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1 Introduction

A fundamental problem in the conformal bootstrap [1–3] is to determine how the basic

principles of causality and unitarity constrain the space of large N conformal field theo-

ries (CFTs). Using the AdS/CFT correspondence [4–6], this is equivalent to studying the

structure of quantum gravity in an AdS spacetime. In order to understand universal fea-

tures of AdS/CFT, we will use ideas from the analytic bootstrap [7–9] to study high-energy

scattering in AdS.

The motivating question we would like to answer is: what is the space of consistent,

weakly-coupled, gravitational theories in AdS, and is it possible to show every such theory

necessarily has an ultraviolet completion given by string/M-theory [10–13]? Specifically, we

consider this question for gravitational theories which also contain a massive, higher spin

(J > 2) particle. We will show that in the Regge limit, theories satisfying this criteria have

scattering amplitudes that agree with the string theory prediction [14, 15] to all orders in
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1/N . The bulk scattering amplitudes have been calculated using semi-classical worldsheet

methods, or when the higher-spin particles are heavy, and we will find agreement in this

limit. In other words, although we do not impose our bulk theory has strings, we find

evidence they emerge naturally.

The physical motivation for studying the CFT Regge limit is manifest in AdS, where

it is dual to high-energy scattering at fixed impact parameter [16–18]. In this limit, the

dominant contribution at tree-level in 1/N comes from the leading Regge trajectory, or

the set of operators with the lowest dimension for each even-spin [19, 20]. The Regge limit

can change qualitatively depending on the relative size of the bulk, center of mass energy,√
S, and the dimension of the lightest, spin-four, single-trace operator, ∆gap. In the limit

∆2
gap � S � 1, the Regge limit is controlled by graviton exchange in the bulk. By studying

this limit and imposing causality and unitarity of the boundary CFT, it has been shown

that tree-level, cubic interactions involving gravitons are completely fixed to be given by

Einstein gravity minimally coupled to matter [21–26].

In this paper, we extend this program by studying the effects of higher-spin particles in

the bulk theory, both at tree and loop-level. That is, we will study the limit S � ∆2
gap � 1,

where we are more sensitive to the higher-spin spectrum, in the 1/N expansion. As is well-

known, it is not possible to consistently add a single, higher-spin particle to Einstein gravity

and maintain causality. Instead, as in string theory, we must always add an infinite tower

of particles with unbounded spin [12, 27–29]. After resumming the leading trajectory, we

find the Regge limit is controlled by the exchange of an operator with non-integer spin,

which is known as the “Pomeron” or reggeized graviton [14, 15, 19, 20, 30]. In general

weakly-coupled theories of higher-spin particles [13, 24, 31], the resummation of the leading

trajectory reproduces features of string theory, such as the transverse spreading of strings

at high energies.

A natural question to consider is: does this universality also extend to loop-level

in 1/N? Our expectations from high-energy, fixed impact parameter scattering in the

bulk [14–18] is that at higher-loops the tree-level amplitude should exponentiate, a notion

which we will make more precise shortly. In Einstein gravity, this exponentiation is found by

resumming a set of graviton ladder diagrams, and the final result matches the prediction

from scattering in a shockwave background [32–34]. There is a similar story in string

theory [35, 36], once we include new tree-level stringy effects. Therefore, the goal of this

paper is to prove this exponentiation is universal in the presence of higher-spin particles

using the boundary CFT.1

In order to understand when tree-level, Regge behavior exponentiates, we will study

a four-point function of scalars in the CFT. At each order in 1/N , and using the minimal

ansatz for the spectrum, we will find results consistent with exponentiation at leading order

in the 1/∆gap expansion. Since we also take S � ∆2
gap, the higher-spin operators will not

decouple when we also take ∆gap large. By relaxing our assumption on the spectrum

and allowing for inelastic effects, we will give conditions for the tree-level phase shift to

1In the limit where higher-spin particles decouple, it has been demonstrated in [18] that the phase shift

due to graviton exchange exponentiates.
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exponentiate at arbitrary ∆gap. In a string theory dual, these inelastic effects correspond

to one-loop corrections to long string creation. We also demonstrate how tidal excitations,

an inelastic effect dual to new double-trace exchanges at one-loop, are suppressed when we

take ∆gap large.

The results presented here rely crucially on the Lorentzian inversion formula [9]. The

inversion formula implies that the operator product expansion (OPE) data for general, non-

perturbative CFTs can be analytically continued in spin, and therefore that local operators

can be organized on Regge trajectories. We will use the inversion formula to study the

Regge limit at higher loops and also to determine one-loop corrections to the anomalous

dimensions and OPE coefficients of double-trace operators.

Summary and outline. We can now spell out our main assumptions and conclusions.

First, we will be studying a four-point function of pairwise identical scalars, 〈φφψψ〉, in a

4d CFT. We assume the central charge of the CFT is large, N2 ∼ CT � 1,2 so the bulk

theory is weakly-coupled. We also use the dimension of the lightest, spin-four single-trace

operator, ∆gap, as a proxy for the coupling.3 Throughout this work, our focus will be on

the leading Regge behavior at each order in 1/N .

The AdS dual of the Regge limit is high-energy, fixed impact parameter scattering, so

it is natural to study this limit using bulk impact parameter space. That is, we study the

bulk scattering amplitude, B(S,L), as a function of the center of mass energy,
√
S, and

the impact parameter, L, on the transverse space Hd−1. We then want to understand if it

exponentiates in the Regge limit:

B(S,L) ∝ eiδ(S,L), (1.1)

where δ(S,L) is the tree-level phase shift. We can also expand the phase shift at large ∆gap,

δ(S,L) =

∞∑

i=0

δ(i)(S,L)∆−2i
gap . (1.2)

In a theory of gravity plus matter of bounded spin, or when ∆gap → ∞, the tree-level

phase shift δ(0)(S,L) is purely real. On the other hand, a tower of higher-spin particles

can generate an imaginary piece for δ(1)(S,L) at tree-level in 1/N .

Our final assumption is that the CFT contains a tower of higher-spin, single-trace

operators with the following relation between their dimension and spin:

j(∆) = 2− 2
∆(4−∆)

∆2
gap

+O(∆−4
gap). (1.3)

This is the minimal ansatz consistent with locality, causality, and the existence of a flat-

space limit [19, 27]. We will need this relation when making statements about the large

∆gap expansion.

2The central charge, CT , is defined to be the normalization of T , i.e. 〈TT 〉 ∼ CT . Although we do not

assume the CFT has a Lagrangian description, we will use N to count bulk loops.
3As an example, in planar N = 4 SYM the relation between the ‘t Hooft coupling and the gap is√
λ ∼ ∆2

gap.
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Given these assumptions, our main result will be to show (1.1) is a good approximation

in the limit S � ∆2
gap � 1 at fixed L and to all orders in 1/N .4 This agrees with the

prediction from string theory in AdS [14, 15], where exponentiation was also found to hold

in this regime.

Let us now give a brief outline of the paper. In section 2, we review conformal

Regge theory, the Lorentzian inversion formula, and the impact parameter transform [16–

19, 37, 38]. In section 3, we calculate the Regge limit at higher orders in 1/N using the

inversion formula and demonstrate exponentiation for large ∆gap. In section 4, we study

how including new single and double-trace operators affects the Regge limit and their re-

lation to inelastic effects in string theory [35, 36, 39–41]. For example, we review how

consistency of the Euclidean and Regge limits implies the heavy single-trace spectrum is

irregular and show that assuming exponentiation at arbitrary ∆gap gives sum rules for the

single-traces. In section 5, we conclude with a summary and possible future directions. Ap-

pendix A contains technical details and definitions used in the paper. Appendix B contains

results for 2d CFTs in the Regge limit, when we restrict to the global conformal group.

2 Conformal Regge theory and AdS/CFT

2.1 Regge limit and analyticity in spin

We will start by reviewing conformal Regge theory [19, 20]. To make the connection to the

Lorentzian inversion formula manifest [9, 42], we will follow the presentation given in [30].

Our main object of study will be a correlation function of pairwise identical scalars:

G(xi) = 〈φ(x1)φ(x2)ψ(x3)ψ(x4)〉. (2.1)

To reach the Regge limit we need to work in Lorentzian signature. The physical picture is

clearest in the lightcone coordinates ρ, ρ̄ = x1 ± x0. The Regge limit is defined by setting:

x1 = −x2 = (
√
ρ,
√
ρ̄),

x4 = −x3 = (1/
√
ρ, 1/
√
ρ̄), (2.2)

and then taking ρ, ρ̄−1 →∞ with ρρ̄ held fixed,5 as shown in figure 1.

It is useful to phrase this in terms of the cross ratios z and z̄,

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, (2.3)

where the relation between the two variables is

z =
4ρ

(1 + ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
. (2.4)

4In practice, most of our calculations hold in the wider regime S, ∆gap � 1 with no relation imposed

between them. Taking the limit S � ∆2
gap � 1 however lets us approximate integrals over a spectral

parameter ν with a saddle point approximation to determine the leading Regge behavior.
5To keep track of the iε prescriptions we should write ρ = re−t+iε, ρ̄ = ret−iε and then take t→∞.
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Figure 1. The Regge limit is defined by sending the four operators to null infinity while keeping

the spacelike distance between the pairs of identical operators fixed.

Taking the Regge limit then corresponds to rotating z̄ counterclockwise around a branch

point at z̄ = 1, keeping z on the first sheet, and then sending z, z̄ → 0 with z/z̄ fixed. To

see Regge growth, we need to look at the s-channel, or φφ→ ψψ, expansion. For a generic

four-point function of scalars the s-channel conformal block expansion takes the form:

〈φ1φ2φ3φ4〉 = Ts(xi)G(z, z̄), (2.5)

G(z, z̄) =
∑

O

(
−1

2

)JO
cφ1φ2Ocφ3φ4Og

a,b
O (z, z̄), a = −1

2
∆12, b =

1

2
∆34, (2.6)

where ga,bO (z, z̄) are the conformal blocks, ∆ij = ∆i−∆j , and Ts(xi) is a kinematic prefactor

Ts(xi) =
1

x∆1+∆2
12 x∆3+∆4

34

(
x14

x24

)∆21
(
x14

x13

)∆34

. (2.7)

The factors cφ1φ2Ocφ3φ4O are the OPE coefficients, see appendix A for our conventions. We

will also need the t-channel expansion, which corresponds to 1↔ 3. We take this to act on

the cross ratios as (z, z̄) → (1− z̄, 1− z). Finally, we drop the superscripts for the blocks

when a = b = 0.

Now we find the Regge limit gives:

g	a,b∆,J (z, z̄) ∼ (zz̄)
1
2

(1−J)
(z
z̄

)∆−J
2
, (2.8)

where the arrow denotes the analytic continuation of z̄ around 1. We see that in the Regge

limit, it is the operators with the largest spin which dominate. Generically the sum over spin

is unbounded, so we must first resum this expansion via a Sommerfeld-Watson transform.

The first step is to define the s-channel conformal partial wave expansion for 〈φφψψ〉:

G(z, z̄) =

∞∑

J=0

∞∫

−∞

dν

2π
c
(
d
2

+ iν, J
)
F d

2
+iν,J(z, z̄), (2.9)

F∆,J(z, z̄) ≡ 1

2

(
g∆,J(z, z̄) +

SφφO
SψψÕ

gd−∆,J(z, z̄)

)
, (2.10)

– 5 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
3

where F∆,J(z, z̄) are the partial waves and Õ is an operator with dimension d−∆ and spin

JO. The shadow coefficients, Sφ1φ2

O , are defined in (A.4). The relation to the conformal

block decomposition (2.6) can be found by closing the ν contour in the lower half-plane for

the first term in (2.10) and in the upper half-plane for the second. Shadow symmetry of

the OPE function guarantees they give the same result [9, 20] and we find:

Res
∆ = ∆O

c(∆, JO) = −
(
−1

2

)JO
cφφOcψψO. (2.11)

The Lorentzian inversion formula [9] gives a natural split for the OPE function into

two terms,

c(∆, J) = ct(∆, J) + (−1)Jcu(∆, J), (2.12)

each of which can be analytically continued in spin.6 The functions ct,u(∆, J) come from

the t and u-channel contributions to the Lorentzian inversion formula [9],

ct(∆, J) =
κ∆+J

4

1∫

0

dzdz̄

(zz̄)2

∣∣∣∣
z − z̄
zz̄

∣∣∣∣
d−2

gJ+d−1,∆+1−d(z, z̄)dDisct[G(z, z̄)], (2.13)

κβ =
Γ
(
β
2 − a

)
Γ
(
β
2 + a

)
Γ
(
β
2 − b

)
Γ
(
β
2 + b

)

2π2Γ(β − 1)Γ(β)
. (2.14)

When a = b = 0, the t-channel double-discontinuity is defined by:

dDisct[G(z, z̄)] = G(z, z̄)− 1

2

(
G	(z, z̄) + G�(z, z̄)

)
, (2.15)

where the arrows indicate the continuation around z̄ = 1 in a (counter-)clockwise fash-

ion. The u-channel term is identical, cu(∆, J) = ct(∆, J), since 〈φφψψ〉 is symmetric

under x3 ↔ x4.

