of the limit (3.11), for f(τ) given in the text. The

curve is the integral under the limit sign, and the red dots are the partials sums of Fourier coefficients

in the r.h.s. of (3.11) up to n = N .

exists and depends continuously on f in an appropriate topology. Notice that if f(τ) were

a holomorphic function, for example f(τ) = e−τ
2
, then the existence of the limit would

be simple to show.8 However, the class of holomorphic test functions is too restricted for

many purposes. It is more customary to develop the theory of distributions using compactly

supported C∞ test functions, or the even larger class of Schwartz test functions.9 For a

general Schwartz f(τ), existence of the limit (3.10) requires an argument which will be

explained in the next section.

We would like to emphasize that the existence of the limits (3.9), (3.10) is not just

some abstract nonsense, but a very concrete prediction. Integrating both parts of (3.9)

against an arbitrary Schwartz test function f(τ), we obtain:

lim
ε→+0

∫
dτ f(τ)

1

1− e−ε+iτ =

∞∑
n=0

f̃(n) . (3.11)

Let us test this prediction. We pick a function f(τ) given by exp(−1/(1 − τ2)) for τ ∈
(−1, 1), extended by zero outside this interval. It is a compactly supported C∞ function

(in particular Schwartz, but not analytic). We evaluate both sides of the previous equation

numerically for 0 < ε < 1, and check the limit (see figure 3).

8We will just give an idea. Expand f(τ) in Taylor series around f(τ+iε) as f(τ) = f(τ+iε)+(−iε)f ′(τ+

iε) + . . .+ O(εm). The terms involving f (k)(τ + ε) are easy to analyze: the integrals don’t depend on ε at

all because by analyticity we can shift the contour. So only the first of these terms survives. The error

term goes to zero provided that εmg(τ + iε)→ 0 as ε→ 0. This will hold for m > M if g satisfies the slow-

growth condition (3.13) below. This shows that one could equivalently define the pairing between g and

holomorphic f by shifting the integration contour for both, as
∫
dτg(τ + iε)f(τ + iε). This is independent

of ε and there is no limit to talk about.
9This is not just for the reasons of generality. Compactly supported test functions are needed if one

wants to define a very basic notion of support of the distribution. This notion allows as to make statements

such as “distributions f(x) and g(x) agree for x ∈ [0, 1] but disagree outside of this interval.” Then the

class of Schwartz test functions, being invariant under the Fourier transform, plays an important role in all

questions involving the Fourier transform of distributions.
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3.2 Vladimirov’s theorem

Fortunately, there is a general result that immediately establishes that (3.9) is valid, i.e.

that both left and right hand sides converge as tempered distributions and are indeed equal.

Before stating this result, let us first clean up some formal definitions.

For a smooth function f(x) define the semi-norms

‖f‖m,n = sup
x∈R
|(1 + |x|m)∂nxf(x)|. (3.12)

The Schwartz space S(R) consists of smooth functions f for which ‖f‖m,n is finite for all

non-negative integer m and n. This is a vector space which is given a topology where a

sequence fk is said to converge to g if hk = fk − g converges to 0. In turn, hk converges to

0 iff for all m,n the sequence ‖hk‖m,n converges to 0.

The space S ′(R) of tempered distributions is defined as the space of continuous linear

functionals on S(R). We say that a linear functional α is continuous if α(hk)→ 0 for any

sequence hk ∈ S(R) for which hk → 0. We say that a sequence of tempered distributions

αk converges to a tempered distribution β if for any f ∈ S(R) we have αk(f)→ β(f).

Now, let a > 0 and g(τ) be a function holomorphic in the strip 0 < Im τ < a. Suppose

there exist N,M ∈ Z>0 and C > 0 such that in the strip

|g(x+ iy)| 6 C(1 + |x|N )y−M (3.13)

for all x ∈ R and y ∈ (0, a). We then say that g satisfies a slow-growth condition near

R. What this means is that for any y the function g(x + iy) is bounded by a polynomial

of fixed degree, and the overall size of this polynomial grows at most as a fixed powerlaw

when y → 0. Note that thanks to this condition for any y, 0 < y < a, the function

gy(x) ≡ g(x + iy) is a tempered distribution in S ′(R). We can ask whether the limit

limy→+0 gy exists in S ′(R). If it does, we say that boundary value of g on R exists in S ′(R)

and denote it by bv g,

bv g ≡ lim
y→+0

gy. (3.14)

We can now state the theorem

Theorem 3.1. Let g(τ) be a function holomorphic for 0 < Im τ < a for some a > 0,

satisfying the slow-growth condition near R as defined above. Then the boundary value bv g

of g on R exists in S ′(R). Furthermore, if a sequence of functions gn, holomorphic in the

same region, satisfies the slow-growth condition with the same constants C,M,N for all n

(uniform slow-growth condition), and converges pointwise to g for 0 < Im τ < a, then g

satisfies the same slow-growth condition and

lim
n→∞

bv gn = bv g in S ′(R). (3.15)

Such results are rather standard in the theory of distributions (an early mathematics

reference is [37]). In mathematical physics they are very useful in the study of QFT

Wightman functions. The standard reference is the book of Vladimirov [16] (section 26),

and we will therefore refer to such results as “Vladimirov’s theorems”. A self-contained

– 10 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
7

proof of Theorem 3.1 will be given below. A more general Vladimirov’s theorem will be

stated and used in [26].

Let us see how this result applies to our toy problem. We have

gn(τ) =
n∑
k=0

eikτ , g(τ) =
1

1− eiτ . (3.16)

Let us check the slow growth condition for gn on 0 < Im τ < 1:

|gn(x+ iy)| 6
n∑
k=0

|eikx−ky| 6
∞∑
k=0

e−ky =
1

1− e−y 6 Cy−1 (3.17)

for some C > 0. So we see that the slow growth condition is satisfied with N = 0,M = 1.

The same condition is then true for g(τ), as is easy to check. Then theorem 3.1 immediately

implies our conjecture (3.9).

3.3 Proof of Vladimirov’s theorem 3.1

We first prove that bv g exists and is a tempered distribution. So we pick a Schwartz test

function f(x) and study the integral

L(y) :=

∫
dx g(x+ iy)f(x). (3.18)

We need to show that this has a limit as y → +0. This looks a bit magic: estimating

naively by absolute value one would conclude that the integral may blow up as y−M . It

won’t blow up only because of cancellations, not captured by the naive estimate. In other

words, when an analytic function tends somewhere to infinity, it will tend to minus infinity

nearby, so that the integral will remain finite. For intuition, recall the Sochocki formula:

lim
y→+0

1

x+ iy
= PV

1

x
− iπδ(x) (3.19)

Principal value PV represents a kind of cancellations whose existence we need to exhibit

in general.

Going back to (3.18),10 the first key idea is that we can estimate not just L but any its

derivative. By the Cauchy-Riemann equations, y-derivatives of L(y) can be transformed

into x derivatives acting on g which then can be integrated by parts to act on f :

L(j)(y) = ij
∫
dxg(j)(x+ iy)f(x) = (−i)j

∫
dxg(x+ iy)f (j)(x). (3.20)

Using then the slow-growth condition (3.13) we get an estimate of any y-derivative L(j)(y)

by y−M times a constant:

|L(j)(y)| 6 Cy−M . (3.21)

10We follow the proof in [1], Theorem 2-10.
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The constant here is proportional to the semi-norm ‖f‖N+2,j , see (3.12); order N + 2

is needed to make the integral convergent, while derivative order j appears because of

integrating by parts.

This is still growing as y → 0. Here comes the second key idea: since we have this bound

on any derivative, we can strengthen it recursively using the Newton-Leibnitz formula:

L(j−1)(y) = −
∫ y0

y
dy L(j)(y) + L(j−1)(y0) . (3.22)

Here y0 can be any fixed number in the strip of analyticity, e.g. y0 = a/2 will do.

Every time we use this, we obtain a bound on L(j−1) of the same type as in (3.21)

but with the order of singularity in y reduced by 1 w.r.t. L(j). Let us do this repeatedly,

starting from j = M + 2.11 Then doing this M times we will prove that L′′(y) has an at

most log(y) singularity, and doing this once more we prove that L′(y) has no singularity

at all, i.e. it is bounded by a constant, call it C1.

Now we can finally prove that L(y) has a limit. From the j = 1 case of (3.22) we

can write

(bv g)(f) = lim
y→+0

L(y) = −
∫ y0

0
dy L′(y) + L(y0) . (3.23)

The limit exists, since by |L′(y)| 6 C1 the integral in the r.h.s. converges absolutely at the

lower limit of integration. Thus bv g exists as a linear functional on S(R). All constants

in the above argument are bounded by some semi-norms of f . This proves that bv g is a

continuous linear functional on S(R), i.e. a tempered distribution.

Now let us prove the second part of the theorem, about convergence. Replacing gn by

gn − g, it’s enough to consider the case g = 0. We pick an arbitrary Schwartz function f

and consider

(bv gn)(f) = lim
y→+0

Ln(y) . (3.24)

Here Ln(y) is defined by the integral (3.18) with g replaced by gn. The existence of the

limit for each n is guaranteed by the above argument. As a byproduct of the argument,

we have also seen that |L′n(y)| 6 C1 uniformly in n and y, where C1 is bounded by some

semi-norm of f .

Furthermore, we claim that Ln(y) tends to zero as n → ∞ for any fixed y ∈ (0, a).