To perform the Sommerfeld-Watson transform we replace the sum over spin in (2.9)

with a contour integral:

G(z, z̄) =
∞∑

J=0

∞∫

−∞

dν

2π
c
(
d
2

+ iν, J
)
F d

2
+iν,J(z, z̄) (2.16)

= −
∫

Γ
dJ

∞∫

−∞

dν

2π

1 + e−iπJ

1− e−2πiJ
ct
(
d
2

+ iν, J
)
F d

2
+iν,J(z, z̄), (2.17)

where the contour Γ is shown in figure 2. Finally, we push the contour Γ to the left such

that it runs over the contour Γ′. In the process we can pick up poles and branch cuts in

the complex J plane which determine the leading Regge behavior [19, 20, 30].

In general, we do not know how ct(∆, J) behaves for complex J . However, for large

N CFTs we expect the leading, tree-level, contribution to the Regge limit comes from a

6The Lorentzian inversion formula is guaranteed to reproduce the Euclidean OPE data for J > j0, where

j0 is the effective “spin” controlling the Regge limit.
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Figure 2. The red contour Γ comes from the original, partial wave decomposition. We deform it to

the blue contour Γ′ and in the process pick up a pole, j(ν), which gives the leading Regge growth.

We have suppressed other possible non-analyticities, such as branch cuts.

pole at J = j(ν). This pole resums the exchange of the entire leading, single-trace Regge

trajectory [14, 15, 19, 20, 43].7 This trajectory is defined to be the set of even-spin, single-

trace operators with the smallest dimension, ∆(J), for each spin. Therefore, in all CFTs

it includes the stress-tensor T . The function j(ν) is the inverse of ∆(J):

ν2 + (∆(j(ν))− d/2)2 = 0. (2.18)

With this assumption, the correlator in the Regge limit is:

G	(z, z̄) ≈ −
∞∫

−∞

dν

2π
Res
J=j(ν)

1 + e−iπJ

1− e−2πiJ

1

κ d
2

+iν+J

ct
(
d
2

+ iν, J
)
g1−J,1− d

2
−iν(z, z̄), (2.19)

where the block g1−J,1−∆(z, z̄) appears after analytic continuation and taking the small

z, z̄ limit. The Regge behavior in (2.19) comes from the exchange of the Pomeron, or a

family of operators with dimension ∆ = d
2 + iν and spin j(ν), where ν is real.8 For CFTs

with a string theory dual the Pomeron is dual to a worldsheet vertex operator [14]. For

general CFTs it can be identified with a generalized light-ray operator [30]. For this work,

we will simply use the term Pomeron as a shorthand for the contribution of the leading,

single-trace trajectory to the Regge limit.

To compare with [20], we use the small z, z̄ behavior of the conformal block in (2.19) [9]:

g1−J,1−∆(z, z̄) ≈ 4π
d
2 Γ(∆− d

2)

Γ(∆− 1)
(zz̄)

1
2

(1−J)Ωiν

(
1

2
log(z/z̄)

)
, (2.20)

7In large N CFTs we are interested in the single-trace trajectory, but the leading trajectory at finite N

is generically composed of double-twist operators [7, 8].
8Sometimes the Pomeron is identified with just the intercept point ν = 0, i.e. it has dimension ∆ = d

2

and spin j(0). Here we will identify it with the entire ν integral.
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where ∆ = d
2 + iν and Ωiν(L) is the harmonic function on Hd−1, see (A.9). In [20] they

showed that the correlator in the Regge limit is

G	(z, z̄) ≈ 2πi

∞∫

−∞

dνα(ν)(zz̄)
1
2

(1−j(ν))Ωiν

(
1

2
log(z/z̄)

)
, (2.21)

so the conversion between the two is given by

α(ν) = − Res
J=j(ν)

i
eiπJ

(1− eiπJ)

π
d
2
−2Γ (iν)

Γ(d2 + iν − 1)κ d
2

+iν+J

ct
(
d
2

+ iν, J
)
. (2.22)

2.2 Crossing symmetry at tree-level

Next, let us review how to solve crossing in the Regge limit at tree-level in 1/N [31]. We

will set d = 4, since then we know the blocks in closed form [44–46], see (A.6). We will use

the results of this section as the input for the loop-level computations in section 3.

Crossing symmetry on the first, or Euclidean, sheet equates the s and t-channel OPEs:

(zz̄)−∆ψ ((1− z)(1− z̄))
1
2

(∆φ+∆ψ)
∑

O

(
−1

2

)JO
cφφOcψψOgO(z, z̄)

=
∑

O′

(
−1

2

)JO′
cφψO′cψφO′g

a,a
O′ (1− z, 1− z̄), (2.23)

where a = 1
2(∆φ − ∆ψ). In the t-channel, or φψ → ψφ expansion, we will use cφψO =

(−1)JOcψφO and adopt the notation:

PO =
1

2JO
c2
φψO. (2.24)

If we analytically continue around z̄ = 1 and then take z, z̄ small, we need to use con-

formal Regge theory for the first line of (2.23). For the second line, we can do the analytic

continuation term by term, as each t-channel block just picks up a phase.9 Furthermore, at

leading order in 1/N the t-channel sum contains both double-trace operators, [φψ]n,J , and

generic single-trace operators, which we label as X∆,J . The double-trace operators have

the form:

[φψ]n,J ≈ φ∂µ1 . . . ∂µJ∂2nψ − traces, (2.25)

and classical dimension ∆
(0)
n,J = ∆φ+∆ψ+2n+J . For the t-channel double-trace operators

it will be convenient to introduce the variables

h =
1

2
(∆− J), h̄ =

1

2
(∆ + J). (2.26)

9Recall the blocks have the expansion g∆,J(z, z̄) =
∑
n,m

cn,mz
∆−J

2
+nz̄

∆+J
2

+m + z ↔ z̄ where n,m are

integers so sending z → ze2πi gives the overall factor eiπ(∆−J).
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Next, we will take (2.23), expand to tree-level in 1/N , and then go to the Regge limit.

We write the 1/N expansion for the four-point function and double-trace OPE data as,

G(z, z̄) = G(0)(z, z̄) +
1

N2
G(1)(z, z̄) + . . . (2.27)

∆h,h̄ = ∆
(0)

h,h̄
+

1

N2
γ

(1)

h,h̄
+ . . . (2.28)

Ph,h̄ = PMFT
h,h̄

(
1 +

1

N2
δP

(1)

h,h̄
+ . . .

)
, (2.29)

where the superscript denotes the order in 1/N . Here PMFT
h,h̄

are the mean field the-

ory (MFT) OPE coefficients which reproduce G(0)(z, z̄), or identity exchange in the s-

channel, from the t-channel expansion [10, 47]. For later convenience, we have labeled the

double-trace OPE data using h and h̄.

Expanding in 1/N and taking the Regge limit yields the tree-level, Regge, crossing

equation:

eiπ(∆φ+∆ψ)(zz̄)−∆φG(1)	(z, z̄)

≈ eiπ(∆φ+∆ψ)
∑

h,h̄

PMFT
h,h̄

[
γ

(1)

h,h̄

(
iπ +

1

2
(∂h + ∂h̄)

)
+ δP

(1)

h,h̄

]
ga,a
h,h̄

(1− z, 1− z̄)

+
∑

X
e2iπhXP

(1)
X ga,aX (1− z, 1− z̄). (2.30)

The leading behavior for the first line will come from Pomeron exchange, see (2.21). We

will give the tree-level results for α(ν) and j(ν) in (2.40) and (2.41). The second line

includes corrections to the double-trace operators and the third line runs over all single-

trace operators in the φ× ψ OPE.

We see from (2.21) that G(1)	(z, z̄) grows like (zz̄)
1
2

(1−j(0)) in the Regge limit, where

we have approximated the integral by its behavior around ν = 0. If j(0) > 1, then this is an

enhanced divergence with respect to identity exchange. The single-trace blocks generically

sum out of phase, so they cannot reproduce this Regge behavior. On the other hand, the

double-trace blocks add in phase and have a chance of producing this divergence. In fact

the double-trace sum is dominated by the regime [17, 18]:

z−
1
2 ∼ z̄− 1

2 ∼ h ∼ h̄� 1. (2.31)

Therefore, the divergence is reproduced by the large h and h̄ asymptotics of the double-

trace data, where we keep the ratio h/h̄ arbitrary. We can then ignore terms with (∂h+∂h̄),

since they will give a subleading effect.

In the limit (2.31), the 4d, t-channel blocks and MFT OPE coefficients are [7, 8, 31]:

ga,b
h,h̄

(1− z, 1− z̄) ≈
√
hh̄

π
22(h+h̄−1) 1

z̄ − zKa+b(2h
√
z)Ka+b(2h̄

√
z̄) (zz̄)−

1
2

(a+b) + (z ↔ z̄),

(2.32)

PMFT
h,h̄ ≈ π26−2(h+h̄)

(
h̄2 − h2

)
h∆φ+∆ψ− 7

2 h̄∆φ+∆ψ− 7
2

Γ(∆φ − 1)Γ(∆φ)Γ(∆ψ − 1)Γ(∆ψ)
. (2.33)
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To solve crossing we will use the explicit form of the 4d harmonic function10

Ωiν(L) =
ν sin(νL)

4π2 sinh(L)
. (2.34)

Then, as shown in [31], crossing symmetry implies the double-trace OPE data can be

written as a spectral integral over Ωiν(L):

1

N2
γ

(1)

h,h̄
≈ 2Γ(∆φ − 1)Γ(∆φ)Γ(∆ψ − 1)Γ(∆ψ)

Re

∞∫

−∞

dν
α(ν)

χj(ν)(ν)χj(ν)(−ν)
(hh̄)j(ν)−1Ωiν(log(h/h̄)), (2.35)

1

N2
δP

(1)

h,h̄
≈ −2πΓ(∆φ − 1)Γ(∆φ)Γ(∆ψ − 1)Γ(∆ψ)

Im

∞∫

−∞

dν
α(ν)

χj(ν)(ν)χj(ν)(−ν)
(hh̄)j(ν)−1Ωiν(log(h/h̄)). (2.36)

The function χj(ν) in general d is defined as

χj(ν) = Γ

(
1

2
(2∆φ + j + iν − d

2
)

)
Γ

(
1

2
(2∆ψ + j + iν − d

2
)

)
. (2.37)

To check this result, we first approximate the sum over h and h̄ in the second line of (2.30)

by an integral

∑

h,h̄

⇒
∞∫

0

dh̄

h̄∫

0

dh =
1

2

∞∫

0

dh̄

∞∫

0

dh. (2.38)

We used the symmetry of the integrand under h↔ h̄ to extend both integrals over (0,∞).

Finally to perform the integrals, given the approximation (2.32), we use:

∞∫

0

dh haKb(2h
√
z) =

1

4
z−

a
2
− 1

2 Γ

(
1

2
(a− b+ 1)

)
Γ

(
1

2
(a+ b+ 1)

)
. (2.39)

It is then straightforward to check that our results for the double-trace OPE data, (2.35)

and (2.36), when plugged into the crossing equation (2.30), reproduce the tree-level Regge

behavior given by (2.21) [31].

To interpret this result we need more information about the tree-level Regge limit in

large N theories. This problem was studied in [20] where they found

α(ν) = i
eiπj(ν)

1− eiπj(ν)
π
d
2
−12j(ν)−1χj(ν)(ν)χj(ν)(−ν)

π

2ν
j′(ν)K d

2
+iν,j(ν)cφφj(ν)cψψj(ν). (2.40)

Here cφφj(ν)cψψj(ν) is the coupling of the external scalars to the leading trajectory, param-

eterized by j(ν). The product χj(ν)(ν)χj(ν)(−ν) has poles corresponding to the double-

10We will label the harmonic functions by the dimension of the boundary spacetime.
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trace operators, [φφ]n,j(ν) and [ψψ]n,j(ν), which have also been analytically continued in

spin. These poles have been projected out in (2.35) and (2.36). The function K is defined

in (A.8), but we will not need its explicit form.

In large N theories, we also know the form of the function j(ν) for ∆gap � 1 [19, 20]:

j(ν) = 2− 2
d2/4 + ν2

∆2
gap

+O(∆−4
gap). (2.41)

This is the minimal answer consistent with having j(ν) → 2 as ∆gap → ∞, conservation

of the stress-tensor, j(id/2) = 2, and the existence of the flat space limit, e.g. j(ν) is finite

when ν ∼ ∆gap � 1. Requiring that we have linear trajectories in the flat space limit [13]

also prevents us from multiplying by additional powers of ν/∆gap. Shadow symmetry also

implies j(ν) is an even function of ν. Finally, causality tells us that in a large N CFT we

must have j(0) ≤ 2 [9, 12, 27], and this fixes the sign of the leading correction. This answer

for j(ν) was also found by studying string theory in AdS [14].

We can also observe that j(ν) has a maximum at ν = 0. This implies we can ap-

proximate the ν integral in (2.21) by a saddle point approximation in the limit z, z̄ → 0

and see explicitly the Regge growth is controlled by the ν = 0 point. Finally, in the

limit ∆gap → ∞, where j(ν) → 2, our results for the anomalous dimensions and OPE

coefficients, (2.35) and (2.36), reproduce the pure gravity result [17, 18, 31].

2.3 Impact parameter transform

In this section we will review the impact parameter transform [17–19, 37, 38]. This trans-

form makes manifest the bulk, physical picture of high-energy scattering. Moreover, the

fact we observe exponentiation after performing the impact parameter transform makes it

clear that this is the most natural space to study loop corrections at high energies.

For the four-point function 〈φφψψ〉 = Ts(xi)G(z, z̄), the impact parameter correlator,

B(S,L), is defined by:

(zz̄)−∆φG	(z, z̄) = (−1)−∆φ−∆ψ

∫

V +

dpdp̄e−2i(p·x+p̄·x̄) B(S,L)

(−p2)
d
2
−∆φ(−p̄2)

d
2
−∆ψ

. (2.42)

The vectors x, p, and their barred versions are real vectors in Minkowski space. The

integration for p and p̄ is over the future light-cone V +, where we take the metric to be

mostly plus. The relation to the cross ratios and AdS impact parameter variables is

zz̄ = x2x̄2, z + z̄ = −2x · x̄,

S = |p||p̄|, coshL = − p · p̄
|p||p̄| . (2.43)

Here
√
S is the energy of the bulk scattering process and L is the distance on the transverse,

impact parameter space, Hd−1, see figure 3. The Regge limit is now S → ∞ with L held

fixed. If the position space correlator takes the form (2.21), then the impact parameter
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Figure 3. High-energy, fixed impact parameter scattering in AdS. The boundary operators are

centered around Pi, the centers of different Poincaré patches. The impact parameter space is the

spatial Hd−1 slice, drawn in blue.

transform yields:

B(S,L) = 2πi

∞∫

−∞

dνβ(ν)Sj(ν)−1Ωiν(L), (2.44)

β(ν) =
4π2−d

χj(ν)(ν)χj(ν)(−ν)
α(ν). (2.45)

The bulk eikonal approximation says that in the 1/N expansion, the correlator in impact

parameter space should exponentiate:

Beik(S,L) = N eiδ(S,L), (2.46)

where the constant is given by

N =
4π2−d

Γ(∆φ)Γ(∆φ + 1− d
2)Γ(∆ψ)Γ(∆ψ + 1− d

2)
. (2.47)

If we expand (2.46) to tree level in 1/N and match to (2.21), (2.35), and (2.36) we can

make the identifications:

Re δ(S,L) =
1

N2
πγ

(1)

h,h̄
, (2.48)

Im δ(S,L) = − 1

N2
δP

(1)

h,h̄
, (2.49)

where S = hh̄ and L = log(h̄/h). This identification says studying γ
(1)

h,h̄
and δP

(1)

h,h̄
in the

limit hh̄� 1, with h/h̄ held fixed, probes the Regge limit in the bulk.

The main goal of this paper is to understand: to what extent does (2.46), with the

identifications (2.48) and (2.49), provide a good approximation for the full correlator? In

other words, when does the tree-level result exponentiate in AdS at large S? We will show

exponentiation is universal in the limit S � ∆2
gap � 1 and to all orders in 1/N .
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Figure 4. Exchange Witten diagram where we label the bulk field by its dual CFT operator.

This matches the results of [14, 15] where they proved exponentiation in the same limit

by studying string theory in AdS. To see this, we first note that the function j(ν) at large

∆gap, (2.41), matches the result from string theory [14, 15]. Then we expand B(S,L) to tree-

level in 1/N and evaluate the ν integral at large S by a saddle-point approximation. The

final answer is determined by an overall constant given by the OPE coefficients. Therefore,

the tree-level result already has the expected stringy behavior and the non-trivial problem

is proving exponentiation from the boundary CFT.

2.4 Unitarity method for AdS/CFT

To determine the correlator at one-loop and higher, we will use an AdS/CFT unitarity

method. In particular, we will use crossing symmetry of the boundary CFT [48] to boot-

strap the correlator at all loops from tree-level data.11

To explain this procedure, let us consider the exchange Witten diagram, WO,exch(xi),

with O a scalar, as shown in figure 4. Expanding this diagram in the φψ → ψφ OPE

channel, we can determine tree-level corrections to the spectrum and couplings of the

double-trace operators [φψ]n,J , that is γ
(1)

h,h̄
and δP

(1)

h,h̄
. Both are non-zero for unbounded

spin, J = h̄− h [7, 8, 59].

To study loop corrections, we can plug these results into the inversion formula, which

we reproduce here for 〈φφψψ〉,

c(∆, J) =
(
1 + (−1)J

)
ct(∆, J), (2.50)

ct(∆, J) =
κ∆+J

4

1∫

0

dzdz̄

(zz̄)2

∣∣∣∣
z − z̄
zz̄

∣∣∣∣
d−2

gJ+d−1,∆+1−d(z, z̄)dDisct[G(z, z̄)]. (2.51)

The function dDisct[G(z, z̄)] has a simple expansion in t-channel blocks,

dDisct[G(z, z̄)] =
(zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

O
2PO sin2

(π
2

(2hO−∆φ−∆ψ)
)
ga,aO (1−z,1−z̄),

(2.52)

where the prefactor comes from our definition of G(z, z̄), see (2.5). The dDisct produces

the sin2 factors and these ensure the double-trace operators contribute starting at order

11For other work on computing loops in AdS see [49–58].
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Figure 5. We glue two, tree-level Witten diagrams along the φ and ψ lines to create a box diagram.

N−4 with their MFT OPE coefficients,

dDisct[G(2)(z, z̄)] ⊃
∑

h,h̄

π2

2

(
γ

(1)

h,h̄

)2
PMFT
h,h̄ ga,a

h,h̄
(1− z, 1− z̄). (2.53)

Once we have this double-discontinuity, we can perform the inversion integral in (2.51) to

determine one-loop corrections to the OPE data. These can then be used to determine the

full correlator at one-loop [60, 61].

It is also useful to understand how this approach maps to the standard loop expansion

for Witten diagrams. If we use the anomalous dimensions γ
(1)

h,h̄
due to the exchange Witten

diagramWO,exch(xi) in the expansion (2.53), then the resulting sum is equal to the double-

discontinuity of a one-loop box diagram. The full box diagram and its OPE expansion is

then determined via the inversion formula. Diagrammatically, we are gluing two tree-level

diagrams in the bulk by leveraging crossing symmetry on the boundary, see figure 5. In

the bulk, the action of dDisct can be visualized as projecting onto internal, horizontal line

cuts, or the [φψ]n,J double-trace operators [58].

In this work however, we are studying the Pomeron, which is not an integer spin,

local operator. We can follow the same procedure, using the anomalous dimensions due to

Pomeron exchange in (2.53), and ask: does this process compute the Pomeron box diagram

studied in [15]?12 We will find agreement only to leading order at large ∆gap. At higher

orders in 1/∆gap there are corrections to the full correlator due to tidal excitations which

are not included in the bulk or boundary analysis. Therefore, we are only justified in

comparing the leading order terms of each method. Nevertheless, it is interesting to ask:

how do we reproduce the Pomeron box calculated in [15] from the AdS/CFT unitarity

method? As we will show in section 4, this will require imposing a one-loop sum rule on

the single-trace operators.13

3 Regge limit at one loop and higher

In this section we will prove exponentiation holds in the limit S � ∆2
gap � 1. We will first

give a brief summary of our method. In section 3.1 we show how to determine the Regge

limit at one-loop by solving a simplified inversion problem. Our main assumption is that

12In string theory, the Pomeron box is one term which contributes to the Regge limit of the torus diagram.
13We thank Eric Perlmutter for discussions on this topic.
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the double-discontinuity at one-loop is determined by the exchange of the [φψ]n,J operators.

In section 3.2 we solve the crossing symmetry equations at one-loop. We show that to solve

the one-loop crossing at large ∆gap, we only need to include tree-level corrections to the

double-trace operators [φψ]n,J . In section 3.3 we prove analogous statements carry over to

all orders in 1/N . Finally, in section 3.4 we use these results to prove exponentiation in

impact parameter space. The fact we only need tree-level corrections to solve crossing at

large ∆gap maps exactly to the statement that the correlator in impact parameter space

exponentiates at high energies.

3.1 Inversion formula in the Regge limit

To study the one-loop correlator, we will follow a procedure similar to the one outlined

in the previous section. That is, we will use tree-level data in the inversion formula to

determine 1/N4 corrections.

We claim that to determine the one-loop correlator in the Regge limit, it is sufficient to

know dDisct[G(z, z̄)] in the limit z, z̄ → 0. We will call this the Regge limit for the double-

discontinuity.14 Determining the Regge limit at higher-loops is then a simpler problem than

determining the full correlator as we only have to know dDisct[G(z, z̄)] in a certain limit.

To start, the inversion formula in d = 4 for 〈φφψψ〉 is,

ct(∆, J) =
κ∆+J

4

1∫

0

dzdz̄

(zz̄)2

(
z − z̄
zz̄

)2

gJ+3,∆−3(z, z̄)dDisct[G(z, z̄)]. (3.1)

To illustrate the logic, let us consider some simple scalings for dDisct[G(z, z̄)]:

z � 1→ dDisct[G(z, z̄)] ∼ zh∗ , (3.2)

z ∼ z̄ � 1→ dDisct[G(z, z̄)] ∼ (zz̄)
1
2

(1−j∗), (3.3)

for some h∗ and j∗. These two limits are the lightcone and Regge limits for the double-

discontinuity, respectively. In the same limits, the block in the integrand scales like:

z � 1→ gJ+3,∆−3(z, z̄) ∼ z 1
2

(J−∆)+3, (3.4)

z ∼ z̄ � 1→ gJ+3,∆−3(z, z̄) ∼ (
√
zz̄)J+3. (3.5)

If we perform the inversion formula in the limit z � 1, we see a pole at fixed h = 1
2(∆−J):

c(∆, J) ∼ 1

∆− J − 2h∗
. (3.6)

These are the familiar double-twist trajectories which are studied in the lightcone boot-

strap [7–9]. If we perform the inversion integral in the limit z ∼ z̄ � 1, we find a pole at

fixed spin:

c(∆, J) ∼ 1

J − j∗
. (3.7)

14Strictly speaking, the Regge limit is defined on the second-sheet of the full correlator. However, this

limit of the double-discontinuity has qualitatively similar features, so we will also call it a Regge limit. It

has also been studied in [62, 63].
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When performing a Sommerfeld-Watson transform, both poles can be picked up and con-

tribute to the Regge limit. If we set ∆ = d
2 + iν, then (3.6) gives a pole at J = d

2 −2h∗± iν.

By unitarity 2h∗ ≥ d−2
2 , where the inequality is saturated by a free scalar. Therefore,

in interacting theories this pole gives a term which vanishes in the Regge limit. On the

other hand, we expect poles which come from the region z ∼ z̄ � 1 to give a growing

contribution. We will show this explicitly by studying the Regge growth of dDisct[G(z, z̄)]

at order N−4.