Indeed the integrand in (3.18) satisfies two conditions: (a) it tends to zero as n → ∞
because gn(x+iy) goes pointwise to zero; (b) it is bounded in absolute value by an integrable

function which does not depend on n:

|gn(x+ iy)f(x)| 6 ‖f‖N+2,0
|gn(x+ iy)|
1 + |x|N+2

6 C‖f‖N+2,0
1 + |x|N

yM (1 + |x|N+2)
, (3.25)

where we bounded f by its semi-norm, and then used the slow-growth condition (3.13). So

the claim follows by Lebesgue’s dominated convergence theorem.

11Exercise: once you understand the proof below, show that j = M + 1 will do as well. Hint: the key

requirement is that L′(y) end up bounded by some integrable function.
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Finally we wish to prove that (bv gn)(f) tends to zero as n → ∞, as this is what is

meant by bv gn → 0 in S ′(R). From definition (3.24), we can bound this quantity as:

|(bv gn)(f)| 6 sup
y∈(0,ε)

|Ln(y)| 6 |Ln(ε)|+ C1ε , (3.26)

where in the second inequality we used |L′n(y)| 6 C1. We proved above that Ln(ε) goes

to zero for any ε. So by picking first ε small enough, and then n large enough, the sum of

the two terms in the r.h.s. is arbitrarily small. This implies that lim supn→∞ |(bv gn)(f)|
is arbitrarily small. Thus it is zero.

The attentive reader may notice that the last steps of the proof are not constructive,

i.e. they do not provide a bound on how fast (bv gn)(f) tends to zero. This is because

the used assumption, that gn converges to zero pointwise, is very general. It allows to

conclude, via dominated convergence, that Ln(y) tends to zero pointwise as n → ∞, but

it does not tell us how fast this limit is reached. If more detailed information about the

rate of the limit gn → 0 is available, as it usually is in practical applications, then a simple

modification of the above argument makes the conclusion bv gn → 0 in S ′(R) constructive.

3.4 Distributional convergence of conformal block expansion

Let us now turn back to the 1-dimensional conformal block expansion (3.1). We would

like to claim that it converges as a tempered distribution for real τ (recall ρ = eiτ ). To

prove this, we will use Vladimirov’s theorem 3.1, for which we need to establish a uniform

slow-growth condition on the partial sums in the left-hand side of (3.1).

As a first step, let us derive a slow-growth condition for the four-point function g(ρ)

itself. First, note that for |ρ| < 1 we have

g(ρ) =
∑
∆

p̃∆ρ
∆. (3.27)

with some positive coefficients p̃∆. This follows from radial quantization in an appropri-

ate conformal frame [31]. Equivalently, we can expand the conformal blocks (3.2) in the

right-hand side of (3.1) in powers of ρ and use the fact that these expansions have posi-

tive coefficients. In particular, the sum (3.27) can be turned back into the sum (3.1) by

appropriately grouping the terms. Now, we can write

|g(ρ)| =
∣∣∣∣∣∑

∆

p̃∆ρ
∆

∣∣∣∣∣ 6∑
∆

p̃∆|ρ|∆ = g(|ρ|), (3.28)

so it suffices to bound g(ρ) for real ρ ∈ (0, 1). This maps to z ∈ (0, 1), and in terms of z

variable we know that g(z) satisfies the crossing equation

z−2∆φg(z) = (1− z)−2∆φg(1− z). (3.29)

When z → 1, we have g(1− z) = O(1), which implies for z ∈ (0, 1) the bound

|g(z)| 6 C(1− z)−2∆φ (3.30)
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for some C > 0. Using the fact that 1− z ∼ (1− ρ)2/4 as z → 1, we find

|g(ρ)| 6 g(|ρ|) 6 C ′(1− |ρ|)−4∆φ (3.31)

for some C ′ > 0. In terms of τ = x+ iy this implies a powerlaw bound

|g(τ)| 6 C ′′y−4∆φ , (3.32)

near y = 0 for a C ′′ > 0, which is the required slow-growth condition. Therefore, by

theorem 3.1, bv g exists and is a tempered distribution.

An easy modification establishes the slow-growth condition for the partial sums in (3.1).

Let I be any (possibly infinite) subset of the terms in (3.27) and write∣∣∣∣∣∑
∆∈I

p̃∆ρ
∆

∣∣∣∣∣ 6 ∑
∆∈I

p̃∆|ρ|∆ 6
∑
∆

p̃∆|ρ|∆ = g(|ρ|) 6 C ′′y−4∆φ . (3.33)

Taking I = I∆∗ = {∆|∆ < ∆∗} we get a uniform slow-growth condition for partial sums

of (3.27). Similarly, by allowing I = In to contain the terms corresponding to the first n

conformal blocks in (3.1) we get a uniform slow-growth condition on partial sums of (3.1).

Therefore, by theorem 3.1, we conclude that the expansion (3.1) converges for the boundary

values,

bv g =
∑
∆

p∆bv g∆ in S ′(R). (3.34)

Let us unpack this equation a bit. Notice that in the case at hand, bv g∆ is an ordinary

locally integrable function which is the easiest kind of distribution. This is because the

conformal blocks (3.2) only have a logarithmic singularity at ρ = 1. Written in full, this

equation says that for any Schwartz function f(τ)

lim
ε→+0

∫
dτ g(ρ = e−ε+iτ )f(τ) =

∑
∆

p∆

∫
dτ (bv g∆)(ρ = eiτ )f(τ) , (3.35)

in the sense that the ε→ +0 limit in the l.h.s. exists (it defines (bv g)(f)), the series in the

r.h.s. made of ordinary integrals converges, and that the two sides independently defined

in this way are equal.

3.5 Convergence for other normalizations and on other boundaries

We have proven that the conformal block expansion (3.1) converges as a distribution on

the boundary ∂C of the normal function-like domain of convergence C. We motivated

this question in section 2 from the point of view of computing the Wightman functions.

However, in other applications the domain C may not be the most natural one to consider.

For example, one of the main objects of study in CFT is the crossing equation

z−2∆φg(z) = (1− z)−2∆φg(1− z) , (3.36)

where both left- and right-hand side are expanded in conformal blocks. The two expansions

are conventionally referred to as the s- and t-channel expansions. It is then natural to
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Figure 1. Regge limit, equivalent

D

S

D\(−1, 0]
ϕ(w)

Figure 2.

z=0 z=1

Cst

1

Figure 4. The setting of theorem 3.3. We give one particular example of a possible region S. In

practical applications discussed below S will be either all of D \ (−1, 0] or an upper or lower half.

consider the domain Cst = Cs ∩ Ct in which both expansions converge in the sense of

functions, as well as distributional convergence on its boundary ∂Cst. Additionally, the

function g(z) is multiplied by a factor z−2∆φ in the above equation, so we should also ask

whether such modifications alter our result.

It is easy enough to address the latter question. Indeed, if a function q(ρ) satisfies a

slow-growth condition near |ρ| = 1, so does the function q(ρ)g(ρ) and the partial sums of

conformal block expansion (3.1) multiplied by q(ρ). So we can state the straightforward

corollary to theorem 3.1:

Corollary 3.2. If function q(ρ) is holomorphic in the branched unit ρ-disc and satisfies a

slow-growth condition near τ ∈ R (recall ρ = eiτ ), then we have

bv (q · g) =
∑
∆

p∆bv (q · g∆) in S ′(R). (3.37)

In the example (3.36) we have q(ρ) = z−2∆φ and it satisfies the assumptions of this

theorem as can be seen from the identity z = 4ρ
(1+ρ)2 .

In order to address the questions related to restricting the domain C to smaller domains

such as Cst, we can prove the following theorem (see figure 4).

Theorem 3.3. Let D be the open unit disk parametrized by w and let ϕ : w 7→ ϕ(w) be a

holomorphic map which maps D one-to-one onto a domain S inside the cut unit disk of the

ρ variable, S ⊂ D \ (−1, 0]. Replacing ρ = ϕ(w) in the conformal block expansion (3.1), we

pull it back to w ∈ D. Then this pulled-back conformal block expansion in w variable con-

verges on the boundary |w| = 1 in the sense of distributions (i.e. when integrated against an

arbitrary smooth function on the circle). Furthermore, the same conclusion holds for (3.37)

with q(ρ) = z−2∆φ.

The proof will be based on a simple

Lemma 3.4. For any one-to-one holomorphic function ϕ from D onto S ⊂ D \ (−1, 0]

there are lower bounds

1− |ϕ(w)| > C(1− |w|),
|ϕ(w)| > C ′(1− |w|)2, (3.38)
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Figure 5. The crossing region Cst and its parametrization using the ρ-coordinate and the

Zhukovsky y-coordinate.

with some C,C ′ > 0, and for any w ∈ D. In other words, the first bound says that |ϕ(w)|
cannot approach 1 near the boundary faster than linearly in w. Similarly, |ϕ(w)| cannot

approach 0 near the boundary faster than quadratically in w.

To see why this is intuitively reasonable, consider some model situations. For the first

bound, suppose that ϕ(w) has the leading behavior ϕ0 + const.(w − w0)α, |ϕ0| = 1, near

some boundary point |w0| = 1. This asymptotics is consistent with (3.38) as long as α 6 1.

The latter condition is implied by the assumption that ϕ : D→ D: the argument of w−w0

is multiplied by α, and for α > 1 some points will end up outside of the unit circle. A

similar check works also for the second bound.

It should be noted that in practical applications the domain S will typically be either

the whole of D \ (−1, 0] or its upper or lower half. In these cases the functions ϕ(w) will

be explicitly known, and bounds (3.38) can be verified by an explicit computation. For

completeness, a rigorous general proof of this lemma is given in appendix B.

By the first inequality of the lemma, we have the bound (1−|ρ|)−4∆φ 6 C ′(1−|w|)−4∆φ

for some C ′ > 0. So the conformal block expansion pulled back to the unit disk w ∈ D
satisfies the same bounds throughout the disk as the ρ-expansion bounds (3.31)–(3.33).