Next, we assume the double-discontinuity at one-loop is determined by the double-trace

operators [φψ]n,J . As reviewed in section 2.4, this implies dDisct[G(2)(z, z̄)] is determined

by the squared anomalous dimensions due to Pomeron exchange,

dDisct[G(2)(z, z̄)] =
(zz̄)∆φ

[(1− z)(1− z̄)]
∆φ+∆ψ

2

∑

h,h̄

π2

2
PMFT
h,h̄

(
γ

(1)

h,h̄

)2
ga,a
h,h̄

(1− z, 1− z̄). (3.8)

Comparing with our results in section 2.2 and using the Bessel function approxima-

tion (2.32), we can recognize that (3.8) grows like (zz̄)1−j(0) in the Regge limit. Therefore,

we expect ct(∆, J) has a non-analyticity at J = 2j(0) − 1. In a theory of gravity plus

low-spin matter15 we have j(ν) = 2, so at one-loop we find a pole at J = 3 due to two-

graviton exchange [64].16 Following this terminology, we will say that for generic ∆gap the

non-analyticity at J = 2j(0)− 1 is due to two-Pomeron exchange.

To calculate (3.8), we will use (2.35) and (2.36), which we will write for compactness as:

γ
(1)

h,h̄
≈

∞∫

−∞

dνγ̂(1)(ν)(hh̄)j(ν)−1Ωiν

(
log(h/h̄)

)
, (3.9)

δP
(1)

h,h̄
≈

∞∫

−∞

dνδ̂P
(1)

(ν)(hh̄)j(ν)−1Ωiν

(
log(h/h̄)

)
. (3.10)

Then to determine the double-discontinuity at one-loop, we have to calculate:

dDisct[G(2)(z, z̄)] ≈
∑

h,h̄

∞∫

−∞

dν1dν2
π2

2
PMFT
h,h̄ γ̂(1)(ν1)γ̂(1)(ν2)(hh̄)j(ν1)+j(ν2)−2

Ωiν1

(
log(h/h̄)

)
Ωiν2

(
log(h/h̄)

)
ga,a
h,h̄

(1− z, 1− z̄). (3.11)

Unfortunately, we can no longer use (2.39) to do the h and h̄ integrals directly. The reason

is simple, in d = 4 each Ωiν

(
log(h/h̄)

)
contains a factor of (h2 − h̄2)−1,

Ωiν

(
log(h/h̄)

)
= − iνh

1−iν h̄1−iν (h2iν − h̄2iν
)

4π2
(
h2 − h̄2

) . (3.12)

At tree-level this is cancelled by a factor of (h2 − h̄2) in PMFT
h,h̄

, see (2.33), but when we

square the anomalous dimensions we have an extra factor left over in the denominator.

15By low-spin matter we mean only fields of spin J ≤ 2 are allowed.
16We cannot apply the saddle point approximation for the ν integral in a theory dual to gravity since

j(ν) is constant, but we can instead just close the contour in the lower half-plane.
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Instead of performing this integral directly, we instead use completeness of the harmonic

function, Ωiν(L), on Hd−1 [65] to write:17

Ωiν1(L)Ωiν2(L) =

∞∫

−∞

dνB(ν1, ν2; ν)Ωiν(L). (3.13)

With this identity, we can now use the integral (2.39) at the price of introducing an extra

spectral integral. To prove exponentiation we do not need the explicit form of the bubble

function B(ν1, ν2; ν), although it could be useful for other applications.18

Now using the identity (3.13) and approximating the h and h̄ sum by an integral, we

can calculate the double-discontinuity in the Regge limit:

dDisct[G(2)(z, z̄)]≈ π2

4

(zz̄)∆φ

[(1−z)(1−z̄)]
∆ψ+∆φ

2

∞∫

0

dhdh̄

∞∫

−∞

dν1dν2dνγ̂(ν1)γ̂(ν2)B(ν1,ν2;ν)

(hh̄)j(ν1)+j(ν2)−2Ωiν(log(h/h̄))ga,a
h,h̄

(1−z,1−z̄)

≈ π2

2

∞∫

−∞

dν1dν2dν
χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)

Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)
γ̂(1)(ν1)γ̂(1)(ν2)B(ν1,ν2;ν)

(zz̄)
1
2

(2−j(ν1)−j(ν2))Ωiν

(
1

2
log(z/z̄)

)
. (3.14)

Next, we use this expression in the inversion formula, (3.1), and evaluate the integrals

in the small z, z̄ limit,

ct,(2)(∆,J)≈

−(∆−2)κ∆+J

∞∫

−∞

dν1dν2dν
χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)

Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)
ν2γ̂(1)(ν1)γ̂(1)(ν2)B(ν1,ν2;ν)

1

(∆−j(ν1)−j(ν2)+J+iν−1)(∆−j(ν1)−j(ν2)+J−iν−1)

1

(∆+j(ν1)+j(ν2)−J−iν−3)(∆+j(ν1)+j(ν2)−J+iν−3)
, (3.15)

where ct,(2)(∆, J) is the one-loop OPE function. We claim that (3.15) will determine the

leading Regge growth at one-loop.

We can see the integrand of (3.15) does not have a pole at fixed J . To see how the

expected Regge growth emerges, without directly computing the νi integrals in (3.15),

we need to plug this into the Euclidean partial wave decomposition and then perform a

Sommerfeld-Watson transform. Recall that the full OPE function for 〈φφψψ〉 is given by

c(∆, J) = (1 + (−1)J)ct(∆, J). (3.16)

17Similar identities have been used to study one-loop bubble diagrams in AdS [47, 52, 66–68].
18In d = 2 the bubble function is very simple:

B(d=2)(ν1, ν2; ν) =
1

4π
(δ(ν − ν1 − ν2) + δ(ν − ν1 + ν2)) .

Since the analysis is identical in form to the d = 4 case we will present the d = 2 results in appendix B.
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The partial wave decomposition and its analytic continuation in spin take the usual form,

G(z, z̄) =
∑

J

∞∫

−∞

dν ′c
(
2 + iν ′, J

)
F2+iν′,J(z, z̄)

= −
∮

Γ
dJ

∞∫

−∞

dν ′

2π

1 + e−iπJ

1− e−2πiJ
ct
(
2 + iν ′, J

)
F2+iν′,J(z, z̄), (3.17)

where we set d = 4. The function ct,(2)(2 + iν ′, J) has poles in the lower half-plane of

ν ′ when:

iν ′ = 1 + J − j(ν1)− j(ν2)± iν. (3.18)

Therefore, when we close the ν ′ contour we find

G(2)(z, z̄)≈−
∮

Γ
dJ

1+e−iπJ

1−e−2πiJ

∞∫

−∞

dν1dν2dν
iνχj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)

8Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)

κ2J+3−j(ν1)−j(ν2)−iν
(J−j(ν1)−j(ν2)+1)

γ̂(1)(ν1)γ̂(1)(ν2)B(ν1,ν2;ν)gJ+3−j(ν1)−j(ν2)−iν,J(z, z̄)+(ν↔−ν). (3.19)

Now we can deform the Γ contour to the Γ′ contour, see figure 2, and in doing so we

pick up a pole at J = j(ν1)+j(ν2)−1. To go to the Regge limit we also need to analytically

continue the blocks around z̄ = 1. To perform the analytic continuation, we will introduce

the pure blocks [9]. These are solutions to the conformal Casimir equation with a pure

power-law behavior in the limit z � z̄ � 1:

gpure
∆,J (z, z̄) ≈ z∆−J

2 z̄
∆+J

2 . (3.20)

The standard conformal blocks in general d have the decomposition:

g∆,J(z, z̄) = gpure
∆,J (z, z̄) +

Γ(J + d− 2)Γ(−J − d−2
2 )

Γ(J + d−2
2 )Γ(−J)

gpure
∆,−J−d+2. (3.21)

If we send z̄ counter-clockwise around the branch point z̄ = 1 and then take z, z̄ � 1

we have:19

g	,pure
∆,J (z, z̄) ≈ − i

π

1

κ∆+J
gpure

1−J,1−∆(z, z̄). (3.22)

When we go to the Regge limit the first term in (3.21) is dominant and the second term

can be dropped. Finally, this gives us the Regge limit of the one-loop correlator:

G(2)	(z, z̄)≈−π2

∞∫

−∞

dν1dν2dν
1+e−iπ(j(ν1)+j(ν2)−1)

1−e−2πi(j(ν1)+j(ν2)−1)

γ̂(1)(ν1)γ̂(1)(ν2)B(ν1,ν2;ν)

Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)
(3.23)

χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)(zz̄)
1

2
(2−j(ν1)−j(ν2))

Ωiν

(
1

2
log(z/z̄)

)
.

19In general, this monodromy contains more terms but they are subleading in the limit z, z̄ → 0 [9].
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To obtain this expression, we used that B(ν1, ν2; ν) is symmetric in ν and recognized that

the two terms in (3.19) combine to give a single block g2−j(ν1)−j(ν2),iν−1(z, z̄). Finally we

use (2.20) to write the final answer in terms of the harmonic function. The expression (3.23)

tells us that the leading Regge singularity at one-loop is located at J = j(ν1) + j(ν2)− 1.

If we assume at tree-level that,

j(ν) = 2− 2
4 + ν2

∆2
gap

+O(∆−4
gap), (3.24)

and keep ∆gap finite, but large, we can perform the ν1,2 integrals using a saddle-point

approximation. This reveals a non-analyticity at J = 2j(0) − 1. The integrand of (3.19)

has a continuous family of poles, parameterized by ν1,2 and starting at J = 2j(0) − 1, so

this will be a branch point of the full OPE function.

3.2 Inversion of the one-loop correlator

Now that we have the one-loop correlator in the Regge limit, (3.23), we can redo the

analysis of section 2.2 and study corrections to the double-trace data by imposing cross-

ing symmetry.

At one-loop, keeping only the double-traces [φψ]n,J in the t-channel, crossing symmetry

in the Regge limit says:

(zz̄)−∆φG(2)	(z, z̄)≈
∑

h,h̄

PMFT
h,h̄

[
γ

(2)

h,h̄

(
iπ+

1

2
(∂h+∂h̄)

)
+δP

(2)

h,h̄
+γ

(1)

h,h̄
δP

(1)

h,h̄

(
iπ+

1

2
(∂h+∂h̄)

)

+
(
γ

(1)

h,h̄

)2
(
−π

2

2
+
iπ

2
(∂h+∂h̄)+

1

8
(∂h+∂h̄)2

)]
ga,a
h,h̄

(1−z,1−z̄), (3.25)

where h ≈ n and h̄ ≈ n + J . We can simplify the expression by dropping all powers of

(∂h+∂h̄), since they reduce the Regge growth of the double-trace sum by a factor of (zz̄)
1
4 .

The crossing equation then becomes:

(zz̄)−∆φG(2)	(z, z̄)≈
∑

h,h̄

PMFT
h,h̄

[
iπγ

(2)

h,h̄
+δP

(2)

h,h̄
+iπγ

(1)

h,h̄
δP

(1)

h,h̄
−π

2

2

(
γ

(1)

h,h̄

)2
]
ga,a
h,h̄

(1−z,1−z̄).

(3.26)

We have two unknowns, γ
(2)

h,h̄
and δP

(2)

h,h̄
, and two equations, corresponding to the real and

imaginary pieces of G(2)	(z, z̄), so it straightforward to solve for both. In practice, to

solve crossing we will write the one-loop corrections as spectral integrals over the harmonic

functions Ωiν(L) and use (2.39) to evaluate the integrals over h and h̄. Furthermore, when

performing the h and h̄ integrals for the γ
(1)

h,h̄
δP

(1)

h,h̄
term, it will be convenient to symmetrize

their spectral integral representation:

γ
(1)

h,h̄
δP

(1)

h,h̄
=

1

2

∞∫

−∞

dν1dν2γ̂
(1)(ν1)δ̂P

(1)
(ν2)(hh̄)j(ν1)+j(ν2)−2Ωiν1(log(h/h̄))Ωiν2(log(h/h̄))

+ (ν1 ↔ ν2) . (3.27)
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Crossing symmetry then implies the one-loop correction to Ph,h̄ vanishes,

δP
(2)

h,h̄
≈ 0, (3.28)

to leading order at large h and h̄.20 For the one-loop anomalous dimensions we find:

γ
(2)

h,h̄
≈

∞∫

−∞

dν1dν2dν γ̂
(2)(ν1, ν2; ν)(hh̄)j(ν1)+j(ν2)−2Ωiν

(
log(h/h̄)

)
, (3.29)

γ̂(2)(ν1, ν2; ν) = −1

2
π tan

(
1

2
πj(ν1)

)
tan

(
1

2
πj(ν2)

)
tan

(
1

2
π(j(ν1) + j(ν2))

)

× γ̂(1)(ν1)B(ν1, ν2; ν)γ̂(1)(ν2). (3.30)

It is useful to rephrase (3.28) in terms of the underlying OPE coefficients. The dictio-

nary is:

2h−h̄c2
h,h̄ = Ph,h̄ = PMFT

h,h̄

(
1 +

1

N2
δP

(1)

h,h̄
+

1

N4
δP

(2)

h,h̄
+ . . .

)
. (3.31)

We can also expand the individual OPE coefficients at large N :

ch,h̄ =
∞∑

i=0

1

N2i
c

(i)

h,h̄
, (3.32)

and compare the two sides. For example at tree-level we find:

c
(1)

h,h̄

c
(0)

h,h̄

=
1

2
δP

(1)

h,h̄
. (3.33)

Imposing δP
(2)

h,h̄
= 0 gives us the condition

c
(2)

h,h̄
≈ −

(
c

(1)

h,h̄

)2

2c
(0)

h,h̄

, (3.34)

to leading order at large h and h̄. So (3.28) determines the one-loop OPE coefficients at

large h and h̄ in terms of lower loop data.

The one-loop anomalous dimension (3.30) is exact in ∆gap, but to compare with the

eikonal ansatz (2.46) we should use the explicit form of j(ν), as given in (3.24). Then if

we expand at large ∆gap we find

γ
(2)

h,h̄
∼ ∆−6

gap. (3.35)

Therefore, the contribution of γ
(2)

h,h̄
to the imaginary piece of G(2)	(z, z̄) is suppressed by

∆−4
gap in comparison to the contribution of the γ

(1)

h,h̄
δP

(1)

h,h̄
term. This implies that in (3.26),

20More precisely, the statement is δP
(2)

h,h̄
does not grow like (hh̄)2j(0)−2 at large h, h̄.
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the leading Regge behavior at large ∆gap comes from the
(
γ

(1)

h,h̄

)2
and γ

(1)

h,h̄
δP

(1)

h,h̄
terms.

In other words, the one-loop Regge limit at large, but finite, coupling is determined by

the tree-level, double-trace anomalous dimensions and OPE coefficients. This suppression

is the first hint that the bulk scattering will exponentiate, as we discuss in more detail

in section 3.4.

The fact γ
(2)

h,h̄
→ 0 as ∆gap → ∞ is also consistent with the pure gravity result. It

was shown in [18] that the graviton ladder diagrams exponentiate in the Regge limit, and

to reproduce them in the CFT we only keep powers of γ
(1)

h,h̄
in the t-channel, double-trace

sum. In other words, when ∆gap →∞ the one and higher-loop corrections to the anomalous

dimensions do not vanish exactly, but they will give a softer Regge growth in comparison

to the tree-level anomalous dimensions.

3.3 All order results

We can now ask what happens at higher orders in 1/N . From section 3.2, we learned the

leading contribution to the one-loop correlator, at large ∆gap, comes from the tree-level

corrections to the OPE data. We will now show this result carries over to all orders in

1/N . The proof is simple and follows from an inductive argument. The one-loop case

considered in the previous section was our base case, so in this section we need to prove

the inductive part.

We assume that at L − 1 loops and for large ∆gap, we can solve crossing for G	(z, z̄)

by only including tree-level corrections to the double-trace operators, [φψ]n,J , in the t-

channel. This implies that the Regge limit of dDisct[G(z, z̄)] at L-loops and large ∆gap is

also determined by the same tree-level corrections, since the double-discontinuity always

factorizes onto lower-loop data. Following the same procedure as in the previous sections,

we can then reconstruct the L-loop correlator in the Regge limit from the inversion formula.

Finally, we solve crossing at L-loops and large ∆gap using only tree-level corrections to the

double-trace data in the t-channel. This will complete the inductive part of the proof.

For technical reasons, we will need to separately consider this problem at 2M−1 loops

and 2M loops. This comes from the t-channel expansion of the double-discontinuity:

dDisct[G(z, z̄)] =
∑

h,h̄

2 sin2
(π

2
γh,h̄

)
Ph,h̄g

a,a

h,h̄
(1− z, 1− z̄). (3.36)

At 2M − 1 loops, the leading contribution to the Regge limit of dDisct[G(z, z̄)] comes from

the
(
γ

(1)

h,h̄

)2M
term while at 2M loops it comes from the

(
γ

(1)

h,h̄

)2M
δP

(1)

h,h̄
term.

For convenience, let us also define the function Θ as:

m∏

j=1

Ωiνj (L) =

∞∫

−∞

dν Θ(ν1, . . . , νm; ν)Ωiν(L), (3.37)

where the relation to the bubble factor B(ν1, ν2; ν) is

Θ(ν1, . . . , νm;ωm) =

∞∫

−∞

dω2 . . . dωm−1B(ν1, ν2;ω2)

m−1∏

j=2

B(ωj , νj+1;ωj+1). (3.38)
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Then at 2M − 1 loops the double-discontinuity in the Regge limit is,

dDisct[G(2M)(z, z̄)]≈− (zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

h,h̄

PMFT
h,h̄

(
γ

(1)

h,h̄

)2M (iπ)2M

(2M)!
ga,a
h,h̄

(1−z,1−z̄)

≈−
∞∫

−∞

dν1 . . .dν2Mdν
(iπ)2Mχjtot−2M+1(ν)χjtot−2M+1(−ν)

(2M)!Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)

2M∏

i=1

γ̂(1)(νi)

Θ(ν1, . . . ,ν2M ;ν)(zz̄)−
1
2

(jtot−2M)Ωiν

(
1

2
log(z/z̄)

)
,

(3.39)

where we defined the total effective spin,

jtot =
∑

i

j(νi). (3.40)

We can plug (3.39) into the inversion formula to determine the OPE function at 2M − 1

loops. Using the resulting OPE function in the Euclidean partial wave expansion and

performing the Sommerfeld-Watson transform yields the full correlator in the Regge limit

at this loop order:

G(2M)	(z, z̄)≈
∫
dν1 . . .dν2Mdν

eiπ(jtot−M)

1+eiπ(jtot−2M)

2π2Mχjtot−2M+1(ν)χjtot−2M+1(−ν)

(2M)!Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)

2M∏

k=1

γ̂(1)(νk)Θ(ν1, . . . ,ν2M ;ν)(zz̄)
−

1

2
(jtot−2M)

Ωiν

(
1

2
log(z/z̄)

)
.

(3.41)

The analysis is almost identical at 2M loops with the double-discontinuity now

given by,

dDisct[G(2M+1)(z, z̄)]≈− (zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

h,h̄

(iπ)2M

(2M)!
PMFT
h,h̄

(
γ

(1)

h,h̄

)2M
δP

(1)

h,h̄
ga,a
h,h̄

(1−z,1−z̄),

(3.42)

so we will just quote the final answer:

G(2M+1)	(z, z̄)≈
∫
dν1 . . .dν2M+1dν

eiπ(jtot−M)

(eiπ(jtot−2M)−1)

2π2Mχjtot−2M (ν)χjtot−2M (−ν)

(2M)!Γ(∆φ−1)Γ(∆φ)Γ(∆ψ−1)Γ(∆ψ)

2M∏

k=1

γ̂(1)(νk)δ̂P
(1)

(ν2M+1)Θ(ν1, . . . ,ν2M+1;ν)(zz̄)
1

2
(1−jtot+2M)

Ωiν

(
1

2
log(z/z̄)

)
. (3.43)

Now we have to compare both expressions with the t-channel expansion. For compact-

ness, we define the following double-trace sums:

S(k)
γ (z, z̄) =

(zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

h,h̄

PMFT
h,h̄

1

k!
(iπ)k

(
γ

(1)

h,h̄

)k
ga,a
h,h̄

(1−z,1−z̄), (3.44)

S(k)
δP×γ(z, z̄) =

(zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

h,h̄

PMFT
h,h̄

1

(k−1)!
(iπ)k−1

(
γ

(1)

h,h̄

)k−1
δP

(1)

h,h̄
ga,a
h,h̄

(1−z,1−z̄).

(3.45)
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To compute both sums we again use the spectral representation for γ
(1)

h,h̄
and δP

(1)

h,h̄
. As

in the one-loop case, we should symmetrize the spectral integrals for S(k)
δP×γ . We will make

the replacement:

δP
(1)

h,h̄

(
γ

(1)

h,h̄

)k−1
=

1

k

∞∫

−∞

dν1 . . .dνkdν
k∑

i=1

δ̂P
(1)

(νi)
k∏

j=1
j 6=i

γ̂(1)(νj)Θ(ν1, . . . ,νk;ν)Ωiν

(
log(h/h̄)

)
.

(3.46)

Then at 2M − 1 loops we find:

Re
[
G(2M)	(z, z̄)

]
− S(2M)

γ (z, z̄) = 0, (3.47)

Im
[
G(2M)	(z, z̄)

]
− S(2M)

δP×γ(z, z̄) = O(∆−6
gap), (3.48)

while at 2M loops we have:

Re
[
G(2M+1)	(z, z̄)

]
− S(2M+1)

δP×γ = O(∆−6
gap), (3.49)

Im
[
G(2M+1)	(z, z̄)

]
− S(2M+1)

γ = 0. (3.50)

Therefore at each loop order and for large ∆gap, the tree-level corrections determine the

leading Regge behavior. At odd loops the imaginary piece of G	(z, z̄) starts at ∆−2
gap, so

the loop effects are suppressed by ∆−4
gap in comparison. Similarly, at even loops the real

piece also starts at ∆−2
gap, so the same statement carries over.

3.4 Exponentiation in impact parameter space

We can now return to the problem of exponentiating the tree-level phase shift. For simplic-

ity, we start by studying the correlator at one-loop. Recall that the eikonal approximation

for the correlator in impact parameter space is:

Beik(S,L) = N eiδ(S,L), (3.51)

Re δ(S,L) =
1

N2
πγ

(1)

h,h̄
, (3.52)

Im δ(S,L) = − 1

N2
δP

(1)

h,h̄
, (3.53)

where S = hh̄, L = log(h̄/h) and the normalization N is given in (2.47). Following previous

notation we will write:

B(S,L) =

∞∑

n=0

1

Nn
B(n)(S,L) (3.54)

and similarly for Beik(S,L). At one-loop this implies

B(2)
eik(S,L) =

N
2

[(
δP

(1)

h,h̄

)2
− π2

(
γ

(1)

h,h̄

)2
+ 2πiγ

(1)

h,h̄
δP

(1)

h,h̄

]
. (3.55)

– 23 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
3

If we now take our one-loop expression (3.23) and go to impact parameter space we find:

B(2)(S,L) =−
∞∫

−∞

dν1dν2dνN
π2

2
γ̂(1)(ν1)γ̂(1)(ν2)

(
1+itan

(
1

2
π(j(ν1)+j(ν2))

))

B(ν1,ν2;ν)Sj(ν1)+j(ν2)−2Ωiν(L). (3.56)

The real piece of our result is simply given by:

Re[B(2)(S,L)] = −N π2

2

(
γ

(1)

h,h̄

)2
, (3.57)

where we used the definition of the bubble function, (3.13), to do the ν integral. In

comparison to (3.55) we are missing the term
(
δP

(1)

h,h̄

)2
. However, at large ∆gap we have

δP
(1)

h,h̄
∼ ∆−2

gap while γ
(1)

h,h̄
∼ 1. Therefore

Re[B(2)(S,L)− B(2)
eik(S,L)] = O(∆−4

gap). (3.58)

For the imaginary piece we need to use the explicit form of j(ν), (2.41), and expand the

integrand at large ∆gap:

Im[B(2)(S,L)] = N
∞∫

−∞

dν1dν2dν
π3

2

(
8 + ν2

1 + ν2
2

∆2
gap

)
γ̂(1)(ν1)γ̂(1)(ν2)

B(ν1, ν2; ν)Sj(ν1)+j(ν2)−2Ωiν(L) +O(∆−6
gap). (3.59)

The eikonal ansatz gives the same result at this order in ∆gap:

Im[B(2)
eik(S,L)] = N

∞∫

−∞

dν1dν2dν
π3

2

(
8 + ν2

1 + ν2
2

∆2
gap

)
γ̂(1)(ν1)γ̂(1)(ν2)

B(ν1, ν2; ν)Sj(ν1)+j(ν2)−2Ωiν(L) +O(∆−6
gap), (3.60)

or in other words

Im[B(2)(S,L)− B(2)
eik(S,L)] = O(∆−6

gap). (3.61)

Recall that Im[B(2)(S,L)] ∼ ∆−2
gap, which implies the deviations between our result and the

eikonal ansatz are suppressed by ∆−4
gap for both the real and imaginary piece of the phase

shift.