Recall in particular that g(ρ) is bounded near ρ = 0 so whatever happens if the boundary

of S touches ρ = 0, as in figure 4, is not important for this part of the argument. Therefore,

the first claim of the theorem follows by the same arguments as in section 3.4. There is

even one simplification: since the circle is compact, temperedness of distributions having

to do with behavior of infinity is of no importance in the case at hand. The space of test

functions are C∞ functions on the unit circle.

The second claim does not follow immediately because z−2∆φ blows up near ρ =

0. However, thanks to the second bound in (3.38), this does not spoil the slow-growth

conditions near |w| = 1. This finishes the proof of the theorem.

Note that we can replace the unit ρ-disk by unit ρ1/n-disk for some n if we wish to allow

the domain parametrized by w to go under the cut. Similarly, the same result can be proven

for a wider class of functions q(ρ) than just z−2∆φ . We won’t need these generalizations in

this paper.

3.6 Analytic functionals

For the first application of theorem 3.3, consider the common region of convergence Cst of

the two OPE channels for the crossing equation given in z-coordinate by the cut plane

Cst = C \ ((−∞, 0] ∪ [1,∞)) , (3.39)
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see figure 5. In ρ-variable for either channel it becomes precisely the cut unit disk D\(−1, 0].

Following [18], it is convenient to parametrize domain Cst via the Zhukovsky map12

z(y) =
(1 + y)2

2(1 + y2)
. (3.40)

This is a holomorphic one-to-one mapping of the unit disk D onto Cst. Using the function

ϕ(y) = ρ(z(y)), the s-channel conformal block expansion is pulled back to the unit disk

of the Zhukovsky variable. Since the region Cst is symmetric under z → 1 − z, the same

statement is true for the t-channel block expansion (the crossing z → 1− z corresponds to

y → −y).

We will now apply theorem 3.3 with S = D \ (−1, 0]. The first conclusion is that

the four-point function (both with and without the factor z−2∆φ) is a distribution on the

boundary of the unit y-disk. This statement is only interesting near the points y = ±1,

y = ±i where the four-point function is singular: on the rest of the boundary it is analytic,

as can be shown using the s- and t-channel expansions.

The second conclusion is that both s- and t-channel conformal block expansions con-

verge as a distribution on |y| = 1. This statement is interesting, because in the usual sense

each channel converges only on one half of the boundary (the left half for the s-channel

and the right half for the t-channel).

Distributional convergence has an interesting consequence for the study of the crossing

equation using the method of linear functionals [38] and in particular for constructing a

wide class of functionals satisfying the swapping property of [17]. We write the crossing in

the usual sum rule form∑
p∆F∆(z) = 0, F∆(z) = z−2∆φg∆(z)− (1− z)−2∆φg∆(1− z) . (3.41)

Denote by F∆(y) the same functions pulled back to the unit Zhukovsky disk. They are

analytic in the interior and have boundary values (bvF∆) at |y| = 1. By theorem 3.3 we

know that (3.41) converges on the |y| = 1 boundary to zero in the sense of distributions.

This means that we can integrate it term by term with a smooth function f(θ):

∑
p∆

∫ 2π

0
dθ(bvF∆)(y = eiθ)f(θ) = 0 . (3.42)

The 1d conformal blocks having only logarithmic singularities, the nature of their boundary

values is determined by the singularity of prefactors z−2∆φ and (1−z)−2∆φ . Thus they are

ordinary locally integrable functions for 2∆φ < 1, and distributions otherwise.

Now, let us fix an infinitely smooth f(θ) on the boundary of the unit y-disk. The

support of this function may include points in both halfs of the circle, including the points

where the four-point function is singular. Consider a linear functional αf defined by the

12The original Zhukovsky (Joukowsky) map ζ = y + 1/y maps the unit circle onto the interval (−2, 2).

We have z = 1/2+1/ζ so that the unit circle is mapped onto the two cuts (−∞, 0]∪ [1,∞). The Zhukovsky

map is famous in aerodynamics: applying it to offcentric circles one can parametrize airfoil shapes and

compute the lift force analytically by conformal invariance of incompressible 2d flows.
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formula

g(y) 7→ αf [g] ≡
∫ 2π

0
dθ(bv g)(y = eiθ)f(θ) . (3.43)

We can write (3.42) equivalently as∑
p∆αf [F∆] = 0 . (3.44)

This means, in the terminology of [17], that the functional (3.43) satisfies swapping

property.

Note that many simple functionals can be rewritten in the form (3.43). For example,

the derivative evaluation functional αn,y0

gn,y0(y) 7→ αn,y0 [g] ≡ g(n)(y0) (3.45)

for integer n > 0 and |y0| < 1 can be written using Cauchy theorem as13

αn,y0 [g] =
n!

2πi

∫ 2π

0
dθ

ieiθ

(eiθ − y0)n+1
(bv g)(y = eiθ). (3.46)

This coincides with αfn,y0 with fn,y0 given by

fn,y0(θ) =
n!

2πi

ieiθ

(eiθ − y0)n+1
. (3.47)

A type of functionals commonly used in analytic functional conformal bootstrap [18–

25] can be described as

g(y) 7→ αh,Γ[g] ≡
∫

Γ
dyh(y)g(y), (3.48)

where h(y) is some holomorphic function and Γ is a contour in D which is allowed to have

end points on the boundary |y| = 1. Conditions on h(y) that guarantee the swapping

property for αh,Γ were studied in [17]. We can try to identify αh,Γ with αfh,Γ where

fh,Γ(θ) =

∫
Γ
dyh(y)f0,y(θ), (3.49)

with fn,y defined in (3.47). Unfortunately, if Γ ends or starts on |y| = 1 then for generic

h(y) the function fh,Γ(θ) will not be smooth (and so will not be a test function) and thus

we have not proven that αfh,Γ is well defined and satisfies the swapping property for this

class of functionals. In other words, so far the class of functionals (3.43) is too small to

accommodate the modern results in analytic functional bootstrap.

However, the swapping conditions of [17] require h(y) to decay sufficiently quickly (as

some power-law) near the end points of Γ that are on |y| = 1. In this case fh,Γ(θ) is still

13In Cauchy theorem we integrate over the contour at |y| = 1 − ε, where the function is analytic. As

ε→ 0, the Cauchy kernel tends to 1
(eiθ−y0)n+1 in the C∞ topology of test functions on the circle, while g(y)

tends to bv g in the sense of distributions by theorem 3.3. This justifies pushing the contour all the way to

the boundary |y| = 1.
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generically not infinitely smooth, but it will have some finite number of derivatives, i.e. we

will have fh,Γ(θ) ∈ Ck(S1) for some k > 0. In particular, under the swapping conditions on

h(y) derived in [17] k is proportional to ∆φ. On the other hand, by examining the proof of

Vladimirov’s theorem 3.1 given in section 3.3, we can see that we only use a finite number

of semi-norms of the test functions, corresponding to derivatives of order related to the

power M in the slow-growth condition (3.13), which in turn is related to the dimension

∆φ. This implies that in order for the functionals (3.43) to be well-defined and satisfy the

swapping property, we only need f to have k′ derivatives with k′ proportional to ∆φ.

We thus see that if the functional (3.48) satisfies the swapping conditions derived

in [17], then the function (3.49) has k ∝ ∆φ derivatives. Similarly, we concluded that our

results can be strengthened so that the functional (3.43) is well defined and satisfies the

swapping property if f has k′ ∝ ∆φ derivatives. This suggests that it is possible to define

a space B∆φ
of functions on S1 with the following properties. First, we would like αf to be

well defined and satisfy the swapping property for all f ∈ B∆φ
. Furthermore, all functionals

used in analytic functional bootstrap should be representable by αf with f ∈ B∆φ
, i.e. we

want fh,Γ ∈ B∆φ
for all h and Γ which satisfy the swapping conditions of [17].

As alluded to above, the first approximation to the space B∆φ
is Ck(S1) with appropri-

ately chosen k. However, this seems too coarse, since k is a discrete parameter, while ∆φ is

continuous. Moreover, not all the points y with |y| = 1 are equal — there are special points

y = ±1,±i, where the correlator might have a singularity that needs to be controlled, but

at all other points we know from crossing that the correlator is smooth (but this does not

imply that the conformal block expansion converges there pointwise). It would be interest-

ing to find the appropriate definition for B∆φ
since it would provide a uniform description

of all functionals suitable for analyzing the crossing equation. We leave these questions for

future work.

3.7 Dispersion relation in cross-ratio space and the discontinuity

For a second application, we consider the upper half-plane in z variable. This region is a

subset of Cst and thus we can again use theorem 3.3 (this time with S being the upper half

of D) to conclude that both s- and t- conformal block expansions converge as distributions

on the boundary of unit disk in the variable w = z−i
z+i . This boundary minus one point is

smoothly mapped to the real line in z-plane, and so both s- and t-channels also converge

as distributions on the real line R in z-plane when approached from above. By repeating

the same arguments for the lower half-plane mapped to the unit disk via w̃ = z+i
z−i , we find

that both channels converge as distributions on the real line in z-plane when approached

from below.

Let us now see how this kind of arguments can be used to write rigorous dispersion

relations and give a proper definition of discontinuity (including the point at infinity). Let

z0 be a point in the upper half-plane, and C and C̃ be contours in the upper and lower

half-planes, with C surrounding z0. Then we have

g(z0) =
1

2πi

∮
C

dz

z − z0
g(z) ,

0 =
1

2πi

∮
C̃

dz

z − z0
g(z) . (3.50)
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Intuitively, to derive the dispersion relation we push C and C̃ to the real axis and infinity,

and take the difference of the two equations, which gives a dispersion relation

g(z0) =
1

2πi

∫ ∞
−∞

dx

x− z0
Disc g(x) + contribution at infinity , (3.51)

where Disc g(x) is the difference in two limits of g(z). Contribution at infinity cannot be

generally computed in this approach, unless one has some information about the asymp-

totics of g(z) as z →∞.