At higher orders in 1/N , we should then only expect the eikonal approximation to be

valid up to terms suppressed by ∆−4
gap. At order N−2m the eikonal ansatz is:

B(m)
eik (S,L) =

(iπ)m

m!

((
γ

(1)

h,h̄

)m
− i

π
mδP

(1)

h,h̄

(
γ

(1)

h,h̄

)m−1
+ . . .

)
, (3.62)
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where the ellipses stand for terms which are suppressed by ∆−4
gap with respect to the terms

we have written. Performing the Fourier transform to go back to position space, we recover

the sums (3.44) and (3.45):

G(m)
eik (S,L) = S(m)

γ (z, z̄) + S(m)
δP×γ(z, z̄) + . . . (3.63)

We have already verified in (3.47)–(3.50) that these sums reproduce the correlator at

each loop order in the Regge limit, up to terms which are suppressed by ∆−4
gap. This implies

that at each order in 1/N , the eikonal ansatz reproduces our result up to terms suppressed

at large ∆gap. This completes our proof using AdS/CFT unitarity that the tree-level phase

shift exponentiates when S � ∆2
gap � 1 and is therefore in agreement with the prediction

from string theory [14, 15].

4 Inelastic effects and exact exponentiation

In this section we will revisit one of our fundamental assumptions, that at one-loop the

Regge limit of dDisct[G(z, z̄)] is determined by the sum over the double-trace operators

[φψ]n,J . At one-loop there are two ways to correct this assumption: either by allowing for

the exchange of single-trace operators or of more general double-trace operators. In string

theory these two effects are dual to long string creation and tidal excitations, respectively.

Physically, long string creation corresponds to new states being created by the scattering

particles, dual to φ and ψ, due to the presence of extended objects in AdS. Tidal exci-

tations, as we discuss in section 4.2, correspond to an incoming state being excited to a

massive state in the scattering process [12, 35, 36, 41].21

As we review in the next section, by requiring that our tree-level results are con-

sistent with the Euclidean OPE, we can show single-trace operators must contribute to

dDisct[G(z, z̄)] at tree-level. By inverting this sum over single-trace operators in the Regge

limit, we also reproduce tree-level Regge behavior, or Pomeron exchange. Next, we show

that by allowing for similar effects at one-loop, we can find results consistent with exponen-

tiation of the tree-level phase shift, without any assumption on ∆gap. Finally, we discuss

tidal excitations, or the exchange of more general double-trace operators, and argue this

effect is subleading at large ∆gap.

4.1 Long string creation

4.1.1 Tree-level

In general, it is difficult to study sums of massive, single-trace operators in a large N

CFT. Unlike the double-trace operators, there is less regularity in their spectrum and

OPE coefficients. However, we can extract some information about these operators by

requiring that crossing symmetry in the Regge and Euclidean limits are consistent. This

idea was used in [17, 18] for graviton exchange and [31] for Pomeron exchange. We will

review the arguments here.

21In string theory this is due to oscillator modes of the original state becoming excited [12, 41].
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We will be studying the tree-level correlator in the limit z, z̄ → 0, with z/z̄ held fixed,

both in the Euclidean and Regge limits. The crossing equation in the Euclidean regime is:

(zz̄)−∆φG(1)(z, z̄) ≈
∑

h,h̄

PMFT
h,h̄

[
1

2
γ

(1)

h,h̄
(∂h + ∂h̄) + δP

(1)

h,h̄

]
ga,a
h,h̄

(1− z, 1− z̄)

+
∑

X
P

(1)
X ga,aX (1− z, 1− z̄), (4.1)

where as a reminder, X are single-trace operators in the φ× ψ OPE. The Regge crossing

equation is:

(zz̄)−∆φG(1)	(z, z̄) ≈
∑

h,h̄

PMFT
h,h̄

[
iπγ

(1)

h,h̄
+ δP

(1)

h,h̄

]
ga,a
h,h̄

(1− z, 1− z̄), (4.2)

where we dropped the single-trace operators and derivatives with respect to h and h̄ since

they are both subleading in the Regge limit.

The sum over the double-traces in (4.2) is responsible for producing the Regge growth

G(1)	(z, z̄) ∼ (zz̄)
1
2

(1−j(0)), with the explicit results for the OPE data given in (2.35)

and (2.36). On the other hand, we also know G(1)(z, z̄) is bounded in the limit z, z̄ → 0.

This is the Euclidean OPE limit, in which case G(1)(z, z̄) ≈ (zz̄)
1
2

∆min where ∆min is the

lightest, non-identity operator.

The problem is both (4.1) and (4.2) contain the same dependence on δP
(1)

h,h̄
and

from (4.2) we know this sum produces a divergence in the limit z, z̄ → 0. Each power

of the anomalous dimension in (4.1) comes with the derivative (∂h + ∂h̄), so these terms

give a comparatively softer divergence in the same limit and cannot cancel the divergence

from δP
(1)

h,h̄
.

To remedy this problem, it was proposed in [31] that the following sum rule hold:

∑

h,h̄

PMFT
h,h̄ δP

(1)

h,h̄
ga,a
h,h̄

(1− z, 1− z̄) ≈ −
∑

X
P

(1)
X ga,aX (1− z, 1− z̄), (4.3)

in the limit z, z̄ → 0 with z/z̄ fixed. This sum rule is consistent with unitarity, or P
(1)
X > 0,

because for 1 ≤ j(0) < 2 we have δP
(1)

h,h̄
< 0. This relation is a restatement of the optical

theorem: the imaginary part of the tree-level phase shift, which is proportional to δP
(1)

h,h̄
, is

related to the production of new states, or the single-trace operators X . We know the left

hand side of (4.3) contains a divergence not present in any individual block, so the same

divergence must also appear on the right hand side and come from the tail of the sum.

Next, we observe the single-trace operators, X , will also contribute to dDisct[G(z, z̄)].

To ensure our results are consistent, we should plug this single-trace sum into the inversion

formula and be able to reproduce the s-channel Regge behavior. We then have to consider

the sum:

dDisct[G(1)(z, z̄)] =
(zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

X
2P

(1)
X sin2

(
π

2
(2hX−∆φ−∆ψ)

)
ga,aX (1−z,1−z̄),

(4.4)
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where we are only interested in the leading divergence of (4.4) when z, z̄ → 0. We will

assume that the spectrum is sufficiently irregular that when we isolate the divergent piece

of (4.4), which can only come from the tail of the sum, that the sin2 term simply averages.22

If we make the replacement 2 sin2
(
π
2 (2hX −∆φ −∆ψ)

)
→ 1 when taking the Regge limit

of (4.4), we find:

dDisct[G(1)(z, z̄)] =
(zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

X
2P

(1)
X sin2

(
π

2
(2hX−∆φ−∆ψ)

)
ga,aX (1−z,1−z̄)

≈ (zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

X
P

(1)
X ga,aX (1−z,1−z̄)

≈− (zz̄)∆φ

[(1−z)(1−z̄)]
∆φ+∆ψ

2

∑

h,h̄

PMFT
h,h̄ δP

(1)

h,h̄
ga,a
h,h̄

(1−z,1−z̄). (4.5)

In the second line we assumed the sin2 terms average and in the third line we used the sum

rule (4.4) to replace the single-trace sum with a double-trace sum.

Now the problem has reduced to the same one as in section 3. We can determine the

double-discontinuity in the Regge limit by approximating the double-trace blocks with the

Bessel function approximation (2.32), replace the sums over h and h̄ with an integral, and

then use (2.39) to evaluate these integrals. Plugging the result for dDisct[G(z, z̄)] into the

inversion formula determines the poles in spin of c(∆, J) at tree-level. Finally, by using the

Sommerfeld-Watson transform we can calculate the tree-level correlator in the Regge limit:

G(1)	(z, z̄) ≈ 2πi

∞∫

−∞

dνα(ν)(zz̄)
1
2

(1−j(ν))Ωiν

(
1

2
log(z/z̄)

)
. (4.6)

This is of course the contribution of the Pomeron to the Regge limit. Therefore, the

single-trace sum which was required to make the Regge and Euclidean crossing equations

consistent is also responsible for producing the Pomeron from the inversion formula.23

Note that we are not double counting in this problem, at tree-level dDisct[G(z, z̄)] is

solely determined by the single-trace operators. The double-trace operators first contribute

at one-loop with a term proportional to the anomalous dimensions squared. The corrections

to the OPE coefficients of double-trace operators only appeared at tree-level here because

we used the sum rule (4.3) to evaluate the single-trace sum.

4.1.2 One-loop

At one-loop we can ask a similar question: does requiring consistency between the Eu-

clidean and Regge limits imply there are new single-trace sums we have to consider? More

importantly, can these single-trace sums also contribute at leading order in the Regge limit?

22This is equivalent to our earlier assumption that the single-trace operators add out of phase and cannot

reproduce the s-channel Regge growth, see the discussion below (2.30).
23The problem of reproducing the Pomeron or graviton pole from the inversion formula, and its implica-

tions, has also been studied in [9, 62, 69].

– 27 –



J
H
E
P
0
5
(
2
0
2
0
)
1
3
3

It is easy to see from our results in section 3 that this is not the case and our earlier conclu-

sions are self-consistent. To show this, let us compare the crossing equations in the OPE

and Regge limits at one-loop. The Euclidean crossing equation is:

(zz̄)−∆φG(2)(z, z̄) ≈
∑

h,h̄

PMFT
h,h̄

[
1

2
γ

(2)

h,h̄
(∂h + ∂h̄) + δP

(2)

h,h̄
+

1

2
γ

(1)

h,h̄
δP

(1)

h,h̄
(∂h + ∂h̄)

+
1

8

(
γ

(1)

h,h̄

)2
(∂h + ∂h̄)2

]
ga,a
h,h̄

(1− z, 1− z̄)

+
∑

X

(
P

(2)
X + P

(1)
X γ

(1)
X ∂∆X

)
ga,aX (1− z, 1− z̄). (4.7)

In the last line of (4.7) we allowed for one-loop corrections to the OPE coefficients and

dimensions of the single-trace operators. For simplicity, we assume there are no new single-

traces which first appear at one-loop, but it is straightforward to include them.

The one-loop Regge crossing equation is:

(zz̄)−∆φG(2)	(z, z̄) ≈
∑

h,h̄

PMFT
h,h̄

[
iπγ

(2)

h,h̄
+ δP

(2)

h,h̄
+ iπγ

(1)

h,h̄
δP

(1)

h,h̄
− π2

2

(
γ

(1)

h,h̄

)2
]

× ga,a
h,h̄

(1− z, 1− z̄), (4.8)

where again we only keep the leading divergences in the Regge limit.

Comparing (4.7) and (4.8), we see the term which can give the strongest divergence

in (4.7) is δP
(2)

h,h̄
. However, we already showed in (3.28) it does not grow like (hh̄)2(j(0)−1).

Since all the other terms in (4.7) come with factors of (∂h + ∂h̄), their growth in the limit

z, z̄ → 0 is softened in comparison to the divergences found in (4.8).

Of course, as each power of (∂h + ∂h̄) only reduces the Regge growth by (zz̄)
1
4 , the

sums involving anomalous dimensions in (4.7) can yield divergences incompatible with

the Euclidean OPE. These divergences will generically be cancelled by the single-trace

operators. However, the resulting sums over single-trace operators, when plugged into the

Lorentzian inversion formula, will give a subleading contribution to the Regge limit in

comparison to the sums over the double-trace operators [φψ]n,J considered in section 3.

Our previous results, which concerned the leading Regge growth at each loop order, are

therefore not affected.

4.1.3 Exact exponentiation

Finally, we will ask a different question: if we tune the one-loop single-trace contribution

to the double-discontinuity, is it possible to recover exact exponentiation of the tree-level

phase shift at arbitrary ∆gap? This is motivated by the question of how to reproduce the

results of [15], where they demonstrated that summing the Pomeron ladder diagrams in

impact parameter space is equivalent to exponentiating the tree-level phase shift. We will

show that in order to reproduce their one-loop result, we need to impose the one-loop

sum rule:
∑

X

(
P

(2)
X + P

(1)
X γ

(1)
X ∂∆X

)
ga,aX (1− z, 1− z̄) ≈ −

∑

h,h̄

1

2

(
δP

(1)

h,h̄

)2
ga,a
h,h̄

(1− z, 1− z̄), (4.9)
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in the limit z, z̄ → 0. An important distinction between the tree-level, (4.3), and the one-

loop sum rule (4.9) is that the former is imposed by unitarity while the latter is an ansatz.