Let us now turn this reasoning into a rigorous dispersion relation, including the con-

tribution at infinity. First of all we pull eqs. (3.50) to the unit discs of w and w̃ variable,

which gives:

g(w0) =
1

2πi
(w0 − 1)

∮
C

dw

w − w0

g+(w)

w − 1
,

0 =
1

2πi
(w0 − 1)

∮
C̃

dw̃/w̃2

w̃−1 − w0

g−(w̃)

w̃−1 − 1
. (3.52)

where we denoted by g+(w), g−(w̃) the function g(z) from the upper/lower half-plane

pulled to the corresponding unit disk. Then we push the contours C, C̃ to |w| = 1, |w̃| = 1

and get:

g(w0) =
1

2πi
(w0 − 1)

∮
|w|=1

dw

w − w0
bv
g+(w)

w − 1
,

0 =
1

2πi
(w0 − 1)

∮
|w̃|=1

dw̃/w̃2

w̃−1 − w0
bv

g−(w̃)

w̃−1 − 1
. (3.53)

Notice that we have to include the singular factors 1/(w − 1) and 1/(w̃ − 1), arising due

to the transformation of the measure dz, under the “bv” sign. Since these factors are

power-like, the resulting limiting boundary values exist as distributions also in presence of

these factors. Finally we take the difference of the two equations and we get:

g(w0) =
1

2π
(w0 − 1)

∫ 2π

0

dθ eiθ

eiθ − w0
D(θ), (3.54)

D(θ) = bv
g+(w)

w − 1

∣∣∣∣
w=eiθ

− bv
g−(w̃)

w̃−1 − 1

∣∣∣∣
w̃=e−iθ

. (3.55)

Here D(θ) is a distribution on the unit circle, which plays the role of a rigorously defined

discontinuity, including the point z = ∞ mapped to θ = 0. For points away from θ = 0

and θ = 2π we can pull the factors 1/(w − 1) and 1/(w̃ − 1) from under bv and D(θ)

becomes just

D(θ) =
1

eiθ − 1
Disc g

(
x = − cot

θ

2

)
, θ 6= 0, 2π. (3.56)

Here Disc g(x = − cot θ2) is defined as bvg+(w)|w=eiθ− bvg−(w̃)|w̃=e−iθ , which is equivalent

to taking the boundary values in z-space from above and below the real axis, which is simply
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the intuitive definition of discontinuity. Using this value of D(θ) in (3.54) and changing

back to x variable, we recover (3.51). So we see that (3.54) is indeed an analogue of (3.51).

However, using D(θ) allows us to rigorously include the contribution at x =∞.

An intuitive way to think about this construction is that it defines Disc g(x) as a

distribution on a class of test functions S0(R) larger than S(R). The space S0(R) consists

of smooth functions f(x) such that f(1/x′) is smooth and vanishing at x′ = 0. Pairing

with Disc g(x) is defined by the formula∫
dxf(x)Disc g(x) ≡ −2

∫
dθeiθf̃(θ)D(θ), (3.57)

where

f̃(θ) ≡ 1

eiθ − 1
f

(
− cot

θ

2

)
(3.58)

is a smooth function on the circle parametrized by θ.14 With this definition we can write

the dispersion relation (3.54) as

g(z0) =
1

2πi

∫ ∞
−∞

dx

x− z0
Disc g(x), (3.59)

since the Cauchy kernel 1
x−z0 belongs to our new class of test functions. In this language

our results imply that both Disc of the four-point function and Disc of partial sums of the

conformal block expansion are distributions in S ′0(R), and the partial sums converge to the

four-point function in this space (i.e. discontinuity can be computed term-by-term).

Let us consider an example. First take g(z) = log z. This is not a good four-point

function since it does not satisfy crossing, but it will allow us to clarify the notion of the

discontinuity as a distribution and how it can be concretely computed. Going to the ρ

variable we easily see that the slow-growth condition is satisfied. For finite x < 0 we have

Disc g(x) = 2πi. This is a distribution in S ′(R), but not obviously in S ′0(R). To extend it

to S ′0(R) let us write

log z = − lim
α→+0

∂αz
−α. (3.60)

The point here is that z−α also satisfies a power-law bound and for α > 0 the discontinuity

Discx−α = −2i sinπα|x|−α (3.61)

is in S ′0(R). We can then obtain Disc g(x) by taking derivative and limit α→ +0.15 Pairing

Disc g(x) with functions that vanish as 1/x2 or faster we get integrals that converge in the

14This equation established isomorphism between S0(R) and C∞(S1) in the sense that f ∈ S0(R) if and

only if f̃ ∈ C∞(S1).
15Justification for this comes from the limit part of the statement of theorem 3.1 and (for the derivative)

from arguments as in appendix C.
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usual sense. So we only need to use the limiting construction to define the pairing with

1/x. We have: ∫ −1

−∞
dx

1

x
Disc g(x) = − lim

α→+0
∂α

∫ −1

−∞
dx

1

x

(
−2i sinπα|x|−α

)
= −2i lim

α→+0
∂α

sinπα

α
= 0 , (3.62)

where the choice of the integral’s upper limit −1 is just for convenience since it leads to a

simple answer (zero). We can therefore define the distribution Disc g(x) by∫
dxf(x)Disc g(x) =

∫ −1

−∞
dx(f(x)− f1x

−1)2πi+

∫ 0

−1
dxf(x)2πi. (3.63)

where f1 ≡ lim
x→∞

xf(x). The dispersion relation (3.59) then becomes

log z0 =

∫ −1

−∞
dx

(
1

x− z0
− 1

x

)
+

∫ 0

−1
dx

1

x− z0
. (3.64)

This is easy to verify.

Another example, which we will find useful in section 4.6, is Disc 1. Naively, this

discontinuity must be zero. This is indeed correct, except at x = ∞. Indeed, analogously

to the above, we have

1 = lim
α→+0

z−α, (3.65)

so ∫ −1

−∞
dx

1

x
(Disc 1)(x) = lim

α→+0

∫ −1

−∞
dx

1

x

(
−2i sinπα|x|−α

)
= 2i lim

α→+0

sinπα

α
= 2πi , (3.66)

and thus ∫
dxf(x)(Disc 1)(x) = 2πif1, (3.67)

where as before f1 = limx→∞ xf(x).

4 Scalar four-point functions in higher dimensions

We will now generalize our results to general scalar four-point functions in any number of

dimensions d. This generalization is mostly technical, and all the conceptual points were

already explained in section 3. Our strategy is therefore very similar: first we will introduce

analogues of the expansions (3.1) and (3.27), and then use these expansions to prove bounds

on the correlation function and partial sums of the conformal block expansion. Finally, we

will apply a higher-dimensional version of Vladimirov’s theorem 3.1 to conclude that the

conformal block expansion converges in the sense of distributions on the boundary of the

region |ρ|, |ρ| < 1.
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4.1 Conformal block expansion

We consider a correlation function of four not necessarily identical scalar operators φi with

scaling dimensions ∆i,

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉

=
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

24

x2
14

)∆1−∆2
2

(
x2

14

x2
13

)∆3−∆4
2

g1234(ρ, ρ), (4.1)

which is a simple generalization of (2.1). The subscript 1234 on g1234 indicates that it

relates to the four-point function of φ1, . . . , φ4. The function g1234(ρ, ρ) has a conformal

block expansion of the form

g1234(ρ, ρ) =
∑
O
λ12Oλ43Og∆,J(ρ, ρ), (4.2)

where we sum over primaries O in φ1 × φ2 OPE, λ’s are the three-point coefficients, ∆, J

are the spin and dimension of O, and g∆,J(ρ, ρ) are the conformal blocks. The conformal

blocks also depend implicitly on ∆12 = ∆1 −∆2 and ∆34 = ∆3 −∆4.

We would like to show that the function g1234(ρ, ρ) satisfies a powerlaw bound as ρ and

ρ approach the boundaries of their respective unit disks. We would also like to show that

partial sums of the conformal block expansion (4.2) satisfy a uniform powerlaw bound.

We will prove this by relating g1234(ρ, ρ) to the four-point function where operators are

inserted symmetrically with respect to the origin [30].

Let us focus on configurations when all points xi lie in the 2-plane P defined by xµ = 0

for µ > 2. It is convenient to introduce complex coordinates y, y in this plane

y = x1 + ix2, y = x1 − ix2. (4.3)

Notice that in Euclidean configurations (i.e. when xµ are real) we have y = y∗. Using the

notation φi(y, y) for operator insertions in P parametrized by y, y, we consider for ρ = ρ∗

a symmetrically-inserted four-point function

g̃1234(ρ, ρ) = (ρρ)
∆1+∆2

2 〈φ1(−ρ,−ρ)φ2(ρ, ρ)φ3(1, 1)φ4(−1,−1)〉 , (4.4)

where the factor (ρρ)
∆1+∆2

2 is inserted for further convenience (basically to make eq. (4.6)

look maximally nice) . For operators inserted as shown, the meaning of ρ in (4.4) and (4.1)

is the same, justifying the notation. Evaluating also the prefactor in (4.1), we find the

following relation between g̃1234 and g1234:16

g̃1234(ρ, ρ) = 2−∆1−∆2−∆3−∆4

(
(1 + ρ)(1 + ρ)

(1− ρ)(1− ρ)

) 1
2

(∆12−∆34)

g1234(ρ, ρ). (4.5)

16Both g̃1234 and g1234 depend on ρ, ρ and both can pretend to be called the conformally invariant part

of the general four-point function. One could switch from one convention to the other by changing the

prefactor in (4.1). We will still express our final results in terms of g1234, since eq. (4.1) is the most

standard convention.
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For ρ = ρ∗ (4.4) is a Euclidean configuration, radial quantization of which [14, 30, 31, 39]

gives the following absolutely convergent expansion for |ρ| = |ρ| < 1

g̃1234(ρ, ρ) =
∑
ψ

λ̃12ψλ̃43ψρ
hρh, (4.6)

where we sum over eigenstates ψ of dilatations and planar rotations in radial quantization,

and h, h are appropriate combinations of the corresponding eigenvalues. Since it converges

absolutely for |ρ| = |ρ| < 1 when ρ = ρ∗, it also does so for independent ρ and ρ when

|ρ|, |ρ| < 1. Furthermore, the conformal block expansion (4.2) can be understood as a

reorganization of expansion (4.6) by grouping ψ into conformal families.

4.2 Bounds on g(ρ, ρ) and partial sums of the conformal block expansion

Consider the following analogues of (4.4), (4.6) where two pairs of operators are hermitean

conjugates of each other:

g̃1221(ρ, ρ) =
∑
ψ

λ̃12ψλ̃12ψρ
hρh =

∑
ψ

|λ̃12ψ|2ρhρh, (4.7)

g̃4334(ρ, ρ) =
∑
ψ

λ̃43ψλ̃43ψρ
hρh =

∑
ψ

|λ̃43ψ|2ρhρh, (4.8)

where we use 1, etc., to denote three-point coefficients of hermitian conjugates φ†1, etc. . . As

shown, because of λ̃12ψ = (λ̃12ψ)∗ and λ̃43ψ = (λ̃43ψ)∗, these two expansions have non-

negative real coefficients. Furthermore, estimating by absolute value and applying Cauchy-

Schwarz, we can bound (4.6) in terms of (4.7), (4.8):

|g̃1234(ρ, ρ)| 6
∑
ψ

|λ̃12ψ||λ̃43ψ|rh+h 6
[
g̃1221(r, r)g̃4334(r, r)

]1/2
(4.9)

where r = max(|ρ|, |ρ|).17 Note that the same bound holds if we replace the sum over ψ

by a sum over a subset of all allowed ψ’s. This, similarly to the argument in section 3.4,

implies that the partial sums of expansions (4.2) and (4.6) satisfy the same bound (4.9)

(with g̃1234 related to g1234 via (4.5) where needed).

To proceed we need a bound on g̃1221(r, r) and g̃4334(r, r). This bound is easy to

obtain from the corresponding definition (4.4). In the limit r → 1 two pairs of hermitean

conjugate operators approach each other. Using OPE between the approaching pairs, we

get a leading asymptotics for the correlator.18 This implies a bound of the same functional

form as the leading asymptotics times a constant. The resulting bounds have the form:

g̃1221(r, r) 6 C(1− r)−2∆1−2∆2 , (4.10)

g̃4334(r, r) 6 C(1− r)−2∆3−2∆4 , (4.11)

17We also have a more nuanced bound by
[
g̃1221(|ρ|, |ρ|)g̃4334(|ρ|, |ρ|)

]1/2
but we won’t need it.

18This can be equivalently formulated via crossing symmetry in z space and then transforming to the ρ

space, as in section 3.4.
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with some C > 0. Notice that there is no blowup as r → 0 since it’s overcome by the

prefactor in (4.4). Combining these with (4.9) we find

|g̃1234(ρ, ρ)| 6 C(1− r)−∆1−∆2−∆3−∆4 , (4.12)

and finally via (4.5) we get a bound for g1234

|g1234(ρ, ρ)| 6 C ′(1− r)−∆1−∆2−∆3−∆4−|∆12−∆34|, r = max(|ρ|, |ρ|), (4.13)

for some C ′ > 0. Again, the same bound with the same C ′ holds for the partial sums of

expansions (4.2) and (4.6).

We repeat the logic of this argument. The key idea is to use OPE in the cross channel

to infer the leading singularity of the correlator and then to argue that a similar bound

holds throughout the range |ρ|, |ρ| < 1. This does not work directly for g1234, but only for

4pt functions with non-negative ρ,ρ expansion coefficients, such as g1221 and g4334. So we

run the argument for those, and recover the general case by Cauchy-Schwarz.

4.3 Vladimirov’s theorem

Now that we have the bound (4.13) we would like to use a higher-dimensional version of

Vladimirov’s theorem 3.1 to argue for the distributional convergence of conformal block

expansion (4.2).

Theorem 4.1. Consider CN = Cn × Cd with coordinates wk on Cn and uk = xk + iyk
on Cd. Let U be an open subset of Cn and let M = U × Rd be the manifold defined by

w ∈ U, yk = 0, k = 1 . . . d. Let V be a convex open cone in Rd with vertex at y = 0

that doesn’t contain y = 0. Let W be the subset of CN for which y ∈ V , |yk| < a for

some a > 0, and w ∈ U . Let g(w, u) be a function holomorphic in W that satisfies the

slow-growth condition near M ,19

|g(w, u)| 6 C

(
1 +

∑
k

x2
k

)L(∑
k

y2
k

)−K
. (4.14)

Finally, let v be a vector in V . Then for fixed w the boundary value

(bv g)(w, x) = lim
ε→+0

g(w, x+ ivε) (4.15)

exists in S ′(Rd) and is independent of the choice of v. Furthermore, this boundary value

depends on w holomorphically, which means that for any f ∈ S(Rd) the function h(w)

defined by20

h(w) ≡
∫
ddx f(x)(bv g)(w, x) (4.16)

19More precisely, we’d like to have this condition satisfied uniformly on compact subsets w ∈ K ⊂ U with

C,L,K allowed to depend on K.
20Here the integral of course just means the pairing of the distribution with the test function.
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is holomorphic for w ∈ U . Furthermore, suppose that sequence of functions gn holomor-

phic in W converges to g in W pointwise and satisfies the slow-growth condition near M

uniformly in n. Then for all w ∈ U

(bv gn)(w, x)→ (bv g)(w, x) in S ′(Rd). (4.17)

The proof of this theorem is very similar to the proof of theorem 3.1 given in section 3.3,

and we summarize it in appendix C. For more general results in this direction see, for

example, [16] and [40].

Let us now apply theorem 4.1 to the conformal block expansion (4.2). As a first step,

we introduce the coordinates τ and τ via

ρ = eiτ , ρ = eiτ . (4.18)

Note that in Euclidean configurations we have τ = −τ∗. The function g1234(τ, τ) as well

as the partial sums of (4.2) are holomorphic functions in the region

W0 = {(τ, τ)|Im τ, Im τ > 0}, (4.19)

which is the universal cover of the product of open unit discs of ρ and ρ. Furthermore, the

expansion (4.2) converges absolutely in W0. We can apply theorem 4.1 in two essentially

different ways.

Firstly, we can take Im τ to zero while keeping τ fixed. This corresponds to n = d = 1

case of theorem 4.1, in which Cn is parametrized by τ and Cd by τ . The open set U is

then given by Im τ > 0 and the cone V is given by y1 = Im τ > 0. The set W is then

W = {(τ, τ)|Im τ > 0, a > Im τ > 0}, (4.20)

for some a > 0, say a = 1. The slow-growth condition for g1234(τ, τ) and the partial sums

of (4.2) follows from (4.13). In this way, for each τ we get a distribution

(bv g1234)(τ,Re τ) =
∑
O
λ12Oλ43O(bv g∆,J)(τ,Re τ) in S ′(R) (4.21)

that is holomorphic in τ . Similarly, we can send Im τ to 0 while keeping τ fixed to get

(bv g1234)(Re τ, τ) =
∑
O
λ12Oλ43O(bv g∆,J)(Re τ, τ) in S ′(R), (4.22)

holomorphic in τ .

Secondly, we can take the simultaneous limit Im τ, Im τ → 0. This corresponds to

n = 0 and d = 2 in theorem 4.1. A small subtlety is that with W as in (4.20) the slow-

growth condition doesn’t follow from (4.13), since r in (4.13) can approach 1 even if only

one of Im τ, Im τ is small. To fix this, choose any α < 1 and define

V = {(Im τ, Im τ) | Im τ, Im τ > 0, α−1 < Im τ/Im τ < α}. (4.23)

The corresponding W has form as in figure 6. In this new W we have 1− r > C[(Im τ)2 +

(Im τ)2]1/2 for some C > 0 and the slow-growth condition follows from (4.13). We therefore
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Figure 6. The region W relevant for the second application of Vladimirov’s theorem.

conclude the existence of the boundary values and the distributional convergence of the

boundary value series:

(bv g1234)(Re τ,Re τ) =
∑
O
λ12Oλ43O(bv g∆,J)(Re τ,Re τ) in S ′(R2). (4.24)

4.4 Analytic functionals

Similarly to the one-dimensional case, we can consider various generalizations. In particu-

lar, we have the obvious generalizations of corollary 3.2 and theorem 3.3.