The sum-rule (4.3) was derived in [31] by requiring the Euclidean four-point function does

not have Regge growth in the OPE limit while the sum rule (4.9) is a condition we impose

to require the tree-level result eikonalizes. In particular, (4.9) is derived by requiring the

real part of the one-loop, impact parameter space correlator, B(2)(S,L), is consistent with

eikonalization. It is an open and interesting question whether (4.9) can also be proven

using unitarity and crossing symmetry.

To prove (4.9) leads to eikonalization, we first need to include the single-trace operators

and their one-loop corrections in the Lorentzian inversion formula. However, to use the

sum rule (4.9) in the inversion formula we will also need to assume:

∑

X

(
P

(2)
X + P

(1)
X γ

(1)
X ∂∆X

)
2 sin2

(π
2

(∆X −∆φ −∆ψ)
)
ga,aX (1− z, 1− z̄)

≈
∑

X

(
P

(2)
X + P

(1)
X γ

(1)
X ∂∆X

)
ga,aX (1− z, 1− z̄), (4.10)

to leading order when z, z̄ → 0.

As before, we will argue this is true by recalling that the leading divergences come

from the tail of the sum. First, we can note when ∂∆X acts on the sin2 term, we get factors

which oscillate rapidly in ∆X . We will assume this piece of the sum, which adds out of

phase, does not produce a divergence in the limit z, z̄ → 0. For the other terms we need to

make the same assumption as before: that the spectrum is sufficiently irregular that when

we compute the divergent term from the tail of the sum, the 2 sin2 term averages to one.

If these conditions hold, we can replace the single-trace contribution to

dDisct[G(2)(z, z̄)] by the double-trace sum on the right hand side of (4.9):

dDisct[G(2)(z, z̄)] ⊃
∑

X

(
P

(2)
X + P

(1)
X γ

(1)
X ∂∆X

)
2 sin2

(π
2

(∆X −∆φ −∆ψ)
)
ga,aX (1− z, 1− z̄)

⊃−
∑

h,h̄

1

2

(
δP

(1)

h,h̄

)2
ga,a
h,h̄

(1− z, 1− z̄). (4.11)

In this case, we can follow the same procedure as in the previous section. We approximate

the double-trace sum in (4.11) by an integral and use the Bessel function approximation

to calculate dDisct[G(z, z̄)] in the Regge limit. Once again, the problem reduces to the one

considered in section 3.

With this new ansatz for the single-trace operators, we now find solving crossing in

the Regge limit gives:

γ
(2)

h,h̄
≈ 0, (4.12)

δP
(2)

h,h̄
≈ 1

2

(
δP

(1)

h,h̄

)2
, (4.13)

at leading order for large h and h̄. The sum rule (4.9) guarantees that this result for δP
(2)

h,h̄

is compatible with the standard OPE when plugged into the one-loop, Euclidean crossing
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equation (4.7). Any unphysical divergence in (4.7) from the δP
(2)

h,h̄
term will be cancelled

by the sum over single-trace operators.

Finally, we find the full, one-loop correlator in the Regge limit is:

(zz̄)−∆φG(2)	(z, z̄)≈
∑

h,h̄

PMFT
h,h̄

1

2

[(
δP

(1)

h,h̄

)2
+2iπγ

(1)

h,h̄
δP

(1)

h,h̄
−π2

(
γ

(1)

h,h̄

)2
]
ga,a
h,h̄

(1−z,1−z̄).

(4.14)

In this form the connection to exponentiation is manifest. The eikonal ansatz, (3.51)–(3.53),

says that at one-loop we should have:

B(2)
eik(S,L) =

N
2

[(
δP

(1)

h,h̄

)2
+ 2πiγ

(1)

h,h̄
δP

(1)

h,h̄
− π2

(
γ

(1)

h,h̄

)2
]
, (4.15)

with the standard identifications S = hh̄ and L = log(h̄/h). To compare these two results,

we perform the sums in (4.14) in the Regge limit and then transform to impact parameter

space. In the end, we find exact agreement with the eikonal ansatz (4.15).

It is important to emphasize that we are not claiming that if the sum rule (4.11) holds,

then the eikonal ansatz (2.46) gives a good approximation for the Regge limit at arbitrary

∆gap. As we will discuss in the next section, there are other inelastic effects which appear

at ∆−4
gap we have not yet included which will correct the eikonal ansatz. Rather, we are

making the following more modest claim: if the one-loop sum rule holds, then the correlator

at one-loop contains a term which is consistent with exponentiating the tree-level answer,

and therefore the bulk Pomeron loop calculation [15], but there will be further corrections

we have to consider.

4.2 Tidal excitations

Finally, let us study corrections to the Regge limit from the exchange of more general

double-trace operators in the t-channel. This problem is simple enough that we can focus

directly on the correlator in the Regge limit, G	(z, z̄). In general, it has the expansion:

eiπ(∆φ+∆ψ)(zz̄)−∆φG	(z, z̄) =
∑

O
e2iπhOPOg

a,a
O (1− z, 1− z̄), (4.16)

where the sum runs over all operators in the spectrum, single and multi-trace.

One of the arguments we made in section 2.2, and specifically when solving crossing at

tree-level in the Regge limit, is that only the double-trace operators [φψ]n,J add in phase

and can lead to Regge behavior. For these double-trace operators:

h[φψ]n,J = hφ + hψ + n+
γh,h̄

2
, (4.17)

so the phase factor in (4.16) is constant when we expand γh,h̄ in 1/N . One can also note

that this feature of adding in phase holds for all multi-trace operators. To take these into

account we need to recall the standard large N counting:

〈φψ[O1O2]n,J〉 ∼
1

N2
, 〈φψ[O1 . . .Om]∆,J〉 ∼

1

Nm
, (4.18)

where Oi are some new single-trace operators.
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Figure 6. Pomeron box graph with a generic, t-channel, double-trace cut.

We are interested in one-loop effects, so we can focus on the double-trace operators.

The physical picture for how new double-traces can affect the Regge limit is best explained

using Witten diagrams. As far as this work is concerned, diagrams involving the Pomeron

should be understood as a useful visualization tool for the boundary calculations.24

This caveat aside, tidal excitations can be understood using the box graph shown in

figure 6, where we denote the Pomeron by P. The physical picture is that both φ and

ψ can be excited into new states, O1 and O2, after interacting with the Pomeron, or

reggeized graviton. This box graph is then a way to glue these two tree-level processes

together to obtain a one-loop correction to 〈φφψψ〉. The process of an incoming state

becoming excited to a new state after interacting with a (reggeized) graviton is called a tidal

excitation [35, 36, 39–41]. We also see there is a two-Pomeron cut in the s-channel and a

[O1O2]n,J cut in the t-channel. The t-channel cut corresponds to the double-trace exchange:

φψ → [O1O2]n,J → ψφ. (4.19)

By performing the sum over the [O1O2]n,J family in the s-channel Regge limit, we will

reproduce the two-Pomeron cut in the s-channel. In other words, the sum over this double-

trace family produces the Regge growth (zz̄)1−j(0), which we also saw in section 3 from

summing over the [φψ]n,J double-trace family.

On the other hand, if we interpret figure 6 as a genuine Witten diagram, it will be

proportional to the couplings
(
cφO1j(0)cψO2j(0)

)2
, where we use j(ν) as a shorthand for the

leading Regge trajectory. We are implicitly using the saddle-point approximation to set

ν = 0. However, the coupling of two distinct operators to the Pomeron is known to be

suppressed by ∆−2
gap [23, 26]. So although figure 6 will contribute at leading order in the

Regge limit, it should also be suppressed if we take ∆gap � 1.

In the rest of this section, we will make the above intuition more concrete. First, to

determine how φ and ψ couple to [O1O2]n,J , we need to study the four-point function

〈φψO1O2〉, (4.20)

24The AdS Feynman rules associated to the Pomeron were studied in [15].
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in the t-channel Regge limit.25 The problem is essentially the same as reviewed in section 2,

except now we have four distinct operators. Assuming the Pomeron can be exchanged in the

t-channel, we find the following scaling at large h and h̄ for the s-channel OPE coefficients:

1

2J
c2
φψ[O1O2]n,J

∼ 1

N−4
2−2h−2h̄(hh̄)2j(0)+∆φ+∆ψ−9/2, (4.21)

where we made the usual identification h ≈ n and h̄ ≈ n + J . Plugging this into the

t-channel expansion of 〈φφψψ〉 we find the one-loop Regge behavior:

G(2)	(z, z̄) ∼ (zz̄)1−j(0). (4.22)

This implies the t-channel exchange, φψ → [O1O2]n,J → ψφ, will lead to the same Regge

growth at one-loop as we saw in section 3.

Next, we will use unitarity arguments and the stress-tensor Ward identity to show this

contribution is suppressed at large ∆gap, see [25, 26] for more details. To show this, we note

the size of the Pomeron contribution to the tree-level, t-channel Regge limit of 〈φψO1O2〉
is proportional to:

rO1O2(ν) = cφO2j(ν)cO1ψj(ν)K2+iν,j(ν). (4.23)

Suppressing the dependence on n and J , crossing symmetry for 〈φψO1O2〉 in the t-channel

Regge limit tells us:

cφψ[O1O2]n,J ∼ rO1O2(0), (4.24)

when n, J � 1 or equivalently when h, h̄� 1.

Finally, we will use the existence of a flat space limit to constrain the size of rO1O2(0).

In general it has the following expansion at large ∆gap [25]:

rO1O2(ν) = rO1O2(0) +
∞∑

n=1

Pn(ν2)

∆2n
gap

, (4.25)

where Pn(ν2) are polynomials of degree n such that Pn(0) = 0. This form is fixed by

requiring that r(ν) is finite in the limit ν2 → ∞ with ν/∆gap held fixed. This expansion

implies that in theories with a large gap, the value of rO1O2(ν) at the stress-tensor point,

ν = −2i in d = 4, can differ from its value at the intercept point, ν = 0, at most by a

∆−2
gap amount.

This constraint on the OPE coefficients has been used [25, 26] to bound couplings to

the stress-tensor by first bounding the couplings to the Pomeron. Here we are interested

in a different problem, we want to directly bound how two local operators couple to the

Pomeron. The simplest case to start with is when O1 and O2 are two, new, scalar operators.

In that case the Ward identity implies 〈φO1T 〉 = 〈ψO2T 〉 = 0 or:

rO1O2 (−2i) = 0. (4.26)

25The t-channel Regge limit is defined by analytically continuing z counterclockwise around z = 0 and

sending z, z̄ → 1 at the same rate. In general we should also study the u-channel, but the main results will

be unchanged.
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Then, at the ν = 0 point we must have rO1O2(0) . ∆−2
gap.26 This gives us the overall

scaling:

c2
φψ[O1O2]n,J

. ∆−4
gap. (4.27)

Therefore, the Regge growth due to [O1O2]n,J exchange in the t-channel of 〈φφψψ〉 is

necessarily suppressed at large ∆gap.

Next, let us consider the problem when O1 = ψ, but O2 is a new spinning operator.

Now we are able to bound the coupling cO2φj(0) directly. This was proven explicitly in [26]

when O2 is a spin-one operator, V ,27 or the stress-tensor itself, T . For the latter case, it

was shown the OPE coefficients vanish at the ν = 0 point:

rψT (0) = 0. (4.28)

This does not imply the Pomeron gives a vanishing contribution to the t-channel Regge

limit of 〈φψψT 〉, only that its total contribution is suppressed at large ∆gap. From the

general form (4.25) and by imposing crossing symmetry of 〈φψψT 〉 we learn:

c2
φψ[ψT ]n,J

. ∆−4
gap. (4.29)

Once again, we have found that although new double-trace operators can affect the leading

one-loop Regge behavior, unitarity and Ward identities imply this is an effect which is

suppressed when ∆gap is large.

We can also consider more general cases, e.g. when O2 is a non-conserved, spin-two

operator, M , or a general, spin-J , single-trace operator X∆,J . Bounds on higher-spin

operators have been studied less,28 but we expect the general ideas of [25, 26] should carry

over. From these arguments we expect at least the suppression:

cφj(0)X∆,J
. ∆−Jgap. (4.30)

It would be nice to show this explicitly, either by using the previously mentioned unitarity

arguments [25, 26] or by using light-ray operators [62, 63, 72].