Corollary 4.2. If function q(ρ, ρ) is holomorphic in the branched unit ρ, ρ-polydisc and

satisfies the appropriate slow-growth conditions near τ, τ ∈ R (recall ρ = eiτ , ρ = eiτ ), then

we have

(bv q · g1234)(τ,Re τ) =
∑
O
λ12Oλ43O(bv q · g∆,J)(τ,Re τ) in S ′(R), (4.25)

(bv q · g1234)(Re τ, τ) =
∑
O
λ12Oλ43O(bv q · g∆,J)(Re τ, τ) in S ′(R), (4.26)

(bv q · g1234)(Re τ,Re τ) =
∑
O
λ12Oλ43O(bv q · g∆,J)(Re τ,Re τ) in S ′(R2). (4.27)

Theorem 4.3. Let D be the open unit disk parametrized by w and let ϕ : w 7→ ϕ(w) be

a holomorphic map which maps D one-to-one onto a domain S inside the cut unit disk

of the ρ variable, S ⊂ D \ (−1, 0]. Let φ be a map of the same kind with S replaced by

S ⊂ D \ (−1, 0]. Replacing ρ = φ(w), ρ = φ(w) in the conformal block expansion (4.2),

we pull it back to w,w ∈ D × D. Then this pulled-back conformal block expansion in w,w

variables converges on the boundaries |w| = 1, |w| = 1, or |w| = |w| = 1 in the sense of

distributions. Furthermore, the same conclusion holds if expansion (4.2) is multiplied by

q(ρ, ρ) = (zz)−
∆1+∆2

2 .

For example, the discussion of analytic bootstrap functionals in section 3.6 can be

extended to the two-variable case as follows. In Zhukovsky variables y, y the crossing

domain Cst is given by D×D. The boundary ∂(D×D) is topologically a 3-sphere S3. This

S3 is a disjoint union

S3 = (D× S1) t (S1 × D) t T2, (4.28)
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where the first solid torus D × S1 corresponds to |y| = 1 and |y| < 1, the second solid

torus corresponds to |y| = 1 and |y| < 1, while the torus T2 = S1 × S1 corresponds to

|y| = |y| = 1. We have shown that the conformal block expansion in either s- or t- channel

converges in the sense of distributions on each of these boundary components.

Let us focus on the component T2 = S1 × S1. Our results imply that the functionals

αf of the form

g(y, y) 7→ αf [g] ≡
∫ 2π

0

∫ 2π

0
dθdθf(θ, θ)g(y = eiθ, y = eiθ) (4.29)

where f(θ, θ) is a smooth function, satisfy the swapping property. As in section section 3.6,

by taking f to be the Cauchy kernel

fm,n;y0,y0
(θ, θ) =

m!n!

(2π)2

eiθ

(eiθ − y0)m+1

eiθ

(eiθ − y0)n+1
, (4.30)

we can reproduce the evaluation functionals αm,n;y0,y0

g(y, y) 7→ αm,n;y0,y0
[g] ≡ ∂my ∂ny g(y0, y0). (4.31)

We can again ask about the space of functions f for which the functional αf satisfies

the swapping property and try to see if this space is large enough to incorporate the

functionals that are useful in analytic conformal bootstrap. Just as in section 3.6, we leave

these questions for future work.

4.5 Spinning operators

Another natural generalization available in higher dimensions is to operators with spin. In

cross-ratio space this question is somewhat non-canonical due to the freedom of choosing

the tensor structures for spin indices, which is similar to the freedom of selecting the

prefactor in (4.1). Nevertheless, it is clear that for reasonable choices of the basis of tensor

structures, the four-point functions of spinning operators should satisfy similar power-law

bounds in cross-ratio space. For example, one could use equation (4.4) with φi replaced

by plane-rotation eigencomponents of some spinning operators Oi, and the arguments of

sections 4.1 and 4.2 would still go through. This would correspond to using the “conformal

frame” basis of four-point structures [41], which is related to all reasonable choices of tensor

structures by matrices which themselves satisfy power-law bounds.21 While it would be a

good exercise to explicitly repeat our arguments in the case of spinning correlators, we do

not do it in this paper for the sake of space.

4.6 Single-variable dispersion relation for the four-point function in d > 2

This section generalizes section 3.7 to the case of two cross-ratios z, z. Ref. [29] presented

a single-variable dispersion relation recovering the four-point function in terms of its dis-

continuities. We will state their story in our language, clarifying some issues. Consider the

21There is a subtlety for z = z, in which case the transition matrices to/from conformal frame basis

become singular. These singularities are canceled by special conditions satisfied by four-point functions in

conformal frame basis near this locus (see appendix A of [41] and appendix D of [42]).
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four-point function satisfying the crossing equation

F (z, z) = F (1− z, 1− z) = (zz)−∆φF (1/z, 1/z) , (4.32)

where F (z, z) = (zz)−∆φg(z, z) and the third equation corresponds to the u-channel. This

channel representation does not exist for a general 1d four-point function considered in

section 3.5.

Ref. [29] considers a dispersion relation for the function F (z, z) using the discontinuity

w.r.t. z and keeping z fixed. In our language this dispersion relation would be written in

the form

F (z, z) =
1

2πi

∫ ∞
−∞

dx

z′ − z Disc
z′

F (z′, z) (4.33)

where the discontinuity has to be understood in a distributional sense, including the con-

tribution at infinity, as discussed in section 3.7.

Then the question arises how to compute the discontinuity. There are three cases:

−∞ < z′ 6 0, 1 6 z′ < +∞, and z′ = ∞. In the first case we can use the s-channel

conformal block decomposition, which converges in the sense of distributions (in fact in

ordinary sense for z′ < 0). The discontinuity at z′ > 1 is reduced to the one at z′ 6 0 via

the first crossing equation in (4.32).22

One can try to fix the contribution at infinity using the u-channel conformal block

expansion, which determines the behavior of the correlator at z′ =∞. Let us assume that

F (z′, z) = 1 +O((z′)−τ/2) . (4.34)

ref. [29] argued this by appealing to the second crossing relation in (4.32), expanding

F (1/z, 1/z) in conformal blocks, keeping only the unit operator and dropping all the other

operators which seem to be naively suppressed by (1/z)τ/2 where τ = min(∆ − `) is

the minimal twist, assumed positive. This reasoning includes a subtlety, see below. But

assuming (4.34) we can argue that, in the language of section 3.7,

Disc
z

F (z, z) = (Disc 1)(z) + Disc′
z

F (z, z), (4.35)

where Disc 1 was computed in section 3.7 and Disc′
z

F (z, z) is a distribution that is rep-

resented near z = ∞ by an ordinary function. In other words, Disc′ is the discontinuity

“without the contribution at ∞.”23

22It is also possible to compute the discontinuity at z > 1 by summing the s-channel conformal block

expansion since by our results it converges on this cut in the sense of distributions. Ref. [29] mentions this

result in footnote 1, attributing it to Mack [36]. This is not correct: Mack’s paper studies distributional

convergence of OPE expansion in position space, not in the cross-ratio space as needed here. In due fairness,

footnote 1 is not central for [29], being only used in section 4.2.2.

We note in passing that Mack [36] relied on validity of Wightman axioms and rather non-trivial repre-

sentation theory. It is only in [26, 27] that we will show, for the first time, how some of Mack’s assumptions

follow from more mundane Euclidean CFT rules. In comparison, our arguments here are very elementary

and rely only on the well-established properties of the conformal block expansion.
23Note, however, that we can only unambiguously define such discontinuity because of (4.34). For

example, this is not possible for log z example from section 3.7.
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Using this decomposition of Disc
z

F (z, z), one obtains from (4.33) a dispersion relation

in the form given by [29]

F (z, z) = 1 +

(
1

2πi

∫ 0

−∞

dz′

z′ − z Disc′
z′

F (z′, z) + (z, z → 1− z, 1− z)

)
, (4.36)

where, as mentioned above, the discontinuity Disc′ does not include the contribution at

infinity that is instead explicitly included as “1+”, and we used crossing symmetry to

account for discontinuity on the cut [1,+∞).

Note that independently of the assumption (4.34), our results imply that Disc
z

F (z, z)

can be computed term-by term in conformal block expansion (including the contribution

at infinity), and then used in (4.33), although it is not guaranteed that the decomposi-

tion (4.36) exists in that case.

Let us now discuss the subtlety in the asymptotics (4.34). Upon a closer look, this

asymptotic is only justified provided that z and z belong to the different halfplanes of the

region Cst, i.e. if Im z and Im z have opposite sign. This is because the u-channel conformal

block expansion stops converging when z crosses the cut (0, 1) and moves into the same

half-plane as z. Thus, if z is fixed, asymptotics (4.34) is rigorously true only on one of the

two arcs at infinity z. The asymptotics on the second arc is somewhat similar to the Regge

limit asymptotics, in the sense that 1/z goes through the s-channel cut and then is sent to

zero (while, unlike in the Regge limit, z stays fixed).

There are two ways around this difficulty. One way is to take z ∈ (0, 1) real. Then, by

our results, the u-channel OPE expansion converges in the sense of distributions on both

arcs. In this case the asymptotics (4.34) is true provided that the error term is understood

in the sense of distributions, and it goes to zero as z → ∞. Since a zero distribution is a

zero function, we recover the dispersion relation (4.36).

The second way around the difficulty is to apply the dispersion relation in perturbation

theory around a mean field theory, which was in fact the main focus of [29]. In their case

the zeroth order term satisfies the asymptotics (4.34) by inspection, while perturbative

corrections have an even better behavior. The use of dispersion relation in such a limited

context is justified.

5 Conclusions

In this work we studied the properties of the conformal block expansion on the boundary

of its region of convergence. We showed that both the correlation functions and conformal

blocks can be interpreted as distributions on this boundary, and that the conformal block

expansion converges in the space of distributions. We have proven these results in one- and

higher-dimensional cases for correlators of scalar operators, but the extension to general

spinning four-point functions is straightforward.

An important feature of our analysis is that we did not rely on anything but the

modern Euclidean bootstrap axioms. Specifically, we essentially only used the reality

properties of OPE coefficients and the usual convergence properties of the conformal block

expansion. There is a growing consensus that the Euclidean bootstrap axioms provide
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a good conceptual and practical definition for CFTs. Their conceptual appeal is due to

them being rooted in cutting-and-gluing properties of Euclidean path integrals, which is

a natural expected consequence of locality. The practical utility of these axioms has been

demonstrated by the numerical conformal bootstrap studies, which have yielded extremely

precise values of critical exponents and other parameters in various strongly-coupled CFTs

such as the 3d Ising CFT and the O(2) model (see [9, 12] for the most precise determination

to date). These values are in agreement with a plethora of other completely independent

methods (most notably Monte Carlo simulations and the ε-expansion).

Our results are important for understanding the nature of conformal correlation func-

tions in Lorentzian signature. Indeed, as we show in appendix A, the best one can guarantee

in general configurations in Lorentzian signature is that the conformal cross-ratios are on

the boundary of the region of convergence for one of the OPE channels. It is thus important

to understand the value of CFT four-point functions on this boundary. We have shown

that the conformal block expansion converges there in distributional sense, which gives

a practical way for computing correlation functions. For example, we can now imagine

collecting numerical OPE data for 3d Ising CFT as in [43] and using it to compute pairings

of the boundary value of 〈σσσσ〉 four-point function with various tests functions.

One important byproduct of our results, which we discuss in section 3.6, is a hint at

a uniform description of the space of functionals with which we can probe the crossing

equation. Starting with numerical conformal bootstrap [38], it has become standard to

disprove the existence (under certain spectral assumptions) of solutions to the crossing

equation by exhibiting functionals that separate the left-hand side of the crossing equation

from the right-hand side. In numerical bootstrap (see [44] for review) these functionals are

finite combinations of evaluation functionals αn,y (3.45), while in more recent analytical

functional bootstrap [18–25] the appropriate functionals are given by contour integrals

αh,Γ (3.48). Having a uniform description of a sufficiently large class B∆φ
of functionals

(that in particular would include αn,y and αh,Γ) would allow us to formulate and hopefully

answer some interesting conceptual questions. For example,

• is it true that for any spectral assumption for which there is no solution to crossing

equation there exists a functional in B∆φ
that disproves the existence of a solution?

• Is it true that when the spectral assumption is not “extremal,” this functional can

be taken as a finite linear combination of evaluation functionals? (In other words, is

numerical conformal bootstrap complete?)

• When the spectral assumption is extremal, is it true that there exists a unique ex-

tremal functional?

Most practitioners would probably guess that the answer to these three questions

should be “yes”, “yes” and “generically yes”. To put this intuition on firm footing we need

first of all understand better the space B∆φ
and the appropriate topology on this space.

Answering these questions will be important for advancing our analytical understanding of

conformal bootstrap.
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A Lorentzian 4pt correlator with no convergent OPE channel

In this section we will give an example of a Lorentzian 4pt configuration in which there’s

no convergent OPE channel. For simplicity let’s consider the correlators of identical scalar

operators. Recall that, in a general QFT, Lorentzian correlators can be recovered from

Euclidean correlators by analytic continuation. Starting from a configuration of Euclidean

points xi = (τi,xi) with ordered times

τ1 >τ2 > . . . > τn , (A.1)

we analytically continue each time variable as τi = εi + iti and take the limit εi → 0,

preserving the ordering of real parts. The result is interpreted as the Lorentzian correlator

at (Lorentzian) points yi = (ti,xi). Schematically:

〈0|φ(t1,x1) . . . φ(tn,xn)|0〉 := lim
εi→0

ε1>...>εn

〈φ(ε1 + it1,x1) . . . φ(εn + itn,xn)〉
(A.2)

Now we will apply this to a 4pt function in a CFT. In a CFT, this analytic continuation can

be performed starting from eq. (2.1). We just complexify all Euclidean times as described

above, and then take the limit. It is easy to see (exercise) that the distances x2
ij do not

vanish in this process, except perhaps at the very end if the Lorentzian points yi are

lightlike separated. We will be interested in the case when all points are spacelike or

timelike separated. So the prefactor in eq. (2.1) is thus analytically continued (notice that

there is an interesting phase for timelike separation).

In order to analytically continue the factor g(u, v), we will use the existence of the

conformal block expansion (2.5) which as mentioned there is convergent for |ρ|, |ρ| < 1

(“OPE convergence region”). Concretely, we are instructed to compute u, v corresponding

to complexified Euclidean times, then evaluate z, z defined by (2.4), which gives

z, z =
1

2

(
1 + u− v ±

√
(1 + u− v)2 − 4u

)
, (A.3)

then evaluate the corresponding ρ, ρ via (2.3), and finally stick these into the expan-

sion (2.5). This procedure defines an analytic function of τi as long as |ρ|, |ρ| < 1.24 The

24Note that even though z, z will have a branch point when (1+u−v)2−4u = 0, the function g(u, v) is sym-

metric under the intercharge of z, z and will remain analytic as a function of complexified Euclidean times.
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question then is if this condition will hold all along the analytic continuation curve needed

to recover the Lorentzian correlator, including the endpoint. If this happens, Lorentzian

correlator can be computed by summing up a convergent expansion, in particular it is

non-singular.

Above we describe how to use the s-channel expansion for the analytic continuation.

A priori we can also use the t- and u-channels for this purpose, starting from the t- and

u-channel versions of eq. (2.1):

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x2
23)∆φ(x2

14)∆φ
g(ut, vt) =

1

(x2
13)∆φ(x2

24)∆φ
g(uu, vu). (A.4)

The cross ratios ut, vt are obtained from u, v via x1 ↔ x3, and uu, vu via x2 ↔ x3. The func-

tions g(ut, vt), g(uu, vu) can be computed via the corresponding conformal block expansions

with their own regions of analyticity set by the conditions |ρt|, |ρt| < 1 and |ρu|, |ρu| < 1.

It is not a priori clear and requires a separate analysis, which OPE channel, if any, is

convergent for a given Lorentzian configuration. The answer turns out to depend, generi-

cally, only on the causal structure of the configuration (who is timelike, who is spacelike).

The OPE can stop converging in two ways: either at the end point of the analytic contin-

uation, or somewhere along the way. As we will show in [26], for the s-channel we always

have |ρ|, |ρ| 6 1, so OPE converges along the way but may diverge at the end point. For

other channels the OPE may start diverging already along the way.

We will give an exhaustive discussion of these phenomena, for all possible causal struc-

tures, in a later publication [47]. Here we will just give an extreme example of a configu-

ration where all channels diverge.

Consider the causal ordering

y3 → y1 → y4 → y2 , (A.5)

where yi → yj means that yi is in the past open lightcone of yj . We pick some points

(iti,xi) corresponding to this causal ordering, as well as some initial Euclidean times εi
satisfying the ordering ε1 > ε2 > ε3 > ε4, and consider a curve of complexified points

corresponding to these initial and final positions. E.g. we can use linear interpolation:

xi(θ) = ((1− θ)εi + θiti,xi), θ ∈ [0, 1] . (A.6)

We choose the initial point with |ρ|, |ρ| < 1, and we would like to see if this condition stays

true along this curve. For this it is enough to evaluate z, z and see if they cross the cut

[1,+∞) which corresponds to |ρ| = 1. This is how the check is carried out in practice for

the s-channel. For the t- and u-channel, we have the same check in terms of zt, zt and

zu, zu. But in fact we have relations

zt = 1− z, zu = 1/z (A.7)

and similarly for z. These relations map the [1,+∞) cut on (−∞, 0] and [0, 1], respectively.

Thus we don’t have to redo the analysis for zt, zt and zu, zu separately, we just have to

watch if the s-channel z, z crosses these additional cuts to conclude about the convergence

of the t- and u-channel OPEs.
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In[182]:= Show[Plot3142, Graphics[{PointSize[0.01], Point[{0, 0}]}],
Graphics[{PointSize[0.01], Point[{1, 0}]}],
Graphics[Text[Style[1, FontSize → 14, Black], {1, -0.1}]],
Graphics[Text[Style[0, FontSize → 14, Black], {-0.1, -0.1}]],
Graphics[Text[Style["z(0)", FontSize → 12, Black], {0.25, 0.35}]],
Graphics[Text[Style["z(0)", FontSize → 12, Black], {0.25, -0.15}]],
Graphics[Text[Style["z(1)", FontSize → 12, Black], {1.2, 0.1}]],
Graphics[Text[Style["z(1)", FontSize → 12, Black], {2.4, 0.1}]]]

Out[182]=

10

z(0)

z(0)

z(1) z(1)

z zbar curves.nb     3

Figure 7. The curves z(θ) and z(θ) for the causal ordering y3 → y1 → y4 → y2.

In practice, we just pick some numerical values for the initial and final points (re-

specting the orderings), plot the curves z(θ), z(θ) and see what they do. For the causal

ordering (A.5), we get the plot shown in figure 7. To draw the plot we picked numeri-

cal values:

ε1 = 4 , ε2 = 3 , ε3 = 2 , ε4 = 0 ,

y1 = (2, 0, 0, 0) , y2 = (20, 0, 0, 0) , y3 = (0, 0.9, 0, 0) , y4 = (3, 0, 0, 0) ,
(A.8)

where yi = (ti,xi). Any other initial point ε1 > ε2 > ε3 > ε4 and the final point correspond-

ing to the ordering (A.5) gives rise to a topologically equivalent configuration of curves.

We see that the curves z(θ), z(θ) touch the [1,∞) cut at θ = 1 but do not cross it at the

intermediate values of θ. This means that |ρ| = |ρ| = 1 at the corresponding Lorentzian

configuration. Furthermore, both curves cross the t-channel cut (−∞, 0], which according

to the above discussion means |ρt| > 1, |ρt| > 1. One of the two curves also crosses the

u-channel cut [0, 1], which means |ρu| > 1. We conclude that the Lorentzian configuration

under study is outside the region of OPE convergence of any of the three channels.