5 Discussion

In this paper, we have studied the Regge limit at one-loop and higher for large N , 4d CFTs.

We studied CFTs with higher-spin, single-trace operators which are dual to AdS theories

with higher-spin particles. In such theories, the Regge limit at tree-level is controlled by the

leading, single-trace, Regge trajectory. Solving crossing at tree-level then gives corrections

to both the anomalous dimensions and OPE coefficients of double-trace operators. In the

26We expect the suppression should be ∆−4
gap if O1,2 are new scalar operators and ∆−2

gap if for example

O1 = ψ and O2 is a new scalar operator.
27The coupling 〈TV φ〉 is only non-zero when ∆O = ∆V ± 1. If this condition is not satisfied then

r(−id/2) = 0 and we can use the same argument as when O2 was a scalar.
28See [70] for constraints on higher-spin particles which sit below ∆gap and [71] for bounds on

generic CFTs.
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AdS theory, this implies the phase shift from two-to-two scattering at high energies and

fixed impact parameter contains both a real and imaginary piece.

By applying crossing symmetry, we then used the tree-level data to study the Regge

limit to all orders in 1/N . We have argued that in large N CFTs, when ∆gap is large,

the tree-level phase shift exponentiates. To prove this, we showed that other possible

corrections to the Regge limit, such as tidal excitations or higher-loop corrections to the

double-trace operators, are suppressed when ∆gap is large. We have also explained how

imposing sum rules on the single-trace operators can yield exponentiation of the tree-level

answer at arbitrary ∆gap.

To fully understand the Regge limit at higher loops and finite ∆gap, we need a more

detailed understanding of tidal excitations. To do this, it is useful to first consider the Regge

limit of flat-space, string scattering amplitudes. This was studied in [35, 36, 39],29 where

they showed that it was possible to include tidal excitations in the eikonal approximation

by promoting the c-number phase shift, δ, to an operator, δ̂, on the string Hilbert space.30

In this case, the phase shift operator will act on the two initial states and produce two,

generic outgoing states. If operator eikonalization could be derived in CFTs with higher-

spin, single-trace operators, it would yield more evidence that the bulk theory necessarily

contains strings.

To understand exponentiation and Regge behavior for more general observables, it

will also help to further study how the bulk worldsheet picture considered in [14, 15, 41]

is encoded by the boundary CFT. In [14] they identified the Pomeron as a worldsheet

vertex operator and studied it in a semi-classical approximation. One promising avenue to

study this from the CFT perspective would be via light-ray operators and their OPE [30,

62, 63, 84, 85]. It was shown in [30] that the Pomeron is a generalized light-ray operator

O∆,J . As one possible application, in this work we derived the existence of two-Pomeron

Regge behavior at one-loop by performing sums over local, double-trace operators. The

same behavior was derived in [15], but in their work they glued together two Pomeron-

particle amplitudes. To understand such amplitudes from the CFT perspective will require

studying correlation functions with external, light-ray operators, O∆,J , of general spin.

We have also made several technical assumptions which can be relaxed. For example,

we focused on d = 4 because the conformal blocks are known in closed form. However,

it should be possible to generalize our analysis to arbitrary spacetime dimensions, either

by using the impact parameter blocks [17, 18, 86, 87] or by using the Lorentzian inversion

formula to calculate the double-trace data at large h and h̄ [9]. We also restricted to exter-

nal, scalar operators for simplicity, but it is in principle straightforward to study external,

spinning operators [88–93] using differential operators [94–97]. One particularly interesting

problem is to consider correlation functions of operators on the leading Regge trajectory

itself. We expect causality and unitarity will give an intricate set of constraints on these

couplings which will yield new information on the space of weakly coupled, gravitational

theories with higher-spin particles.

29For further work on string theory in the Regge limit see [73–83].
30This is also reviewed in [62] where they showed the connection to commutativity of shockwaves.
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Another interesting, Lorentzian limit we have not discussed thus far is the bulk-point

limit [98–100]. By studying this limit, we can also probe bulk, high-energy scattering at

fixed angles. It is well-known that string theory is exponentially soft in this limit [101–103]

and this behavior does not occur in Einstein gravity or QFT. Understanding when this

behavior emerges from the boundary CFT, and the constraints it imposes on the OPE, is

crucial to understanding which CFTs have string theory duals.31

Finally, we should mention that in general the Regge limit is less understood in com-

parison to the Euclidean or lightcone OPE. This is due to its intrinsically Lorentzian

nature and the fact it is best understood as an expansion in terms of non-local, light-ray

operators [30, 84, 85]. In terms of the OPE function, c(∆, J), the reason is we need to

understand its singularities for general complex J , while the Euclidean OPE tells us about

singularities in ∆ at fixed, integer J . We therefore hope that the work presented here will

help in elucidating the Regge limit for general, non-perturbative CFTs.
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A Definitions and integrals

In this work we follow the standard conventions for CFT two and three-point functions. If

we denote scalar operators by φi and spinning operators by O∆,J , then the kinematic two

and three-point functions are:

〈O∆,J(x1,z1)O∆,J(x2,z2)〉= (z1 ·I(x12)·z2)J

x2∆O
12

, Iµν(x) = δµν−2
xµxν
x2

, (A.1)

〈φ1(x1)φ2(x2)O∆3,J3(x3,z3)〉= (X3 ·z3)J3

x
∆12,3+J3

12 x
∆13,2−J3

13 x
∆23,1−J3

23

, Xµ
3 =

xµ13

x2
13

−x
µ
23

x2
23

, (A.2)

where ∆ij,k = ∆i + ∆j −∆k and O∆,J(x, z) = Oµ1...µJ
∆,J zµ1 . . . zµJ .

If we consider a physical three-point function, which we denote by 〈φ1φ2O∆3,J3〉Ω then:

〈φ1φ2O∆3,J3〉Ω = c123〈φ1φ2O∆3,J3〉, (A.3)

where c123 are the OPE coefficients.

31For recent work on how Gross-Mende behavior bounds the Mellin amplitude see [104].
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The shadow coefficients which relate the conformal partial waves, F∆,J(z, z̄), to the

conformal blocks, g∆,J(z, z̄), in (2.10) are defined by:

Sφ1φ2

∆,J =
π
d
2 Γ(∆− d

2)Γ(∆ + J − 1)Γ( ∆̃+∆1−∆2+J
2 )Γ( ∆̃+∆2−∆1+J

2 )

Γ(∆− 1)Γ(∆̃ + J)Γ(∆+∆1−∆2+J
2 )Γ(∆+∆2−∆1+J

2 )
, (A.4)

where ∆̃ = d−∆.

Furthermore, our conventions for the 2d and 4d conformal blocks are:

g
(2d),ab

h,h̄
=

1

1 + δh,h̄
kh(z)kh̄(z̄) + (z ↔ z̄), (A.5)

g
(4d),ab

h,h̄
=

zz̄

z − z̄ kh(z)kh̄(z̄) + (z ↔ z̄), (A.6)

where we also defined the SL(2,R) blocks

kh(z) = zh2F1(h+ a, h+ b, 2h; z). (A.7)

In the body of the paper we only used the 4d blocks, so we suppressed this label, but in

appendix B we give results which require the 2d blocks.

In (2.40) we also introduced the factor K defined by:

K∆,J =
Γ(∆ + J)Γ

(
∆ + 1− d

2

)
(∆− 1)J

4J−1Γ(∆+J+∆12
2 )Γ(∆+J−∆12

2 )Γ(∆+J+∆34
2 )Γ(∆+J−∆34

2 )

1

Γ
(

∆1+∆2−∆+J
2

)
Γ
(

∆3+∆4−∆+J
2

)
Γ
(

∆1+∆2−∆̃+J
2

)
Γ
(

∆3+∆4−∆̃+J
2

) . (A.8)

Finally the harmonic function Ωiν(L) for Hd−1 is:

Ωiν(L) =
ν sinh(πν)Γ(d2 − 1 + iν)Γ(d2 − 1− iν)

2d−1π
d+1

2 Γ(d−1
2 )

2F1

×
(
d

2
− 1 + iν,

d

2
− 1− iν, d− 1

2
,− sinh2

(
L

2

))
. (A.9)

B CFts in d = 2

In this paper we have focused on large N CFTs in d = 4, but everything can be repeated

with very minor changes for d = 2. We expect a similar generalization will hold for general,

even spacetime dimensions where we also know the blocks in closed form. In this appendix

we will focus on the 2d global, conformal group and restrict to light, external operators.

We will not discuss Virasoro symmetry, but it would be interesting to extend our analysis

to this larger symmetry.

In 2d the Bessel function approximation for the blocks in the limit z−
1
2 ∼ z̄−

1
2 ∼ h ∼

h̄� 1 is:

g
(2d),a,b

h,h̄
(1− z, 1− z̄) ≈

√
hh̄

π
22(h+h̄)Ka+b(2h

√
z)Ka+b(2h̄

√
z̄) + (z ↔ z̄). (B.1)
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Other objects also simplify, such as the harmonic function,

Ωiν(L) =
cos(νL)

2π
, (B.2)

and the MFT OPE coefficients,

P
(2d),MFT

h,h̄
≈ π2−2(h+h̄−2)h∆φ+∆ψ− 3

2 h̄∆φ+∆ψ− 3
2

Γ(∆φ)2Γ(∆ψ)2
. (B.3)

One nice feature of working in d = 2 is all the h and h̄ integrals are trivial. We will not need

to introduce the bubble function B(ν1, ν2; ν) and the associated, extra spectral integral for

ν. Since the 2d analysis, when we restrict to the global conformal group, is identical in

form to the 4d results presented in the body of the paper, we will simply state the final

results here.

We again consider the correlator of pairwise identical scalars, 〈φφψψ〉, at tree-level

and require that the t-channel expansion reproduce the leading Regge trajectory in the

s-channel. We use the spectral representation and will leave it implicit that d = 2:

γ
(1)

h,h̄
≈

∞∫

−∞

dνγ̂(1)(ν)(hh̄)j(ν)−1Ωiν

(
log(h/h̄)

)
, (B.4)

δP
(1)

h,h̄
≈

∞∫

−∞

dνδ̂P
(1)

(ν)(hh̄)j(ν)−1Ωiν

(
log(h/h̄)

)
, (B.5)

and crossing symmetry implies:

1

N2
γ̂(1)(ν) =

2<[α(ν)]Γ(∆φ)2Γ(∆ψ)2

χj(ν)(ν)χj(ν)(−ν)
, (B.6)

1

N2
δ̂P

(1)
(ν) =

−2π=[α(ν)]Γ(∆φ)2Γ(∆ψ)2

χj(ν)(ν)χj(ν)(−ν)
. (B.7)

Performing the inversion formula in the z, z̄ → 0 limit then yields the one-loop corre-

lator in the Regge limit:

G(2)	(z, z̄) ≈ −
∞∫

−∞

dν1dν2
π

2

eiπ(j(ν1)+j(ν2))

1 + eiπ(j(ν1)+j(ν2))

γ̂(1)(ν1)γ̂(1)(ν2)

Γ(∆φ)2Γ(∆ψ)2
(zz̄)

1
2

(2−j(ν1)−j(ν2))Ωi(ν1+ν2)

×
(
−1

2
log(z/z̄)

)
(B.8)

We can then solve the crossing equation in the Regge limit, (3.26), to calculate one-loop

corrections to the double-trace operators:

δP
(2)

h,h̄
≈ 0 (B.9)

γ
(2)

h,h̄
≈
∞∫

−∞

dν1dν2γ̂
(2)(ν1,ν2)(hh̄)j(ν1)+j(ν2)−2Ωi(ν1+ν2)

(
−1

2
log(h/h̄)

)
(B.10)

γ̂(2)(ν1,ν2) =−π
2
γ̂(1)(ν1)γ̂(1)(ν2)tan

(
1

2
πj(ν1)

)
tan

(
1

2
πj(ν2)

)
tan

(
1

2
π(j(ν1)+j(ν2))

)
.

(B.11)
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As in the 4d case, we find that in the limit ∆gap →∞ or j(ν)→ 2, that the leading correc-

tion to the one-loop anomalous dimension vanishes in the Regge limit. This is consistent

with pure Einstein gravity in the bulk, where tree-level graviton exchange exponentiates

in the Regge limit. We also find the one-loop corrections to γ
(2)

h,h̄
are suppressed by ∆−6

gap

and therefore give a subleading effect at one-loop when ∆gap is large.
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