The given recipe to determine which channels diverge would require some care in

situations when a curve crosses a cut and then goes back, or when the z(θ) and z(θ)

curves cross the same cut in opposite directions. We will discuss these subtleties and their

interpretation in [47]. In the given example they do not occur, so our conclusion that all

three channels diverge is robust.

Another comment is in order concerning the 2d CFT case. In this case, the region of

analyticity of 4pt functions is larger than |ρ|, |ρ| < 1, being instead given by the condition

|q|, |q| < 1 [31] where q is Al. Zamolodchikov’s uniformizing variable. Using this variable,

one can show that the Lorentzian 4pt function in a 2d CFT is analytic for all possible

causal orderings away from null cone singularities [32].

B Proof of lemma 3.4

To prove the first inequality,25 we start by constructing a map ϕ̃(w) from D into D which

satisfies ϕ̃(0) = 0. This is achieved by a fractional linear transformation as follows

ϕ̃(w) =
ϕ(w)− ϕ(0)

1− ϕ(w)ϕ(0)
. (B.1)

25See [48], Exercise 6.3 for similar arguments. For this result it’s only important that |φ(w)| 6 1. That

it’s one-to-one and avoids the cut does not matter.
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Now, Schwarz lemma implies that |ϕ̃(w)| 6 |w| and so 1 − |ϕ̃(w)| > 1− |w|. At the same

time, we find

1− |ϕ̃(w)|2 =
(1− |ϕ(w)|2)(1− |ϕ(0)|2)

(1− ϕ(w)ϕ(0))(1− ϕ(0)ϕ(w))
6 C(1− |ϕ(w)|) , C = 2

1 + |ϕ(0)|
1− |ϕ(0)|

(B.2)

where the first equality follows by a short computation from (B.1), and to get the inequality

we bounded some factors using |ϕ(w)| 6 1. Furthermore, since 1−|ϕ̃(w)|2 = (1−|ϕ̃(w)|)(1+

|ϕ̃(w)|) > 1− |ϕ̃(w)|, we find

1− |w| 6 1− |ϕ̃(w)| 6 1− |ϕ̃(w)|2 6 C(1− |ϕ(w)|). (B.3)

To prove the second inequality, it will be important that ϕ(w) is one-to-one and that

ϕ(w) 6= 0.26 Under these conditions the function 1
ϕ(w) is holomorphic and one-to-one. Such

functions from D onto a subset of C are called univalent, or schlicht [49]. The shifted and

rescaled function

h(w) = −ϕ(0)2

ϕ′(0)

(
1

ϕ(w)
− 1

ϕ(0)

)
, (B.4)

is then also univalent, and in addition satisfies normalization conditions h(0) = 0 and

h′(0) = 1. A basic result about normalized univalent functions is the Growth Theorem

([49], Theorem 2.6)

|h(w)| 6 |w|
(1− |w|)2

. (B.5)

This immediately implies the second bound in (3.38).

C Comments on the proof of theorem 4.1

Compared to theorem 3.1, theorem 4.1 has only two essentially new ingredients. First, we

now have the freedom of choosing v ∈ V so we want to show that this choice doesn’t matter,

and second, we have to prove that the boundary value is holomorphic in w. Without these

two ingredients, the proof of section 3.3 goes through without any essential modifications.

Let us briefly recall the main steps of that proof, but now in the context of theo-

rem 4.1.27 First, for a Schwartz test function f(x) we define

Lv(w, ε) =

∫
ddxg(w, x+ ivε)f(x). (C.1)

Using integration by parts, we show that

∂kε Lv(w, ε) = (−i)k
∫
ddxg(w, x+ ivε)vµ1 · · · vµk∂µ1 · · · ∂µkf(x). (C.2)

26It won’t be important that it avoids the rest of the cut.
27Our proof is an adaptation of the proof of theorem 7.2.6 in [40].

– 35 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
7

We then use this identity and the slow-growth condition on g (4.14) to bound

|∂kε Lv(w, ε)| 6
Ck
ε2K

. (C.3)

for some Ck > 0 that is proportional to some semi-norm of f . In what follows, it will be

important to us how Ck depends on v. It is easy to see that

|∂kε Lv(w, ε)| 6
C ′k||v||k∞||v||−2K

2

ε2K
. (C.4)

for some C ′k > 0 that is independent of v. Furthermore, since the bound (4.14) is inde-

pendent of w, C ′k is also independent of w.28 Then we use the obvious analogue of (3.22)

starting from sufficiently large k to conclude

|∂εLv(w, ε)| 6 C||v||k∞||v||−2K
2 (C.5)

for some C > 0 proportional to a semi-norm of f . This immediately implies that

Lv(w, ε) = −
∫ ε0

ε
∂εLv(w, ε) + Lv(w, ε0) (C.6)

is continuous down to ε = 0 and that thus defined Lv(w, 0) depends continuously on f

in S(Rd). The slight refinements that we made to the bound (C.5), i.e. observing that it

holds uniformly in w and exhibiting its dependence on v, allow us to make the following

statement: the limit Lv(w, ε) → Lv(w, 0) is reached uniformly on compact sets K ⊂ U in

w and on compact sets V ⊂ V in v (recall that V doesn’t contain 0). This statement is the

key in proving that the limit is independent of v ∈ V and is holomorphic in w.

The fact that Lv(w, 0) is holomorphic in w is now indeed straightforward, since Lv(w, ε)

is holomorphic in w for ε > 0.29 To prove that it is independent of v requires a bit more

work. Take v1, v2 ∈ V and write

Lv1(w, ε)− Lv2(w, ε) =

∫
ddx(g(w, x+ iv1ε)− g(w, x+ iv2ε))f(x)

=

∫
ddx

∫ 1

0
dt ∂tg(w, x+ iv(t)ε)f(x), v(t) = tv1 + (1− t)v2

= −iε
∫ 1

0
dt

∫
ddxg(w, x+ iv(t)ε) (v1 − v2) · ∂f(x)

= −iε
∫ 1

0
dt L̃v(t)(w, ε). (C.7)

where L̃v(w, ε) is defined as Lv(w, ε) but with (v1 − v2) · ∂f(x) instead of f(x). Since

(v1 − v2) · ∂f(x) is also a test function, we have that by the same arguments as the above,

28This holds on compact subsets K ⊂ U , see footnote 19.
29The standard argument is as follows. Suppose holomorphic functions hn converge uniformly to some

function h. Then, first of all, h is continuous because hn are and the limit is uniform. Second, the uniform

limit can be exchanged with contour integration. Since integrals of hn over closed curves are 0, so are the

integrals of h. By Morera’s theorem, this implies holomorphicity of h.
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L̃v(w, ε) converges to a finite limit L̃v(w, 0) uniformly in v on compacts of V . This implies

that the integral ∫ 1

0
dt L̃v(t)(w, ε) (C.8)

has a finite limit as ε→ 0, and thus

Lv1(w, ε)− Lv2(w, ε) = −iε
∫ 1

0
dt L̃v(t)(w, ε)→ 0. (C.9)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Benjamin, New

York U.S.A. (1964).

[2] K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Commun. Math.

Phys. 31 (1973) 83 [INSPIRE].

[3] K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions. 2., Commun.

Math. Phys. 42 (1975) 281 [INSPIRE].

[4] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques

and applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

[5] S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86

(2012) 025022 [arXiv:1203.6064] [INSPIRE].

[6] S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization

and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[7] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising

model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

[8] D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06

(2015) 174 [arXiv:1502.02033] [INSPIRE].

[9] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N)

models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

[10] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06

(2014) 091 [arXiv:1307.6856] [INSPIRE].

[11] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago,

JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

[12] S.M. Chester et al., Carving out OPE space and precise O(2) model critical exponents,

arXiv:1912.03324 [INSPIRE].

[13] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[14] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and

AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,31,83%22
https://doi.org/10.1007/BF01608978
https://doi.org/10.1007/BF01608978
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,42,281%22
https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04405
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
https://doi.org/10.1007/s10955-014-1042-7
https://arxiv.org/abs/1403.4545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
https://doi.org/10.1007/JHEP11(2014)109
https://arxiv.org/abs/1406.4858
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4858
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1007/JHEP06(2015)174
https://arxiv.org/abs/1502.02033
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02033
https://doi.org/10.1007/JHEP08(2016)036
https://arxiv.org/abs/1603.04436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04436
https://doi.org/10.1007/JHEP06(2014)091
https://doi.org/10.1007/JHEP06(2014)091
https://arxiv.org/abs/1307.6856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6856
https://doi.org/10.1007/JHEP11(2015)106
https://arxiv.org/abs/1504.07997
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07997
https://arxiv.org/abs/1912.03324
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.03324
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616


J
H
E
P
0
5
(
2
0
2
0
)
1
3
7

[15] S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078

[arXiv:1703.00278] [INSPIRE].

[16] V.S. Vladimirov, Methods of the theory of functions of many complex variables, MIT Press,

Cambridge, U.S.A. (1966).

[17] J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP

06 (2017) 076 [arXiv:1705.01357] [INSPIRE].

[18] D. Mazac, Analytic bounds and emergence of AdS2 physics from the conformal bootstrap,

JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

[19] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D

S-matrices, JHEP 02 (2019) 162 [arXiv:1803.10233] [INSPIRE].

[20] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the

crossing equation, JHEP 02 (2019) 163 [arXiv:1811.10646] [INSPIRE].

[21] A. Kaviraj and M.F. Paulos, The functional bootstrap for boundary CFT, JHEP 04 (2020)

135 [arXiv:1812.04034] [INSPIRE].
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